The main components of FAWO 3 are: different mixed compounds of SiO₂, Al₂O₃ and WO₃ triclinic and monoclinic.

The new type of substrate was investigated as substrate for complex adsorption and/or as ion exchange processes involving tri-component, heavy metal and dyes pollutants. This process can be more complex because the FAWO composition includes 9.5% Fe₂O₃ and MnO₂ which can participate in photocatalysis and adsorption based on a mixture of catalysts and fly ash.

EXPERIMENTAL

Substrate: Tungsten Oxide and Fly Ash - Mixture

- Fired coal FA, collected from the Brasov - Romania CHP plant, (from the filters).
- The compositions of raw FA. According to the ASTM standards, the FA - type F.

XRD of the (A) FA, (B) FAWO₃, and (C)WO₃

- The successfull transformation: kaolinite, geleline, Na₂, magheline-Q, syn, kyanite, quartz, Na₁₋₅W₀₃ (mulite, cristobalite sodium aluminum silicate, clinoptilolite, phillipitobornonite oxide Fe₂O₃)
- The main components of FAWO₃ are: different mixed compounds of SiO₂, Al₂O₃ and WO₃ triclinic and monoclinic.

AFM topography, average roughness:

- (a) FA
- (b) WO₃
- (c) FAWO₃

Adsorption

<table>
<thead>
<tr>
<th>BB/min</th>
<th>%</th>
<th>Photo. BB/min</th>
<th>%</th>
<th>Adsortion BB/min</th>
<th>%</th>
<th>Photo. BB/min</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.42</td>
<td>10</td>
<td>1.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>12.95</td>
<td>60</td>
<td>8.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>33.41</td>
<td>120</td>
<td>17.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>41.25</td>
<td>180</td>
<td>20.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>36.16</td>
<td>240</td>
<td>21.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>36.16</td>
<td>300</td>
<td>21.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keywords:

Fly ash, tungsten oxide, dyes, heavy metal removal, adsorption, photocatalysis, wastewater treatment.

Heavy metal solution: CuCl₂, 2H₂O (Scharlau)

Concentration measurements:

- Cations: AAS (Analytic Jena ZEEnit 700) \(\lambda_{cu} = 324.75 \text{ nm} \)
- Dyes: Perkin Elmer Lambda 25 \(\lambda_{bb} = 629 \text{ nm} \)
 \(\lambda_{br} = 501 \text{ nm} \)
- Adsorption and photodegradation experiments:

 Batch experiments, stirring, at 22-24°C

Substrates: WO₃, FAWO₃, Cu²⁺ Efficiency

RESULTS AND DISCUSSIONS

Time, mass, concentration influence, on the adsorption efficiency of Cu²⁺, BB and BR from multicomponent systems

VH₂O₂ pH influence, on the adsorption and photodegradation efficiency of Cu²⁺, BB and BR from multicomponent systems

This process can be more complex because the FAWO composition includes 9.5% Fe₂O₃ and MnO₂ which can participate in the adsorption or generation of hydroxyl radicals.

Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCEDI, project number PN-II-PU-TE-2012-3-0177/2013.