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Obiectivul medicinii personalizate este personalizarea strategiei de tratare a pacienților pe
baza unor caracteristici, condiții, necesități sau particularități individuale de-a lungul tuturor
etapelor relevante pentru pacienți, începând de la prevenție și diagnoză până la tratament și
monitorizare ulterioară. Bolile cardiovasculare reprezintă principala cauză de deces la nivel
mondial și această lucrare se concentrează asupra medicinii cardiovasculare personalizate, și în
mod special asupra metodelor computaționale care includ următoarele arii de interes: modelare
multiscalară personalizată a hemodinamicii arteriale, inteligență artificială și procesare paralelă
în modelarea hemodinamică multiscalară. Toate cele trei arii sunt esențiale pentru a atinge
obiectivul final al aplicării modelelor în rutine clinice pentru evaluarea non-invazivă și
personalizată a patologiilor cardiovasculare.

Inițial se introduce un framework ierarhic de estimare a parametrilor pentru realizarea unor
simulări hemodinamice personalizate în modele arteriale, care folosesc arbori structurați ca și
condiții de frontieră. Se formulează o problemă de calibrare la fiecare nivel al framework-ului
ierarhic, care caută soluția de punct fix a unui sistem de ecuații neliniare. Proprietăți
hemodinamice precum rezistența și complianța sunt estimate la primul nivel pentru a îndeplini o
serie de obiective formulate pe baza unor măsurători clinice de presiune și/sau debit. La al doilea
nivel se estimează parametri arborilor structurați astfel încât să se obțină valorile proprietăților
hemodinamice determinate la primul nivel. O caracteristică cheie a metodei propuse este faptul
că, pentru a asigura o gamă largă de variație a valorilor acestor proprietăți, se personalizează doi
parametrii diferiți ai arborilor structurați pentru fiecare proprietate hemodinamică.

În continuare se introduce un framework de estimare a parametrilor pentru personalizarea
automată și robustă a hemodinamicii aortice pornind de la date de rezonanță magnetică 4D.
Framework-ul este bazat pe un model hemodinamic multiscalar de ordin redus de interacțiune
fluid-solid și pe două proceduri de calibrare. Inițial, se personalizează parametrii windkessel ai
condițiilor de frontieră de ieșire prin rezolvarea unui sistem de ecuații neliniare. Apoi, se
personalizează proprietățile mecanice ale peretelui aortic prin formularea unei probleme de
minimizare a celor mai mici pătrate. Cele două proceduri de calibrare sunt rulate secvențial și
iterativ până când se obține convergență pentru ambele proceduri. Global, modelul
computațional a produs rezultate apropiate de măsurătorile clinice care au fost folosite în
formularea obiectivelor de personalizare.

De asemenea, se introduce o metodologie de separare a rigidității arteriale, determinate in
vivo, în rigiditate a peretelui arterial și rigiditate a țesutului înconjurător. Se consideră o presiune
efectivă perivasculară care introduce o constrângere radială. În continuare, pornind de la date in
vivo, achiziționate la faza diastolică, se estimează ariile secțiunilor transversale la presiune
arterială nulă. În final, rigiditatea peretelui arterial și a țesutului înconjurător sunt determinate pe
baza unui model cu două arcuri paralele. Cu ajutorul unui model multiscalar de ordin redus,
metodologia este folosită pentru studiul efectului global al țesutului înconjurător asupra
hemodinamicii arteriale. Principalele influențe sunt: viteză de undă mai mare, unde inverse de
presiune și debit care ajung mai repede înapoi la inimă, complianță totală mai mică, presiune de
puls mai mare și arii reduse ale secțiunilor transversale.
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În continuare, se introduce un model pentru estimarea non-invazivă a buclelor de presiune-
volum personalizate pentru ventriculul stâng. Se folosește un model cu parametrii distribuiți al
circulației, bazat pe circulația pulmonară venoasă, atriul stâng, ventriculul stâng și circulația
sistemică. Un framework complet automatizat de estimare a parametrilor este prezentat pentru
personalizarea modelului, care este format din două etape secvențiale: inițial, se calculează direct
o serie de parametri și, în continuare, se aplică o metodă de calibrare bazată pe optimizare pentru
a estima iterativ valorile celorlalți parametri ai modelului cu parametrii distribuiți.

Una din cele mai interesante metodologii prezentate în această lucrare este bazată pe un
model de inteligență artificială pentru estimarea rezervei fracționare de debit (FFR) ca alternativă
la abordările bazate pe modele de dinamica fluidelor. Modelul este antrenat cu ajutorul unei baze
de date mari formată din anatomii coronariene sintetice, pentru care valorile de referință de FFR
sunt calculate cu modelul de dinamica fluidelor. Modelul antrenat prezice FFR la fiecare locație
a arborelui arterial și performanța lui a fost evaluată prin compararea predicțiilor cu valorile
obținute cu ajutorul modelului bazat pe dinamica fluidelor și cu valorile de FFR măsurate
invaziv pentru 87 de pacienți / 125 de leziuni. S-a obținut o corelație excelentă între predicții,
neputând fi observat nici un bias în analiza Bland-Altman. În comparație cu modelul bazat pe
dinamica fluidelor, timpul de execuție a fost redus de mai mult de 80 de ori, conducând la o
evaluare în timp real a FFR.

Metoda multigrid geometric (GMG) reprezintă unul din cei mai eficienți algoritmi de
rezolvare a sistemelor mari de ecuații liniare și poate fi paralelizată eficient. S-a realizat o analiză
detaliată a unei implementări GMG bazate pe procesor grafic și rezultatele au fost comparate cu
o metodă optimizată a gradienților conjugați. Testele au indicat faptul că etapa de smoothing
ocupă cea mai mare parte a timpului de execuție, iar varianta GMG cu cea mai bună performanță
este schema V cu o configurație de smoothing 312. Stencil-ul de discretizare are o influență
majoră asupra timpului de execuție și alegerea sa reprezintă un compromis între timpul de
execuție și acuratețea numerică.
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1. Introduction

Multiscale Modeling of Arterial Hemodynamics
Patient-Specific Multiscale Modeling of Arterial Hemodynamics
Machine Learning in Hemodynamic Modelling
Parallel Processing in Multiscale Hemodynamic Modeling

The concept of personalized medicine has been introduced several hundred years ago, but
scientists have started to understand factors causing disease only through developments made in
the 19th century in chemistry and microscopy. As science and technology have evolved
healthcare decisions have started to become more patient-specific. Importantly, with the
developments in medical imaging, genetics and artificial intelligence the diagnosis and treatment
of pathologies have become more granular. Ongoing developments in computational biology,
medical imaging and regenerative medicine are setting the stage for truly personalized decision
making and treatment. Nevertheless, there is still a long way before fully understanding why
various pathologies initiate and evolve, and why there are considerable differences in how
patients react to certain treatment plans. This means that nowadays clinicians still chose a sub-
optimal treatment plans or take sub-optimal decisions on a daily basis,  sometimes even relying
on trial-and-error strategies. In turn this can have negative effects ranging from patient
dissatisfaction, adverse responses to drugs to a different final patient outcome. The ultimate goal
of personalized medicine is to identify apriori the subjects responding well to certain treatments
and distinguish them from those who will not have any benefit and instead have to support costs
and endure unpleasant side effects. We often refer to personalized medicine as the right patient
with the right treatment at the right time [Sadee  et  al.,  2005].  Overall,  the  objective  is  to
personalize the treatment strategy to individual features, conditions, needs and particularities of a
subject during all stages of care, ranging from prevention, diagnosis, treatment and follow-up.
Personalized medicine is sometime also referred to as precision medicine (National Academy of
Sciences - NAS) defines it as “the use of genomic, epigenomic, exposure and other data to define
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individual patterns of disease, potentially leading to better individual treatment” [***NRC,
2011]) or targeted medicine [***FDA, 2013]. Other generally accepted definitions are:

· “The use of new methods of molecular analysis to better manage a patient’s disease or
predisposition to disease.”– Personalized Medicine Coalition;

· “Providing the right treatment to the right patient, at the right dose at the right time.” –
European Union;

· “The tailoring of medical treatment to the individual characteristics of each patient.” –
President’s Council of Advisors on Science and Technology;

· “Health care that is informed by each person’s unique clinical, genetic, and
environmental information.” – American Medical Association;

· “A  form  of  medicine  that  uses  information  about  a  person’s  genes,  proteins,  and
environment to prevent, diagnose, and treat disease.” – National Cancer Institute, NIH.

Personalized medicine typically refers to two different types of medical products:
· A diagnostic device: in vitro tests (used typically in genetic analysis), in vivo tests (e.g.

EKG, medical imaging);
· A therapeutic device.

Nowadays, with the rapid evolution of mobile devices, wearable sensors and the Internet,
patients can be monitored more effectively and more closely than ever outside of hospitals. Thus,
ambulatory treatments have become feasible, which in turn increases the life quality of patients.
The success of personalized medicine depends on the introduction of precise and reliable
decision making tools, which typically refers to the identification of reliable biomarkers. If the
decision making tool is not accurate, the treatment decision will be suboptimal. As such,
personalized medicine leads in the long term to disease prevention, and to a paradigm shift from
illness  to  wellness  –  from  disease  to  maintaining  health.  Finally,  it  will  also  lead  to  reduced
costs, by reducing disease burden and by providing efficient treatment plans.

Cardiovascular disease is the leading cause of death, globally. Hence, this work focuses
personalized cardiovascular medicine, and specifically on computational methods related to this
topic. The vast majority of cardiovascular pathologies are related to the systemic arterial
hemodynamics. Typically, the modeling of arterial hemodynamics is based on the theory of fluid
mechanics. Computational Fluid Dynamics (CFD) is one of the major topic areas in the field of
fluid mechanics, which employs numerical methods and algorithms for solving and analyzing
applications related to fluid movements. The fundamental equations which govern fluid flow are
the Navier-Stokes system of equations (conservation of mass, conservation of momentum and
conservation of energy). This system of equations can be solved analytically only under specific
simplified and idealized conditions. Hence, typically, the Navier-Stokes equations are solved
numerically.

During the last decades several numerical methods for solving these equations have been
developed: finite element method, finite volume method, finite difference method, Lattice-
Boltzmann method, etc. [Wendt, 2009].

In hemodynamics applications, which simulate the flow of blood in the cardiovascular
system, the Navier-Stokes equations are solved inside of a closed domain, delimited by the walls
of the arteries / heart chambers, etc. The incompressibility of blood leads to a simplification of
the Navier-Stokes equations, which, typically, are solved without considering the energy
conservation equation (the temperature is considered to be constant).

Hemodynamic simulations generally focus on a particular segment / region of interest in
the cardiovascular system, which is modeled in a three-dimensional pace given by an anatomical
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model reconstructed from medical imaging data acquired through Computer Tomography (CT),
Magnetic Resonance Imaging (MRI), X-ray Angiography (XA), Ultrasound (US), etc. Due to the
large execution times, only limited sections of the cardiovascular system can be considered for
three-dimensional simulations. Since the cardiovascular system is a closed-loop system,
however, the simulations performed for particular segment, without taking into account the
influence of the other cardiovascular components, leads to erroneous results, especially in terms
of pressure results [Quarteroni et al., 2001].

To mitigate this aspect, multiscale models have been proposed, which combine the detailed
three-dimensional modeling in the region of interest with one- or zero-dimensional modeling for
the remaining components of the cardiovascular system.

A crucial role in any fluid dynamics simulation is played by the boundary conditions. In
hemodynamics simulations, the inlet boundary condition is typically given by patient-specific
measurements (e.g. phase contrast MRI measurements) or by lumped parameter models
representing the upstream cardiovascular components (e.g. the heart). The boundary condition at
the arterial walls is given by the blood viscosity (the no-slip condition) [Perktold et al., 1995].
The outlet boundary condition typically poses the largest difficulties, whereas several types of
such conditions can be imposed [Vignon-Clementel et al.,  2010]: constant pressure, resistance,
windkessel model with varying number of parameters, structured tree, etc.

Since the numerical simulation of arterial hemodynamics requires large execution times,
there is a continuous need for faster computations. Parallel processors lead to an improvement of
the execution time, since the majority of fluid dynamics algorithms can be parallelized
efficiently.  With  the  technological  advancements  of  Graphics  Processing  Units  (GPU),  which
contain a very large number of cores (more than 1000), and especially with the introduction of
the CUDA (Compute Univied Device Architecture) language cost-efficient parallelization can be
performed [Jesperson, 2009]. Similar to other applications where execution time is crucial,
hemodynamic computations can profit from the porting of computationally intensive parts of the
algorithms to the GPU in three ways: solve the same problem in a shorter amount of time, solve
more complex problems in the same amount of time, and obtain better solutions for problems
which need to be solved in a given amount of time [Kirk et al., 2010].

1.1 MULTISCALE MODELING OF ARTERIAL HEMODYNAMICS

During the last years, the progress achieved in the field of computational fluid dynamics,
together with the technological advancements in medical imaging, has enabled the quantitative
analysis of blood flow [Vignon-Clementel et al., 2010].

As  mentioned  above,  one  of  the  main  difficulties  for  the  correct  modeling  of  the
cardiovascular system is its closed-loop nature, with significant inter-dependencies between the
individual components. The local blood flow characteristics are closely correlated with global
system dynamics [Vignon-Clementel et al., 2006]. The distribution of blood in various vascular
segments  is  a  property  of  the  entire  system,  but  it  influences  the  dynamics  of  each  individual
segment. The study of local hemodynamics is of paramount importance since several pathologies
like the thickening of the arterial wall or the development of stenoses are influenced by local
hemodynamics. On the other hand, certain local changes, like those of the vascular lumen, can
lead to a change in the global blood flow distribution, triggering a compensatory mechanism
which in turn affects the blood flow distribution. For example, it has been shown, that a
significant reduction of the carotid artery lumen does not lead to a significant decrease of blood
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flow to the brain, due to the presence of these compensatory mechanisms [Formaggia et al.,
1999].

This reciprocal influence between global or systemic hemodynamics and local
hemodynamics has lead to the development of the geometrical multiscale modeling of the
cardiovascular system.

The multiscale perspective is important even when the focus lies on local hemodynamics.
Artificial  boundary  conditions  (at  the  inlet  and  outlet  of  the  region  of  interest)  delimit  the
segment of interest: they are defined based on the global hemodynamics and modeled using one-
or zero-dimensional models.

One-dimensional models are derived using a series of simplifying assumptions from the
three-dimensional Navier-Stokes equations. A fundamental aspect of this type of model is that it
takes into account the compliance of the vessels, i.e. it represents a reduced-order fluid-structure
interaction model, and thus allows for a proper modeling of the wave phenomena. Whereas one-
dimensional models are represented through partial differential equations, zero-dimensional
models are represented through ordinary differential equations. They model the time-varying
spatially averaged pressures and flow rates in a compartment of the cardiovascular system.

Both models are of great importance for the multiscale modeling since they allow for a
proper modeling of the fundamental aspects in the cardiovascular circulation in a reasonable
amount of time.

Another aspect of interest is the coupling of the simplified models with the three-
dimensional model [Formaggia et al., 2001], [Quarteroni et al., 2001], as displayed in Figure 1.1.
The coupling is a challenging task due to the different nature of the coupled models. The Navier-
Stokes equations are a system of partial differential equations of parabolic type from the
velocities’ point of view; while the one-dimensional models are hyperbolic, and the zero-
dimensional models have no spatial dependence (only time derivatives are present in these
equations).

Figure 1.1: Coupling of three-, one- and zero-dimensional models for a multiscale fluid-structure
interaction simulation [van de Vosse et al., 2011].

Similar to regular CFD based applications, in case of multiscale models of the arterial
circulation the following workflow is employed [Chung, 2002]:

· Pre-processing: the geometry of the application is defined, the volume occupied by the
fluid is divided into finite cells (the grid may be uniform or non-uniform) and the
physical model is defined. Next, the boundary conditions are defined (the behavior of
the fluid at the boundaries of the region of interest is defined);

· The simulation is started and the equations are solved iteratively in space and / or time to
determine the steady-state of transient solution;

· Post-processing: the numerical results are analyzed and visualized.



INTRODUCTION

11

1.2 PATIENT-SPECIFIC MULTISCALE MODELING OF ARTERIAL
HEMODYNAMICS

The prerequisite for generating a patient-specific multiscale model is the generation of the
anatomical model. During the last decades tremendous progresses have been made in the field of
medical imaging, and, hence, nowadays various technologies are available for acquiring the
input data required for the reconstruction of anatomical models.

Steinman et al. underlined the fact that the opportunities generated by the state-of-the-art
medical imaging techniques come with both advantages and disadvantages. If these techniques
are employed correctly, they can help clinicians in understanding the cardiovascular pathologies
and boost the development and evaluation of medical devices and therapeutic interventions. The
disadvantage is that these tools may lead to large quantities of data, without leading to a similar
increase in the understanding of the phenomena that cause the observed results [Steinman et al.,
2005].

The first image-based CFD simulations were performed for understanding the role of
hemodynamic forces in the development of carotid artery atherosclerosis [Milner et al., 1998]
and coronary artery atherosclerosis [Krams et al., 1997]. Furthermore, hemodynamics in
abdominal aortic aneurysms [Taylor et al., 1996] and the planning of surgical interventions have
been of interest [Taylor et al., 2004]. The above mentioned compartments of the cardiovascular
system have been chosen on one hand because of their clinical significance, and on the other
hand due to the possibility of properly visualizing the arterial lumen and wall. Thus, the carotid
bifurcation is ideal for ultrasound and MRI. The abdominal aorta can be visualized through MRI
or CT, while coronary arteries are typically investigated through X-ray angiography.

Significant progress was made in the understanding of the role of hemodynamics forces in
the development of coronary plaque [Slager et al., 2005]. An MRI-based study has shown that
the locations with large wall shear stress have a higher risk of rupture in case of coronary arteries
[Groen et al., 2007]. On the other hand, a hemodynamic study of carotid arteries has indicated
that the locations with low wall shear stress tend to have the largest plaque growth [Tang et al.,
2008].

Several studies have focused on cerebral aneurysms. Hence, it was concluded that low wall
shear stress leads to progressions and rupture of cerebral aneurysms [Shojima et al., 2004]. A
subsequent study, performed on 62 patients [Cebral et al., 2005] has shown that the dimension of
the aneurysms and the inlet flow rate are correlated. Due to the risks associated with surgical
interventions for aneurysms, intact aneurysms are often only monitored clinically, providing thus
an ideal setting for studying their evolution. Thus, the roles of low wall shear stress and stagnant
blood flow for the evolution of aneurysms have been studies [Boussel et al., 2008].

Remarkable advancements have also been reported in the modeling of the abdominal aorta
for diagnosing atherosclerosis and analyzing the evolution of aneurysms [Tang et al., 2006].
Patient-specific hemodynamics have been analyzed in anatomical models reconstructred from
MRA (Magnetic Resonance Angiography) medical images. Furthermore phase contrast MRI was
employed to determine blood flow velocities at rest. Hemodynamic computations were then
performed for the rest state and a state of moderate physical exercise. The latter ones proved that
physical exercise is beneficial for the appearance of mechanical stimuli, which in turn trigger
long lasting biological processes and protect the arteries from the onset and the evolution of
atherosclerosis.

Hemodynamic simulations are not only useful for understanding the arterial circulation but
also for planning a patient-specific treatment course. Wilson et al. have described the
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development of a software system for planning surgical interventions, proving the utility of a
hemodynamic model in the planning of aorto-femoral bypasses for patients with total occlusions
in peripheral arteries [Wilson et al., 2005]. This technique was also employed to simulate and
compare the effects of total occlusions in vertebral arteries [Hassan et al., 2004].

MRA imaging data was also employed to generate an anatomical model of an inoperable
aneurysm in the basilar artery. PC-MRI was used to determine the inlet boundary condition, and
CFD  techniques  were  employed  to  determine  blood  flow  velocities  and  the  wall  shear  stress
distribution in case one of the supplying arteries was blocked [Acevedo-Bolton et al., 2006]. The
authors concluded that by modifying the cerebral blood flow, the sections with low wall shear
stress can be modified, and the sections with stagnant flow can be diminished (stopping thus the
further evolution of the aneurysm).

The first step in the process of image-based patient-specific hemodynamic modeling is the
segmentation  of  the  arterial  walls.  Initially,  the  segmentation  was  performed  manually  on  2D
images, whereas the 3D anatomical model was subsequently generated by combining the 2D
images [Steinman, 2002]. During the last years a tremendous progress has been made in terms of
spatial resolution and image quality. Coupled with stronger graphics processors, this has enabled
a real-time reconstruction of 3D anatomical models. A preferred approach is the level-set
method, which is typically employed in immersed boundary methods [Antiga et al., 2008]. In
case of volumetric images with well-defined arterial walls (as acquired through CT and MR with
contrast agent) 3D segmentation is preferred due to the speed and robustness of the
methodology. On the other hand, the modification of 3D surfaces is cumbersome, and, hence, in
case of low contrast images, 2D segmentation is preferred [Wang et al., 1999]. This technique is
employed for example for IVUS (Intravascular Ultrasound) images, which are acquired at non-
parallel  planes  [Slager  et  al.,  2000].  To  generate  a  three-dimensional  model  of  the  vessel,  a
technique called lofting is employed, which connects the 2D rings. This technique does not pose
any major difficulties in case of single vessels, but is cumbersome to apply in case of
bifurcations [Gijsen et al., 2007]. Finally, open-source platforms can be nowadays readily used
to generate the three-dimensional models (vmtk, simtk, etc.).

Once the surface of the arterial segments of interest has been determined, a grid with a
finite number of elements has to be generated for which the multiscale model will be solved.
Commercial or open-source platforms may be employed at this stage. In hemodynamic
simulations the quantities of interest may be global hemodynamic properties (like pressure or
flow-rate) or local hemodynamic properties (like the wall shear stress). For the former, a
relatively coarse grid may be generated (leading thus to a short execution time), while for the
latter a denser grid is required (leading to a large execution time). For a reasonable compromise
between accuracy and execution speed, adaptive grid refinement techniques are employed, so as
to generate a fine grid in the regions of interest and a relatively coarse grid for the rest of the
domain.

As described above, to run multiscale simulations in a reasonable amount of time, artificial
boundaries are required. At the inlet boundary typically a velocity profile with a pre-defined
shape is applied (e.g. flat profile for the ascending aorta, Womersley profile for the carotid
artery, etc.). In case measurements are not available for the outlet boundary conditions, these are
typically determined based on the dimensions of the vessels and scaling laws [Kassab et al.,
2006]. If patient-specific measurements are available (PC-MRI, US) these may be applied
directly  at  the  inlet  /  outlet  boundary  conditions,  but  if  rigid  wall  simulations  are  performed,  a
correction of phase differences and attenuations, which occur naturally in the cardiovascular
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system, need to be performed. Remarkable advancements have been made in the development of
multiscale modeling, whereas the artificial boundary conditions of the three-dimensional models
are given by one- or zero-dimensional models [Blanco et al., 2007], [Lagana et al., 2005],
[Migliavacca et al., 2006]. The usage of reduced-order models comes with the requirement of
defining the parameters of these models. Thus, in case of lumped parameter models the
resistances, compliances and inertances need to be determined. Subsequently, numerical
optimization methods may be applied to adapt the values of the parameters in the reduced order
models so to match patient-specific measurements (of pressure and / or flow rate).

An important aspect in the hemodynamic modeling is the extraction of relevant
information from large quantities of data generated by the simulation. Most of the studies have
focused  on  the  quantities  defined  at  the  arterial  walls,  which  are  considered  to  be  the  most
important ones for cardiovascular pathologies. The average wall shear stress and the oscillatory
shear index still represent the most often investigated quantities in hemodynamic studies.
Besides these, volumetric quantities are also of great interest. Thus, arterial sections with
increased blood flow velocities, with recirculation zones or with reversed flow can be
determined. To be able to trust the results of hemodynamic simulations, the numerical methods
need to be verified and the mathematical models need to be validated (are the equations solved
right, and are the right equations being solved?). Very few studies compare the numerical results
with well-known analytical solutions (like the Womersley solution in case of oscillating flow in
rigid or elastic tubes [Womersley, 1955]. A comparison between numerical and experimental
results with very good results was described in [Ku et al., 2005]. The in vivo validation of
hemodynamic models is much more challenging, since the experimental setup is difficult to
control and data acquisition is more cumbersome. A comparison of CFD results with in vivo
acquired MRI data was performed in [Boussel et al., 2009] for cerebral aneurysms.

Significant advancements have also been made in the multiscale modeling of the coronary
circulation. A patient-specific detailed model has been introduced in  [Kim et al., 2010], whereas
a time-varying elastance model is applied for determining the boundary condition at the inlet of
the aorta. For the terminal branches of the coronary circulation specialized lumped parameter
models are employed, which take into account the influence of the heart contractions on the
coronary blood flow. These contractions lead to a low flow during systole and large flow during
diastole. The flow rates, pressures and the wall shear stress in the coronary circulation have been
analyzed in this study.

Another multiscale model of the coronary circulation has been introduced in [Sankaran et
al., 2012]. The proposed model has been employed for studying coronary artery bypasses in case
of severely stenosed arteries.

1.3 MACHINE LEARNING IN HEMODYNAMIC MODELLING

The CFD-based models combine geometrical information extracted from medical imaging
with background knowledge on the physiology of the system, encoded in a complex
mathematical fluid flow model consisting of partial differential equations which can be solved
only numerically. This approach leads to a large number of algebraic equations, making it
computationally very demanding [Taylor et al., 2013]. Typically the solution of these models
requires a few hours on powerful clusters for high-fidelity models representing the complete
three dimensional velocity field to minutes on a workstation for reduced-order models which
solve for time-varying pressure and flow rate in each branch [Itu et al., 2012], [Deng et al.,
2015].
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The computationally demanding aspect of these CFD models and associated image
segmentation process prevents adoption of this technology for real-time applications such as
intra-operative guidance of interventions. An alternative approach with high predictive power is
based on machine learning (ML) algorithms. In this case, the relationship between input data,
e.g. the anatomy of a vascular tree, and quantities of interest, is represented by a model built
from a database of samples with known characteristics and outcome [Bishop, 2006]. Once the
model is trained, its application to unseen data provides results almost instantaneously. Such
machine learning models have been used successfully in many medical imaging applications,
including automatic heart isolation [Zheng et al., 2008], and segmentation of different organs
[Zheng et al., 2011]. This approach has also been used to reproduce the predictive capability of
complex, non-linear computational models [Mansi et al., 2013], [Tondel et al., 2011], resulting
in a significant reduction in computational requirements compared to the original model.

1.4 PARALLEL PROCESSING IN MULTISCALE HEMODYNAMIC MODELING

The main goal of parallel processing is to reduce the execution time. An application is a
good candidate for parallel processing if it processes large quantities of data, if it performs a
large number of iterations, or both. The process of parallel programming is typically based on the
following steps:

· Problem decomposition;
· Selecting the algorithm;
· Implementation;
· Optimization of execution speed.
Conceptually, the identification of parallelizable components in complex applications is

simple, but in practice this may become a challenging task. One key aspect is to define the
activities to be performed by each work unit (typically each thread), so that the inherent
parallelism is properly exploited. The theoretical speed-up that can be achieved through
parallelization is determined by the portion of the application which can be safely parallelized.
The speed-up is given by Amdahl’s law:

N
PP

S
+-

=
)1(

1
, (1.1)

where S is the execution time speed-up, P is the fraction of the program which can be
parallelized, and N is the number of processors or threads which perform the parallel operations.
The higher the value of N the lower is the fraction P/N, and the higher will S be. Nevertheless,
the most important factor for the parallelization is P,  the  value  of  which  should  as  close  as
possible to one.

To perform a successful parallelization, the following aspects need to be clarified:
· The architecture of the hardware: memory organization, data locality, caching,

memory bandwidth, and the execution architecture:
o SIMT (Single Instruction Multiple Thread): a group of threads execute the

same instruction, but different groups of threads can execute different
instructions – architecture employed in case of graphics processors
[Rodrigues et al., 2008];
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o SPMD (Single Program Multiple Data): the same program is executed in
multiple instances on multiple processors – architecture used in case of
classical multi-core processors;

o SIMD (Single Instruction Multiple Data): all threads execute the same
instructions at each time point – architecture used in case of vectorial
processors;

· Programming models and compilers: parallel execution models, types of available
memory, data arrangement in memory, etc.

· Implementation technqiues: the transformation / replacement of sequential algorithms
with parallel algorithms, understanding the scalability and the implications of the
bandwidth for each algorithm, etc.;

· Extensive domain know-how: numerical methods, models, accuracy requirements, etc.
The currently most used parallel processor is the Graphics Processing Unit (GPU). Its

popularity is given on one hand by the relatively low cost and, on the other hand, by the ease of
programming [Kirk et al., 2010].

1.5 OVERVIEW OF PART II

Chapter 2 introduces a hierarchical parameter estimation framework for performing
patient-specific hemodynamic computations in arterial models which use structured tree
boundary conditions. A calibration problem is formulated at each stage of the hierarchical
framework, which seeks the fixed point solution of a nonlinear system of equations. Common
hemodynamic properties, like resistance and compliance, are estimated at the first stage in order
to match the objectives given by clinical measurements of pressure and/or flow rate. The second
stage estimates the parameters of the structured trees so as to match the values of the
hemodynamic properties determined at the first stage. A key feature of the proposed method is
that, to ensure a large range of variation, two different structured tree parameters are
personalized for each hemodynamic property. First, the second stage of the parameter estimation
framework is evaluated based on the properties of the outlet boundary conditions in a full body
arterial model: the calibration method converges for all structured trees in less than ten iterations.
Next, the proposed framework is successfully evaluated on a patient-specific aortic model with
coarctation: only six iterations are required for the computational model to be in close agreement
with the clinical measurements used as objectives, and, overall, there is a good agreement
between the measured and computed quantities.

Chapter 3 introduces a parameter estimation framework for automatically and robustly
personalizing aortic hemodynamic computations from 4D Magnetic Resonance Imaging data.
The framework is based on a reduced-order multiscale fluid-structure interaction blood flow
model, and on two calibration procedures. First, Windkessel parameters of the outlet boundary
conditions are personalized by solving a system of nonlinear equations. Second, the regional
mechanical wall properties of the aorta are personalized by employing a non-linear least squares
minimization method. The two calibration procedures are run sequentially and iteratively until
both procedures have converged. The parameter estimation framework was successfully
evaluated on 15 datasets from patients with aortic valve disease. On average, only 1.27 ± 0.96
and 7.07 ± 1.44 iterations were required to personalize the outlet boundary conditions and the
regional mechanical wall properties respectively. Overall, the computational model was in close
agreement with the clinical measurements used as objectives (pressures, flow rates, cross-
sectional areas), with a maximum error of less than 1%. Given its level of automation,



INTRODUCTION

16

robustness, and the short execution time (6.2 ± 1.2 minutes on a standard hardware
configuration), the framework is potentially well suited for a clinical setting.

Chapter 4 introduces a methodology for separating the total stiffness of arteries,
determined in vivo, into stiffness of the arterial wall and stiffness of the surrounding tissue. An
effective perivascular pressure is considered which introduces a radial constraint. Next, based on
vivo data, acquired at diastolic pressure, the cross-sectional area at zero pressure is estimated.
Finally, the stiffness of the arterial wall and of the surrounding tissue are determined based on a
model with two parallel springs. By employing a reduced-order multiscale model, the
methodology is used for studying the global effects of surrounding tissue support on arterial
hemodynamics. The main effects are: higher wave speed, earlier arriving backward travelling
pressure and flow rate waves, lower total compliance, higher pressure pulse, and reduced arterial
cross-sectional areas.

Chapter 5 introduces a model-based approach for the non-invasive estimation of patient
specific, left ventricular PV loops. A lumped parameter circulation model is used, composed of
the pulmonary venous circulation, left atrium, left ventricle and the systemic circulation. A fully
automated parameter estimation framework is introduced for model personalization, composed
of two sequential steps: first, a series of parameters are computed directly, and, next, a fully
automatic optimization-based calibration method is employed to iteratively estimate the values
of the remaining parameters. The proposed methodology is first evaluated for three healthy
volunteers: a perfect agreement is obtained between the computed quantities and the clinical
measurements. Additionally, for an initial validation of the methodology, the PV loop for a
patient with mild aortic valve regurgitation was computed and the results were compared against
the invasively determined quantities: there is a close agreement between the time-varying LV
and aortic pressures, time-varying LV volumes, and PV loops.

Chapter 6 introduces a machine learning-based model for predicting FFR as an alternative
to physics-based approaches is presented. The model is trained on a large database of
synthetically generated coronary anatomies, where the target values are computed using the
physics-based model.  The trained model predicts FFR at each point along the centerline of the
coronary tree, and its performance was assessed by comparing the predictions against physics-
based computations, and against invasively measured FFR for 87 patients and 125 lesions in
total. Correlation between machine learning and physics-based predictions was excellent
(0.9994, p < 0.001) and no systematic bias was found in Bland-Altman analysis: mean difference
was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125, and was
predicted by the machine learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%,
and an accuracy of 83.2%. The correlation was 0.729 (p < 0.001). Compared to the physics based
computation, average execution time was reduced by more than 80 times, leading to near real-
time assessment of FFR. Average execution time went down from 196.3 ± 78.5 seconds for the
CFD model to around 2.4 ± 0.44 seconds for the machine learning model on a workstation with
3.4 GHz Intel i7 8-core processor.

The geometric multigrid method (GMG) is one of the most efficient algorithms for solving
these systems and is well suited for parallelization. In chapter 7 an in-depth analysis of a GPU-
based GMG implementation is performed and the results are compared against an optimized
preconditioned conjugate gradient method. The tests indicate that the smoothing step is the most
time consuming operation, and the best performing GMG variant is the V-cycle scheme with 312
smoothing step configuration (3 iterations during restriction, 1 at the coarsest level, and 2
iterations during prolongation). The discretization stencil has a major effect on the runtime and
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its choice requires a trade-off between execution time performance and numerical accuracy.
Overall,  the  GMG  method  offers  a  speed-up  of  7.1x-9.2x  over  the  PCG  method  on  the  same
hardware configuration, while also leading to a smaller average residual.

Stencil based algorithms are used intensively in scientific computations. Graphics
Processing Units (GPU) based implementations of stencil computations speed-up the execution
significantly compared to conventional CPU only systems. In chapter 8 double precision stencil
computations are considered, which are required for meeting the high accuracy requirements,
inherent for scientific computations. Starting from two baseline implementations (using two
dimensional and three dimensional thread block structures respectively), different optimization
techniques are employed which lead to seven kernel versions. Both Fermi and Kepler GPUs are
used, to evaluate the impact of different optimization techniques for the two architectures.
Overall, the GTX680 GPU card performs best for a kernel with 2D thread block structure and
optimized register and shared memory usage. The results indicate that, whereas shared memory
is not essential for Fermi GPUs, it is a highly efficient optimization technique for Kepler GPUs
(mainly due to the different L1 cache usage). Furthermore, the performance of Kepler GPU cards
designed for desktop PCs and notebook PCs, is evaluated: the ratio of execution time is roughly
equal to the inverse of the ratio of power consumption.
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2. Personalized Blood Flow Computations: A
Hierarchical Parameter Estimation

Framework for Tuning Boundary Conditions

Introduction
Methods
Results
Discussion and Conclusions

2.1 INTRODUCTION

The vascular system is composed of around ten billion vessels, whose size range over
several orders of magnitude. Hence, the full-scale spatial (3D) or even reduced-scale spatial
modeling (1D) of the entire system is computationally not feasible. As a result, only a certain
region of the vascular system, which is of main interest, is modeled spatially, whereas the
remainder of the system is lumped into non-spatial models, which provide the artificial boundary
conditions (inlet  and outlet)  for the region of interest.  Depending on the availability of in-vivo
measurements and the underlying assumptions of the model, researches typically use one of the
following inlet  boundary condition: (i)  Time-varying velocity (or flow rate) profile [Olufsen et
al., 2000], [LaDisa et al., 2011], or (ii) A lumped model of the heart coupled at the inlet
[Formaggia et al., 2006], [Coogan et al., 2011]. The design of outlet boundary conditions is more
challenging, since:

· the distal vasculature (microvasculature) generates the bulk part of the total resistance,
and is thus responsible for flow distribution and the overall pressure level in the region of
interest;

· flow and pressure waves propagate beyond the outlet locations. As the vessels change
      their geometry and structure, and bifurcate, the waveforms change. Furthermore, waves
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are reflected and propagated backwards into the region of interest.
Different approaches have been proposed for specifying the outlet boundary conditions,

ranging from pressure or flow rate profiles to lumped parameter models (0D models). For an
accurate patient-specific computation, the role of physiologically sound boundary conditions is
well appreciated in the literature. Typically, the effect of distal vasculature is modeled by outlet
boundary conditions coupled with the computational domain (region of interest), resulting in a
geometrical multiscale model. Thus, the boundary conditions are represented by lumped
parameter models, which are designed to capture one (or more) of the i) total resistance, ii) total
compliance, and iii) the wave propagation and reflection effects in the distal vasculature. The
most widely used lumped parameter model is the three-element windkessel model [Westerhof et
al., 2009], which is characterized by its simplicity (only three parameters), and ability to capture
two important characteristics of the distal circulation (compliance and resistance). The small
number of parameters simplifies the parameter estimation procedures applied for personalizing
blood flow computations. The drawback of the windkessel model is that it is not able to capture
the wave propagation and reflection phenomena in the distal vasculature, and, thus, their effect
on the region of interest,

A different boundary condition, specifically designed to capture the wave propagation
phenomena, is the structured tree model. It is based on the work in [Taylor, 1966] and was
subsequently developed by Olufsen et al. [Olufsen et al., 1999]. The distal vasculature is
modeled  as  a  simple  geometric  structure  and,  following  a  set  of  simplifying  assumptions,  an
analytical expression, which relates flow rate and pressure, is obtained. Due to its characteristics,
the structured tree models all three aspects which are of interest for an outlet boundary condition.
However, since the resistance and the compliance are not explicitly parameterized in the
mathematical representation of the structured tree, it is more difficult to design parameter
estimation procedures for personalizing blood flow computations which use this type of
boundary condition. Furthermore, the original formulation in [Olufsen, 1998] can only be used
for periodic blood flow computations. Due to these aspects, the structured tree has not been
widely used for blood flow computations.

However, the structured tree boundary condition has received an increased attention during
the last couple of years. Cousins et al. introduced a new, simpler derivation of the structured tree
impedance  and  performed  a  sensitivity  analysis  with  respect  to  its  parameters  [Cousins  et  al.,
2012]. In a subsequent study, a modified formulation was derived, which can be used to model
transient flows [Cousins et al., 2013]. Recently, the structured tree formulation has been
successfully used in hemodynamic computations of retinal arteries and veins [Malek et al.,
2015], and in the pulmonary arterial and venous circulation [Qureshi et al., 2014].

In a clinical scenario, the values of model parameters are not available on a per-patient
basis. Instead, multiple pressure or flow measurements are usually available for each patient. A
clinically feasible and accurate flow computation should not only be in agreement with these
measurements,  but  should  also  have  means  to  model  other  hemodynamic  states  for  the  same
patient. To achieve this, one should estimate a set of personalized model parameters, while
ensuring that the computations match the measured data. Since the outlet boundary conditions
are mainly responsible for the overall pressure level and the flow distribution, the personalization
procedures typically focus on the parameters of the outlet boundary conditions.
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Different calibration procedures for outlet boundary conditions have been proposed.
Olufsen et al. described a calibration method for determining the dynamic cerebral blood flow
response to sudden hypotension during posture change [Olufsen et al., 2002].

An optimization-based iterative calibration method for the windkessel models was
suggested [Spilker et al., 2010], where the input was specified by non-invasively acquired
systolic/diastolic pressures and, in some cases, additional flow data. The windkessel parameters
were obtained by solving a system of nonlinear equations, formulated based on a set of
objectives for the pressure and flow rate waveforms at various locations. A more efficient
optimization method was proposed in [Itu et al., 2015], which resulted in faster convergence and
was shown to be robust against the choice of initial guess.

An adjoint based method for calibrating the windkessel parameters was also proposed ,
where the Jacobian was computed without the use of finite-differences [Ismail et al., 2015].
Furthermore, a reduced-order model with resistance outlet boundary conditions was introduced
[Blanco et al., 2012], under which the terminal resistance values of the arterial model of the arm
were adapted to obtain desired flow rate distributions between vascular territories. A competitive
alternative to the above mentioned optimization based methods is represented by filtering based
approaches [Bertoglio et al., 2012].

Recently, a more rigorous calibration of structured tree parameters was presented [Cousins
et al., 2014], where a trust region method was applied to adapt the length-to-radius ratio to
achieve a computational result that agreed with the measured flow distribution.

In this chapter an iterative hierarchical parameter estimation framework is introduced for
personalizing hemodynamic computations which use structured trees as outlet boundary
conditions [Itu et al., 2017]. The structured tree parameters are estimated in a manner that
minimizes the error between the computed and measured pressure and flow data. A hierarchical
personalization approach is employed since common vessel properties, like resistance and
compliance, are not explicitly parameterized in the mathematical representation of the structured
tree. The first stage estimates the resistances and the compliances to match the patient-specific
quantities, while the second stage estimates the parameters of the structured trees to match the
resistances and compliances determined at the first stage. The second stage of the framework is
first separately evaluated using the parameter values of the windkessel models applied as outlet
boundary conditions in a full body arterial model [Stergiopulos et al., 1992]. Next, a patient-
specific aortic coarctation (CoA) case is used to test and validate the entire framework. Results
are compared against a configuration which uses windkessel models for imposing the outlet
boundary conditions.

2.2 METHODS

2.2.1 Structured tree boundary condition

The structured tree is an asymmetric binary tree, with axisymmetric vessels of constant
radius. At the bifurcations, the radius of each daughter vessel is specified by a power law
relationship:

xxx += 21 ddp rrr , (2.1)

where the subscripts p, d1 and d2 refer to the parent vessel, and the two daughter vessels
respectively. The power law is based on the assumption that the energy required for blood flow
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is minimal (an optimal value of ξ = 3.0 was determined) [Murray, 1926(a)]. Subsequently,
several values have been proposed for the power coefficient ξ, ranging from 2.1 to 3 [Kamiya et
al., 1980], [Zains et al., 1987], [Kassab et al., 1995], [Zhou et al., 1999].

The bifurcations of the structured tree are asymmetrical. Hence, the radii of the daughter
vessels are computed based on the radius of the parent vessel, using:

pdpd rr,rr b=a= 21 , (2.2)

where are α and β are scaling parameters. To compute α and β the asymmetry ratio γ is
introduced:
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The two scaling parameters are then given by:
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Starting from a vessel with a root radius, the structured tree bifurcates until the radius of
the vessels becomes smaller than a certain minimum radius. Previous studies [Iberall, 1967] have
shown that, statistically, the length of a vessel can be expressed in terms of its radius. Hence, a
length-to-radius ratio, lrr, is used to determine the lengths of the vessels in the structured tree.

Finally, the material properties of the vessel walls are specified. Since the small arteries are
composed of the same type of tissue as the large arteries, the relationship employed for the large
arteries, based on a best fit to experimental data, can also be used for the wall properties of the
structured tree [Olufsen et al., 2000]:
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where E is the Young’s modulus, h is the wall thickness, r0 is the initial radius, and k1, k2, k3 are
empirically determined parameters. Table 2.1 displays the reference parameter values for the
structured tree adopted below.

Table 2.1: Reference parameter values defining the structure and properties of the structured tree.

Parameter Value
γ 0.4048
ξ 2.7
α 0.9087
β 0.5782
lrr 25.0
k1 )/(102 27 cmsg ××
k2 153.25 -- cm
k3 )/(1065.4 25 cmsg ××

The governing equations for the blood flow in the structured tree are derived from the
axisymmetric Navier-Stokes equations [Olufsen, 1998]. Since the viscous effects are dominant in
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the small arteries, the nonlinear inertial terms can be neglected. Under periodic flow and pressure
conditions, an analytical solution is determined in the frequency domain:

( ) ( ) ( )cxbcxaxQ /sin/cos, www ×+×= , (2.6)
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where ρ is the density, c is the wave propagation speed and FJ depends on the Bessel functions,
and is computed using the Womersley number. CA is the area compliance and is given by:
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where A is the cross-sectional area.
The root impedance of the structured tree is computed recursively using the formula:
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where ( ) r-== /FCAcCg J10 , ( )w,Z 0  is the impedance at the inlet of the vessel segment,

and ( )w,LZ  is the impedance at the outlet of the vessel segment. The root impedance is then
applied as structured tree outlet boundary condition:

),x(Q),x(Z),x(P w×w=w . (2.10)

By applying an inverse Fourier transformation, ( )w,xZ  is converted into ( )t,xz  and (2.10)
is rewritten using the convolution theorem:

( ) ( ) ( ) tt-t= ò
-

dt,xz,xqt,xp
t

Tt

, (2.11)

where T is the period.

2.2.2 Parameter estimation framework

A hierarchical parameter estimation framework is introduced for multiscale blood flow
computations which use structured tree boundary conditions (Figure 2.1).

Herein, for the flow computations a reduced-order geometrical multiscale model
combining a one-dimensional model and the structured tree model is used as proof-of-concept.
One-dimensional models have been used in the past to compute time-varying flow rate and
pressure waveforms in full body arterial models [Reymond et al., 2011]. Since the predictions
have been shown to be accurate, this model has more recently also been employed for
computations under pathologic conditions in specific parts of the circulation: coronary
atherosclerosis [Itu et al., 2012], aortic coarctation [Itu et al., 2013a], abdominal aorta aneurysm
[Low  et  al.,  2012],  and  femoral  bypass  [Willemet  et  al.,  2013].  The  details  of  the  one-
dimensional model used herein are described in [Itu et al., 2012], [Itu et al., 2013(a)]. The inlet
boundary condition is provided by time-varying flow rate profiles, while a structured tree is
coupled at each outlet of the anatomical model.
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Both stages of the parameter estimation framework use automated iterative calibration
methods for estimating the parameter values. These are described below.

2.2.2.1 Calibration method for estimating resistance and compliance values

The calibration method at the first stage (Figure 2.1) automatically estimates the total
resistances and the compliance of the structured trees to ensure that the computed pressure and
flow rate values match the measurements. The parameter estimation procedure used at the first
stage is a modified version of a previously introduced framework [Itu et al., 2015].

The parameter estimation problem is formulated as a numerical optimization problem, the
goal of which is to find a set of parameter values for which a set of objectives are met. Since the
number of parameters xi to be estimated is set equal to the number of objectives, the parameter
estimation problem becomes a problem of finding the root for a system of nonlinear equations.
Each equation of the system is formulated as the difference between the computed value of an
objective – ( )comp·  (determined using the multiscale model) and its target value – ( )target· . These

differences are called residuals (r(xi)):

( ) ( ) ( ){ } { }0xr =·-·= targetcompi . (2.12)

To evaluate the objectives ( )comp·  at each iteration, the multiscale model is run exactly
once. Moreover, parameter and objective values are normalized based on characteristic values.
To find a good initial solution, the optimization problem is first solved for a distal vasculature
model composed from the structured trees employed in the multiscale model (step 1 in Figure
2.1a): a grid of physiological parameter value sets is considered, and the initial solution, x0, is
chosen as the parameter value set leading to the smallest L2 norm for the objective function r(x).
This initial solution is then further refined by employing a dogleg trust-region method,
determining thus x0 to be used in the following steps.

Next, the Jacobian of the system of equations is computed using finite differences (steps 2,
3 and 4). The finite differences of the parameters, to be used for the computation of the Jacobian,
are called in the following characteristic step sizes, char

js . To determine the characteristic step

sizes, a set of characteristic values for the objective function are chosen, char
ir , and a fixed point

iteration method is applied. The fixed point iteration method consists of two sequential steps.
First, the characteristic step size values are computed:
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Next, the Jacobian matrix is computed:
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where di and dj represent the unit vectors in the ith and jth direction. These two steps are iterated
until the characteristic step size is consistent with the chosen characteristic objective function.

Next, the multiscale blood flow model is set up (step 5) and run, and the objective residuals
are evaluated (step 6). The parameter values for the first run with the multiscale model are based
on the solution obtained for the distal vasculature model (x0).
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The optimization problem is terminated if all residuals are smaller than the tolerance limit,
set equal to 10/char

ir . If this condition is not met, the parameter values are updated using a
quasi-Newton method. First the previously computed Jacobian is updated (step 7 – since
computations with the multiscale model are expensive the Jacobian is only updated and not
recomputed):
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where iii xxs -= +1  is the current step and Ds is a diagonal scaling matrix:

( )
î
í
ì

¹
=

=
ji,
ji,s/

D
typ
j

ijs 0
1

(2.16)

Figure 2.1: Hierarchical parameter estimation framework for multiscale blood flow computations which
use structured tree boundary conditions: Stage 1 (left) - Calibration method which estimates the
total resistances and the compliance of the structured trees; Stage 2 (right) - Calibration method

which estimates the structured tree parameters so as to match the total resistance and the
compliance computed at stage 1.
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Next, the new parameter values (the total resistance and compliance) are estimated (step
8):

( )iiii xrJxx 1
1

-
+ -= . (2.17)

Finally, the parameters of the structured trees are determined (step 9) as described below.

2.2.2.2 Calibration method for estimating structured tree parameter values

The second stage of the parameter estimation framework (Figure 2.1) estimates the
parameters of the structured trees so as to match the resistances and compliances determined at
the first stage (at step 8 in Figure 2.1). Three approaches have been proposed previously for
adapting the total resistance represented by the structured tree:

· impose a resistance at each terminal vessel of the structured tree [Olufsen, 1998];
· adapt the minimum radius, rmin, at which the structured tree is terminated [Cousins et al.,

2012];
· adapt the length-to-radius, lrr, which determines the length of each vessel in the

structured tree [Cousins et al., 2014].
To model a large variety of hemodynamic states for the same patient (for example: rest,

light exercise, intense exercise, etc.) the resistance has to be adapted over a wide range of values.
Hence, for the present work a combination of minimum radius and resistance imposed at the
terminal vessels of the structured tree was used to set the total resistance. Since the terminal
vessels have approximately the same radius, equal terminal resistances are assumed. The
minimum radius is used for coarse calibration, and the terminal vessel resistance for fine
calibration.

No methods were previously reported in literature for matching a given compliance value.
To match a given target compliance, which can vary over a wide range for different patient
states, the parameters k1 and k3 in (2.5) are adapted: k1 is used for the coarse calibration, whereas
k3 is used for fine calibration.

To find a good initial solution, the coarse calibration algorithms adapt rmin and k1 at the
first step in Figure 2.1 (step 9.1). Algorithm 1 is used to initialize rmin. An initial value of 50μm
is used, which corresponds approximately to the start of the arteriolar level. If the computed total
resistance, Rcomp, obtained with a zero terminal resistance, is lower than the target value, the
algorithm terminates. Otherwise it progressively increases the minimum radius until the
computed total resistance becomes lower than the target value. Algorithm 1 ensures that a
positive terminal resistance is required for obtaining the target resistance.

Algorithm 1. Initialization of structured tree minimum radius.
 Set rmin = 0.005 cm
 while (true)

Compute total resistance (Rcomp) using rmin and Rterm = 0.0
if Rcomp < Rtarget

break
else

rmin = rmin + 0.001
end (if)

 end (while)
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 Algorithm 2 initializes parameter k1. Initially the value displayed in Table 2.1 is used and
k3 is set to 0. A similar approach as in algorithm 1 is used, and the value of k1 is progressively
decreased until the computed compliance becomes larger than the target compliance.

Algorithm 2. Initialize wall properties.
 Set k1 = 2∙107, k3 = 0
 while (true)

Compute total compliance (Ccomp)
if Ccomp > Ctarget

break
else

k1 = k1 – 0.1∙106

end (if)

end (while)

The methodology used for fine calibration is similar to the one employed at the first stage
of the parameter estimation framework. The structured tree parameters are determined as the
solution of a system of nonlinear equations with a root where the computed properties of the
structured tree and the target values match:
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where Rterm is the terminal resistance imposed at each outlet of the structured tree, Rcomp is  the
computed resistance of the structured tree, Rtarget is the target resistance, Ccomp is the computed
compliance and Ctarget is the target compliance.

Since determining the actual resistance and compliance of the structured tree is
computationally fast, the Jacobian is recomputed at each iteration. Hence, instead of a quasi-
Newton method, the dogleg trust region method was directly used.

Rcomp is determined directly from z(x,t) since the total resistance of the structured tree is
equal to the impedance computed for a zero frequency in (2.9). The compliance Ccomp is
computed analytically by summing up the volume compliances of all vessels in the structured
tree. The volume compliance of a vessel is determined from the area compliance:

rlCC rrAan ××= , (2.19)

where r is the radius of the corresponding vessel.

2.3 RESULTS

To evaluate the performance of the proposed parameter estimation framework, a patient-
specific coarctation anatomical model reconstructed from MRI images was used as test case. The
calibration framework ensures that the computation is personalized, and, consequently,
computed pressure and flow values are in close agreement with the clinical measurements.
However, first results are reported for a test which was designed to separately evaluate the
second stage of the parameter estimation framework, based on the parameters of the outlet
boundary conditions in a full body arterial model.
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Blood is modeled as an incompressible Newtonian fluid with a density of 1.050 g/cm3 and
a dynamic viscosity of 0.040 dynes/(cm2∙s). The grid size is 0.05cm, while the time-step (limited
by the CFL-condition) is set equal to 2.5e-5s.

2.3.1 Full body arterial model

To evaluate the second stage of the parameter estimation framework, the distal vasculature
models (outlet boundary conditions) of a full body arterial tree introduced in [Stergiopulos et al.,
1992] were used. Specifically, the total resistance and total compliance values of the outlet
boundary conditions were used as target values, and the calibration method in Figure 2.1 was run
separately for each terminal vessel.

The calibration method successfully converged for each structured tree (only 2-10
iterations were required) and the results are displayed in Table 2.2. The minimum radius at
which the structured tree terminates was larger than 0.005 cm for some arteries: in these cases
the total initial resistance was larger than the target value, even if the terminal resistance was set
to zero. Generally, the terminal resistances imposed at the terminal sites of the structured tree
were three to five orders of magnitude larger than the total resistance of the structured tree.

For calibrating the compliance, algorithm 2 modified the value of k1, indicating that for
obtaining the target compliance with a positive value for k3, regularly a smaller value was
required than the initial value displayed in Table 2.1.

Table 2.2: Calibration results obtained by applying the second stage of the parameter estimation
framework for adapting the structured tree parameters of the outlet boundary conditions in a full
body arterial model [24].

Artery rroot

[cm]
Rtarget /
Rcomp

[103

g/)cm4∙
s)]

Ctarget  /
Ccomp

[10-6

cm4∙s2/
g]

rmin

[cm]
Rterm

[106

g/(cm4∙s)]

k1

[g/(s2∙c
m)]

k3

[g/(s2∙cm)]
Nr.
iter.

Carotid 0.083 139.0 3.27 0.010 1.85 1.3∙106 11.83∙103 4
Interosseus 0.091 84.3 0.69 0.015 91.3∙10-3 9.0∙106 81.64∙103 4
Tibal anterior 0.13 55.9 2.90 0.007 4.746 4.0∙106 33.7∙103 3
Tibal posterior 0.141 47.7 3.43 0.007 12.13 6.0∙106 28.34∙103 4
Radial 0.142 52.8 3.12 0.005 11.26 8.0∙106 3.31∙103 2
Intercostals 0.150 13.9 36.4 0.038 12.6∙10-3 2.0∙106 19.37∙103 4
Inf. Mesenteric 0.160 68.8 2.36 0.005 578.0 2.0∙107 72.4∙103 7
Gastric 0.180 54.1 2.91 0.005 651.6 2.0∙107 269.9∙103 8
Ulner 0.183 60.1 2.57 0.005 867.8 2.0∙107 375.0∙103 8
Vertebral 0.183 52.8 2.96 0.005 659.9 2.0∙107 300.5∙103 7
Femoral 0.186 47.7 3.29 0.005 597.2 2.0∙107 287.7∙103 7
Iliac 0.200 79.4 1.78 0.005 2073 2.0∙107 940.5∙103 10
Hepatic 0.220 36.3 4.05 0.005 846.6 2.0∙107 546.5∙103 9
Renal 0.260 11.3 13.35 0.005 2245 2.0∙107 284.0∙103 8
Splenic 0.275 23.2 29.74 0.005 1141.3 2.0∙107 826.5∙103 9
Sup. Mesenteric 0.435 9.3 91.07 0.005 2018 2.0∙107 1605∙103 10
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These results demonstrate that the structure tree parameters can be adapted so as to match
physiological resistance and compliance values of distal vasculature models. Eq. (2.18) may not
have a solution if either of the two hemodynamic properties has unphysiological target values.

Furthermore the calibration method is computationally efficient: since the number of
iterations is reduced and both the total resistance and the compliance of the structured trees are
computed analytically at each iteration, the total execution time required for calibrating one
structured tree is less than 3 seconds on an Intel i7 CPU core with 3.4 GHz.

2.3.2 Reduced-order patient-specific flow computation for aortic coarctation

Computational fluid dynamics (CFD) based methods have been proposed in the past for
non-invasive evaluation of trans-stenotic pressure drop [Itu et al., 2013(a)], [Keshavarz-
Motamed  et  al.,  2011],  [LaDisa  et  al.,  2011],  [Ismail  et  al.,  2013].  To  accurately  estimate  the
pressure drop, the solution of the hemodynamic model should match the measured pressure and
flow-data.

The patient-specific anatomical model used herein [***CFD Challenge, 2013], [Pant et al.,
2014] contains the ascending aorta, three supra-aortic branches, the aortic arch, and the
descending aorta with coarctation (Figure 2.2a). Figure 2.2b displays the reduced-order
multiscale model corresponding to the CoA patient-specific geometry.

The measured ascending aorta flow rate profile is directly used as inlet boundary condition
while time-averaged flow splits are provided for each outlet. The final goal is to accurately
compute the trans-coarctation pressure drop.

The objectives at the first stage of the parameter estimation problem are formulated based
on the requirement of matching the flow splits at the outlets, the maximum flow rate in the
descending aorta, and the systolic and diastolic pressures in the ascending aorta. The maximum
descending aorta flow rate has been introduced as objective since it represents one of the main
determinants for the peak-to-peak trans-coarctation pressure drop, a measure which is typically
used to assess the functional significance of the coarctation [LaDisa et al., 2011]. The distal
vasculature model used in the first step of the calibration for finding a good initial solution is
displayed in Figure 2.2c.

To create the multiscale model (step 5 in Figure 2.1) the vascular modeling toolkit (vmtk
[***vmtk, 2014]) was used: the centerline and the cross-sectional areas along the centerline were
extracted. Next, for each branch of the anatomical model several one-dimensional segments with
longitudinally varying cross-sectional areas were used so as to match as closely as possible the
three-dimensional model.

To enable accurate pressure computation in the coarcation region, a locally defined
pressure-drop model is embedded into the reduced-order blood flow model, leading to a hybrid
formulation. This is done to account for the complex shape of the coarctation and its impact on
the pressure drop across the respective vessel segment.

The parameters to be estimated at the first stage of the parameter estimation framework are
properties of the distal vasculature models: the total resistances of the three supra-aortic vessels
and of the descending aorta, the total compliance of the supra-aortic branches, and the
compliance of the descending aorta.

The following system of nonlinear equations is solved at the first stage of the parameter
estimation framework to determine the parameter values:
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Figure 2.2: (a) Proximal aorta geometry with coarctation; (b) Reduced-order multiscale model used for
determining the structured tree parameter values of the patient-specific model; (c) 0D model used

during the first step of the model personalization algorithm for finding an initial solution of
calibration problem.
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where Pmax is the maximum (systolic) pressure at the root of the ascending aorta, Pmin is  the
minimum (diastolic) pressure at the root of the ascending aorta, ( )·F  represents a flow rate split,
(BC - brachiocephalic artery, LCC - left common carotid artery, DAo - descending aorta), and
QDAo-max is the descending aorta maximum flow rate. The target systolic and diastolic pressures
(83.92 mmHg and 49.68 mmHg respectively – determined from the measured time-varying
pressure in the ascending aorta), the target flow rate splits and the target descending aorta
maximum flow rate are taken from literature data [***CFD Challenge, 2013] (CFD challenge
“Predicting Patient-Specific Hemodynamics at Rest and Stress through an Aortic Coarctation”).
The flow rate splits of only three outlets are used as objectives, since the fourth one is obtained
as difference. The characteristic values of the residuals for pressure, flow rate split and flow rate
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objectives  were  set  to  1.0  mmHg,  0.005  and  3 ml respectively, and the tolerance limits for
evaluating convergence to 0.1 mmHg, 0.0005, and 0.3 ml respectively.

The nonlinear system in equation (2.20) was solved in two different configurations:
· the configuration in Figure 2.2, whereas structured trees are used as outlet boundary

conditions and the hierarchical parameter estimation framework in Figure 2.1 is applied;
· a configuration wherein three-element windkessel models are used as outlet boundary

conditions and only the first stage of the parameter estimation framework in Figure 2.1 is
applied (step 9 is removed). The proximal resistance of each windkessel model is set
equal to the characteristic resistance of the vessel and is maintained constant throughout
the parameter estimation procedure:
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, (2.21)

where E∙h/r0 is computed as described below.
Since for the supra-aortic branches only the total compliance CSupraAo is used as parameter

in (2.20), in both configurations it is distributed to the outlet boundary condition models of the
three branches, based on a power law relationship:
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where Cj represents the compliance at each outlet of the multiscale model.
An important aspect of a blood flow computation with compliant walls is the estimation of

the  mechanical  properties  of  the  aortic  wall.  To  compute  the  wall  properties  of  the  aortic
segments, i.e. E∙h/r0, a method based on wave-speed computation was used [Olufsen et al.,
2000], where the wave-speed is related to the properties of the aortic wall by the following
expression:
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r
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= , (2.23)

where c is the wave speed. To estimate the wave speed, the transit-time method [Ibrahim et al.,
2020] was used, whereby txc DD= .  Here  Δx is the distance (measured along the centerline)
between the inlet at the aortic root and the outlet at the descending aorta, and Δt is the time taken
by the flow waveform to travel from the inlet to the outlet location. To estimate the wall
properties  of  the  supra-aortic  vessels,  a  slightly  modified  approach  was  used,  under  which  the
wall properties of each supra-aortic segment are computed separately [Itu et al., 2013(a)]. This is
done to minimize the wave reflections at the bifurcations. Under this approach, first the
reflection coefficient Γ at a bifurcation is computed:
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where Yp (Yd) is the characteristic admittance of the parent (daughter) vessel. The characteristic
admittance is the inverse of the characteristic resistance of a vessel (computed as in (2.21)).
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There are three bifurcations, one for each supra-aortic vessel, and the characteristic resistance of
each supra-aortic vessel is computed by setting Γ equal to 0:

( )paortadaortadaortapaortaaorticra RRRRR ----- -×= /sup . (2.25)

Once the characteristic resistance is known, E·h/r0, is determined as follows:
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Next, the calibration results obtained by applying the hierarchical parameter estimation
framework for the configuration which uses structured tree boundary conditions are presented.
The objective and parameter values obtained by running steps 6-9 of the parameter estimation
framework for the nonlinear system of equations in (2.20) are displayed in Figure 2.3. The
iteration at which the value of each objective enters the tolerance window around the target value
is marked with a red dotted line (and does not leave it at subsequent iterations). Convergence is
reached after 6 iterations for the pressure based objectives and for the flow rate based objective,
and after 2-3 iterations for the flow-split based objectives.

Iteration 0 refers to the results obtained by running the computation with the parameter
values determined by solving the nonlinear system of equations for the distal vasculature model
in Figure 2.2c. The distal vasculature model represents a good approximation for the multiscale
model, since all objectives values are within a limit of ±5% of their corresponding target values.
Thus, the initial parameter values estimated at step 1 of the algorithm lead to a good initial match
between target and actual values of the objectives, which in turn means that the distal vasculature
model represents a good approximation for the reduced-order multiscale model. In particular, the
computed values of ΦLCC,  ΦLS,  ΦDAo are  within  1%  of  the  target  values  after  solving  the
nonlinear system of equations for the distal vasculature model. ΦLCC, ΦLS, ΦDAo are less affected
when the algorithm switches from the distal vasculature model to the multiscale model than the
maximum and minimum pressures and flow rates. This is given by the fact that the former are
mainly determined by the resistances whereas the maximum and minimum pressures and the
maximum descending aorta flow rate are influenced by both resistances and compliances. In
turn, the total resistance of the model is mainly determined by the distal vasculature, whereas the
compliance is significantly influenced (increased) by the proximal aorta model.

Finally I note that in order to exactly match the target values, all parameter values need to
be adapted considerably. This is determined by two aspects: as noted above, the proximal aorta
geometry increases the total compliance of the multiscale model, and the coarctation segment
increases the total resistance of the multiscale model.

Further, the computed and the measured time-varying quantities in the ascending and the
descending aorta are compared. Figure 2.4 displays a comparison of inlet pressure, and
descending aorta outlet pressure and flow rate, as obtained from measurements and with the
computational model when using structured trees or three-element windkessel models as outlet
boundary conditions. The dicrotic notch in the ascending aorta pressure profile is well preserved
in the computational results and, overall, there is a good agreement between the measured and
computed quantities, for both types of outlet boundary conditions. The measured minimum and
maximum pressure values in the ascending aorta, and the measured maximum flow rate in the
descending aorta are exactly matched by the computational results of both configurations since
these have been used as objectives in the parameter estimation framework.
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Figure 2.3: Parameter estimation progression for the patient-specific proximal aorta model. The total
resistance of each of the three supra-aortic branches, the total resistance of the descending aorta,
the sum of the supra-aortic compliances, and the descending aorta compliance were the adapted

parameters. The systolic and diastolic pressures in the ascending aorta, the desired mean fractions
of flow through the supra-aortic branches and through the descending aorta, and the maximum

flow rate through the descending aorta were used as objectives. The dotted red line represents the
iteration at which the value of an objective enters the tolerance window around the target value

(and does not leave it at any of the subsequent iterations).

To quantitatively compare measured and computed quantities, the average and maximum
differences between time-varying measured and computed quantities were determined. These are
displayed in Table 2.3 and confirm the visual observations from Figure 2.4: average and
maximum differences are relatively small for both computational configurations.

Finally, Table 2.4 displays the average and the peak-to-peak measured and computed trans-
coarctation pressure drop values. The results confirm the visual evaluation of the anatomy,
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namely that the coarctation is mild: the measured peak-to-peak pressure drop is of only 6.5
mmHg (the clinically employed threshold for identifying functionally significant coarctations is
20 mmHg [Itu et al., 2013(a)]). Both computed pressure drop values match the measured values
well, and classify it correctly as being functionally non-significant.

Figure 2.4: Comparison of computed and measured time-varying pressure and flow rate values at the
ascending and descending aorta, when using structured trees or three-element windkessel models

as outlet boundary conditions of the computational model.

Table 2.3: Average and maximum differences between time-varying measured and computed quantities,
obtained for the configurations with structured and three-element windkessel outlet boundary
conditions.

Difference Outlet boundary
condition

Asc. Aorta
Pressure [mmHg]

Desc. Aorta
Pressure [mmHg]

Desc. Aorta Flow
Rate [ml/s]

Average
Structured Tree 3.62 2.88 11.45
Windkessel 3.65 4.39 9.25

Maximum Structured Tree 9.61 9.35 29.67
Windkessel 8.38 10.85 30.72

Table 2.4: Comparison of computed and measured average and peak-to-peak trans-coarctation pressure
drop.

Configuration Average ΔP
[mmHg]

Peak-to-Peak ΔP
[mmHg]

Computed - Windkessel outlet BC 2.01 8.81
Computed - Structured tree outlet BC 1.83 8.17
Measured 1.23 6.50

2.4 DISCUSSION AND CONCLUSIONS

This chapter addresses the important topic of automatically adapting the parameters of
structured tree boundary conditions for patient-specific blood flow computations. This is the first
time structured tree parameters are adapted so as to simultaneously match pressure and flow
measurements. A hierarchical iterative parameter estimation framework has been developed and
tested for this purpose: the first stage adapts the overall hemodynamic properties of the
structured trees, whereas the second stage adapts the parameters of the structured trees so as to
match the hemodynamic properties determined at the first stage.

Calibration of the structured tree parameters is required since the tree is generated from a
set of constant scaling parameters (see Table 2.1). A tiered structure could be used alternatively
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[Olufsen et al., 2007], but since the use of a non-generic tree (with no fractal structure) would be
computationally too demanding and its structure impossible to obtain under patient-specific
conditions, parameter calibration is the most suitable approach for matching patient-specific
properties of the microvasculature. It is hypothesized that, even if organ specific tree properties
were used within a constrained constructive optimization procedure applied for growing optimal
trees within patient-specific organ geometries [Karch et al.], parameter calibration would still be
required to exactly match desired hemodynamic quantities.

The two most important hemodynamic properties of a vascular tree are the resistance and
the  compliance.  To  be  able  to  vary  the  two  quantities  over  a  large  range  of  values,  two
parameters are adapted for each quantity. A large range of variation is desired to be able to
simulate different patient states, e.g. rest, exercise, etc. [Olufsen et al., 2007]. The total resistance
values given in Table 2.2 correspond to the rest state. Hence, if an exercise state were to be
simulated, the total resistances would be smaller and a higher minimum radius may be required.

The minimum radius at which the structured tree generation is stopped, and the resistance,
imposed at all outlets of the structured, are adapted for matching the total resistance of the tree.
The constants k1 and k3, describing the wall stiffness, are adapted for matching the total
compliance of the tree. For both hemodynamic properties, the former of the two parameters is
used for coarse adaptation (algorithms 1 and 2). Compared to the recently published work of
Cousins et al. [Cousins et al., 2014], a fixed value was used for the length-to-radius ratio, which
matches previously reported values [van Bavel et al., 1992], [Zamir et al., 1999], [Nordsletten et
al., 2005]. The values of other parameters used for the generation of the structured trees are in
agreement with literature data: asymmetry ratio [van Bavel et al., 1992], [Kalsho et al., 2004],
and vessel size at bifurcations [van Bavel et al., 1992], [Huo et al., 2012], [Rossitti et al., 1992].

Herein, the original structured tree formulation was employed, introduced by Olufsen
[Olufsen, 1998]. However, the parameter estimation framework can be applied in an unchanged
form for the recently introduced variations: alternative derivation under periodicity assumption
[Cousins et al., 2012], and generalized transient formulation [Cousins et al., 2013].

The geometrical multiscale framework of the aortic model is useful for modeling multiple
pathologies. Since this study focuses on the calibration of the structured tree boundary condition,
the maximum and minimum pressure in the ascending aorta were used as objectives, as
measured during catheterization, thus enhancing the level of personalization in the computational
model. No additional pressure-based objectives were formulated for the ascending aorta and for
the descending aorta, since the final goal of this methodology is for it to be applied in a non-
invasive clinical workflow, during which pressure measurements are not be available for both
the ascending and descending aorta. Arm cuff-based pressure measurements can be used, and
translated into ascending aorta pressure values [Saouti et al., 2012].

The methodology introduced herein provides the means for automatically calibrating
structured tree parameters. This is a prerequisite for future activities which will focus on a
rigorous comparison of computational results obtained with multiscale models which use
structured tree or windkessel based distal vasculature models.

The study has a series of limitations. The performance of the hierarchical parameter
estimation method has been evaluated with a reduced-order multiscale model and not with a full-
order multiscale model. However, the framework proposed for the parameterization of structured
tree boundary conditions can also be applied, in an unchanged form, for the calibration of full-
order multiscale models. Secondly, the inertance, a third important hemodynamic property,
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alongside resistance and compliance, has not been considered when adapting the parameters of
the structured trees. The inertance effects are particularly important in the large arteries, but can
be neglected in the small arteries of the structured trees.
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3. Non-invasive Assessment of Patient-specific
Aortic Hemodynamics from 4D MRI Data

Introduction
Methods
Results
Discussion and Conclusions

3.1 INTRODUCTION

For accurate patient-specific computations, the role of physiologically sound boundary
conditions (inlet and outlet boundary conditions, and vascular wall properties) is well
appreciated in the literature.

Various approaches have been proposed for personalizing the inlet and outlet boundary
conditions. The outlet boundary conditions model the effect of the distal vasculature and are
typically represented by lumped parameter models. The most widely used lumped parameter
model is the three-element Windkessel model [Westerhof et al., 1971].

Various calibration procedures for the outlet boundary conditions have been proposed
based on multiple pressure and / or flow measurements, which are typically available in a
clinical scenario. A fully automatic optimization-based calibration method for the Windkessel
models was suggested [Spilker et al., 2010]. This method was then further refined to both
increase its robustness as well as to reduce the number of iterations required for reaching
convergence [Itu et al., 2015]. Furthermore, an adjoint-based method for calibrating the
Windkessel parameters was proposed [Ismail et al., 2013]. A competitive alternative to the above
mentioned optimization based methods is represented by filtering based methods [Bertoglio et
al., 2012].

The vascular wall properties determine the arterial distensibility, which is an important
factor for the development and assessment of cardiovascular diseases [Mitchell et al., 2010].
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Typically, the arterial distensibility is described by the arterial compliance (or the arterial
elastance – the inverse of the compliance), which is responsible for important functional aspects
of the systemic circulation: larger blood flow rate in the coronary arteries during diastole,
reduction of left ventricular afterload (during systole), continuous flow at the level of the
capillaries, etc.

Previous studies indicate that arterial compliance changes with age [Avolio et al., 1983]
and hypertension [McVeigh et al., 1991].

The arterial wall properties at a certain location in the systemic circulation can be
described by the local compliance, typically defined as area compliance, CA, or by the local pulse
wave velocity c. The pulse wave velocity (PWV) is also used as a robust prognostic parameter in
preventive cardiovascular therapy [Liberson et al., 2016]. Alternatively, the arterial wall
properties can be described globally, for a certain region or for the entire systemic circulation, by
the volumetric compliance CV.

Several approaches have been proposed in the past for non-invasive estimation of arterial
wall  properties  [Stergiopulos  et  al.,  1995].  Many of  them rely  on  the  transit  time of  the  flow /
pressure wave, i.e. the time that a flow / pressure wave needs to travel the distance between two
locations. These methods may have a low accuracy if the distance used for the estimation of the
transit time is relatively short, and can only provide an average value of the regional mechanical
wall properties for the region of interest. Other methods estimate local vascular wall properties:

· the ACM method [Saouti et al., 2012] estimates the local area compliance as CA = ΔA /
ΔP,  where  ΔA is the difference between minimum and maximum cross-sectional area
during a heart cycle and ΔP is the pulse pressure;

· the Pulse Pressure Method (PPM) [Stergiopulos et al., 1999] estimates the downstream
volumetric compliance from the flow rate waveform and from the pulse pressure;

· the PU-loop method [Khir et al., 2001] estimates the local PWV as c = dP / ρdU during
early systole, where dP is  the derivative of the pressure and dU is  the derivative of the
blood flow velocity;

· the DU-loop method [Feng et al., 2010] estimates the local PWV as c = 0.5 dU / d(lnD)
during early systole, where dU is defined as above and D is the diameter;

All these approaches require accurate measurements / estimation of the pressure / velocity /
area waveforms, which are not readily available or are susceptible to estimation errors when
determined non-invasively.

Furthermore, previously reported patient-specific blood flow computation frameworks
typically set the vascular wall properties either based on a best fit to experimental data [Olufsen
et al., 2000], or determine a single pulse wave velocity value for the entire anatomical model [Itu
et al., 2013(a)], [Florkow et al., 2016].

Herein a parameter estimation framework is proposed for automatically and robustly
personalizing aortic hemodynamic computations from 4D Magnetic Resonance Imaging (MRI)
data.

The framework is based on a reduced-order multiscale fluid-structure interaction (FSI)
blood flow model and personalization procedures. The latter calibrate inlet and outlet boundary
conditions, as well as the regional mechanical wall properties, to ensure that the computational
results match the patient-specific measurements.
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3.2 METHODS

3.2.1 Extraction of 4D anatomical and flow information from medical imaging data

The parameter estimation and computational framework introduced herein is based on
anatomical and flow information extracted from 4D flow MRI medical imaging data. A
proprietery tool (research prototype, not for diagnostic use) is used to reconstruct and pre-
processes the data by applying a series of image correction algorithms such as phase anti-aliasing
and motion tracking [Gulsun et al., 2015].

Once the 4D flow data is prepared, the steps displayed in Figure 3.1 are performed
sequentially. First, the user initiates a semi-automatic segmentation procedure by selecting a set
of seed points, starting at the inlet of the ascending aorta and ending at the outlet of the
descending aorta. Typically two to four seed points are required for a reliable initialization, and a
preliminary, rough segmentation is performed based on a clustering approach that groups voxels
in  the  4D  flow  data  into  static  tissue,  air/lung  and  blood.  Next,  the  centerline  of  the  aorta  is
automatically extracted from it. Once the user verified the proposed centerline, the segmentation
is automatically refined, and the refined geometry may be manually corrected if deemed
appropriate. As a result, the vessel lumen anatomical model and its centerline are obtained.
Subsequently, a large number (typically 50) of cross-sectional planes (analysis planes) along the
aorta are automatically generated. For each analysis plane, the flow data is systematically
analysed to determine the time-varying cross-sectional areas and the time-varying flow rates
along the aorta. Anatomical and flow information is thus extracted only for the aorta (ascending
aorta, aortic arch and descending aorta), and not for the supra-aortic branches.

In addition to flow and geometrical data, non-invasive, cuff-based pressure measurements
obtained from the left arm are also used.

Figure 3.1: Extraction of 4D anatomical and flow information from 4D MRI data: (a) Manual selection of
seed points; (b) Automatic segmentation; (c) Vessel lumen centerline and anatomical model; (d)
Automatic definition of analysis planes at which the time-varying flow rates and cross-sectional
areas are determined. Analysis planes are displaced appropriately as the aortic geometry deforms

over the course of the cardiac cycle.
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3.2.2 Reduced-order multiscale fluid-structure interaction blood flow model

The parameter estimation framework for personalizing aortic hemodynamic computations
employs a reduced-order multiscale fluid-structure interaction blood flow model, which is based
on a quasi one-dimensional and a lumped parameter model (zero-dimensional model) [Itu et al.,
2013(a)].

The one-dimensional blood flow model is derived from the three-dimensional Navier-
Stokes equations based on a series of simplifying assumptions. The resulting governing
equations ensure mass and momentum conservation [Reymond et al., 2011]. A state equation,
which relates the pressure inside the vessel to the cross-sectional area, is used to close the system
of equations. The vessel wall is modelled as an elastic material:
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where x denotes the axial location, t denotes the time, A(x,t) is the cross-sectional area, p(x,t) the
pressure, E is the Young modulus, h is the wall thickness, r0 is the initial radius corresponding to
the initial pressure p0, and A0 is the initial cross-sectional area. At each bifurcation, the continuity
of flow and total pressure is imposed.

Time-varying flow rate profiles are used as inlet boundary condition, while three-element
Windkessel models are coupled at the outlets of the one-dimensional model.

3.2.3 Parameter estimation framework

Figure 3.2 displays an overview of the proposed parameter estimation framework for
personalizing the aortic hemodynamic computations. The reduced-order multiscale FSI blood
flow model is first initialized and two independent calibration procedures are sequentially and
iteratively employed for automatically and robustly personalizing the aortic hemodynamic
computations:

· Personalization of the Windkessel parameters in the outlet boundary conditions of the
multiscale circulation model;

· Personalization of the regional mechanical wall properties of the aorta.
The two calibration procedures are run until the convergence criteria are met for both of

them simultaneously. Finally, the results of the hemodynamic computations are post-processed
to determine clinically relevant characteristics.

Figure 3.2: Flowchart of the proposed parameter estimation framework.



NON-INVASIVE ASSESSMENT OF PATIENT-SPECIFIC AORTIC HEMODYNAMICS FROM 4D MRI DATA

41

3.2.3.1 Initialization of the reduced-order multiscale fluid-structure interaction blood flow
model

Figure 3.3a displays the multiscale fluid-structure interaction blood flow model for the
aorta and the supra-aortic branches. The aorta is divided into multiple segments for which the
regional mechanical properties are estimated (these are numbered from 1 to 7 in Figure 3.3a, but
the  actual  number  of  segments  can  vary  and  depends  on  the  length  of  the  ascending  and
descending aorta).

The initialization of the blood flow model consists in the following five steps, which are
described in detail below:

· Defining the bifurcation locations of the supra-aortic branches;
· Defining the average flow rate values for the ascending and descending aorta;
· Defining the one-dimensional segments and their geometry;
· Defining the inlet boundary condition and the initial parameter values at the outlet

boundary condition;
· Defining the initial regional mechanical wall properties.

Figure 3.3: (a) Multiscale fluid-structure interaction blood flow model; (b) Lumped parameter model of
the distal vasculature used for finding an initial solution for the personalization of the outlet

boundary conditions.

As was mentioned in section 2.1, anatomical and flow rate information is only available for
the aorta. However, since the supra-aortic branches draw away from the aorta a significant
volume of blood (30-50%), to run accurate hemodynamic computations the anatomical model is
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augnmented with supra-aortic branches. To this end, the bifurcation point of the first supra-aortic
branch (the brachiocephalic artery) is determined by navigating downstream, starting from the
ascending aorta inlet, through the centerline locations until a cross-sectional plane is found, for
which the average flow rate decreases below 90% of the average flow rate at the upstream
centerline locations, and no downstream cross-sectional plane with a larger flow rate exists.
Similarly, the bifurcation point of the third supra-aortic branch (the left subclavian artery) is
determined by navigating upstream, starting from the descending aorta outlet, through the
centerline locations until a cross-sectional plane is found for which the average flow rate is larger
than 110% of the average flow rate at the downstream centerline locations, and no upstream
cross-sectional plane with a lower flow rate exists. Finally, the bifurcation point of the second
supra-aortic branch (the left common carotid artery) is set midway between the other two supra-
aortic branches.

Next, average flow rate values are estimated for the ascending and the descending aorta.
Due to measurement noise, the average flow rate varies slightly between consecutive cross-
sectional locations. A linear least squares fit based algorithm is employed, which is used to filter
out locations with very large or very low average flow rate values. Based on the remaining
locations, a final average flow rate value is determined for the ascending and the descending
aorta.

In the following, the one-dimensional segments and their geometry are defined. First the
number of segments is set for each branch: two segments for the aortic arch, and multiple
segments for the ascending (at least two) and descending aorta (at least three). Spatially varying
cross-sectional area values are defined for each segment to obtain a geometry which is reliably
reflecting the actual three-dimensional geometry. The initial cross-sectional area values are
based on the end-diastolic phase.

Population-average geometric properties [Reymond et al., 2011], which are scaled based
on the patient-specific aorta size, are applied to define the one-dimensional segments
corresponding to the supra-aortic branches (a fixed length of 2 cm is used for each supra-aortic
branch).

Subsequently, the inlet boundary condition is defined: the flow rate profile measured at the
first analysis plane is scaled so as to match the average ascending aorta flow rate value estimated
as described above. Next, three initial parameter values need to be specified at each outlet. First,
the average pressure at the inlet of the left subclavian artery is computed, following an approach
validated in [Saouti et al., 2012]. The brachial systolic pressure Pb-s and the brachial diastolic
pressure Pb-d are used as input data. The diastolic pressure at the inlet of the left subclavian artery
is set equal to Pb-d, while the systolic pressure is computed from:

dbsbsLSA PPP --- += 15.083.0 . (3.2)

Next, the mean arterial pressure at the inlet of the left subclavian artery is computed using
a form factor of 0.4:

dLSAsLSALSA PPP -- += 6.04.0 . (3.3)

Since the variation of the average arterial pressure in the aorta is typically small, LSAP  is
used for determining the initial total resistance at each outlet as ratio between average pressure
and average flow rate:

QPRt = . (3.4)
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To determine the average flow rate for each supra-aortic branch the total supra-aortic
average flow rate, Qsupra-aortic, is computed as difference between the average flow rates in the
ascending and the descending aorta. This flow is then distributed to the branching vessels
proportionally to the square of the radius. To  minimize  reflections,  the  proximal  resistance  of
each Windkessel model is set equal to the characteristic resistance of the corresponding outlet
segment, while the distal resistance is computed as difference between total and proximal
resistance.

For the estimation of compliance values, first a population average compliance value (Ctot)
is considered [Low et al., 2012], which is then distributed to the four outlets proportionally to the
square of the radius.

To initialize the regional mechanical wall properties first the arterial wall properties at the
bifurcation of the left subclavian artery are determined. Eq. (3.1) is rewritten, based on PLSA-s and
PLSA-d as:
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where ALSA-s and ALSA-d are the maximum (systolic) and minimum (diastolic) cross-sectional area
values, and β represents the wall stiffness. Hence:
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This value is used to initialize the stiffness for the entire aorta. To estimate the wall
properties of the supra-aortic vessels, a slightly modified approach is used, under which the wall
properties of each supra-aortic segment are computed separately. This is done to minimize the
wave reflections at the bifurcations [Itu et al., 2013(a)]. The initial pressure in the entire domain
is set equal to Pb-d.

3.2.3.2 Parameter estimation procedure for personalizing outlet boundary conditions

The objective of the parameter estimation procedure described in this section is to adapt
the parameters of the Windkessel models coupled to the outlets of the one-dimensional model,
under the constraint that the blood flow solutions should: i) maintain the same average flow-split
at each outlet as determined with the procedure described in section 3.2.3.1, and ii) replicate the
measured systolic and diastolic pressure at the inlet of the left subclavian artery. Out of the four
flow-split values (three supra-aortic branches and the descending aorta) only three are used as
objectives, since the fourth one is obtained automatically as difference.

The parameter estimation problem is formulated as a solution to a system of nonlinear
equations, with each equation representing the residual error between the computed and
measured quantity of interest.

To determine the values of all the residuals (f(xi)), a computation with the parameter values
xi is required. Since the absolute values of the adapted parameters and of the residuals generally
differ by orders of magnitude, for the calibration method both the parameter and the objective
residuals have been scaled using typical values.

The parameters to be estimated are the total resistances of the three supra-aortic vessels
and of the descending aorta, and the total compliance. The following system of nonlinear
equations is numerically solved to obtain the optimum value of each parameter:
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where Pmax-LSA is the maximum (systolic) pressure, Pmin-LSA is the minimum (diastolic) pressure,
both at the inlet of the left subclavian artery, ( )·F  represents a flow rate split, while ( )comp·  refers
to a value computed using the lumped parameter/multiscale model, and ( )ref·  refers to the
reference value. Index LCC refers to the left common carotid artery, LS to the left subclavian
artery, and DAo to the descending aorta.

The typical values of the objectives typ
if are  set  equal  to  1mmHg for  the  pressure  based

objectives and to Φ/100 for the flow rate split based objectives.
The nonlinear system of equations is first solved for a lumped parameter model, composed

of the Windkessel models used in the multiscale model (Figure3.3b). The initial solution x0 is
determined using the steps described in the previous section and a dogleg trust region algorithm
is applied to iteratively determine the solution of the nonlinear system of equations. The solution
determined for the lumped parameter model is then adapted as described in [Ismail et al., 2013],
to compensate for the hemodynamic properties (resistance and compliance) of the multiscale
model that are not taken into account in the lumped parameter model. As a result, the risk of a
failure in finding a solution to the nonlinear system of equations is reduced, and, importantly, the
number of calibration iterations required to reach the final solution is decreased.

Next, eq. (3.7) is solved for the multiscale reduced-order blood flow model. Each
computation, with a given set  of parameter values,  is  run until  the L2 norms of the normalized
differences between the pressure and flow rate profiles at the current and the previous cardiac
cycle are smaller than 10-5. A quasi-Newton method is employed at this stage, where at each
iteration the Jacobian is only updated and not recomputed, to ensure short computation times. If
all objective residuals are smaller than the tolerance limit (taken here equal to typ

if ), the
calibration method is terminated.

3.2.3.3 Parameter estimation procedure for personalizing the regional mechanical wall
properties

The objective of the parameter estimation procedure described in this section is to adapt
the local wall stiffness along the aorta so as to obtain a good match between the measured and
the computed cross-sectional area variation at the analysis planes. The parameter estimation
procedure is based on a non-linear least squares method, which minimizes the following cost
function:
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where m is the total number of measurements, j refers to a specific measurement location along
the aorta, and rj(x) are the residuals computed as difference between the measured and the
computed quantities:

( ) comp
j

ref
jj AAr D-D=x , (3.9)
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where ref
jAD  is the measured maximum variation in the cross-sectional area during a heart cycle

at location j, and comp
jAD  is the computed maximum variation in the cross-sectional area during a

heart cycle at location j.
The parameter vector x contains the wall stiffness at the start and end of each one-

dimensional segment in the computational model (a linearly varying stiffness is imposed
between the inlet and outlet of each one-dimensional segment):

[ ]T
2211 ...endstartendstart ----= bbbbx , (3.10)

The cost function is minimized using a quasi Gauss-Newton method (a modified Newton’s
method with line search). Thus, first a search direction GN

kp is determined, and a step length αk to
satisfy the Armijo and Wolfe conditions is chosen [Nocedal et al., 2006]. At each iteration, once
the wall properties of the aorta have been updated, the wall properties of the supra-aortic
branches are modified to minimize the wave reflections at the bifurcations (see section 3.2.3.1).
Similar to the setup described in the previous section, the Jacobian is only computed once, and
then updated at each further iteration. Once the cost function converges (its variation from one
iteration to the next becomes smaller than 1%), the calibration procedure is terminated.

As depicted in Figure 3.2, once the calibration procedure for determining the regional
mechanical wall properties has converged, the convergence criteria of the calibration procedure
for determining the outlet boundary conditions are verified. If these are not satisfied, the two
parameter estimation procedures are rerun. The convergence criteria of the first calibration
procedure may no longer be satisfied once the second parameter estimation procedure has been
applied, since a change in the wall properties generally induces a change in the pressure and flow
rate values.

3.2.3.4 Computation of clinically relevant characteristics

Once the calibration procedures of the parameter estimation framework have converged,
the computational results are post-processed to determine a series of clinically relevant
characteristics:
1. The local pulse wave velocity:

( )
r

b
2

)( xxc = , (3.11)

2. The local area compliance:
a. Using the wall stiffness:

( )
( )x

xAxC A b
2)( = , (3.12)

where A(x) is the average value of the cross-sectional area at location x.
b. Using the ACM method:

( )
( )xPP
xAxC ACMA

D
=- )( , (3.13)

where ΔA(x) is the maximum variation of the cross-sectional at location x, and PP(x) is the
pulse pressure at location x, determined from the hemodynamic computations.

3. The downstream volumetric compliance:
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( ) ( )( )xPPtxqPPMxCV ,,)( = , (3.14)

where PPM refers to the pulse pressure method [Stergiopulos et al., 1994] which uses as
input the time-varying flow rate at location x and the pulse pressure at location x, as
determined from the hemodynamic computations.

3.3 RESULTS

To evaluate the performance of the proposed parameter estimation framework, results are
presented for 15 datasets acquired from patients with aortic valve disease (60% male) enrolled in
the “Cardioproof” project [***CardioProof, 2017]. The patients’ age ranged from 9 to 69 years
(mean: 30.9 ± 21.8 years). The study complied with the Declaration of Helsinki for investigation
in human beings. The study protocol was approved by the local ethics committee and each
patient signed an informed consent form before the enrolment in the study.

Blood was modelled as an incompressible Newtonian fluid with a density of 1.050 g/cm3
and a dynamic viscosity of 0.040 dynes/(cm2∙s). The grid size for the numerical solution of the
one-dimensional model was 0.05cm, while the time-step (limited by the CFL-condition) was set
equal to 2.5e-5s.

3.3.1 Personalization of the hemodynamics computations

The calibration procedures converged successfully for all 15 datasets, with an average
execution time of 6.2 ± 1.2 minutes on an off-the-shelf computer (Intel i7 processor). Table 3.1
displays the calibration results: the objective and parameter values of the outlet boundary
conditions calibration procedure (reference objective values are displayed in parenthesis), and,
for the regional mechanical wall properties calibration procedure the initial and final value of the
cost  function  (eq.  (3.8))  are  displayed  alongside  the  estimated  wall  stiffness.  The  number  of
calibration iterations is displayed both at global level (iterations of the loop in Figure 3.2), and
separately for each calibration procedure (as a sum of all calibration iterations during the
different global iterations). Only one or two global iterations were required to reach
convergence.

The five objectives defined in (3.7) are matched closely for each dataset and the total
number of calibration iterations for personalizing the outlet boundary conditions was at most
three (1.27 ± 0.96). A very good match between the reference and the computed values of the
objectives was observed (mean relative difference < 0.5%).

The total number of calibration iterations for personalizing the regional mechanical wall
properties was 7.07 ± 1.44; the value of the cost function was decreased from 2.95 ± 1.90 to 0.23
± 0.37. The mean wall stiffness for the entire cohort was 0.93∙103 ± 0.37∙103 mmHg. This value
is similar to the mean wall stiffness of large arteries described previously in literature, obtained
by performing a best fit to experimental data (0.85∙103 mmHg) [Olufsen et al., 2000].

Next, Figure 3.4 presents as an example the calibration results obtained by personalizing
the boundary conditions of patient dataset 15: both objective and parameter values, obtained by
running the parameter estimation procedure described in section 3.2.3.2, are displayed (the
dotted red lines represent the reference values of the objectives).

Two global iterations were required to reach final convergence, and during each global
iteration, one local iteration was required to match the objectives related to the outlet boundary
conditions (3.7).
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Table 3.1: Calibration results obtained by applying the parameter estimation framework for personalizing the hemodynamic computations of the 15 datasets
included in the study (SSD = Sum of Squared Difference; SD = Standard deviation)

Pat.
Set

Calibration procedure for personalizing the outlet boundary conditions Calibration procedure for personalizing the
regional mechanical wall properties

#iter.
global

Pmax-LSA

[mmHg]
Pmin-LSA

[mmHg]
ΦLCC ΦLS ΦDAo Rt-BC

[103 g/
(cm4s)]

Rt-LCC

[103 g/
(cm4s)]

Rt-LS

[103 g/
(cm4s)]

Rt-DAo

[103 g/
(cm4s)]

C
[10-6

cm4s2

/g]

#iter.
outlet
BC

Init.
val.
SSD

Final
val.
SSD

Mean (β)
[103

mmHg]

SD (β)
[103

mmHg]

#iter.
wall
prop.

1 103.54
(103.24)

62.76
(63.00)

0.1151
(0.1158)

0.0941
(0.0938)

0.5641
(0.5635)

5.914 11.591 14.31 2.382 1.583 0 2.2 0.14 1.55 0.84 7 1

2 117.21
(117.28)

57.00
(57.00)

0.0858
(0.0858)

0.0695
(0.0695)

0.6767
(0.6767)

6.637 13.009 16.061 1.59 1.346 2 7.67 1.53 1.02 0.44 5 2

3 104.18
(104.37)

65.13
(65.00)

0.1080
(0.1081)

0.0874
(0.0876)

0.5930
(0.5924)

4.706 9.225 11.387 1.68 1.144 2 3.26 0.14 0.6 0.26 8 2

4 115.38
(115.08)

70.37
(70.00)

0.0559
(0.0561)

0.0453
(0.0454)

0.7892
(0.7886)

19.638 38.491 47.519 2.721 0.434 1 0.21 0.02 0.94 0.28 6 1

5 78.81
(78.50)

53.16
(53.00)

0.1178
(0.1179)

0.0954
(0.0955)

0.5559
(0.5556)

6.598 12.896 15.9 2.701 1.213 2 1.55 0.04 0.43 0.18 10 2

6 85.31
(85.21)

59.17
(59.00)

0.1197
(0.1195)

0.0969
(0.0968)

0.5487
(0.5493)

5.911 11.537 14.245 2.528 0.868 2 3.72 0.2 0.4 0.28 8 2

7 115.81
(115.31)

66.82
(66.00)

0.0686
(0.0684)

0.0553
(0.0554)

0.7429
(0.7421)

8.67 16.974 20.91 1.56 1.293 1 3.01 0.16 0.98 0.3 6 1

8 131.79
(131.28)

95.37
(95.00)

0.0729
(0.0730)

0.0591
(0.0591)

0.7250
(0.7248)

14.489 28.397 35.061 2.846 1.217 1 1.11 0.08 1.32 0.42 7 2

9 113.43
(114.01)

84.87
(85.00)

0.0826
(0.0826)

0.0669
(0.0669)

0.6886
(0.6885)

8.627 16.91 20.876 2.029 1.543 0 0.67 0.1 1.68 0.81 7 1

10 81.91
(82.35)

50.40
(51.00)

0.1103
(0.1097)

0.0888
(0.0889)

0.5843
(0.5863)

4.628 9.071 11.199 1.698 1.543 0 3.52 0.07 0.61 0.22 6 1

11 102.70
(102.94)

61.12
(61.00)

0.0650
(0.0651)

0.0526
(0.0527)

0.7550
(0.7548)

10.551 20.679 25.53 1.79 1.369 2 4.46 0.24 0.78 0.3 6 2

12 117.31
(117.14)

45.11
(45.00)

0.0252
(0.0251)

0.0204
(0.0203)

0.9050
(0.9055)

29.085 56.993 70.371 1.555 1.093 3 4.12 0.4 0.92 0.35 7 2

13 113.69
(114.10)

68.45
(69.00)

0.0825
(0.0817)

0.0668
(0.0662)

0.6890
(0.6919)

6.055 11.868 14.652 1.402 1.353 0 0.9 0.06 0.96 0.23 7 1

14 101.06
(100.45)

60.56
(61.00)

0.0670
(0.0670)

0.0542
(0.0543)

0.7475
(0.7473)

7.971 15.621 19.285 1.381 1.252 1 3.85 0.17 0.88 0.37 10 2

15 107.32
(107.18)

44.78
(45.00)

0.1112
(0.1112)

0.0901
(0.0901)

0.5808
(0.5808)

3.619 7.015 8.699 1.345 1.25 2 2.53 0.11 0.85 0.21 6 2
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Figure 3.4: Parameter estimation progression for the calibration of the outlet boundary conditions for
patient dataset 15. The dashed red lines represent the reference values of the objectives.

Iteration 0 refers to the results obtained by running the computation with the parameter
values determined by solving the nonlinear system of equations for the lumped parameter model,
and by applying the algorithms for compensating for the hemodynamic properties (resistance and
compliance) of the multiscale model. These initial parameter values lead to a good initial match
between target and actual values of the objective. In particular, the computed values of ΦLCC,
ΦLS, and ΦDAo are within 1% of their target values. ΦLCC, ΦLS, and ΦDAo are less affected when
the algorithm switches from the lumped parameter model to the multiscale model than the
maximum and minimum pressures. This is due to the fact that the former are mainly determined
by the resistances whereas the maximum and minimum pressures are influenced by both
resistances and compliances. In turn, the total resistance of the model is mainly determined by
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the distal vasculature, whereas the compliance is significantly influenced (increased) by the
proximal aorta model.

The objective values at the end of the first global iterations are different from the objective
values at the start of the second global iteration. This is due to the fact that the regional
mechanical wall properties are calibrated in between, thus also affecting the objectives related to
the outlet boundary conditions, and leading to the requirement of running a second global
iteration. The parameter values on the other hand are the same at the end of the first global
iteration and at the start of the second global iteration.

Next, Figure 3.5 presents the calibration results obtained by personalizing the regional
mechanical wall properties of patient dataset 15: both objective and parameter values, obtained
by running the parameter estimation procedure described in section 3.2.3.3, are displayed. Four
and two local iterations were required during the first and second global iteration respectively.

The cost function value at the end of the first global iterations is slightly different from the
value at the start of the second global iteration, because the parameters of the outlet boundary
conditions are calibrated in between. Initially the wall stiffness is identical at all locations (as
determined during the initialization of the multiscale model (3.6)), but, as the calibration
procedure progresses, the wall stiffness of each segment is personalized so as to match the
measured cross-sectional area variation.

Figure 3.5: Parameter estimation progression for the calibration of the regional mechanical wall
properties for patient dataset 15: (a) cost function; (b) wall stiffness, one curve per each regional

parameter.

Figure 3.6a displays a comparison of measured (4D MRI) and computed minimum and
maximum cross-sectional areas along the centerline of the aorta for patient dataset 15: the values
match closely, indicating that the parameter estimation procedure calibrating the wall properties
is  able  to  provide  a  reliable  personalization  of  the  arterial  wall  stiffness.  The  small  differences
that can be observed are partially due to the approximation of the three-dimensional geometry
through the one-dimensional model. Furthermore, Figure 3.6b and Figure 3.6c display a
comparison of the computed and measured time-varying cross-sectional areas at one ascending
and one descending aorta location. Importantly, not only the absolute values, but also the timing
of the time-varying profiles match closely, confirming that the wave propagation phenomena are
captured correctly by the personalized hemodynamic model.
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Figure 3.6: (a) Comparison of computed and measured (4D MRI) minimum and maximum cross-
sectional area along the centerline of the aorta; (b) Comparison of computed and measured (4D

MRI) time-varying cross-sectional area at an ascending aorta location; (c) Comparison of
computed and measured (4D MRI) time-varying cross-sectional area at a descending aorta

location (all for patient dataset 15).

3.3.2 Regional mechanical wall properties

Table 3.2 displays the quantities of interest related to the regional mechanical wall
properties of the 15 patient datasets included in the study, computed as described in section
3.2.3.4. Alongside the PWV determined from (3.11) PWV estimates determined with the transit
time method [Ibrahim et al.,  2010]:  c = Δx /  Δt are included, where Δx is the length along the
centerline of the aorta and Δt is  the  time  required  for  the  flow  rate  wave  to  travel  along  this
distance. Since Δt is  typically  very  small  the  aorta  was  divided  into  only  two  regions  and  the
transit time based PWV was estimated separately for these two regions. The first region contains
the ascending aorta and the aortic arch, while the second region contains the descending aorta.
The time Δt is computed as the interval between the onset (foot) of the flow curves at the start
and end of a region. The location of the onset (foot) is determined by the intersection point of the
upslope curve and the minimum flow rate. The upslope curve is approximated by the line
connecting the points at 30% and 70% of the maximum flow rate at the particular location.

As can be observed in Table 3.2 the mean PWV estimated using (3.11) lies typically in
between the two values estimated with the transit time method. Due to the small values of Δt, the
transit time method is very sensitive to measurement errors and noise. As an example, Figure 3.7
displays a comparison of the local PWV and the transit time based PWV for patient dataset 15.
The local PWV is indeed a bit larger in region 1 than in region 2, but the transit time method
overestimates its value in the first region, and underestimates it in the second region.

Figure 3.7: Comparison of local pulse wave velocity determined using the herein proposed framework
and pulse wave velocity determined using the transit time method for patient dataset 15.
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Table 3.2: Quantities of interest related to the regional mechanical wall properties of the 15 patient datasets included in the study: PWV (as determined from
(11) and with the transit time method for two distinct aortic regions), local area compliance (as determined from (12) and (13)) and the ascending and
descending aorta downstream volumetric compliance (as determined from (14)).

Patient
dataset

Mean PWV
[cm/s]

St. dev. PWV
[cm/s]

Min. PWV
[cm/s]

Max. PWV
[cm/s]

PWV TT –
region 1
[cm/s]

PWV TT –
region 2
[cm/s]

Mean CA

[10-3 cm2/
mmHg]

St. dev. CA

[10-3 cm2/
mmHg]

Mean
CA-ACM
[10-3 cm2/
mmHg]

St. dev.
CA ACM
[10-3 cm2/
mmHg]

CV-AAo

[10-6

cm4s2/g]

CV-DAo

[10-6

cm4s2/g]

1 965.92 224.05 584.56 1339.71 591.86 1321.51 8.359 4.852 8.562 5.221 1078.76 807.33
2 742.63 134.12 546.82 1084.31 368.4 891.4 12.663 4.074 12.979 5.591 1218.18 890.98
3 559.35 91.94 456.41 815.15 399.82 701.02 10.614 2.416 11.079 2.859 878.99 699.87
4 761.63 82.59 627.55 995.39 902.17 453.78 6.053 1.413 6.205 1.54 397.89 269.03
5 485.65 78.61 331.72 693.8 530.67 364.36 13.352 3.509 13.848 3.897 793.76 484.85
6 461.02 89.99 372.77 800.86 422.59 456.93 14.299 3.958 14.928 4.841 887.46 558.81
7 781.83 93.6 584.65 912.81 1521.46 492.43 13.392 6.231 13.76 6.635 1056.88 576.12
8 932.1 120.13 703.98 1121.1 1102.22 506.78 10.404 6.777 10.574 7.017 774.68 582.72
9 1039.3 196.26 745.54 1441.4 1279.07 726.85 9.243 3.669 9.309 4.032 1187.92 854.94
10 573.21 91.71 459.34 757.75 1234.86 353.78 20.273 6.206 20.89 6.414 1574.7 1042.79
11 694.94 93.97 583.57 920.2 940.79 413.04 14.681 4.223 15.091 4.749 1443.26 1106.33
12 733.28 101.19 616.78 1056.01 765.65 537.99 11.699 3.758 12.161 4.162 798.52 569.41
13 738.21 92.74 532.76 939 785.57 404.87 10.595 1.829 10.886 1.987 749.26 629.11
14 669.65 130.54 454.74 913.88 844.56 468.77 11.551 3.62 11.864 4.197 1129.22 846.72
15 684.23 78.43 573.72 862.85 953.73 367.45 10.495 2.229 10.925 2.465 855.97 655.67
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Furthermore, Table 3.2 displays the local area compliance, as determined from the wall
stiffness and using the ACM method. The two methods lead to similar area compliance results,
with a mean difference of only -0.359∙10-3 ± 0.166∙10-3 cm2/mmHg.

Finally, Table 3.2 also displays the downstream volumetric compliances as determined at
the inlet of the ascending aorta and the inlet of the descending aorta. The average total
volumetric compliance is of 988.4∙10-6 ± 297.7 ∙10-6 cm4s2/g, which is in the range of previously
reported values in the literature. On average, the descending aorta volumetric compliance is 29%
smaller than the ascending aorta volumetric compliance.

Figure 3.8 displays for patient dataset 15 a comparison of the local area compliance, as
determined from the wall stiffness and using the ACM method, and the downstream volumetric
compliance along the centerline of the aorta. The regions with large local area compliance are
the regions with low local PWV (see Figure 3.7) and vice-versa (the area compliance and the
PWV are inversely proportional). The downstream volumetric compliance decreases
significantly towards the descending aorta. A marked decrease can be observed once the
bifurcation points of the supra-aortic branches have been passed. This is due to the fact that the
downstream compliance at an ascending aorta location contains the volumetric compliance of all
arteries supplying the arms and the cerebral circulation.

Figure 3.8: (a) Local area compliance as determined from the wall stiffness and using the ACM method
along the centerline of the aorta; (b) Downstream volumetric compliance determined with the

pressure-pulse method along the centerline of the aorta (both for patient dataset 15).

3.4 DISCUSSION AND CONCLUSIONS

This chapter introduced a parameter estimation framework for automatically and robustly
personalizing aortic hemodynamic computations from 4D MRI medical image data. The
hemodynamic computations are based on a reduced-order multiscale fluid-structure interaction
(FSI) blood flow model, which is fully personalized: the patient-specific anatomical model and
the time-varying flow rate inlet boundary condition are derived directly from the medical
imaging data, and the proposed parameter estimation framework calibrates the parameters of the
outlet boundary conditions and the regional mechanical wall properties along the centerline of
the aorta so as to match the clinical measurements. The former are personalized by solving a
nonlinear system of equations, while the latter are personalized by minimizing a cost-function.
Due to the different nature of the calibration procedures, these are run sequentially and
iteratively until both of them are converged.
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The methodology was evaluated by investigating 15 patient datasets. Since all of them
converged successfully within only two global iterations, three iterations for the calibration of
the outlet boundary conditions, and ten iterations for the calibration of the regional mechanical
wall properties, the proposed method is deemed robust. The estimated aortic pressures and flow-
rate distributions between supra-aortic branches and descending aorta were matched with an
error of less than 1%. Three-element Windkessel models were used as outlet boundary
conditions, but other types of physiologically sound boundary conditions, like the structured tree
boundary condition, may be employed instead [Itu et al., 2017]. The cost function related to the
estimation of regional mechanical wall properties, computed based on the differences between
the cross-sectional area variations in the 4D MRI data and the blood flow model, was minimized
to an average value of 0.23 cm2 for the entire cohort. Moreover, as can be observed in Figure 3.6,
not only the cross-sectional area variation (difference between minimum and maximum value) is
matched well, but also the time-varying cross-sectional area profiles typically match the
measured profiles.

In  addition  to  its  robustness  and  excellent  capability  of  matching  the  clinical
measurements, the proposed method is computationally also very efficient: the average
execution time was of only 6.2 ± 1.2 minutes on a standard hardware configuration. There are
several aspects contributing to this achievement. First of all, a computationally efficient reduced-
order fluid-structure interaction model was used. Secondly, the parameters in the outlet boundary
conditions are initialized by solving the system of nonlinear equations for a lumped parameter
model composed of the Windkessel models used in the multiscale model (Figure 3.3b). Thirdly,
the solution determined for the lumped parameter model is adapted to compensate for the
hemodynamic properties (resistance and compliance) of the multiscale model. As a result, the
calibration procedures required a reduced number of calibration iterations. Hence, one can
conclude that the proposed framework is well suited for a clinical decision setting, where short
runtimes are crucial. If required, the computational time can be further reduced by employing
modern  Graphics  Processing  Units  (GPUs)  for  massively  parallelized  computations  with  a
potential speed-up of approximately a factor of four [Itu et al., 2013(b)].

As mentioned above, a major contribution of the framework is that spatially varying
personalized regional mechanical wall properties are derived. This is in contrast with previous
approaches, where a single PWV value was estimated for the entire domain. As can be observed
in Figure 3.5b, the spatial variation of the vascular wall properties can be quite pronounced.
There are several factors which may contribute to this finding. First of all, all 15 patient datasets
of this cohort had aortic valve disease, which leads to a modification of the flow jet through the
aortic valve and potentially to an adaptation of the wall properties (especially in the ascending
aorta and in the aortic arch). Secondly, previous research has shown that the surrounding tissue
of the aorta has a considerable effect on the hemodynamics, leading to higher wave speed, lower
total compliance, etc. [Itu et al., 2014(a)]. Since the various structures surrounding the aorta have
different elastic properties, they provide spatially varying external tissue support along the
centerline of the aorta.

The main difference to previously introduced methods estimating local vascular wall
properties,  is  that  herein  these  wall  properties  are  personalized  in  the  context  of  a  blood  flow
model, which enforces the physics of fluid flow in elastic domains. Consequently, the results are
less affected by measurement noise.

Arterial distensibility is an important factor for the development and assessment of
cardiovascular diseases, as elevated systemic vascular stiffness is associated with an increased
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risk of cardiovascular disease. There are several pathological conditions where the knowledge of
regional instead of global mechanical wall properties is of interest. For example, in case of aortic
valve stenosis, a more focused flow jet may affect the aortic wall and cause dilatation of the
ascending aorta. Other potential applications are related to the understanding of the development
of aortic dissections or aortic aneurysms. Furthermore, previous studies have shown that in case
of aortic coarctation the local compliance plays a crucial role in the estimation of the peak-to-
peak pressure drop, a measure that is routinely used for clinical decision making [Keshavarz-
Motamed et al., 2015]. Furthermore, for stented aortic coarctations, the interplay between the
different mechanical properties of the stent and of the surrounding aortic segments is of interest.

The  study  has  a  series  of  limitations.  Firstly,  it  has  been  evaluated  only  on  15  patient
datasets thus far, and hence the results are preliminary and warrant an evaluation study on a
larger number of datasets to be clinically relevant. Secondly, the proposed method has not been
tested for anatomical models representative of pathologies which induce severe modifications of
the aortic geometry, e.g. aortic coarctation. To account for the effect of the aortic coarctation on
the hemodynamics a modified reduced-order model would be required [Itu et al., 2013(a)].
Thirdly, the reduced-order model introduces an approximation of the geometry, since an
axisymmetric, tapering geometry is being considered. However, it has been shown that the one-
dimensional model is able to predict time-varying pressure and flow rate waveforms if the
tapering is moderate [Reymond et al., 2011]. Finally, although information on the variation of
the cross-sectional areas at many locations of the aorta was used in the framework, the global
and other movements of the aorta during a heart cycle were not fully taken into account.
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4. A Method for Modeling Surrounding Tissue
Support and its Global Effects on Arterial

Hemodynamics

Introduction
Methods
Results
Conclusions

4.1 INTRODUCTION

While three-dimensional models have been used to analyze pathologic behavior of blood
vessels in local geometries [Cebral et al., 2011], one-dimensional blood flow models have been
used extensively for modeling the entire arterial circulation [van de Vosse et al., 2011]. When
the focus lies on flow rate and pressure wave forms, one-dimensional models are an ideal
approach since they have been shown to be able to accurately predict these quantities for patient-
specific models [Itu et al., 2013(a)].

One-dimensional models have been previously used to assess the effect of arterial stiffness
[Mathhys et al., 2007], whose changes represent an early risk factor for cardiovascular diseases
(hypertension, diabetes, hyperlipidemia, atherosclerosis, heart failure, etc. [Laurent et al., 2006]).

Previous studies have suggested that, for a correct, model based assessment of arterial
stiffness effects, the influence of the surrounding tissue has to be considered [Liu et al., 2007].
The surrounding tissue constrains the vessels radially, it reduces the wall strain and stress, and
takes up a significant part of the intravascular pressure (wall stretch ratio was reduced by 15 –
20% for the carotid and femoral arteries).

The effect of surrounding tissue on the proximal aorta hemodynamics has been analyzed
using two different fluid structure interaction (FSI) modeling techniques and results have shown
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that the motion of the arterial wall, otherwise left free, is constrained, whereas the constraints for
inlet and outlet regions are relaxed [Moireau et al., 2012].

Recently, two idealized computational models have been proposed for studying the effects
of surrounding tissue, the uniform thickness model and the histology image-based model [Kim et
al., 2013]. Results have indicated that modeling of the surrounding tissue improves the
understanding of regional adaptation of the aortic wall at normal and pathological conditions.
For the coronary arteries it has been shown that large epicardial coronary vessels have a greater
tendency to become thicker in the absence of myocardial constraint [Liu et al., 2008].

In this chapter a methodology for separating the total stiffness of arteries, determined in
vivo, into stiffness of the arterial wall and stiffness of the surrounding tissue is introduced [Itu et
al., 2014(a)]. The above described studies focused on local effects of surrounding tissue support
through detailed in vivo, in vitro and in silico experiments. The methodology introduced herein
is used for studying the global effects of surrounding tissue support on arterial hemodynamics by
employing a one-dimensional blood flow model for a full body arterial model composed of 51
arteries.

4.2 METHODS

The one-dimensional blood flow model is derived from the three-dimensional Navier-
Stokes equations:
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where x denotes the axial location and t denotes the time. A(x,t) is the cross-sectional area, p(x,t)
the pressure, q(x,t)  the  flow  rate,  and  ρ is  the  density.  Coefficients  α and KR account for the
momentum-flux correction and viscous losses due to friction respectively. A third equation is
required to close the system: the state equation, which relates the pressure inside the vessels to
the cross-sectional area. The vessel wall is modeled as a viscoelastic material:
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where E is the Young modulus, h is the wall thickness, r0 is the initial radius corresponding to
the initial pressure P0, and Sg  is the viscoelastic coefficient. The elastic wall properties are
estimated using a best fit to in vivo data [Olufsen et al., 2000]:
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where k1 = 2∙107 g/(s2∙cm), k2 = -22.53 cm-1, k3 = 6.65∙107 g/(s2∙cm). The wall properties
determined with (4.4) contain the influence of the external tissue. To study the global effects of
surrounding tissue, the material properties in (4.3) need to be adapted in order to exclude the
influence of the surrounding tissue.  Liu et  al.  [Liu et  al.,  2007] have shown that,  at  a reference
pressure of 100 mmHg, the radiuses increase by ~15-20% when the external tissue is not present.
To  model  the  effect  of  the  surrounding  tissue,  they  considered  an  external  pressure,  called



A METHOD FOR MODELING SURROUNDING TISSUE SUPPORT AND ITS GLOBAL EFFECTS ON ARTERIAL
HEMODYNAMICS

57

effective perivascular pressure (EPP), which introduces a radial constraint. As the tests with
different arterial pressure values have shown, EPP represents a fraction of the arterial pressure,
and can be expressed as:

aext PkP )1( -= , (4.5)

where Pa is the arterial pressure and k is  a  constant  which  is  equal  to  0.5  at  physiological
pressures (60 – 120 mmHg).

When acquiring image data (magnetic resonance, computer tomography, etc.), arterial
geometries are regularly reconstructed based on diastolic time frames, where motion artifacts are
smallest. Hence, the measured radiuses and cross-sectional areas correspond to a non-zero
pressure (the diastolic pressure). Generally, the pressure inside an artery can be expressed as:

exttm PPP += , (4.6)

where Ptm is the transmural pressure and Pext is the pressure exerted by the surrounding tissue on
the arterial wall (EPP). Hence, for the initial state, one can write ( ) ( )000 exttmDia PPPP +== . Figure
4.1 displays the different pressures inside the artery, in the surrounding tissue, and the transmural
pressure for (a), the initial state, and for (b), a generic case with a higher pressure.

Figure 4.1: Absolute pressures in the arteries and in the surrounding tissue: (a) in the initial state (at
diastolic pressure), and (b) at a certain moment during the cardiac cycle when the pressure is

higher than the diastolic pressure.

It is not possible to introduce the external pressure in (4.3), since the material properties of
the elastic component already contain its influence. Hence, the initial state corresponding to
pressure PDia and cross-sectional area ADia can not be used as a starting point for the separation of
the arterial wall model from the external tissue model. The only state in which the external tissue
has no influence on the arterial properties is the hypothetical case obtained with zero pressure.
To determine the cross-sectional area value corresponding to zero pressure the method proposed
in [Alstruey et al., 2009] is used. Thus, (4.3) is considered without the viscoelastic term, and P0

is set to 0 mmHg, while A0 is the cross-sectional area zero pressure.
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The viscoelastic term can be excluded if the diastolic and the hypothetical zero pressure
states are considered to be steady-states. In reality, the diastolic state is not a steady state, since
the geometry is usually acquired in vivo, but at the end of diastole the variation of the cross-
sectional area is small and hence the viscoelastic term can be neglected.
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To model the effect of the external tissue the method introduced recently in [Formaggia et
al.,  2013] is  considered, whereby the stiffness of the arterial  wall  and of the surrounding tissue
are modeled separately as two springs in parallel, as is displayed in Figure 4.2: K1D is the
stiffness of the arterial wall and KST is  the  stiffness  of  the  surrounding  tissue.  As  a  result,  the
total stiffness is computed as:

ST1Deq KKK += . (4.8)

From (4.3), the equivalent stiffness is expressed as:

00
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rr
EhK = . (4.9)

Figure 4.2: Equivalent model of the total stiffness in the wall encountered by the one-dimensional blood
flow model: K1D is the stiffness of the arterial wall and KST is the stiffness of the surrounding

tissue.

To determine K1D, the quantity ( ) )(/ 0 xrEh w  is introduced, whereas subscript w indicates
the  fact  that  it  only  refers  to  the  properties  of  the  wall  (excluding  the  surrounding  tissue
properties). Considering only the steady-state equation, one can write for a non-zero pressure
P(x):
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where A0 is the cross-sectional area corresponding to zero pressure, determined in (4.7). Next,
(4.10) is introduced in (4.11), and, as a result:
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Hence,  the  stiffness  of  the  arterial  wall  and  of  the  surrounding  tissue  can  be  expressed
separately as:
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4.3 RESULTS

Blood was modeled as an incompressible Newtonian fluid with a density of ρ = 1.055
g/cm3 and a dynamic viscosity of μ = 0.045 dynes/cm2.s for all the computations.

To evaluate the global effects of surrounding tissue on the arterial circulation, the arterial
tree detailed in [Bessems, 2008], and displayed in Figure 4.3a was used. It is composed of 51
arteries. A time-varying flow rate profile was imposed at the inlet [Olufsen et al., 2000] and
three-element Windkessel lumped models were applied at the outlets.

Figure 4.3: (a) Representation of the 51 main arteries in the human arterial system; time-varying pressure,
flow rate and cross-sectional area with an elastic/viscoelastic wall model and with/without the
effect of surrounding tissue at (b) aortic root, (c) descending aorta, (d) abdominal aorta, and (e)

femoral artery.

Results are displayed in the following for both an elastic and viscoelastic arterial wall
model. The constant k in (4.15) was set equal to 0 (includes the effects of the surrounding tissue)
or  0.5  (a  value  determined  experimentally  by  Liu  et  al.,  which  excludes  the  influence  of  the
surrounding tissue).

Hence, four computational setups were obtained, and, to analyze the effect only for the
large arteries, Windkessel boundary condition values were the same in all four cases.
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The results are displayed in Figure 4.3b-e at the locations marked with a blue circle in
Figure 4.3a. For the aortic root the pressure pulse is much smaller when the effect of the
surrounding tissue is excluded, the difference being caused mainly by the change in systolic
pressure. The decreased pressure pulse is given by the increased compliance of the system, and
by the fact that the lower total stiffness of the wall leads to a lower wave speed and hence to
reflections which arrive back later in the proximal part of the circulation (these reflections are no
longer arriving at late systole, but during diastole). In terms of the cross-sectional area an
increase of up to 30% is obtained for the aortic root, confirming the finding of Liu et al., which
indicated that the surrounding tissue prevents the arteries from overstretching. Further
downstream, the decrease in pressure pulse is not as pronounced as before, mainly because the
reflections arrive earlier at the corresponding locations (the compliance is still increased). In
terms of the flow rate, especially for distal locations, the oscillations increase, being very
pronounced in the femoral artery. The decrease in wave speed, can be observed through the
difference of the onset (the foot) of the flow rate wave for the distal locations.

Finally, when setting k to 0.5, the total systemic resistance decreases from 1.42e3 to 1.36e3
dynes∙s/cm5 and is accompanied by a corresponding decrease of the arterial average pressure.
This change is given by the fact that the radiuses are larger when the surrounding tissue is absent
and the resistance of a vessel is proportional to the inverse of the radius at power 4. Although the
radiuses increase by a considerable amount, the decrease in total resistance is only marginal
because the large arteries contribute very little to the total arterial resistance, which is mainly
located in the small arteries lumped in the Windkessel elements.

4.4 CONCLUSIONS

In this chapter arterial wall and surrounding tissue properties have been determined from in
vivo data and have studied the global effects of surrounding tissue on arterial hemodynamics. A
one-dimensional blood flow model has been employed, which enables the assessment of the
effects on pressure, flow rate and cross-sectional area profiles.

The main effects of the surrounding tissue have been determined: higher wave speed and
lower total compliance. Consequently, backward travelling pressure and flow rate waves arrive
earlier in the proximal part of the circulation and a higher pressure pulse is obtained. Secondly,
cross-sectional area values decrease by over 30%.

To study local hemodynamic quantities of interest (wall shear stress, circumferential strain)
in greater detail, the one-dimensional model can be coupled to a three-dimensional model
employed for the region of interest [Formaggia et al., 2013].

The herein provided methodology is useful for predicting and studying the effect of local
changes to the external tissue support on global hemodynamics. Moreover, the computed
hemodynamic and mechanical quantities of interest can be used together with a growth model
[Figueroa et al., 2013] to predict arterial wall growth and remodeling. In a Big Data perspective,
by  comparing  simulation  results  and  patient  evolution  over  different  time  ranges,  such  an
approach is useful for predicting patient-specific disease evolution and outcome.

The  study  has  a  series  of  limitations.  First  of  all,  due  to  lack  of  experimental  data,  a
uniform effect of the surrounding tissue along the large arteries was considered. Secondly, the
influence of the surrounding tissue was considered to be purely elastic and the viscoelastic
properties were attributed solely to the arterial wall.
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5. Model Based Non-invasive Estimation of PV
Loop from Echocardiography

Introduction
Methods
Results
Discussion and Conclusions

5.1 INTRODUCTION

The left ventricular pressure-volume (PV) loop represents an efficient tool for
understanding and characterizing cardiac function. It contains information regarding stroke
volume, cardiac output, ejection fraction, myocardial contractility, cardiac oxygen consumption,
and other important measures of the heart and the systemic circulation. For example, the extent
of ventricular remodeling, the degree of ventricular-arterial mismatching [Burkhoff, 2013], and
the left ventricular end-diastolic pressure-volume relationship [Spevack et al., 2013] represent
strong predictors of congestive heart failure. Pathologies such as left ventricular hypertrophy,
dilated cardiomyopathy, aortic and mitral valve stenosis, and regurgitation [Hall, 2011] are
manifested in the PV-loop. Hence, a method for an efficient estimation of the PV loop would
represent a powerful diagnostic tool for clinicians. Medical imaging modalities such as MRI, CT,
and echocardiography can be used to estimate the time-varying LV volume through the heart
cycle in a non-invasive manner, which can then be combined with an invasive measurement of
LV pressure to obtain the PV loop [van Slochteren et al., 2012].

In this chapter, a model-based approach is introduced for the non-invasive estimation of
left ventricular, patient-specific PV loops: a lumped parameter circulation model is personalized
using a two step parameter estimation framework [Itu et al., 2014(b)]. The input data required for
the model personalization are acquired through routine non-invasive clinical measurements and
echocardiography.
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In a clinical scenario, the values of the cardiovascular model parameters are not available
on a per-patient basis, and different optimization-based approaches were proposed to estimate
these parameters, focused mainly on the arterial systemic circulation. A fully automatic
calibration method for Windkessel models was suggested [Itu et al., 2015], where the input was
specified by non-invasively acquired systolic/diastolic pressures and, in some cases, additional
flow data. In a different approach, Windkessel parameters were estimated using a state-space
approach and a least squares method from time-varying pressure and flow rate profiles [Kind et
al., 2010].

5.2 METHODS

5.2.1 Lumped Parameter Model

The lumped parameter circulation model employed for the current study is displayed in
Figure 5.1. It comprises three main components: venous pulmonary circulation, the left heart and
the systemic circulation. For the venous part of the pulmonary circulation, a model composed of
a resistance (RpulVen) and compliance (CpulVen) is used:

pulVenC
LA

pulVen QdPC -=
dt

, (5.1)

inLApulVenCpulVen QQQ -- += , (5.2)

where the venous pulmonary flow rate (QpulVen) is considered to be constant in time.

Figure 5.1: Lumped parameter model representing the venous pulmonary circulation, the left heart and
the systemic circulation.

The  left  heart  model  has  four  components:  left  atrium  (LA),  mitral  valve,  left  ventricle
(LV) and aortic valve. A time-varying elastance model is used for the LA and the LV [Suga,
1971]:

( ) ( ) ( )( ) ( )tQRVtVtEtP s--×= 0 , (5.3)

where E is the time-varying elastance, V is the cavity volume, V0 is  the  dead  volume  of  the
cavity, and Rs is a source resistance which accounts for the dependence between the flow and the
cavity pressure [Shroff et al., 1985] ( ( ) ( ) ( )( )tVtVtEKR ss 0-= , Ks - constant). The cavity volume is
equal to:

outin QQdV -=dt , (5.4.)

where Qin represents the inlet flow rate into the cavity and Qout represents the outlet flow rate
from the cavity. The mitral valve and the aortic valve are modeled using a resistance, an
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inertance and a diode to simulate the closure and the opening of the valve [Mynard et al., 2012].
When the valve is open, the following relationship holds:

dtdQLQRPP valvevalveoutin ×+×=- , (5.5)

where Pin and Pout represent the pressures at the inlet and respectively the outlet of the valve.
When the valve is closed, the flow rate through the valve is set to zero. Each valve opens when
Pin becomes greater than Pout, and closes when the flow rate becomes negative. A three-element
Windkessel model is used for the systemic circulation, represented by the following relationship
between instantaneous flow and pressure:
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where Rsys-p and Rsys-d are the proximal and distal resistances respectively, Csys is the compliance,
and Pven is the venous pressure. A total of nine equations are obtained, which are solved
implicitly using the forward Euler time integration scheme.

5.2.2 Parameter Estimation Framework

To compute patient-specific left ventricular PV loops using the lumped parameter model,
the parameters of the model are personalized. The model personalization framework consists of
two sequential steps. First, a series of parameters are computed directly, and next, a fully
automatic optimization-based calibration method is employed to estimate the values of the
remaining parameters, ensuring that the personalized computations match the measurements.
Table 5.1 lists the patient-specific input parameters used in the current study, together with their
source. Figure 5.2 displays an image acquired through echocardiography, illustrating the steps
required for extracting the last two quantities from Table 5.1.

Table 5.1: List of patient-specific input parameters.

Input Source
Systolic blood pressure (SBP) Cuff measurement (arms)
Diastolic blood pressure (DBP) Cuff measurement (arms)
Heart Rate (HR) Routine measurement
Ejection fraction (EF) Echocardiography
End-diastolic volume (EDV) Echocardiography

During the first step of the parameter estimation framework, the mean arterial pressure
(MAP) is determined:

( )[ ] )(0012.031 DBPSBPHRDBPMAP -××++= . (5.7)

Then, the end-systolic volume is computed:

( ) 1001 EFEDVESV -×= . (5.8)

Next, the stroke volume is determined:

ESVEDVSV -= , (5.9)

and the average aortic flow rate is computed:

HRSVQAo 60×= . (5.10)
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Figure 5.2: Image acquired through echocardiography illustrating the steps required to extract the end-
diastolic volume and the ejection fraction.

Finally,  the  total  systemic  resistance,  as  well  as  the  proximal  and  distal  components,  are
determined:

( )
( ) ,1;

,

tsysdsystsyspsys

Aovtsys

RRRR
QPMAPR

----

-

×-=×=

-=

rr
(5.11)

where ρ is the proximal resistance fraction. Since the lumped model is used for a pulsatile
steady-state computation, the average inlet flow rate (QpulVen) is equal to the average outlet flow
rate, given by (5.10). Hence:

AopulVen QQ = . (5.12)

The normalized elastance curve is used for the left ventricle model [Suga, 1971], which is
denormalized using the minimum and maximum elastance values, and the time at which the
maximum elastance is reached. The minimum elastance value is set to 0.08 mmHg/ml, and the
time at which the maximum elastance of the left ventricle is reached is computed using tmax =
0.16·T + 0.17, where T is the period.

The maximum elastance value is estimated as described further down. A two-hill function
is used to determine the elastance curve for the left atrium, whereas the minimum elastance is set
to 0.08 mmHg/ml, the maximum elastance is set to 0.17 mmHg/ml, and the onset of the
contraction is set at 0.85T [Mynard et al., 2012].

During the second step of the parameter estimation framework, an optimization-based
calibration method is employed to estimate the maximum elastance of the left ventricle model,
Emax-LV, the dead volume of the left ventricle, V0-LV,  and  the  compliance  of  the  systemic
Windkessel model, Csys.

The parameter estimation problem is formulated as a numerical optimization problem, the
goal of which is to find a set of parameter values for which a set of objectives are met. Since the
number of parameters to be estimated is set equal to the number of objectives, the parameter
estimation problem becomes a problem of finding the root for a system of nonlinear equations.
To solve the system of equations, the dogleg trust region method is used [Nocedal et al., 2006].
The objectives of the parameter estimation method are formulated based on the systolic and
diastolic pressures, and the ejection fraction, leading to the system of nonlinear equations:
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where, r(x) is a vector function, called in the following objective function, and x is the vector of
the unknowns, i.e. the parameters to be estimated. Each component of the objective function is
formulated as the difference between the computed value of a quantity – ( )comp·  (determined
using the lumped parameter model) and its reference value – ( )ref· (determined through
measurement). To evaluate the objective function for a given set of parameter values, the lumped
parameter model is run exactly once.

An outline of the parameter estimation method is illustrated in Figure 5.3. First, a grid of
physiological parameter value sets is considered, and the initial solution, x0,  is  chosen  as  the
parameter value set leading to the smallest L2 norm for the objective function r(x). Since the
lumped parameter model has a small computational time, the Jacobian matrix required to
compute the step size at each iteration of the optimization method is estimated using finite
differences. The finite differences of the parameters, to be used for the computation of the
Jacobian, are called in the following characteristic step sizes, char

js . To determine the

characteristic step sizes, a set of characteristic values for the objective function are chosen, char
ir ,

and apply a fixed point iteration method. The fixed point iteration method consists of two
sequential steps. First, the characteristic step size values are computed:
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Next, the Jacobian matrix is computed:
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where di and dj represent the unit vectors in the ith and jth direction. These two steps are iterated
until the characteristic step size is consistent with the chosen characteristic objective function.
Next, the lumped parameter model is run using the current parameter value set and the objective
function is evaluated. Each computation, with a given set of parameter values, is run until the L2

norms of the normalized differences between the aortic pressure and flow rate profiles at the
current and the previous cardiac cycle are smaller than 10-5. If all objective function values are
smaller than the tolerance limit ( 10/char

ir ), the calibration method is terminated. Otherwise, the
Jacobian matrix is recomputed and the parameter values are updated. The characteristic values
for the pressure and ejection fraction objectives were set to 1 mmHg and 0.005 respectively.
When applying the dogleg trust region method, the parameters and the objective function
components are scaled using the previously determined characteristic values. Although the
patient-specific values of the end-diastolic and end-systolic volumes are neither used directly as
parameters of the lumped model nor tuned, they are automatically matched. This can be
motivated as follows: the outlet flow rate of the model is imposed through the inlet pulmonary
venous flow rate (eq. (5.12)), and since HR is imposed for the left atrium and ventricle models,
the patient-specific stroke volume SV is matched (eq. (5.10)). In the system of equations
composed of (5.8) and (5.9), SV is matched, and EF is  matched  as  a  result  of  running  the
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calibration method. Hence, only two unknowns are remaining (EDV and ESV), leading to a
unique solution of the system.

Figure 4.3: Parameter calibration method.

5.3 RESULTS

To evaluate the performance of the proposed methodology for the non-invasive estimation
of left ventricular PV loops, next results are presented for three healthy volunteers. Systolic and
diastolic pressure values were acquired using cuff-based measurements and the ejection fraction
and end diastolic volumes were estimated from the echocardiography performed at rest state in a
horizontal position using the Siemens ACUSON SC 2000 ultrasound system. The values of the
parameters which are not estimated through the methodology described in the previous section
were set as follows, based on literature data [Mynard et al., 2012], [Segers et al., 2003]: RAV =
25.0 g/(cm4·s), LAV = 0.5 cm2/s, RMV = 20.0 g/(cm4·s), LMV = 0.5 cm2/s, RpulVen = 30.0 g/(cm4·s),
CpulVen = 0.5 (cm4·s2)/g, ρ = 0.09, Pven = 5.0 mmHg, V0-LA = 3 ml, Ks-LA = 10·10-9 s/ml, and Ks-LV

= 4·10-9 s/ml.
Table 5.2 lists the input parameters for the three healthy volunteers, and the output

parameters obtained after applying the parameter estimation framework. The output parameter
values are in the physiological range reported in literature [Hall, 2011]. The computed time-
varying pressure profiles and PV loops are displayed in Figure 5.4: left - aortic systolic and
diastolic pressures, as well as the heart rate are matched exactly, right – end-diastolic volume and
the ejection fraction, from Table 5.2, are exactly matched.
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Table 5.2: Input and output parameter values for three healthy volunteers.

Parameter Volunt. 1 Volunt. 2 Volunt. 3
SBP [mmHg] 120 117 117
DBP [mmHg] 70 65 67
HR [bpm] 86 61 90
EF 70 % 69 % 61 %
EDV [ml] 108 108 78
Emax-LV

[mmHg/ml]
3.30 2.40 1.52

V0-LV [ml] 2.18 4.33 -43.41
Csys [cm4∙s2/g] 1.383∙10-3 1.930∙10-3 0.749∙10-3

Figure 5.4: Computed time-varying LA pressure, LV pressure and aortic pressure (left side) and PV loops
for (a) volunteer 1, (b) volunteer 2, and (c) volunteer 3.

Additionally,  to  perform  an  initial  validation  of  the  methodology,  the  PV  loop  was
computed for a patient with mild aortic valve regurgitation and the results were compared
against the invasively determined quantities. Figure 5.5 displays a comparison between model-
based computed results and invasively performed measurements. The input data used for the
parameter estimation framework were extracted from the invasive measurements as follows: SBP
was the maximum aortic pressure (181.5 mmHg), DBP was the minimum aortic pressure (89.7
mmHg), EDV was the maximum LV volume (196.68 ml), EF (53.1 %) was computed from EDV
and ESV, determined as minimum LV volume (92.26 ml), and HR was determined from the
period of the time-varying pressure (47 bpm). All these values are matched exactly for the output
parameter values: Emax-LV = 0.968 mmHg/ml, V0-LV = -88.71 ml, Csys = 1.065∙10-3 cm4∙s2/g. There is a
close agreement between the time-varying LV and aortic pressures, time-varying LV volumes,
and PV loops. Moreover, the four phases of the cardiac cycle can be clearly identified in the
computed results (Figure 5.5a and Figure 5.5b): 1: isovolumetric contraction phase, 2:
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ventricular ejection phase, 3: isovolumetric relaxation phase, and 4: ventricular filling phase. The
mild aortic valve regurgitation can be observed in the PV loop in Figure 5.5c, where the line
corresponding to the isovolumetric relaxation has a slight curvature, and in Figure 5.5b, during
the second part of phase 3, where the LV volume increases slightly. The average execution time
for the four volunteers / patients was of 28.9 seconds on a standard Intel i7 CPU core with 3.4
GHz.

Figure 5.5: Comparison of model-based computation against invasive measurements, for (a) time-varying
left ventricular and aortic pressures, (b) time-varying left ventricular volume, and (c) PV loop.

5.4 DISCUSSION AND CONCLUSIONS

A fully automated, non-invasive model-based method for the estimation of patient-specific
left ventricular PV loops was introduced. Initial results demonstrate that the proposed parameter
estimation framework ensures a perfect agreement between the computed quantities and the
clinical measurements. The lumped parameter model used in the current study has been designed
specifically for the estimation of the left ventricular PV loop: it leads to fast computation times,
and it enables the accurate computation of the main quantities required for the PV loop (time-
varying LV pressure and volume). Although the current study used LV volume information
acquired through echocardiography, the proposed method can be applied, without any restriction,
along with other medical imaging techniques which can provide similar data: magnetic
resonance, computer tomography.

The current study has a series of limitations. First, SBP and DBP for the three volunteers
were acquired through cuff-based measurements, which do not exactly represent the aortic
systolic and diastolic values. Secondly, the lumped parameter model in Figure 5.1 is designed for
the estimation of the PV loop of healthy subjects. Future work will focus in the implementation
of different mitral/aortic valve models, capable of modeling valve stenosis/regurgitation.
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6. A Machine Learning Approach for
Computation of Fractional Flow Reserve from

Coronary Computed Tomography
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Results
Discussion

6.1 INTRODUCTION

Cardiovascular disease is the leading cause of death, globally. Of these deaths,
approximately 42% are caused by Coronary Artery Disease (CAD) [***WHO, 2015]. CAD
patients suffer from a buildup of plaque in the coronary arteries, which results in a corresponding
decrease of blood flow to the cardiac muscle, especially under stress. In severe cases, this
reduction in flow could result in myocardial ischemia, and potentially death.

Previous investigations have shown that revascularization of blocked coronary arteries is
preferred for severe lesions, whereas mild to moderate lesions are best treated using medical
therapy alone [De Bruyne et al., 2012]. The decision to revascularize blocked coronaries is
commonly performed considering anatomical markers extracted from invasive coronary
angiography, such as the percentage reduction in lumen diameter. Invasive coronary angiography
is the gold standard in CAD imaging [Levin, 1982], [Ryan, 2002]. Subjective assessment of
angiographically apparent CAD is inadequate due to high degrees of intra-observer and inter-
observer variability. Hence, the significance of coronary stenoses is routinely assessed by
computer-assisted quantitative coronary angiography [Ng et al., 2011].

There is strong evidence that this approach has a limited accuracy in evaluating the
hemodynamic significance of lesions [Toth et al., 2014].
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 Due to the tremendous improvement in medical imaging technologies, non-invasive
imaging plays an increasingly important role in the diagnosis of CAD. Coronary Computed
Tomography Angiography (CCTA) is a non-invasive imaging modality which is being
increasingly used for the visualization and diagnosis of CAD, prior to invasive catheterization.
While CCTA-based measurements of lesion anatomy correlate well with those from
angiography, many severe lesions indicated by CCTA do not cause ischemia, leading to patients
being unnecessarily referred to coronary angiography for invasive evaluation [Hachamovitch et
al., 2008], [Meijboom et al., 2008]. In view of the limitations of the pure anatomical evaluation
of CAD, the functional index of Fractional Flow Reserve (FFR) has been recently introduced as
an alternative. FFR is defined as the ratio of flow in the stenosed branch at hyperemia – a
condition of stress, with maximum coronary blood flow – to the hypothetical hyperemic flow in
the same branch under healthy conditions. This can be shown to be closely approximated by the
ratio of hyperemic cycle-averaged pressure distal to the stenosis to the cycle-averaged aortic
pressure [Pijls et al., 1996]. Following multiple successful clinical trials which showed the
superiority of FFR-guided decision making [Tonino et al., 2009], FFR is currently the gold
standard for determining the functional severity of a lesion [Fihn et al., 2012], [Windecker et al.,
2014]. Clinical evaluation of FFR is done under angiographic guidance, using a catheter-based
pressure transducer. Despite the advantages offered by FFR, the use of FFR is still relatively
uncommon [Petraco et al., 2013] due to additional costs, the need to administer drugs to induce
hyperemia, and the invasive nature of the measurement [Tu et al., 2015].

Recently, blood flow computations performed using computational fluid dynamics (CFD)
algorithms in conjunction with patient-specific anatomical models extracted from medical
images, e. g. CT scans of the heart and the coronary arteries, have shown great promise in being
able to predict invasive, lesion-specific FFR from patient’s medical images taken at resting
conditions [Coenen et al., 2015], [Koo et al., 2011], [Min et al., 2012], [Morris et al., 2013],
[Norgard et al., 2014], [Papafaklis et al., 2014], [Renker et al., 2014], [Tu et al., 2014]. The
CFD-based models combine geometrical information extracted from medical imaging with
background knowledge on the physiology of the system, encoded in a complex mathematical
fluid flow model consisting of partial differential equations which can be solved only
numerically. This approach leads to a large number of algebraic equations, making it
computationally very demanding [Tayloer et al., 2013]. Typically the solution of these models
requires a few hours on powerful clusters for high-fidelity models representing the complete
three dimensional velocity field to minutes on a workstation for reduced-order models which
solve for time-varying pressure and flow rate in each branch [Itu et al., 2012], [Deng et al.,
2015].

The computationally demanding aspect of these CFD models and associated image
segmentation process prevents adoption of this technology for real-time applications such as
intra-operative guidance of interventions. An alternative approach with high predictive power is
based on machine learning (ML) algorithms.

In this chapter, a machine learning model for FFR computation is presented as an
alternative to CFD-based modeling [Itu et al., 2016]. The model is trained using a synthetically
generated database of 12000 coronary anatomies, resulting in a rich sampling of the different
morphologies of coronary blockage. For each generated coronary tree, stenoses are randomly
placed  among the  different  branches  and  bifurcations.  A reduced  order  CFD model  [Itu  et  al.,
2012] is used to compute the pressure and flow distribution for each coronary tree. Subsequently,
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for each location along the coronary tree, quantitative features describing the anatomy as well as
the computed FFR value at that location are extracted. A machine learning model is then trained
to learn the relationship between the anatomical features and the FFR value computed using the
CFD model. Once the model is trained, the computational time for predicting the FFR value for a
new case is significantly lower than that of the CFD model, going from 196.3 ± 78.5 seconds for
the CFD model to around 2.4 ± 0.44 seconds for the machine learning model on a workstation
with 3.4 GHz Intel i7 8-core processor.

In the rest of the chapter, the computed FFR value is referred to as cFFR, and one
distinguishes between cFFRCFD – computed with a CFD method, and cFFRML – computed with
the proposed machine learning method. The performance of the proposed machine learning
based approach is assessed in three steps: (i) comparison against CFD predictions on synthetic
coronary trees, (ii) comparison against CFD predictions on a set of 87 patient-specific coronary
anatomies, and (iii) comparison against invasively measured FFR for the same 87 patients.

6.2 METHODS

In this section, the machine learning framework developed for computing cFFR from
coronary anatomical models is introduced. First the process of generating the synthetic coronary
vessel trees, which are used for training the machine learning model, is described, followed by
the features used to map the relationship between the coronary anatomy and the computed value.

As described above, the machine-learning based model is trained offline on a large
database of synthetically generated coronary anatomies. The prediction phase is an online
process, whereby the algorithm computes cFFRML for a given patient’s data, by using the learned
mapping from the training phase. Given an anatomical model (i.e., lumen segmentation), the
computation of cFFRML is fully automatic, without requiring user intervention. The pre-
processing pipeline to generate the anatomical model is semi-automatic. The system presents the
user with automatically computed centerlines and luminal contours, which can then be
interactively edited by the user to create the anatomical model [Grosskopf et al., 2009]. The
features required for the machine learning algorithm are automatically extracted from the
reconstructed coronary anatomical model of the patient, and then used as input to the pre-learned
model. cFFRML is computed at all locations in the coronary arterial tree, and the resulting values
are visualized by color coding the anatomical model. A schematic of the workflow is shown in
Figure 6.1.

Figure 6.1: Overall workflow of the proposed framework.
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6.2.1 Generation of synthetic training database

A database containing 12000 synthetically generated coronary vessel trees was created to
reflect the anatomical variations representative of stable patients with suspected CAD. This
database, used for training the machine learning model, is generated algorithmically using a
three-step process, as shown in Figure 6.2. In the first step, the skeleton of the coronary
geometry is initialized, by prescribing the number of vessels at each generation of the tree.
During the second step, geometric information such as vessel radius, degree of tapering, branch
length is prescribed for each generation of the vessel tree. The parameters representing these
geometric quantities are sampled in pre-specified ranges derived from published literature (Table
6.1): the values  have been selected to cover a broad range, ensuring that a wide array of
anatomical variations and their corresponding hemodynamics is covered.

Figure 6.2: Generation of pathologic coronary geometries in three steps: (a) Set up coronary skeleton; (b)
Generate healthy geometry information; (c) Generate stenoses.

During the third step, stenoses are generated in the coronary vessel trees. The number of
stenoses on a vessel segment is sampled randomly between zero and three for a main branch
segment, and between zero and two for a side branch segment. The following parameters are set
for each stenosis: the maximum degree of radius reduction, the total length, the location of the
stenosis center, the length of the stenosis region with minimum radius, the overall degree of
tapering along the stenosis. Stenoses are placed either on a single segment, or at a bifurcation. If
a bifurcation stenosis is generated, different stenosis parameter values are set for the parent and
daughter branches of the bifurcation. A schematic description of the different parameters is
shown in Figure 6.2. The parameters describing the root radius of the left main and the RCA
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branch, and the maximum degree of radius reduction of a stenosis are sampled randomly based
on a normal distribution. All other parameters are sampled with a uniform distribution.

Table 6.1: Parameters with corresponding ranges used to generate synthetic coronary trees.

Step Parameter Range

Step 1
Number of main branches 3 (LAD, LCx, RCA)
Number of side branches (1st gen) 2-5
Number of side branches (2nd gen) 0-2

Step 2

Root radius [Atta-Alla et al., 2015] 0.15-0.35cm
Power coefficient [Kassab et al.,
2006], [Murray, 1926], [Zamir et al.,
1992]

2.1-2.7

Area ratio [Olufsen et al., 2000] 0.35-0.45 (main branch),
0.6-0.8 (side branch)

Degree of tapering [Zhou et al., 1999] -20% to +5% from top to bottom
Length [Aharinejad et al., 1998] 1.5-4cm
Bifurcation angle [Kassab et al., 1995],
[Atta-Alla et al., 2015]

30⁰ - 90⁰

By applying this three-step algorithm, a total of 12000 coronary geometries were
generated. The coronary geometries generated are characteristic of many common pathological
situations encountered in clinical practice. However, some rare conditions like anomalous origin
of the coronary arteries and coronary artery aneurysms are not represented in this database.

6.2.2 Computational Fluid Dynamics simulations

The target values (cFFRCFD),  required  for  the  training  phase  of  the  ML  algorithm,  are
computed using a reduced-order computational blood flow model which has been previously
introduced [Itu et al., 2012]. The model was recently validated in clinical studies by comparing
cFFRCFD against invasively measured FFR and the diagnostic accuracy for the detection of
functionally significant CAD was shown to be good, i.e. between 75% and 85% [Coenen et al.,
2015], [Renker et al., 2014], [Wang et al., 2015], [Baumann et al., 2015], [Coenen et al., 2016], ]
[De Geer et al., 2016], [Kruk et al., 2016].

The CFD approach employs numerical methods to compute time-varying flow and
pressures using the principles of fluid dynamics by solving the reduced-order Navier-Stokes
equations, with blood being modeled as an incompressible fluid with constant viscosity. For the
healthy non-stenotic coronary arteries a reduced-order model is used in combination with a
lumped parameter model for the coronary microvasculature [Mantero et al., 1992]. To enable
accurate pressure computation in the stenotic regions for a given anatomical model, locally
defined pressure drop models are embedded into the reduced-order blood flow model, leading to
a modified hybrid reduced-order formulation. This is done to account for the complex shape of
the stenosis and its impact on the pressure drop across the respective vessel segment. A systemic
circulation model and a heart model are included to provide proper proximal and distal boundary
conditions for the coronary circulation.

The boundary conditions are estimated based on allometric scaling laws that describe the
relation between form and function, the resting total coronary flow is derived from the reference
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radius values of the branches in the anatomical model [Chou et al., 2008], [Kassab, 2006]. The
resting total coronary flow is distributed over the coronary anatomical model following Murray’s
law [Murray, 1926], and the total microvascular resistance at each outlet is determined [Sharma
et  al.,  2012]  with  an  automatic  parameter  estimation  algorithm  [Itu  et  al.,  2015].  In  the  CFD
model, the effect of adenosine is simulated by appropriately modifying the boundary condition,
specifically by decreasing the total resistance of each coronary outlet [Wilson et al., 1990].
cFFRCFD is finally computed throughout the entire coronary artery tree as ratio of cycle-averaged
pressure at the corresponding location and cycle-averaged aortic pressure.

6.2.3 Feature extraction and training of machine learning algorithm

The ML algorithm is used to compute cFFRML at  all  locations along the centerline of the
given coronary anatomical model. Hence, features are computed separately for each location
along the centerline of the coronary geometries. Since the pressure and the flow rate at a certain
location are influenced by both the upstream and the downstream circulation, the features used at
each location encapsulate local, upstream and downstream information. Upstream information is
extracted along the path of the parent segments. Downstream features are computed along the
path of the main branch. This path is determined automatically from the healthy reference radius
of daughter branches, the number of generations downstream, and the vessel length downstream.

The machine learning algorithm is trained using a deep neural network with 4 hidden
layers (shown in Figure 6.3).

Figure 6.3: Deep-learning network architecture used for training the model. The network has 4 hidden
layers, and uses a fully connected architecture.

A fully connected network model was used, i.e., each neuron in a layer is connected to all
the neurons in the following layer, with no convolutional layers being used in this
implementation. The input layer has 28 neurons corresponding to the different features computed
from the coronary anatomy. The hidden layers contain 256, 64, 16 and 4 neurons respectively
and use the sigmoidal activation function. Finally, the output layer has a single neuron with the
linear activation function. To improve the model training time, each layer was initially pre-
trained as an autoencoder. All the weights were initialized randomly (Xavier Initialization). The
entire network is optimized using a mean-squared loss function with a Stochastic Gradient
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Descent algorithm. A highly optimized GPU implementation was used to speed up the training
process. The original feature set based on the synthetic coronary trees was randomized and split
in a 5:1 ratio, and the smaller set was used for the validation of the results. In the model training
process, the algorithm was never exposed to any patient data, with training and validation being
done solely with the synthetic data. The model learning parameters like the learning rate,
momentum, etc. were adaptively refined to control the model convergence behavior.

6.2.3.1 Local geometric features

At each spatial location, the local features used are the effective radius of the vessel, the
reference radius of the branch and a segment-specific ischemic weight. The ischemic weight of
each segment is a function of the set of reference radii of all the segments in the coronary tree,
and  is  defined  as  the  potential  contribution  of  the  segment  to  the  total  ischemic  burden  of  the
patient. This initial ischemic weight is afterwards adapted, as described further down.

6.2.3.2 Upstream and downstream geometric features

To compute the features upstream and downstream, first the stenoses upstream and
downstream are identified. This is done with an automatic detection algorithm including all
stenoses with a degree of radius reduction larger than 10%. The most significant four stenoses
upstream and the most significant four stenoses downstream along the main branch path are
selected. For each of these the following geometric features and their non-linear product
combinations are extracted (Figure 6.4):

· Proximal, minimum and distal radius;
· Entrance length: length along the centerline between the start of the stenosis and the start

of the segment with minimum radius;
· Minimum radius length: length along the centerline between the start and the end of the

segment with minimum radius;
· Exit length: length along the centerline between the end of the segment with minimum

radius and the end of the stenosis;
· Percentage diameter reduction:
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where rsten is the minimum radius of the stenosis, rprox is  the healthy radius proximal to
the stenosis and rdist is the healthy radius distal to the stenosis.

Figure 6.4: Stenosis specific features.
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Note that the automatic detection algorithm identifies also very mild stenoses, which
individually have a small effect on the flow characteristics, but, when aggregated, may have a
significant effect. At each location, the aggregated values of the features described above were
also computed at all upstream locations along the centerline, as well as the aggregated
downstream values. In addition, the upstream and downstream coronary lengths are also used as
features.

In the coronary circulation there is a significant degree of inter-dependence between
branches. For example, in Figure 6.5a, the hemodynamics at points A and B are influenced by
the stenosis on the side branch: the presence of the stenosis leads to a decreased flow, and hence
to a lower pressure drop in the parent branch. This in turn influences the absolute pressure in the
daughter branch to which point B belongs. Similarly, in Figure 6.5b the presence of the stenosis
in the main branch influences the hemodynamics at point C: the stenosis leads to a lower flow
and a lower pressure drop in the parent branch, and, thus, to different absolute pressure levels in
the side branch.

To capture this inter-branch dependence, the machine learning model has functionality to
adapt the initial ischemic weights of the coronary segments, computed as described above, to
account for the interaction between different branches. Specifically, the ischemic weights are
made dependent on the stenosis specific features on upstream, downstream and side branches.

Figure 6.5: Flow interaction between vessels.

6.3 RESULTS

The methodology was validated in three different steps, which are presented below.

6.3.1 Validation of cFFRML versus cFFRCFD on synthetic anatomical models

The 12000 synthetic geometries were randomly split into six sets, whereas five of them
were used for training and one for testing. cFFRML and cFFRCFD were compared at all locations
in  the  testing  set,  and  the  correlation  was  excellent  in  all  experiments  (r  =  0.9998,  p  <  0.001).
There was no systematic bias between cFFRML and cFFRCFD (mean difference was 0.0008).
When cFFRCFD was considered as ground truth, with a cut-off of 0.8, cFFRML predicted cFFRCFD

with an accuracy of 99.7%.

6.3.2 Validation of cFFRML versus cFFRCFD on patient specific anatomical models

A database of 87 patient-specific anatomical models generated from CT data using image
segmentation, following a protocol described in [Coenen et al., 2015], [TRenker et al., 2014],
was used. Invasive FFR was measured for 125 lesions in these 87 patients. The FFR
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measurement locations were either determined from the angiogram images showing the pressure
wire, or marked at a location that was approximately located 20 mm downstream from the
stenosis [Pijls et al., 1996]. Correlation between cFFRML and cFFRCFD was excellent (0.9994, p <
0.001) and no systematic bias was found in Bland-Altman analysis between cFFRML and
cFFRCFD: mean difference was -0.00081 ± 0.0039, as shown in Figure 6.6 and Figure 6.7. The
average computation time required for computing cFFRML in the entire coronary tree of one
patient was 2.4 ± 0.44 seconds, while the cFFRCFD computations required 196.3 ± 78.5 seconds,
both on a 3.4 GHz Intel i7 8-core CPU.

Figure 6.6: Scatterplot of cFFRML and cFFRCFD (correlation = 0.9994).

Figure 6.7: Bland-Altman analysis plot comparing cFFRML and cFFRCFD shows no systematic bias (95%
limits of agreement, -0.0085 to 0.0067).
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Table 6.2 displays a more detailed analysis of the differences between cFFRML and
cFFRCFD, where the lesions have been grouped in 5 different bins based on the cFFRCFD values
(0.0 to 0.6, 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and 0.9 to 1.0), either for all lesions, or separately for
the three main branches: LAD, LCx and RCA. Although the mean difference slightly decreases
with increasing cFFRCFD values, overall the variation is very small and the agreement between
cFFRML and cFFRCFD is high for all bins and all locations.

Table 6.2: Detailed analysis of the differences between cFFRML and cFFRCFD.

Lesions cFFRCFD

bin
Nr lesions Mean differebce ± St. dev.

All

0.0 – 0.6 8 0.001 ± 0.004
0.6 – 0.7 14 -0.001 ± 0.004
0.7 – 0.8 23 0.000 ± 0.0040
0.8 – 0.9 40 -0.001 ± 0.004
0.9 – 1.0 40 -0.002 ± 0.003

LAD

0.0 – 0.6 6 0.000 ± 0.005
0.6 – 0.7 10 -0.003 ± 0.004
0.7 – 0.8 16 0.000 ± 0.004
0.8 – 0.9 27 -0.002 ± 0.004
0.9 – 1.0 20 -0.002 ± 0.003

LCx

0.0 – 0.6 2 0.002 ± 0.003
0.6 – 0.7 1 0.002 ± 0.000
0.7 – 0.8 4 0.001 ± 0.003
0.8 – 0.9 5 -0.000 ± 0.003
0.9 – 1.0 11 -0.003 ± 0.003

RCA

0.0 – 0.6 0 -
0.6 – 0.7 3 0.003 ± 0.001
0.7 – 0.8 3 0.000 ± 0.004
0.8 – 0.9 8 0.001 ± 0.002
0.9 – 1.0 9 0.001 ± 0.002

6.3.3 Diagnostic performance of cFFRML and cFFRCFD versus invasive FFR

The  same  set  of  87  patients  was  used  to  compare  the  performance  of  cFFRML against
invasively measured FFR. Invasive FFR ≤ 0.80 was regarded as criterion for positive ischemia,
and was found in 38 lesions out of 125. For cFFRML, sensitivity was 81.6%, specificity 83.9%,
and accuracy 83.2%. Table 6.3 displays the diagnostic performance of cFFRCFD and cFFRML

versus invasively measured FFR with corresponding 95% confidence intervals. The overall
correlation between cFFRML (0.814 ± 0.135) and invasive FFR (0.838 ± 0.11) was 0.729 (p <
0.001).

Figure 6.8 displays the scatter plots of cFFRCFD and cFFRML versus invasive FFR, while
Figure 6.9 displays the Bland-Altman analysis between cFFRCFD/cFFRML and invasive FFR. The
close overlap between the two methods further demonstrates the statistical equivalence of the
two approaches.



A MACHINE LEARNING APPROACH FOR COMPUTATION OF FRACTIONAL FLOW RESERVE FROM CORONARY
COMPUTED TOMOGRAPHY

79

Table 6.3: Diagnostic parameters in all vessels (N = 125); a positive event, representing a significant
stenosis, is defined by invasive FFR ≤ 0.80. cFFRCFD diagnostic parameters are obtained with the
CFD algorithm, cFFRML diagnostic parameters are obtained with the ML algorithm.

cFFRCFD cFFRML

True positive 31 31
False positive 14 14
True negative 73 73
False negative 7 7
Sensitivity 81.6% (66.6%–90.8%) 81.6% (66.6%–90.8%)
Specificity 83.9% (74.8%–%90.1) 83.9% (74.8%–%90.1)
PPV 68.9% (54.3%–%80.2) 68.9% (54.3%–%80.2)
NPV 91.2% (83.2%–%95.7) 91.2% (83.2%–%95.7)
Accuracy 83.2% (75.6%–%88.7) 83.2% (75.6%–%88.7)
Correlation 0.725 0.729
Mean ± St. dev. 0.814 ± 0.135 0.815 ± 0.135

Figure 6.8: (a) Scatterplot of cFFRCFD and invasive FFR (correlation = 0.725); (b) Scatterplot of cFFRML

and invasive FFR (correlation = 0.729).

Figure 6.9: Bland-Altman analysis plot comparing cFFRCFD and cFFRML vs. invasive FFR (cFFRCFD 95%
limits of agreement, -0.159 to 0.207; cFFRML 95% limits of agreement, -0.159 to 0.206).
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In Figure 6.10, Figure 6.11, Figure 6.12 representative case examples are shown,
illustrating the almost perfect agreement between the two algorithms at each point on the
coronary tree. The receiver-operator characteristic (ROC) curves for cFFRCFD and cFFRML are
presented in Figure 6.13. The area under the curve (AUC) was 0.90 for both cFFRCFD and
cFFRML.

Figure 6.10: Case example of a coronary anatomical model reconstructed from CT data: (a) cFFRCFD map
of the entire coronary tree, including a close-up view of the LAD, with invasive FFR = 0.76 and

cFFRCFD = 0.71 (b) cFFRML map of the entire coronary tree, including a close-up view of the
LAD, with cFFRML equal to cFFRCFD at the invasive FFR measurement location.

6.4 DISCUSSION

Similarly to previously published approaches based on computational modeling, the
approach introduced herein provides a non-invasive assessment of FFR from routinely
performed CCTA scans. This methodology represents the only currently available solution for
non-invasive, near real-time computation of FFR in the entire coronary tree. Other approaches
reported in literature required several minutes [Renker et al., 2014] to several hours [Norgaard et
al.,  2014] for the execution of the FFR algorithm. The approach is potentially well-suited for a
clinical setting since it is computationally efficient both in terms of execution speed and
hardware requirements, and is based on anatomical data acquired from routine CCTA. The
diagnostic accuracy of the algorithm (83%) is in the same range as that of previously published
data  on  FFR  computed  from  CCTA  images,  which  varied  from  73%  to  85%  [Coenen  et  al.,
2015], [Koo et al., 2011], [Min et al., 2012], [Norgard et al., 2014], [Renker et al., 2014], [De
Geer et al., 2006], [Kruk et al., 2016].
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Figure 6.11: Case example of a coronary anatomical model reconstructed from CT data: (a) cFFRCFD map
of the entire coronary tree, including a close-up view of the RCA, with invasive FFR = 0.84 and

cFFRCFD = 0.81 (b) cFFRML map of the entire coronary tree, including a close-up view of the
RCA, with cFFRML = 0.80 at invasive FFR measurement location.

Figure 6.12: Case example of a coronary anatomical model reconstructed from CT data: (a) cFFRCFD map
of the entire coronary tree, including a close-up view of the LAD, with invasive FFR = 0.72 and

cFFRCFD = 0.71 (c) cFFRML map of the entire coronary tree, including a close-up view of the
LAD, with cFFRML = 0.70 at invasive FFR measurement location.
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Figure 6.13: Receiver operating characteristic (ROC) curves for 189 vessels, as obtained with cFFRCFD

and cFFRML.

As more data is emerging from such studies, the incremental diagnostic value of computed
FFR over the traditional CCTA based visual or quantitative lesion grading is becoming more
evident. As a result, this technology has the potential to further strengthen the role of CCTA as a
gatekeeper to the catheterization lab.

Previous studies have tried to assess the functional significance of CAD from geometric
features of the stenosis, with limited success [Ben-Dor et al., 2011], [Gonzalo et al., 2012], [Koo
et al., 2011]. Herein, however, a comprehensive set of geometric features describing not only the
stenotic region, but the entire coronary arterial tree, was used. Combined with state-of-the-art
machine learning techniques, this approach demonstrates that geometric features alone can be
used as predictors of patient-specific hemodynamic states, without the need of explicitly solving
the hemodynamics equations.

The key ingredients for the design of this machine learning method are the availability of a
comprehensive database of training data, as well as the proper selection of features that are most
significant for the predicted quantity. In an ideal scenario, the training database would consist of
thousands of anatomical models extracted from CCTA images, accounting for the variability of
coronary vessels across different patient populations, and the corresponding invasive FFR
measurement of each lesion. From a practical point-of-view, establishing such a large database
would be prohibitively expensive and time-consuming.

To address this issue, the concept of a training database consisting of synthetically
generated vascular geometries representing the coronary tree was introduced, and corresponding
FFR values computed from a CFD algorithm at all locations of the coronary tree. The synthetic
database is parameterized on the morphological features of the vascular tree, allowing the proper
sampling of relatively uncommon configurations such as serial stenoses, multi-branch stenoses,
bifurcation stenoses, diffuse disease, or rare pathological conditions. After training, the machine
learning algorithm encodes the correlation between the set of chosen geometric features and the
quantity of interest, herein FFR, predicted by the validated CFD model. In the population on
which the algorithm was tested, the patient anatomical features were well within the region of
high-confidence for the machine learning algorithm.
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This approach can also be extended to compute other hemodynamic quantities, such as
coronary flow reserve (CFR), rest Pd/Pa [Kern, 2000], the instantaneous wave-free ratio (iFR)
[Sen et al., 2012], hyperemic/basal stenosis resistance (HSR/BSR) [Meuwissen et al., 2012],
[van de Hoef et al., 2012], or shear stress [Smady et al., 2011], each of which can be used as a
ground-truth in the training database.

Additionally, the set of features can be expanded to include other characteristics of the
vascular  tree,  e.g.  plaque  composition,  or  even  information  such  as  the  clinical  history  of  the
patient that could play a role in determining the functional significance of a lesion and its
stability over time [Pijls, 2007].

It should be noted that the presented approach is generic with respect to the CFD model
used for training the algorithm. For this work, a reduced-order CFD approach was used to
generate the training database.

On  the  other  hand,  these  results  also  point  to  the  fact  that  the  accuracy  of  cFFRML will
depend on the accuracy of the CFD model used in the training phase. In general terms, the
performance of this method is expected to be statistically equivalent to that of the CFD model.

Since the machine learning algorithm computes cFFR at all locations of a coronary tree, a
natural extension of this work is to generate virtual pull-back curves, where the variation of
cFFR along a path from ostium to a distal coronary location is depicted. Such an analysis could
be useful for determining the most significant lesion in case of serial stenoses.

The study has a number of limitations. Since the proposed machine learning algorithm
learns the output of a computational blood flow model, with almost perfect results, the
limitations are mainly given by the limitations of the blood flow model. First of all, although the
set of patient geometries used herein comprises a significant amount of lesions, further clinical
studies are required for extensive validation of the methodology. In the current study the
majority of lesions had an invasive FFR between 0.7 and 1.0 (only 11 lesions had an FFR < 0.7)
and further validation of the model is required under different conditions. However, the most
difficult lesions in terms of classification are those which are close to the cut-off value of 0.8. In
this regard, one interesting study based was recently conducted [Kruk et al., 2016]: cFFRCFD

thresholds of 0.74 and 0.87 were determined for which PPV and NPV respectively were both
>90%. Hence, in the proposed hybrid approach cFFRCFD > 0.87 was used to defer
revascularization, cFFRCFD < 0.74 to confirm treatment, whilst lesions with intermediate
cFFRCFD values were classified based on invasive FFR. The hybrid approach resulted in an
overall 95% agreement with the FFR-only strategy, and would potentially obviate the need for
invasive pressure measurements in 50% of the patients.

Secondly, the definition of the parameters of the blood flow model uses physiological
assumptions, which would also require validation on larger data sets. Such assumptions include
for example the allometric scaling laws applied for estimating the flow rate distribution, the
effect of hyperemia (for patients with microvascular disease, the decreased effect of a hyperemia
inducing drug may lead to an underestimation of the FFR value), the use of population-averaged
rheological properties of the blood etc. Moreover, the collateral circulation has not been taken
into account. Collaterals can have a significant impact on the hemodynamics, especially for very
severe lesions.

Properties of blood, such as density and viscosity also influence the pressure losses. This
dependence has not affected the comparison between CFD and machine learning results in this
chapter, since the same constant density and viscosity were used for the CFD computations in
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synthetic and patient-specific geometries. Such parameters can also be easily incorporated into
the machine learning model by appropriately sampling over these variables in the synthetic
database.

The models used for generating the synthetic coronary trees are representative of many
commonly occurring clinical cases. However, the database as used in this chapter does not
contain less frequent pathological conditions, like anomalous origin of the coronary arteries and
coronary artery aneurysms. Further, the shapes of the stenosis used to generate the synthetic
vessel trees are of a smooth nature and do not account for the noise typically found in medical
images. In future work, the augmentation of the database with noisy variants of the geometries
will be of interest.

Finally, an important limitation in leveraging the real-time capabilities of the algorithm is
the time required for data preparation, i.e. the generation of the coronary anatomical model,
which varies between 10 and 60 minutes. In this study, the time spent in model preparation (i.e.,
lumen segmentation) was not systematically evaluated, but in a different pre-clinical study using
the same pre-processing pipeline as the one used in this chapter [Renker et al., 2014], a total
processing time of 37.5 ± 13.8 minutes was reported. Future work will focus on a significant
speed up of this step to mitigate this limitation.
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7. GPU Accelerated Geometric Multigrid
Method: Comparison with Preconditioned

Conjugate Gradient

Introduction
Methods
Results
Conclusions

7.1 INTRODUCTION

Computational science is one of the main targets for high performance computational
approaches. Scientific computations heavily rely on numerical methods, and in many of these
applications the most time-consuming step is the solution of large linear systems of equations
[Feng et al., 2012]. These systems are generated by discretizing complex partial differential
equations  (PDEs),  for  which  no  analytical  solution  exists.  Hence,  the  resulting  systems  of
equations are sparse, and require specialized algorithms for efficient solutions. Moreover, the
Poisson equation is the most often encountered type of equation, and, thus, a fast Poisson solver
is  crucial  for  an  efficient  solution  scheme  [Xu,  2010].  The  Poisson  equation  is  based  on  the
Laplace operator and models various physical phenomena such as electrostatics, wave
propagation, gravitational potential and computational fluid dynamics [Köstler et al., 2008], [Shi
et al., 2009], [Sturmer et al., 2008].

The  two  most  popular  algorithms  for  the  solution  of  the  Poisson  equation  are  the
preconditioned conjugate gradient method (PCG) [Gui et al., 2012] and the multigrid method
(MG) [Briggs et al., 2000], [Trottenberg et al, 2000], in its two variants geometric MG (GMG)
and algebraic MG (AMG). All these methods rely on iterative solution schemes, which are faster
than direct solution schemes for large systems of equations [Feng et al., 2012]. The PCG method
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is regularly used for solving sparse symmetric positive definite linear systems, it is easy to
implement, and converges in at most n steps to the solution (n is the size of the system) [Ament
et al., 2010].

Originally, multigrid methods were developed to solve boundary value problems posed on
spatial domains. Such problems were discretized by choosing a set of grid points in the domain
of the problem. More recently, the original multigrid approach has been abstracted to problems
in which the grids have been replaced by more general levels of organization [Briggs et al.,
2000]. The multigrid method is based on a hierarchy of discretization levels, whereas the
corrections performed at the coarser discretization levels improve the convergence rate of the
solution on the finest discretization level. The GMG method requires specific information on the
hierarchy of discretizations, but, if this information is available, it is considerably more efficient
than the AMG method [Ruge et al., 1987].

Graphic Processing Units (GPUs) are dedicated processors, designed originally as graphic
accelerators. Since CUDA (Compute Unified Device Architecture) was introduced in 2006 by
NVIDIA as a graphic application programming interface (API), the GPU has been used
increasingly in various areas of scientific computations due to its superior parallel performance
and energy efficiency.

When a GPU is programmed through CUDA, it is viewed as a compute device, which is
able to run thousands of threads in parallel by launching a kernel (a function, written in C
language,  which  is  executed  by  the  threads  on  the  GPU)  [Zou  et  al.,  2009].  GPU  based
applications are run in a CPU-GPU tandem manner [Ryoo et al., 2008], whereas the CPU,
usually called host, launches the main application, and allocates and initializes the data. Then,
the buffers are transferred to the global memory of the GPU and the CPU calls the kernel which
performs the computations on the GPU. Finally,  the results are copied back to the CPU, which
performs post-processing tasks.

Due to its very efficient performance-cost ratio, and its widespread availability, the GPU is
currently the most used massively parallel processor [Itu et al., 2013(b)]. GPU-based
implementations of PCG and MG methods have been recently introduced and analyzed. Most of
the PCG oriented researches have focused on efficient preconditioners, since the preconditioning
step is time consuming and difficult to parallelize. Specifically, a specialized preconditioner
based on a matrix-vector multiplication operation, which is particularly well suited for the GPU
architecture was introduced [Labutin et al., 2013]. Furthermore, a new diagonal storage format
for the preconditioner was proposed [Gui et al., 2012]. Ament et al. have addressed a multi-GPU
configuration with special focus on reducing the effect of data transfer between GPUs [Ament et
al., 2010]. Another efficient solution for very large sparse linear systems of equations, i.e. which
do not fit into the global memory of a single GPU, has been recently proposed [Nita et al., 2014].
In the category of GMG oriented researches, Singh has analyzed the effect of different
optimization techniques and has compared the performance of the GPU-based algorithm against
various CPU-based implementations [Williams et al., 2012]. A similar analysis was performed
for finite element solvers, and, again, the GPU-based implementation performed best [Geveler et
al., 2013]. Since the smoothing step of the GMG algorithm occupies most of the execution time,
many activities have focused on developing more advanced smoothers. For example, a block-
asynchronous smoother that performs more flops in order to reduce synchronization, and hence
data transfer operations, has been proposed [Anzt et al., 2012].
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All the above mentioned researches have demonstrated that the GPU-based
implementation of the GMG outperforms its CPU-based counterpart. Hence, in this chapter a
more in-depth analysis of the GPU-based GMG algorithm is performed [Stroia et al., 2015].
Specifically different GMG variants, different discretization schemes for the Poisson equation,
and varying number of smoothing steps during restriction and prolongation are employed, and
single and double precision computations, and different discretization resolutions are used.
Finally, the performance gap between the GMG method and the PCG method on a state-of-the-
art GPU is determined.

7.2 METHODS

7.2.1 Preliminaries

To study the performance of the GMG method the Poisson equation is considered:
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(7.1)

where u is a scalar and unknown, Ω is the domain on which the equation is solved ( dRÌW ), uBC

is the value of the unknown on the boundary of the domain (Dirichlet type boundary condition),
and f is a scalar. Through discretization a sparse linear system of equations is obtained:

fuA = , (7.2)

where u  and f  are the discretized counterparts of u and f. To address the aspects mentioned in
the introduction, in the following reference is made specifically to the steady-state heat
conduction problem and a finite difference method is applied for its discretization in a three-
dimensional domain. A uniform mesh of points is used, and, by applying central differencing,
three different discretization schemes are considered, leading to:

· a 7-point stencil:
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· a 19-point stencil:
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· a 27-point stencil:
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where an isotropic discretization was considered ( zyx D=D=D ) and kjiT ,,  represents the
temperature value at the grid point (i, j, k).

As described in the previous section, geometric multigrid methods (GMG) refer to a group
of algorithms for solving differential equations using a hierarchy of discretizations (Figure 7.1).

The discretization (eqs. (7.3) / (7.4) / (7.5)) is applied for different grids, whereas the grids
have successively larger spacing between the nodes. All GMG variants are based on successive
transitions from fine to coarse grids and back. Hence, the basic steps of the GMG method are:
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· Relaxation (smoothing): a simple iterative method like Jacobi or Gauss-Seidel is used to
reduce the high frequency errors in the solution;

· Restriction: the residual determined on a finer grid is downsampled to a coarser grid;
· Prolongation: the residual on a finer grid is determined by interpolating the values from

the coarser grid.

Figure 7.1: Basic concept of the geometric multigrid method: the solution is iterated through different
discretization levels.

The relaxation methods employed herein are red-black Gauss-Seidel (RBGS) for the 7-
point stencil [Vizitiu et al., 2014], and Jacobi for the 19-point and 27-point stencils [Chung,
2010]. The red-black Gauss-Seidel method requires one array for storing the values, but the
computations are divided into two sequential steps: grid nodes are marked as being red or black,
whereas all neighbors of a node have the opposite color of the current node. Hence, when
updating the values of the red nodes only values at black nodes are used, and vice-versa. The
Jacobi method uses only values from the previous iteration and hence only one computation step
is required at each iteration, but two different arrays are allocated for storing the previous and the
current values at the grid nodes.

The GMG variants considered in this chapter are displayed in Figure 7.2: V-cycle, W-cycle
and full MG (FMG) scheme. Each figure depicts the strategy for a single iteration (multiple
iterations are required to converge to the final solution). Whereas for the V and W schemes an
iteration starts from the finest level, for the FMG scheme an iteration starts from the coarsest
level. Before the finest level is reached, the scheme returns several times back to the coarsest
level. Moreover, once the finest level is reached, a V-cycle is performed to finalize the iteration.

An optimized GPU-based implementation of the preconditioned conjugate gradient (PCG)
method is used for comparison [Nita et al., 2014]. Whereas GMG is based on an explicit solution
scheme, the PCG method employs an implicit solution scheme for solving sparse linear systems
of the form bAx = , where x is the vector of unknown, A is a matrix with coefficients given by
the discretization, and b is the right hand side vector determined by f and BCu  in (7.1).
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Figure 7.2: Geometric Multigrid variants: (a) V-cycle; (b) W-cycle; (c) Full MG (FMG).

7.2.2  GPU Accelerated Geometric Multigrid

The implementation of the V-cycle and W-cycle GMG variants are based on the µ-Cycle
algorithm (algorithm 1), which is a recursive scheme. The only difference is given by the
parameter µ, which dictates how many times a new function will be launched: for the V-cycle µ
= 1, whereas for the W-cycle µ = 2. When it is first launched, the algorithm starts at level 0, and,
every time a new function is launched, a coarser grid is used [Briggs et al., 2000]. The values n1,
n2, n3 determine the number of smoothing steps on the descending branch, at the coarsest level,
and respectively on the ascending branch. Additionally to the prolongation step, on the ascending
branch, a correction is employed: the values on the destination level are corrected based on the
interpolated values computed from the source level (a matrix-sum operation is performed).

Algorithm 1.  µ-Cycle
 µ-Cycle(level)

if( level is coarsestLevel )
apply n2 smoothing steps

else
apply n1 smoothing steps
compute residual
restrict to a coarser grid
µ-Cycle(level+1) µ times
prolongate
correct
apply n3 smoothing steps

end

The multigrid method requires one storage array for each level (level 0 uses the largest
array  and  occupies  most  of  the  execution  time).  At  the  coarsest  level  (level  L)  a  3D grid  with
3x3x3 nodes is used. Dirichlet boundary conditions were considered, and, hence, the values on
all faces of the domain are known (the values on five faces are set to 0, and one face to a non-
zero value). If n is the number of nodes in one direction at a given discretization level, the
number of nodes with unknown values is equal to:

3)2( -= nN . (7.6)
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Each operation in algorithm 1 uses a separate kernel. For the red-black Gauss-Seidel
smoother N/2 computations can be safely performed in parallel, and, hence, a kernel with three-
dimensional thread organization and a total of N/2 threads is launched twice for each smoothing
step. For the Jacobi smoother N threads are launched and the kernel is executed exactly once at
each smoothing step.

The thread organization of the restriction and prolongation operators, which perform the
transition from one level to another, is slightly different. If the transition is performed from level
i to level i+1 (restriction) 3

11 )2( -= ++ ii nN  threads are created. If the transition is performed

from level i+1 to level i (prolongation) 3)2( -= ii nN  threads are created. Hence, the destination
level determines the number of threads to be launched.

To  compare  the  numerical  results  and  the  execution  time  of  GMG  and  PCG,  the  same
residuals are computed for both methods. For the PCG method only the finest discretization level
is considered and the nnn ´´  unknowns are organized into a vector of unknowns, x,  of  size

nnnN PCG ´´= . Hence, matrix A is of size NN ´ , while b has the same size as x. The residuals
are computed using:

bAxr -= .          (7.7)

7.3 RESULTS

To evaluate the performance of the GPU based GMG implementation a NVIDIA GeForce
GTX Titan Black graphics card was used, together with the CUDA toolkit version 6.0. The
steady-state heat conduction problem was solved on a rectangular domain, and the Dirichlet
boundary conditions, were set to 0⁰C for five facets and to 100⁰C for the remaining facet. The
numerical solution was obtained on a grid of 129x129x129 nodes. Different numbers of
smoothing steps were considered at different levels of the GMG method. Each configuration is
described by a three-figure number (e.g. 213 – Figure 7.3): the first value determines the
smoothing steps while restricting the grid, the second value determines the smoothing steps at
the coarsest level, while the third number determines the smoothing steps while prolongating. All
computations are performed in double precision and use the 7-point stencil when not otherwise
stated, and iterations are performed until the average residual value no longer decreases from one
iteration to the next (a value close to the limit of the corresponding floating point representation
limit is reached).

Figure 7.3: A 213 sample smoothing configuration.

First, the different GMG schemes are compared (V-cycle, W-cycle and FMG) in a 313
configuration with red-black Gauss-Seidel smoother. Figure 7.4 displays the dependence
between the execution time and the average residual. The V-cycle scheme performs best:
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although it requires more iterations than the W and FMG schemes (13 iterations for V, 8
iterations for W, 11 iterations for FMG), the average residual decreases to 1e-14 in the shortest
amount of time. Hence, for the following steps results are presented for the V-cycle scheme.

Figure 7.4: Comparison of different GMG schemes (V, W, FMG) when the RBGS smoother is used.

Next, the effect of the smoothing configuration is analyzed (for a RBGS smoother). Figure
7.5 displays the four best performing configurations: two or three smoothing steps are required
during restriction and prolongation, while only one smoothing step is required at the coarsest
level. From the four depicted strategies, 212 and 312 perform best: 212 is slightly faster but
requires one more iteration to reach an average residual of 1e-14 (11 vs 10 iterations), leading to
approximately the same execution time. If fewer than two smoothing steps are applied during
restriction and prolongation the number of iterations increases considerably, and outweighs the
time saving given by the fewer smoothing steps. If more than three smoothing steps are applied,
the execution time of each iteration increases, and outweighs the time saving given by the fewer
number of iterations.

Figure 7.5: Effect of smoothing steps on the performance of the GMG method.

In  the  following  the  effect  of  the  floating  precision  on  the  performance  of  the  GMG
method is analyzed (Figure 7.6). Single and double precision were considered, in combination
with the best performing smoothing configurations (212 and 312). The average residual in single
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precision is limited to approx. 1e-5, whereas in double precision it decreases to 1e-14. The
residual of 1e-5 is reached slightly faster in single precision since the GTX Titan Black card has
a higher GFLOP processing power in single precision than in double precision. The difference is
however small, and, since most scientific computation applications require high accuracy, double
precision should be used. Next, the relative execution time used by each operation in the GMG
algorithm is analyzed (Table 7.1). The smoothing step is the most expensive operation,
occupying almost half of the execution time. Moreover, the transition from the coarser grid to the
finer grid (prolongation + correction) is costlier than the transition from the finer grid to the
coarser grid (restriction + residual computation). This is given by the fact that during
prolongation the destination levels are finer than during restriction (e.g. the finest grid level is
only used at prolongation).

Figure 7.6: Effect of floating point precision on the performance of the GMG method.

Table 7.1: Percentage of execution time occupied by each GMG operation.

Operation % of Exec.
time

Smoother 46.7%
Prolongation 26.7%
Residual computation 14.4%
Correction 6.1%
Restriction 5.9%
Memset(0) 0.2%

Another important aspect is the effect of the stencil configuration on the performance of
the  GMG method (Figure  7.7).  The  7-point  stencil  with  RBGS smoother  and  the  19-point  and
27-point stencil with Jacobi smoother were considered. The 19-point and 27-point stencils
require 40% and respectively 155% more execution time to reach a similar level of accuracy.
However, opposed to the analysis performed for different GMG schemes, different number of
smoothing steps, and single / double floating point precision were used, one cannot state that one
approach performs better than the others. Practically, for each stencil configuration a different
problem is solved: although the analytical equations are the same, the different discretization
schemes lead to different numerical equations. Hence, although the 27-point stencil leads to the
largest execution time, its numerical solution has the highest numerical accuracy. This numerical
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accuracy should not be confounded with the residuals computed in (7.7), which are specific for
each discretization scheme. The stencil choice is a trade-off between execution time performance
and numerical accuracy.

Figure 7.7: Effect of stencil configuration on GMG performance.

Finally, the performance of the best performing GMG variant is compared (V-cycle, 312
smoothing steps) with the optimized PCG method, in double precision. Different fine grid
resolutions were considered and the three different discretization schemes. The results in Table
7.2 indicate that on the fine grid of 129x129x129 GMG offers a speed-up of 7.1x-9.2x over
PCG, while it also leads to a smaller average residual. The speed-up is smaller on the
intermediate  grid,  while  on  the  coarse  grid,  PCG performs slightly  better.  This  is  given  by  the
fact that for GMG the parallelism on the coarse grid (33x33x33) is limited, whereas for PCG the
size of matrix A is still large enough to utilize the computational power of the GPU. In practice,
typically used grids have more than 1 million nodes, case in which the GPU based GMG
implementation performs better than the GPU based PCG implementation. While GMG offers
these execution time advantages over PCG, it requires information regarding the underlying
PDEs to be solved in order to generate different levels of discretization. On the contrary PCG
only requires the coefficients of A and b in (7.2). Thus, the higher performance of GMG comes
at the cost of a tighter link with the specific mathematical model which has to be solved
numerically.

Table 7.2: Execution time and average error comparison for GMG and PCG.

Fine grid resolution 129x129x129 65x65x65 33x33x33
Method PCG GMG PCG GMG PCG GMG
RBGS
7p stencil

Avg. Error 5.22e-12 1.44e-14 1.41e-11 1.66e-14 4.21e-11 1.43e-14
Time [ms] 1118 121 124 50 28 33

Jacobi
19p stencil

Avg. Error 5.21e-12 7.00e-14 1.25e-11 6.99e-14 3.89e-11 6.79e-14
Time [ms] 1255 172 127 48 28 32

Jacobi
27p stencil

Avg. Error 4.30e-12 1.49e-13 1.40e-11 1.17e-13 2.94e-11 1.19e-13
Time [ms] 1502 211 145 61 29 35
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7.4 CONCLUSIONS

In this chapter an in-depth analysis of a GPU-based geometric multigrid method was
presented. Different GMG variants, different number of smoothing steps, single and double
precision, different discretization schemes and various discretization resolutions have been used.

Overall, the V-cycle GMG variant, with 312 smoothing step configuration performs best.
Importantly,  this  version  offers  a  speed-up  of  7.1-9.2x  over  the  PCG  method  on  the  same
hardware configuration, while also leading to a smaller average residual.

Future work will focus on optimizing the smoothing step, which is the most time
consuming operation of GMG, and on more advanced data storage schemes which are required
for large stencils and/or very fine grids.
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8. Optimized Three-Dimensional Stencil
Computation on Fermi and Kepler GPUs

Introduction
Methods
Results
Conclusions

8.1 INTRODUCTION

Graphics Processing Units (GPUs) are dedicated processors, designed originally as graphic
accelerators. Since CUDA (Compute Unified Device Architecture) was introduced in 2006 by
NVIDIA as a graphic application programming interface (API), the GPU has been used
increasingly in various areas of scientific computations due to its superior parallel performance
and energy efficiency [Kirk et al., 2010].

The GPU is viewed as a compute device which is able to run a very high number of threads
in parallel inside a kernel (a function, written in C language, which is executed on the GPU and
launched by the CPU). The threads of a kernel are organized at three levels: blocks of threads are
organized in a three dimensional (3D) grid at the top level, threads are organized in 3D blocks at
the middle level, and, at the lowest levels, threads are grouped into warps (groups of 32 threads
formed by linearizing the 3D block structure along the x, y and z axes respectively)
[***NVIDIA, 2013].

The GPU contains several streaming multiprocessors, each of them containing several
cores. The GPU (usually also called device) contains a certain amount of global memory to/from
which the CPU or host thread can write/read, and which is accessible by all multiprocessors.
Furthermore, each multiprocessor also contains shared memory and registers which are split
between the thread blocks and the threads, which run on the multiprocessor, respectively. With
the introduction of the third and fourth generation general purpose GPU (GPGPU), the Fermi
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and the Kepler generations respectively [***NVIIDA, 2011], [***NVIDIA, 2013], the double
precision performance has increased, and a true cache hierarchy (L1/L2) and more shared
memory are available. Furthermore, the global memory bandwidth plays an important role since
the performance of many kernels is bound by the peak global memory throughput: current GPUs
have  a  bandwidth  of  up  to  300  GB/s.  The  shared  memory  on  the  other  side  is  a  fast  on-chip
memory which can be accessed with similar throughput as the registers.

Stencil computation is a computational pattern on an n-dimensional grid, whereas each
location is updated iteratively as a function of its neighboring locations. This pattern is found in
several application domains, like image processing, computational fluid dynamics, weather
prediction, quantum physics. Previous studies have shown that, if regular Cartesian grids are
used, GPU based implementations are able to significantly speed up the execution compared to
regular CPU based implementations [Phillips et al., 2010], [Shimokawet al., 2016].

Research activities on stencil based computations have been reported long before the
introduction of general purpose GPUs. These activities focused on the information transfer
between nodes [Fox, 1984] and the relationship between partition shape, stencil structure and
architecture [Reed et al., 1987]. Different optimization techniques have been reported more
recently for GPU based stencil computations. The most often encountered optimization
techniques used in the past are blocking at registers and at shared memory [Micikevicius, 2009],
[Itu et al., 2011]. Pre-Fermi GPUs did not have any cache memories, making the shared memory
blocking technique vital for reducing memory access counts. Temporal blocking is another
extensively used technique, with mixed performance improvements on GPUs [Grosser et al.,
2011], [Holewinski et al., 2012], [Zumusch et al., 2013]. Non-GPU architectures have also been
used for stencil based computations [Datta et al., 2008].

The goal of the work presented in this chapter was to evaluate the performance of 3D
stencil  based  algorithms  on  a  series  of  recent  GPUs  [Vizitiu  et  al.,  2014].  Previous  research
activities have focused on single precision computations. With the introduction of the Fermi and
the Kepler architecture, the performance of double precision computations on NVIDIA GPU
cards has increased substantially. To meet the high accuracy requirements, inherent for scientific
computations [Nita et al., 2013], [Zaspel et al., 2013], herein the focus is put on double precision
computations. Starting from two baseline implementations, different optimization techniques are
employed which lead to seven different kernel versions. Both Fermi and Kepler GPUs are used,
to evaluate the impact of different optimization techniques for the two architectures.

8.2 METHODS

For studying 3D stencil based algorithms implemented on graphics processing units, the
3D unsteady heat conduction problem is considered, which is modeled as a second order partial
differential equation describing the distribution of heat over time over a given 3D space:
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where α is the thermal diffusivity constant and T represents the temperature at any point in space
(x, y, z) or time (t).

For  the  numerical  solution  of  (8.1)  a  finite  difference  method is  applied  on  a  3D grid  of
points.  A  uniform  mesh  of  points  is  used  and  the  forward  difference  in  time  and  central
difference in space (FTCS) method is applied, leading to a 3D 7-point stencil:
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which can be rewritten as:
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where d = αΔt/Δx2.
In the above equation n represents the discrete time step number, (i, j, k) represents the

spatial index, Δt is  the  time step  and  Δx is the mesh spacing, which is equal in all directions.
n

kjiT ,,  represents the temperature value at point (i, j, k), at time step n. The numerical solution is
stable if the CFL condition holds: d = αΔt/Δx2 < 1/6.

As can be observed in (8.3), the value at a grid point at time step n+1 is computed from the
values at the previous time step, from the same grid point and from its six neighboring points,
leading to a 7 point stencil computation (Figure 8.1).

Figure 8.1: 7-point stencil used for the numerical solution of the unsteady heat diffusion equation.

This solution scheme is fully explicit: the computation of the new value at any grid point is
fully independent from the computations at the other grid points.

8.2.1 Baseline GPU-based implementations

In the following two baseline GPU-based implementations of the unsteady heat diffusion
problem are introduced. For the first baseline implementation (called in the following 3DBase)
each grid point is handled by a separate thread. Two buffers are allocated, one for the values at
the previous time step and one for the values at the new time step. To eliminate the memory copy
requirement from one buffer to the other, the buffers are swapped at the end of each time step.

Since for the latest GPUs the execution configuration allows not only for 3D blocks of
threads, but also for a 3D grid of thread blocks, the threads and the thread-blocks are organized
both  into  3D  structures.  Thus,  each  thread  of  the  grid  corresponds  to  a  grid  point  in  the  3-D
computational domain. To compute the new value at a grid point each thread performs seven
global memory read operations at each time step. Since global memory operations are very slow,
this represents a severe limitation of the kernel performance.
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In the CUDA architecture, each thread block is divided into groups of 32 threads called
warps,  each of which is executed in a SIMD fashion (all  threads of the same warp execute the
same instruction at a time). If the threads inside a warp follow different execution paths, the
execution of the branches is serialized. Thus, warp divergence is another aspect which leads to
loss of parallel efficiency (a minimum amount of warp divergence is required to distinguish
between boundary and non-boundary nodes, so as to perform the computations only for the latter
ones).

On the other hand, stencil codes can be characterized by their FLOPs per byte ratio. The
baseline implementation performs 13 double-precision floating point operations per update
[Maruyama et al., 2014]. This leads to 13 ∙ xDim ∙ yDim ∙ zDim operations performed at each
iteration (xDim, yDim and zDim represent the grid dimensions). If one assumes that at each time
step once the old values are loaded they remain in the cache memory (which is unlikely for grid
dimensions which exceed the cache size) the amount of data loaded and stored per time step is
equal to xDim ∙ yDim ∙ zDim ∙ sizeof(double) ∙ 2. Hence the flop per DRAM byte ratio is:

8125.0
2)(

13
=

××××
×××

doublesizeofzDimyDimxDim
zDimyDimxDim (8.4)

Current  GPUs,  however,  have  a  significantly  higher  ratio.  According  to  this  model  the
performance of the stencil on the GPU is therefore limited by its memory bandwidth.

To allow for a better memory usage, also a more efficient approach is considered, whereas
threads and thread-blocks are organized into 2D structures. The computational grid is divided
into x-y planes and the subdomains are assigned to separate thread blocks. Each 2-D slice is
represented through the grid points in the x and y directions, providing for the threads the (i, j)
indices of the grid points. A loop is then used to traverse the grid in the z-direction and obtain the
final k coordinate as shown in Figure 8.2 (this kernel version is called in the following 2DBase).

Unlike the 3DBase implementation, for which a thread updates a single point,  herein the
same thread operates on several grid points. These points are placed equidistant from each other,
the  distance  from one  grid  point  to  another  is  determined  based  on  the  size  of  the  3D domain
(xDim ∙ yDim).

Figure 8.2: 2DBase kernel: the computational grid is divided into x-y planes and a loop is then used to
traverse the grid in the z-direction.
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8.2.2 Optimized implementations

Next, a series of optimization techniques are described for the two baseline
implementations. The focus is mainly put on minimizing warp divergence and global memory
accesses. Besides global memory, the GPU architecture provides fast on-chip memory, registers
and shared memory, which is distributed between threads and thread blocks respectively.

8.2.2.1 Three-dimensional baseline implementation with Shared Memory Usage and Data
Overlap

The starting point for the new kernel is the 3DBase implementation. Since shared memory
is allocated at thread block level, threads can cooperate when populating data blocks allocated in
the shared memory. If data can then be reused by different threads, global memory accesses are
reduced and overall kernel performance is improved.

Shared memory arrays of size blockXDim ∙ blockYDim ∙ blockZDim are allocated
(blockXDim, blockYDim and blockZDim represent the dimensions of the thread blocks).

Each thread within a block loads the value of the grid point it handles from global memory
to shared memory. To avoid undefined behavior and incorrect results when sharing data read by
different threads, a synchronization barrier is introduced. All values required for the
implementation of (8.4) are then read from the shared memory.

With this technique, threads lying at the border of a thread block do not have access to all
their neighbors and can not compute the corresponding new values. Hence, the execution
configuration is designed so as to ensure block overlapping in all directions (Figure 8.3 -
3DShMOverL). This, however, results in global memory read redundancy: grid points lying in
the overlapping regions of the blocks are read more than once for a single time step.

Figure 8.3: 3DShMOverL kernel: the shared memory arrays have the same size as the thread blocks.
Thread blocks overlap to enable the computation at all grid points.

8.2.2.2 Three-dimensional baseline implementation with Shared Memory Usage and no
Data Overlap

Starting again from the 3DBase implementation, a different shared memory based strategy
is developed. The shared memory arrays are padded with an additional slice on each side of the
3D block leading to a total size of (blockXDim + 2)  ∙ (blockYDim + 2)  ∙ (blockZDim + 2), as
shown in Figure 8.4.

First, each thread populates the value of the grid point it handles in shared memory. Next,
the threads located on the boundary of the block load the remaining data slices from global
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memory to the shared memory (note that the corner points of the blocks are not required for the
7-point stencil). To load points located outside of the block, conditional operations are
introduced which cause branch divergence.

Thus, each thread of a thread block has access to all its neighbors and is able to update the
corresponding grid point (no overlapping between thread blocks is required - 3DShMNoOverL).

Figure 8.4. 3DShMNoOverL: the shared memory arrays are padded with additional data slices loaded by
the threads located at the border of the thread block.

8.2.2.3 Two-dimensional distribution of threads with additional register usage

The 2DBase implementation can be optimized by storing redundant data in registers.
Therein, the value of the current grid point for adjacent 2D slices is read from the global memory
by the same thread. The same holds true for grid points which lie on the front or back sides of the
2D slices.

Because slices are iterated along the z direction, the value at grid point (i, j, k+1) becomes
the value at (i, j, k) at the next iteration. Similarly, the value at (i, j, k) becomes the value at (i, j,
k–1). Instead of rereading these values, registers are used for caching them and two global
memory accesses are saved at each iteration along the z axis (in the following this kernel is
called 2DReg).

8.2.2.4 Two-dimensional distribution of threads with Shared Memory Usage

As for the kernels with 3D thread blocks, shared memory can also be used to reduce global
memory accesses for the kernels with 2D thread blocks. The size of the shared memory array
chosen for this kernel version is (blockXDim + 2) ∙ (blockYDim + 2). To allow each thread of the
thread block to compute the new value of the corresponding grid point, additional slices are
populated at each border of the 2D shared memory array. Hence, the size of the shared memory
array used for this configuration is (blockXDim + 2) ∙ (blockYDim + 2). Each thread first reads
the value of the grid point it handles and stores it in the shared memory. Next, threads located on
the boundary of the block load the remaining values (in the following this kernel is called
2DShM).

8.2.2.5 Two-dimensional distribution of threads with Additional Register and Shared
Memory Usage

For the implementation version described in section 8.2.2.4 the loading of the central
section of the shared memory does not introduce any divergent branches since it is not
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conditioned. The loading of the slices with y index equal to 0 or blockYDim + 2 introduces a
maximum of two divergent branches, one for each half-warp, depending on the compute
capability of the GPU. On the other side,  the slices with x index equal to 0 or blockXDim + 2
lead to divergent branches and only one thread of the entire half-warp performs a read operation.
This aspect may be alleviated by the cache memory, but this depends on the size of the slices.

To reduce branch divergence, the shared memory array is used only for the central section
and for the slices with index equal to 0 or blockYDim + 2, while the other values are read from
the  global  memory  and  stored  into  registers.  Only  the  threads  lying  at  the  left  or  right  border
perform separate global memory reads (Figure 8.5 - 2DShMReg), while the other values are
safely read from the shared memory.

Figure 8.5: 2DShMReg: Northern and southern slices are read from the shared memory, eastern and
western values from the global memory.

Hence, the size of shared memory array used in this case is blockXDim ∙ (blockYDim + 2).
Each thread first reads the value of the grid point it handles and stores it in the shared memory.
Next, threads located on the upper and lower boundary of the block load the remaining values.

Besides the two registers that store the values of the nodes located next to the left and right
boundaries, another 2 registers are used for the optimization described in section 8.2.2.2.

8.3 RESULTS

To evaluate the performance of the different strategies for running 3D stencil based
algorithms  on  GPUs,  three  different  NVIDIA  GPU  cards  were  used:  GeForce  GTX  480,
GeForce GTX 660M and GeForce GTX 680 (the first one is based on the Fermi architecture,
while the other two are based on the Kepler architecture), together with the CUDA toolkit
version 5.5. The unsteady heat conduction problem was solved on a rectangular domain with
Dirichlet boundary conditions, whereas the boundary values were set to 100̊ C for one side of the
rectangle and 0 ̊ C for the other sides.  The thermal diffusivity constant was se to 1.9 ∙ 10-5 m2/s
and the computations are performed until convergence is reached. The numerical solution was
obtained on a grid of 128x128x128 nodes and is displayed in Figure 8.6. The numerical solution
was identical for all three GPU cards and for all implementation versions down to the 15 th

decimal, i.e. close to the precision of the double-type representation in computer data structures.
Table 8.1 displays the execution times for one time step for the three above mentioned

GPU cards, obtained for the seven different kernel versions introduced in the previous section.
The GTX660M card leads to the largest execution times although it has been considerably later
released compared to the GTX480 card. This can be explained however by the fact that this card
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was specifically designed for low power consumption, so as to be used in notebook PCs
(whereas the GTX480 and GTX680 were reported with a power consumption of 250 W and 195
W respectively, the GTX660M only required 50W). The GTX680 is the best performing card:
for each of the seven implementation versions it leads to the smallest execution times. The ratio
of the execution times for the GTX660M and GTX680 cards varies between 4.26 and 5.56 for
different kernel versions. This roughly reflects the inverse of the power consumption ratio, which
is equal to 3.9.

Figure 8.6: Computation result for the unsteady heat conduction problem on a rectangular domain with
Dirichlet boundary conditions.

Table 8.1: Execution time [ms] for a single time step, obtained for the seven different implementation
versions on three different GPU cards.

Method GTX480 GTX 660M GTX 680
3Dbase 1.7 3.45 0.62
3DShMOverL 3.5 6.17 1.13
3DShMNoOverL 1.8 3.78 0.73
2Dbase 1.2 3.09 0.63
2Dreg 0.9 2.47 0.58
2DShM 1.2 2.87 0.59
2DShMReg 1.09 2.32 0.48

Interestingly, whereas for the GTX660M and the GTX680 cards the 2DShMReg kernel
performs best, for the GTX480 card the 2DReg kernel leads to the smallest execution time.
Shared memory based optimizations were particularly important for pre-Fermi GPU cards. For
the Fermi architecture these optimizations were not always leading to a better performance due
to the fact that the global memory read operations were cached at L1 level. Even though the
cache size is regularly small, it is efficient for algorithms based on Cartesian grids where data
access patterns are regular [Shimokawabe et al., 2011]. For the Kepler architecture however the
L1 cache is no longer used for caching global memory read operations, but only for register
spilling [***NVIIDA, 2013].



OPTIMIZED THREE-DIMENSIONAL STENCIL COMPUTATION ON FERMI AND KEPLER GPUS

103

Hence, for the GTX480 card (Fermi), since the L1 cache is intensively used for caching
global memory read operations, the 2DReg kernel outperforms the 2DShMemReg kernel. On the
other hand, for the GTX660M and the GTX680M, since the L1 cache functionality is limited to
register spilling, shared memory usage became more important, illustrated by the better
performance of the 2DShMReg kernel.

In the following the focus is put on the differences between the kernel versions for the
GTX680 card, which was determined as the best performing one considered herein. Table 8.2
displays besides the execution time other important details of the various kernel versions.

Table 8.2: Kernel performance and details for the GTX680 card.

Method Execution
time [ms]

Reg.
per
thread

Divergent
branches

Shared
memory
per block
[bytes]

Total number
of 64 bit
global load
instr.

Total number
of 64 bit
global store
instr.

3DBase 0.62 25 12016 - 14002632 2000376
3DShMOverL 1.13 19 20811 4096 4741632 2000376
3DShMNoOverL 0.73 21 12694 8000 3524851 2000376
2DBase 0.63 25 94 - 14002632 2000376
2DReg 0.58 25 94 - 10033632 2000376
2DShM 0.59 25 94 800 6953688 2000376
2DShMReg 0.48 25 94 640 2984688 2000376

The two baseline implementations (2DBase and 3DBase) lead to almost identical
execution times. Referring first to the kernels based on a 3D thread block structure, the
3DShMOverL performs worse than the 3DBase kernel: execution time increased by 82%
although the number of global accesses was reduced by 66.13%. This can be explained by the
fact that a considerable amount of threads perform only load operations.

Compared to the 3DShMOverL kernel, the execution time decreased by 35.39% and the
total number of read operations was reduced by 25.66% for the 3DShMNoOverL kernel.
Compared to the 3DBase kernel, this implementation is compute limited instead of bandwidth
limited. The main reason for the change of the limitation type lies in the number of divergent
branches, which increased considerably and which in the end leads to a higher execution time
than for the 3DBase kernel.

Next, the focus is put on the kernels which are based on a 2D thread block structure. The
2DReg kernel leads to a significant reduction of memory operations (28.34%) and as a result of
the execution time (7.93%), compared to the 2DBase kernel. The 2DShM kernel further reduces
the number of global memory load operations but execution time increases slightly, which is
caused by the non-optimized register usage. Finally the 2DShMReg combines both techniques
(optimized register and shared memory usage), and reduced execution time by 17.24% and the
total number of read operations by 70.25% compared to the 2Dreg kernel.

Overall,  the  kernels  with  2D  thread  block  structure  outperform  the  ones  with  3D  thread
block structure for double precision computations, confirming the findings for single precision
computation reported in [Maruyama et al., 2014].
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8.4 CONCLUSIONS

In this chapter, performance studies for 3D stencil based algorithms have been presented
for  recent  NVIDIA  GPUs.  This  is  the  first  study  to  evaluate  different  implementation  and
optimization strategies for double precision computations. The increased accuracy obtained for
double precision is required in scientific computations, which represent the main area of
application for the 3D stencil based algorithms.

Starting from two different baseline implementations (based on 3D and 2D thread block
structures), different optimization strategies have been applied which have lead to different
performance changes for the Fermi and Kepler cards. Overall the GTX680 GPU card (Kepler
architecture) performed best for a kernel with 2D thread block structure and optimized register
and shared memory usage. Conversely, for the GTX480 GPU card (Fermi architecture) the 2D
kernel, which does not use shared memory but is optimized in terms of register usage, performed
best, mainly due to the different L1 cache usage in the Fermi architecture. Hence, shared
memory usage has become essential for double precision stencil based computation on Kepler
GPUs.

Finally, for the Kepler architecture, the performance was evaluated for a GPU designed for
desktop PCs (GTX680) and for a GPU designed for notebook PCs (GTX660M). The results have
indicated that the ratio of execution time is roughly equal to the inverse of the ratio of power
consumption.
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Part III

The Evolution and Development Plans
for Career Development
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9. Academic and Research Career

Past Research Activities
Past Academic Activities
Future Academic and Research Activities

9.1 PAST RESEARCH ACTIVITIES

I have started my research activities during the bachelor studies, mainly through
publications in local journals and participation at scienctific student competitions. I have then
started  in  2010  my  PhD  studies  at  the  Faculty  of  Eletrical  Engineering  of  the Transilvania
University of Brasov. The studies have been carried out under the umbrella of the Sectorial
Operational Programme for Human Resources – PhD studies for continuous development –
POSDRU/107/1.5/S/76945, through a PhD scholarship.

I have obtained my PhD title in 2013 for the PhD thesis entitled Parallel Processing in the
Multiscale Modeling of Coronary Hemodynamics.

The  main  goal  of  the  PhD  thesis  was  the  development,  implementation,  testing  and
validation of a reduced-order multiscale model of the coronary circulation for the non-invasive
diagnosis of coronary stenoses. Based on the properties of this multiscale model, a secondary
goal of the thesis was to develop, implement,  test  and validate a multiscale model for the non-
invasive diagnosis of aortic coarctations. The final goal of the developed models was for them to
be applied in a clinical setting for the non-invasive, patient-specific assessment of cardiovascular
pathologies. Thus, execution time was a crucial aspect, on one hand to diagnose a patient faster,
and, on the other hand, to run more computations in a certain amount of time. Hence, to reduce
the execution time, the numerical solution of the quasi one-dimensional model, which represents
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the main component of the multiscale models developed herein, was implemented on a parallel
processor (graphics processing unit).

Additionally, I have had three research internships at Siemens Corporate Research in
Princeton, New Jersey USA (Febr. 2011 – Apr. 2011, Aug. 2011 – Nov. 2011, July 2012 – Sept.
2012), and since Oct. 2013 I am also a Research Engineer at Siemens SRL, Brasov, Romania.
The main research activities carried out after the PhD studies have been described extensively in
the previous chapters.

Overall, the research activities carried out to date have lead to the publication of 52
research papers in journals and conferences, 22 of them as first author. Importantly, nine papers
have been published in ISI journals with high impact factor (five of them as first author). I am
also author or co-author of six books, including one published with Springer.

Furthermore,  I  am joint-author of over 20 patent applications filed with the US /  World /
European Patent Offices. My works have received over 100 citations (excluding self-citations)
and I have an h-index and i10-index of 7, according to google scholar
(https://scholar.google.com/citations?user=6azBRUAAAAAJ).

I have been reviewer for several ISI journals with high impact factor, like International
Journal for Numerical Methods in Biomedical Engineering, Computer Methods in Biomechanics
and Biomedical Engineering şi Medical & Biological Engineering & Computing.

I have been / am a member in several research projects:
· Model-Driven European Paediatric Digital Repository (MD-Paedigree), funded by

the EC (FP7), 2013-2017;
· High Performance Computing of Personalized Cardio Component Models

(HEART), funded by the Romanian Government (PNII), 2012-2016;
· Large scale experiments and simulations for the second generation of FuturICT

(FuturICT 2.0), funded by FLAG ERA, Jan. 2017 – Jan. 2020;
· Rethinking Robotics for the Robot Companion of the future (Robocom++), funded

by FLAG ERA, Jan. 2017 – Jan. 2020.
I am a principle investigator (responsible for project partner) in the following ongoing

research projects:
· MyHealth-MyData (MHMD), funded by the EC (H2020), Nov. 2016 – Oct. 2019

(project coordinator for partner Transilvania University of Braşov, managed budget:
147.750 Euros). The project aims at changing the existing patients’ privacy and data
security scenarios by introducing a distributed architecture, based on Blockchain and
Personal  Data  Accounts.  Our  goal  in  the  project  is  the  development  of  a  blood  flow
model of the systemic circulation for demonstrating the feasibility of personalized
hemodynamic modeling on securely anonymized data;

· Information Technology: The Future of Cancer Treatment (ITFoC), funded by
FLAG ERA, Jan. 2017 – Jan. 2020 (project coordinator for partner Transilvania
University of Braşov, managed budget: 62.500 Euros). The project will showcase
federated activities on breast cancer to propose an advanced TRL 5-6 demonstrator in
digital medicine. Our goal is to employ deep learning based techniques for developing
an alternative to the compute intensive mechanistic models;

· Frictionless Energy Efficient Convergent Wearables for Healthcare and Lifestyle
Applications (CONVERGENCE), funded by FLAG ERA, Jan. 2017 – Jan. 2020
(project coordinator for partner Transilvania University of Braşov, managed budget:
35.000 Euros). The project aims at developing a wearable sensor platform, centred on

https://scholar.google.com/citations?user=6azBRUAAAAAJ
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energy efficient wearable proof-of-concepts at system level exploiting data analytics
developed in a context driven approach (in contrast with more traditional research
where the device level research and the data analytics are carried out on separate path,
rarely converging). Our goal is to develop a predictive personalized model for
cardiovascular risk assessment. Specifically, a patient-specific multiscale reduced-order
blood flow model of the entire systemic circulation will be employed, which is
personalized from a set of initial measurements (height, weight, BMI, gender, length of
arms, legs, neck, head, etc.) and a set of continuous measurements derived from
wearable sensors.;

· Image-based functional assessment of complex coronary artery lesions using optical
coherence tomography and routine angiography (FUNCTIONAL-OCT), funded by
the Romanian Government (PNIII), Jan. 2017 – July 2018 (project coordinator for
partner Siemens SRL, managed budget: 100.000 Euros). The main goal of this project is
to develop, implement, test and validate a patient-specific computational hemodynamics
model for computing Fractional Flow Reserve (FFR) from medical images acquired
through Optical Coherence Tomography (OCT) and X-ray Angiography (XA), and
routine patient-specific measurements;

· Image-based functional assessment of renal artery stenosis using Computer
Tomography Angiography or routine X-ray Angiography (RENA), funded by the
Romanian Government (PNIII), Jan. 2017 – July 2018 (project coordinator for partner
Siemens SRL, managed budget: 117.000 Euros). The main goal of this project is to
develop, implement, test and validate a patient-specific computational hemodynamic
model for determining renal hemodynamic diagnostic indices, renal Fractional Flow
Reserve and peak / mean trans-stenotic pressure gradient, from medical images acquired
through either Computer Tomography Angiography (CTA) or X-ray Angiography
(XA).

9.2 PAST ACADEMIC ACTIVITIES

My teaching activity began in 2009, as an associate lecbturer, consisting in the teaching of
the laboratories for the course Programmable Logic Controllers, which started right after I had
graduated the Faculty of Eletrical Engineering and Computer Science of the Transilvania
University of Brasov. In 2014, after finishing the PhD studies, I became a full time lecturer at the
Department of Automation and Information Technology of the Transilvania University of
Brasov. During the following years I have taught the courses:

· Programmable Logic Controllers:  the  goal  of  the  course  is  to  instruct  students  in  the
topics of design, implementation and usage of the hardware structures and software
applications destined for controlling processes run with programmable logic controllers.
A significant emphasis is put on the familiarization with hardware and software aspects,
in the context of programmable logic controller usage in the industry;

· Programming of Real Time Applications: the goal of the course is to instruct master
students in the topics of conception, design, implementation and exploitation of real
time programs for process control. The course and the laboratory allow the master
students to become familiarized with software aspects, in the context of employing real
time computers in industry. Furthermore, the course enables the training of the master
students for using real time systems in the development of technical informatics
applications;
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· Control Systems for Technological Processes: the goal of the course is to provide know-
how for exploiting and designing automated systems typically encountered in industry.
The course presents the components of these systems, methods for deriving analytical
models, methods for calibration, as well as ways for embedding the automated systems
in industrial installations, with exemplification in several study cases;

· Industrial Control Networks: the goal of the course is to instruct students in the topics of
design, implementation and usage of the hardware structures and software applications
of industrial control networks. A significant emphasis is put on the familiarization with
hardware and software aspects, in the context of programmable logic controller usage in
the industrial control networks.

Three of the books I have published are related to these courses:
· Programarea aplicatiilor de timp real, Editura Universităţii Transilvania din Braşov,

2016, ISBN: 978-606-19-0751-9;
· Automate Programabile. Aplicații, Editura Universităţii Transilvania din Braşov, 2016,

ISBN: 978-606-19-0862-2;
· Introducere în Rețele Industriale de Comunicație, Editura Universităţii Transilvania din

Braşov, 2016, ISBN: 978-606-19-0885-1.
During the years I have developed several practical applications using programmable logic

controllers, which are now used in the laboratory of the course Programmable Logic Controllers.
Herein I would like to mention two of these applications:

· Positioning system using brushless servomotors, inverter 635 and a XC200
programmable logic controller;

· Distributed control network of sequential processes using Moeller Programmable Logic
Controllers.

Given the interdisciplinarity of the above mentioned courses, I have continuously tried to
improve the teaching methods, the collaboration with the students, and to diversify the materials
and the information presented during the classes. My preferred teachning methods are: classic
lecture, explanations, problems, demonstrations, conversation, case studies, and experiments in
small groups.

I have always maintained a close connection between the academic and the research
activities, by collaborating with students on topics that are highly relevant in various research
areas like computational modelling, parallel processing, and biomedical engineering. As such I
have coordinated students which have taken part in the event Researcher’s Night which is
organized yearly at the Transilvania University of Brașov, based on the topics:

· Non-invasive methods for diagnosing cardiovascular pathologies;
· System for detecting bone metastasis in the spine using deep learning techniques;
· Fluid-solid interaction simulations for non-invasive diagnosis of teh aortic valve.
Furthermore I have supervised several works presented at the Student’s Research

Communications Workshop organized yearly at the Transilvania University of Brașov. Several of
these works have been awarded prizes. Herein I would like to mention especially the work of
Costin Ciușdel, who developed a machine learning-based model for predicting average strain as
an alternative to physics-based approaches for the non-invasive evaluation of osteoporosis
patients.

I have supervised and co-supervised numerous bachelor and master theses on the following
topics:
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· Lattice Boltzmann based blood flow simulations;
· GPU-based implementation of the multigrid algorithm;
· Semantic search and information retrieval.
Importantly, the students who have worked on these topics have also managed to publish

research papers at international conferences. Herein I would like to mention only a subset of
those:

· GPU Accelerated Information Retrieval Using Bloom Filters, International Conference
on System Theory, Control and Computing, 2015;

· GPU Accelerated Geometric Multigrid Method: Performance Comparison on Different
Architectures, Inter. Conf. on System Theory, Control and Computing, 2015;

· GPU-accelerated model for fast, three-dimensional fluid-structure interaction
computations, Annual Inter. Conf. of the IEEE Engineering in Medicine & Biology
Society, 2015;

· Optimized Three-Dimensional Stencil Computation on Fermi and Kepler GPUs, IEEE
High Performance Extreme Computing Conference, 2014.

I am also actively involved in the supervision of two PhD students, Cosmin Niță and
Anamaria Vizitiu, on the topics of Lattice Boltzmann based Fluid-Structure Interaction Blood
Flow Models and Deep Learning based Diagnosis of Breast Cancer Patients.

Finally,  I  would  like  to  mention  that  I  am  a  member  of  the  Romanian  Society  of
Automation and Technical Informatics since 2010.

9.3 FUTURE RESEARCH AND ACADEMIC ACTIVITIES

Hemodynamic computations represent a state-of-the-art approach for patient-specific
assessment of cardiovascular pathologies. Thus, blood-flow computations, when used in
conjunction with patient-specific anatomical models extracted from medical images, provide
important insights into the structure and function of the cardiovascular system. In recent years,
these techniques have been proposed for diagnosis, risk stratification, and surgical planning.

Future research activities will focus on the further development of computational methods
for personalized cardiovascular medicine, by combining the methods employed in the past:

· Computational modeling;
· Artificial intelligence / Machine learning;
· High performance computing.

The ultimate goal of each such development will be its implementation in a clinical
workflow, enabling truly personalized medicine, and thus improving patient diagnosis, outcome,
and life quality, and at the same time reducing overall healthcare costs patient risks.

I believe that future activities should form a cycle containing: research projects, scientific
research, and development of the teaching process.

Research projects provide a framework which introduces structure into the research
activities, it ensures the financing and demands progress and capitalization of the previously
identified future research directions. Research activities require continuos personal development,
providing thus an opportunity for transforming scientific know-how into teaching material.
Finally, teaching activities represent sources for ideas for future grant proposals, but also allow
for a recruitment of students willing to start a research career, with the following possible
milestones: class, student research activities, bachelor thesis, master thesis, PhD thesis.
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As such, I am highly motivated to take part in grant calls, both at national and international
level. I have submitted / contributed to the submission of three such grant proposals at the start
of 2017:

· Image-based real-time functional assessment of patients with acute coronary syndromes
using routine angiography (FUNCTIONAL-ACS), competition PN-III-PD, organized
by UEFISCDI (grant amount: 55.000 Euros);

· Quantum based signal filtering architecture for enhancing real-time Brain-Computer
Interface (QuantBCI), competition QUANT-ERA 2017, organized by the European
Commission (grant amount: 200.000 Euros);

· CLEVER: Ct-based pLaquE VulnErability pRediction, competition ERA-CVD 2017,
organized by the European Commission (grant amount: 200.000 Euros).

I will work towards developing a research group based on young researchers so as to
steadily increase the volume of scientific results and to sustain the tasks that need to be carried
out in various research projects.

I will continue to publish research papers, especially in high impact ISI journals, like:
Journal of Buimechanic, Annals of Biomedical Engineering, Journal of Computational Physics,
International Journal on Numerical Methods in Biomedical Enginerring, Computational
Optimization and Applications, Concurrent Engineering-Research and Applications.

Furthermore, based on the scientific results achieved in the past, I will publish books
focused on specific topics, so as to accelerate the transfer of know-how into the teaching process.

A few specific research activities that will be considered in the near future are described
below in greater detail.

9.3.1 Machine learning based real-time computation of hemodynamic quantities from
medical images

Computational Fluid Dynamics (CFD) based blood flow computations, when used in
conjunction with patient-specific anatomical models extracted from medical images, have been
proposed for determining non-invasively the above mentioned hemodynamic quantities [Taylor
et al., 2013]. The CFD-based models combine geometrical information extracted from medical
imaging with background knowledge on the physiology of the patient, encoded in a complex
mathematical fluid flow model consisting of partial differential equations which can be solved
only numerically. This approach leads to a large number of algebraic equations, making it
computationally very demanding [Taylor et al., 2013]. Typically the solution of these models
requires a few hours on powerful clusters for high-fidelity models, and, hence, their application
in routine clinical workflows for providing results in real time is not feasible.

Thus, a future development will focus on the development, implementation, and validation
of a machine learning-based method for determining in real-time hemodynamic quantities from
medical images and routine patient-specific measurements (Figure 9.1).

Several Machine Learning (ML) based models will be developed and validated for
predicting cycle-averaged quantities (e.g. cycle-averaged pressure, flow rate), regional averaged
quantities (ESS), and instantaneous quantities (e.g. peak velocity). In ML based workflows, the
relationship between input data, e.g. the anatomy of a vascular tree, and hemodynamic quantities
of interest, is represented by a model built from a database of samples with known characteristics
and output. Once the model is trained, its application to unseen data provides results in real-time.
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Figure 9.1: Workflow of the method proposed for machine learning based computation of hemodynamic
measures of interest.

9.3.2 Image-based functional assessment of complex coronary artery lesions using Optical
Coherence Tomography and Routine Angiography

CAD patients suffer from a buildup of plaque in the coronary arteries, resulting in a
decrease of blood flow to the cardiac muscle. Since in severe cases this reduction of flow can
result in myocardial ischemia and death, Percutaneous Coronary Intervention (PCI) is performed
for revascularizing functionally significant CAD. Invasive coronary X-ray Angiography (XA) is
the gold standard in CAD imaging [Ryan, 2002], but intravascular imaging techniques like
Optical Coherence Tomography (OCT) are being employed increasingly for evaluating the
cross-sectional and 3D microstructure of blood vessels. OCT provides high-resolution images of
intraluminal and endothelial / intimal structures such as ruptured plaques, thrombi, spontaneous
dissections, and angiographically vague coronary anatomy, such as ostial, bifurcation, and left
main lesions.

Furthermore, OCT is of value in determining stent parameters and defining mechanisms of
stent restenosis.

Since anatomical markers have a limited accuracy for the evaluation of CAD [Toth et al.,
2014], the functional index of Fractional Flow Reserve (FFR), defined as the ratio of hyperemic
cycle-averaged pressure distal to the stenosis to the cycle-averaged aortic pressure [Ijls et al.,
1996], has been introduced and validated as an alternative [Tonino et al., 2009].

Thus, a future development will focus on the development, implementation, and validation
of a patient-specific computational hemodynamics model for computing FFR (FFROCT) from
medical images acquired through OCT and XA, and routine patient-specific measurements
(Figure 9.2).

The  output  of  this  method  will  be  FFROCT at each location along the centerline of the
anatomical models reconstructed from the medical images. Model-based computation of FFR
has been previously performed using Computational Fluid Dynamics (CFD) algorithms based on
anatomical models reconstructed from Coronary Computed Tomography Angiography (CCTA)
[Coenen et al., 2015] or XA [Tröbs et al., 2016].



ACADEMIC AND RESEARCH CAREER

114

Figure 9.2: Workflow of the method proposed for functionall assessment of CAD.

9.3.3 Image-based functional assessment of renal artery stenosis using Computer
Tomography Angiography or routine X-ray Angiography

Hypertension is the most important source of morbidity and mortality among the 19 major
risk factors affecting global health [***WHO, 2009]. Renal Artery Stenosis (RAS) is a
cardiovascular pathology consisting in the narrowing of the renal artery and represents the major
cause for secondary hypertension, being encountered in 0.5 to 5% of all hypertensive patients
[Hansen et al., 2002]. If left untreated, RAS progresses relentlessly in time and patient survival
rate decreases with increasing RAS severity [Safian et al., 2001]. X-ray Angiography (XA)
remains the standard method for the detection of RAS, although Computer Tomography
Angiography (CTA) and other techniques are increasingly being used [Khan et al., 2013].
Similar to coronary artery stenosis diagnosis, the renal fractional flow reserve (rFFR – ratio of
cycle-averaged distal renal pressure to cycle-averaged aortic pressure) was introduced
[Subramanian et al., 2005]. However, the routine use of invasive pressure measurements
(pressure gradient / rFFR) is still relatively uncommon due to additional risks and significant
costs in patient care.

Thus, a future development will focus on the development, implementation, and validation
of a patient-specific computational hemodynamic model for determining renal hemodynamic
diagnostic indices, rFFR and peak / mean trans-stenotic pressure gradient, from medical images
acquired  through either  CTA or  XA,  and  other  patient-specific  quantities:  Doppler  Ultrasound
(US) blood flow velocity measurements, blood biomarkers and routine patient-specific
measurements (Figure 9.3). The output of this method will be rFFRCTA /  rFFRAngio at each
location along the centerline of the anatomical models reconstructed from the medical images
and the peak / mean trans-stenotic pressure gradients for each stenosis (ΔPpeak–CTA, ΔPmean–CTA /
ΔPpeak–Angio, ΔPmean–Angio).
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Figure 9.3: Workflow of the method proposed for the patient-specific hemodynamic modeling of the renal
arterial system.

9.3.4 Continuous health monitoring using wearavle devices

9.3.4.1 Introduction

The World Health Organization [WHO, 2009] considers hypertension to be by far the most
important source of morbidity and mortality among its 19 listed major risk factors affecting
global  health.  By  predisposing  for  heart  failure,  kidney  disease,  stroke,  and  dementia  and  the
subsequent costs to society, hypertension is a major therapeutic target for improving the health
and wellbeing of the elderly in low-, middle- as well as high-income countries. Despite intense
research activities over the last 70 years, the etiology of hypertension is still not well understood.
This lack of understanding hampers development of more effective therapeutic strategies.

Peripheral Arterial Disease (PAD) of the lower extremities is a common disease affecting
approximately 12 million people in the United States [Marso et al., 2006]. Atherosclerosis is the
major cause of PAD of lower extremities [Weitz et al., 1996].

The prevalence of PAD varies based on the population surveyed and the methodology of
computing the Ankle-Brachial Index (ABI) [Selvin et al., 2004], [McDermot et al., 2000]. ABI is
the screening test of choice for the diagnosis of patients with PAD due its simplicity,
reproducibility and cost effectiveness.

9.3.4.2 Proposed Methods

A methodology which goes beyond the above described approaches is envisaged: a patient-
specific reduced-order blood flow model of the entire systemic circulation is employed, which is
personalized from a set of initial measurements and a set of continuous measurements derived
from wearable sensors (Figure 9.4).

During the first step a set of initialization measurements are performed: these may be based
on medical imaging, like MRI, or only on more basic measurements like height, weight, BMI,
etc. of the subject. These measurements are used to perform an initial personalization of the
arterial model, i.e. the systemic arterial geometry is defined. Next, continuous measurements are
acquired from the wearable sensors. These measurements have been described in the previous
section and include quantities like heart rate, blood pressure, pulse oximetry measurements,
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ECG, etc. These measurements are used together with the previously personalized arterial
geometry to run fully personalized blood flow computations. The outputs of the hemodynamic
computations are: time-varying flow rate, pressure and cross-sectional area at all locations in the
systemic arterial tree. Based on these quantities the measures of interest are extracted, which
may be central arterial blood pressure, severity of PAD, severity of coarctation, onset of
hypertension, risk of CVD, etc.).

Figure 9.4: Overview of the proposed methodology.

To perform patient-specific hemodynamic computations, the blood flow model has to be
personalized. The following components need to be personalized:

· arterial geometry;
· arterial wall properties;
· inlet boundary condition: time-varying flow rate profile at the aortic inlet;
· outlet boundary conditions: parameters of the windkessel models coupled at the outlet of

each terminal artery .
The arterial geometry is personalized during the initial personalization step in Figure 9.4.

The starting point is a population average whole-body systemic arterial model [Reymond et al.,
2011]. Previously reported blood flow computation frameworks typically rely on one or two sets
of patient-specific measurements which are taken in the hospital. This has several disadvantages:

· the blood flow model can only be personalized for the patient state at which the
measurements were performed;

· the white coat syndrome (white coat hypertension): in a clinical setting patients typically
exhibit a blood pressure level above the normal range. This is attributed to the anxiety
experienced during a clinical visit.

By using the proposed methodology the blood flow model can be personalized for an
almost infinite number of states: rest, lying down, sitting, upright, different levels of physical
exercise, sleep, pre- and post-interventional, etc. This allows for a significantly more
comprehensive evaluation of the patient’s health state, than with regular blood flow
computations which focus on a single patient state.
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