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Summary

The research work that constitutes the support for the habilitation the-
sis1 started in 2007 in collaboration with Noël Richard from the XLIM-SIC
research laboratory, Université de Poitiers, France. Along with the presenta-
tion and the emphasis of the outstanding achievements so far, in this thesis
the future research paths are sketched. After a short introduction on color
and multispectral texture images, the fractal models which can be used for
texture modeling are discussed. The models can be used both for synthesis
and analysis. Then, in the context of analysis, various texture feature ex-
traction techniques are presented, especially the fractal and morphological2

ones. In the final chapter, image segmentation and texture classification are
presented as applications.

Textures represent the variation of a signal (i.e. image) at a lower scale
than the one of interest [33]. Textures can be regular, semi-regular or irreg-
ular (see Fig. 1). Most natural textures are irregular. Another taxonomy
classifies textures in deterministic or random.

(a) Regular (b) Semireg. (c) Irregular

Fig. 1: Types of textures.

The notion of texture emerged in the ‘60-’70s in the context of analysis
of gray-scale images that present certain variations at object surface that
rendered difficult the task of image segmentation. According to Haralick

1M. Ivanovici, “Color and Multispectral Texture Image Analysis – Models, Features
and Applications”, Transilvania University Press, ISBN 978-606-19-0587-4, 2015, http:
//miv.unitbv.ro/downloads/MIVCMTIAMFA2015.pdf

2We talk here about the mathematical morphology - a fundamental domain for non-
linear image processing and analysis. See for instance P. Soille Mathematical morphology
and image analysis.
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[18] texture can be described using terms like fine, coarse or smooth. Har-
alick introduced the gray-tone spatial-dependence matrices, also known as
gray-level co-occurrence matrices, as a way to characterize texture. Based
on these matrices he proposed 14 texture features regarding homogeneity,
contrast, number and nature of boundaries, and the complexity of the im-
age. Various texture characterization tools have been proposed since then
and in [40] the existing techniques were classified as being: geometrical,
statistical, image model-based methods and signal processing approaches.
Several important techniques are described in [32] [13] [22] [26].

In this thesis we dedicate our attention to the notion of complexity, in
the context of texture image analysis. There exist various definitions of
complexity, including Kolmogorov complexity and entropy. Recently, N.
Richard and myself proposed a new Technical Committee within Division 8
of CIE3 entitled Specification of Spatio-Chromatic Complexity. Its objective
is to produce a single definition of spatio-chromatic complexity embedding
the spatial and chromatic variations in a generic and vector form, taking
into account both spatial and spectral variations of textures, in order to
propose an international standard.

For the validation of models and analysis tools for color textures various
texture image databases have been constructed, some of them for the pur-
pose of testing translation, rotation, scale and illuminant-invariant feature
extraction or classification approaches. Two of the most used and well-
known texture image data-bases are Outex [29] and VisTex4.

Recently , the scientific community has focused its attention to multi-
spectral texture analysis. There are several databases available, one of them
being CAVE5, Columbia University, New York which contains multispectral
images with 31 spectral bands, from 400 nm to 700 nm, in steps of 10 nm.
Several open-access multispectral image data-bases are available: University
of East Anglia, United Kingdom6, Brno University of Technology, Czech
Republic7 or the Joint Research Center, the Institute for Environment and
Sustainability8. The latter one contains Landsat 7 satellite images.

Fractal models

Fractal geometry was introduced by B. Mandelbrot in 1983 [27] in order to
describe self-similar sets called fractals. Self similarity is a central concept of
the fractal geometry, being closely connected to the notion of dimension and
implicitly to complexity. Fractal dimension is a measure of the complexity

3International Commission on Illumination.
4http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
5http://www.cs.columbia.edu/CAVE/databases/multispectral/
6http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
7http://splab.cz/en/download/databaze/multispec
8http://image2000.jrc.ec.europa.eu/DI/IM.htm
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of a fractal object. Fractal models are used to generate synthetic textures,
shapes and even landscapes in computer graphics. From the plethora of algo-
rithms we embraced the one of random fractal generation, mainly Brownian
fractional noise generation. A technique for generating such noise is called
random midpoint displacement proposed by D. Saupe in [32]

For the design of a color fractal image generator, we extended in [20] the
random midpoint displacement method on gray levels to the color domain9.
We chose to work in the RGB color space as it presents a cubic organization
coherent with the construction of the fractal object.

For RGB color images, the increments used for moving the middle point
are differences, in the sense of the Euclidean distance, between 3D vectors
Xk, located in any two points t1, t2 and s1, s2 of the support space. The
variance of these increments is:

σ2
i =

√ ∑
k=r,g,b

(Xk(t1, t2)−Xk(s1, s2))2

2

(1)

σ2
i = [Xr(t1, t2)−Xr(s1, s2)]2 + [Xg(t1, t2)−Xg(s1, s2)]2 + · · ·

· · ·+ [Xb(t1, t2)−Xb(s1, s2)]2
(2)

In the hypothesis that the increments in the three RGB planes are sta-
tistically independent, i.e. the color stimuli on the three channels are not
correlated, we can distribute the statistical operation to each term:

σ2
i = [Xr(t1, t2)−Xr(s1, s2)]2 + [Xg(t1, t2)−Xg(s1, s2)]2+

+[Xb(t1, t2)−Xb(s1, s2)]2
(3)

Because each of the three terms is proportional to

(
2∑
i=1

(ti − si)2

)H
, ac-

cording to the construction of the fractal object in the original approach, we
can conclude that the sum will be also proportional to the space coordinate
differences:

σ2
i ∝ 3 ·

(
2∑
i=1

(ti − si)2

)H
∝

(
2∑
i=1

(ti − si)2

)H
� (4)

We therefore demonstrated that the color model is valid for the color
fractal images we generated using the RGB color space. For the implemen-
tation of the generation approach, we modified the algorithm presented in

9M. Ivanovici, N. Richard, Fractal Dimension of Color Fractal Images, IEEE Trans-
actions on Image Processing, January 2011, http://dx.doi.org/10.1109/TIP.2010.

2059032
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[32] in order to work with RGB triplets. In Fig. 2 we show the color frac-
tal images obtained, of different complexity (controlled by the value of the
Hurst parameter).

(a) H=0.9 (b) H=0.7 (c) H=0.5 (d) H=0.3 (e) H=0.1

Fig. 2: Color fractal images generated in RGB.

Fractal features

For the analysis of textures of fractal and random nature, we will focus our
attention to two important fractal features: the fractal dimension and la-
cunarity. Fractal dimension is a measure that characterizes the complexity
of a fractal, indicating the amount of irregularity and how much the avail-
able space is filled. Lacunarity is a complementary fractal measure which
indicates how the space is filled, being similar to a distribution function.
Fractal features are used for multi-scale image and multidimensional signals
analysis by observing the variation of a measure as a function of the analysis
scale.

The theoretical fractal dimension is the Hausdorff dimension [14]. In
practice, this dimension is estimated either by computing the similarity di-
mension, the box-counting dimension, the correlation dimension or other
dimensions. The probabilistic algorithm for estimating the box-counting
dimension dimB proposed by R. Voss [41] considers the image F as a set
of points in an Euclidean space. According to [25], the spatial arrange-
ment of the set is characterized by the probability matrix P (m, δ) of having
m points withing a cube (box) of size δ, centered in all the points of the
analyzed image. For each value of δ, the matrix is normalized so that:

Q∑
m=1

P (m, δ) = 1, ∀δ (5)

where Q represents the number of points in the cubes of size δ. If M is
the total number of points of the image, the number of boxes containing m
points is (M/m)P (m, δ). Consequently, the total number of boxes needed
to cover the image is:
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〈N(δ)〉 =
N∑
m=1

M

m
P (m, δ) = M

N∑
m=1

1

m
P (m, δ) (6)

which is an estimate of N(δ), so the amount
Q∑

m=1

1
mP (m, δ) is directly

proportional to δ−dimBF and can be used for the computation of the box-
counting dimension: N(δ) =

∑N
m=1

1
mP (m, δ) ∝ δ−dimB .

If a gray-level image can be modeled as a discrete surface z = f(x, y) in
a three-dimensional space, where z is the luminance in every point (x, y) of
the support, the model can be extended for color and multispectral images.
In [20] we consider a color image as a hyper-surface in an RGB color space:
f(x, y) = (r, g, b). Therefore in the case of color images we deal with a
5-dimensional Euclidean hyper-space and each pixel can be seen as a 5-
dimensional vector(x, y, r, g, b).

The classical algorithm of Voss defines cubes of size δ centered in the
current pixel (x, y, z = f(x, y))and counts the number of pixels that fall
within a cube determined by the following two opposite corners: (x− δ

2 , y−
δ
2 , z −

δ
2) s, i (x + δ

2 , y + δ
2 , z + δ

2). A direct extension of the Voss approach
to color images would count the pixels F = f(x, y, r, g, b) for which the
Euclidean distance to the center of the hyper-cube Fc = f(xc, yc, rc, gc, bc)
would be smaller than δ:

|F − Fc| =

√√√√ 5∑
i=1

|fi − fci|2 ≤ δ (7)

Given that the Euclidean distance in the RGB space does not corre-
spond to the perceptual distance between colors, we prefer to use instead
the Minkowski infinity norm:

|F − Fc| = max(|fi − fci|) ≤ δ ∀i = 1, 5 (8)

Practically, for a certain square of size δ in the (x, y) support,we count
the number of pixels that fall inside a 3-dimensional RGB cube of size δ
centered in the current pixel. In Figure 3 we show three color textures
(orange, psoriasis and cladonia), with the corresponding N(δ) curves. The
estimated color fractal dimensions are 2.0, 3.39 and 3.71, respectively.

The lacunarity, as defined by Voss, is based on the first and second order
moments M(δ) and M2(δ) computed using the probabilities P (m, δ):

M(δ) =
N∑
m=1

mP (m, δ) M2(δ) =
N∑
m=1

m2P (m, δ) (9)

Λ(δ) =
M2(δ)− (M(δ))2

(M(δ))2
(10)
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Fig. 3: Three textures and the corresponding N(δ) curves.

Modeling the color images in the same way as for the estimation of the
box-counting dimension, we obtain the following results10 presented in Fig.
4: the lacunarity curves for three of the color fractal images in Fig. 2 and
the textures in Fig. 3.

(a) synthetic fractals (b) natural fractals

Fig. 4: Lacunarity curves.

As expressed by Mandelbrot, the interpretation of the lacunarity curves
is related to the perception of mounts and valleys in the hyper-surface com-
plexity of the texture.

Morphological features

The domain of mathematical morphology was founded by G. Matheron [28]
and J. Serra [36] and constitutes a mathematical framework for nonlinear
image processing and analysis. Mathematical morphology was introduced
for binary images, the basic morphological operators being based on set
theory [16]. The mathematical morphology extension to gray-scale images

10M. Ivanovici, N. Richard, The lacunarity of colour fractal images, 16th IEEE Interna-
tional Conference on Image Processing, 2009, http://dx.doi.org/10.1109/ICIP.2009.
5414394
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is based on lattice theory, which implies a partial ordering of the image data,
such that an infimum and a supremum exist for any subset of pixel values.
Applications of mathematical morphology include filtering, segmentation or
texture analysis [38].

The extension of mathematical morphology to color and multispectral
images is not straightforward because of the vector image data, and conse-
quently because of the need to define a suitable ordering for vector data.
Ordering schemes for vector data have been classified in four groups [4]:
marginal, reduced, conditional and partial, each having its advantages and
disadvantages, depending on their outcome with respect to the application.

Various approaches have been proposed for color and multispectral im-
ages [3]. In parallel with developing such approaches, which respect all the
properties of mathematical morphology, several pseudo-morphologies were
proposed. These frameworks do not require an underlying ordering of the
image data: instead they focus on computing the two extrema of a given set
[17] [2] [7].

In [19] we proposed the estimations of the extrema of a set, the infimum
and supremum, by using the Chebyshev inequality, which allows estimating
the probability of a subset of vectors to belong to an interval centered around
the mean of the distribution [11]. Let ξ be a random variable with mean µξ
and standard deviation σξ, then the Chebyshev inequality states that:

P{|ξ − µξ| ≥ kσξ} ≤
1

k2
(11)

Eq. (11) stands for any distribution with finite mean and standard
deviation [30]. Using the k parameter, one may generate symmetric intervals
around the mean, with the two extrema being relatively close to the real
minimum or maximum values. Consequently we define the probabilistic
pseudo-extrema of a distribution, E+ and E−, as specified by Chebyshev
inequality: {

E+ ∆
= µξ + kσξ

E− ∆
= µξ − kσξ

(12)

By choosing an appropriate value for k, the error between the proba-
bilistic extrema and the real extrema of a distribution can be reduced as
desired. Based on this approach, in [7] we proposed a probabilistic pseudo-
morphology (PPM) for gray-scale images, further extended to the color im-
age domain11. Given an image f : Df → S ⊂ R, and a flat structuring
element g having the support Dg, we defined the pseudo-erosion and pseudo-
dilation operations as follows:

11A. Căliman, M. Ivanovici, N. Richard, Probabilistic pseudo-morphology for gray-scale
and color images, Pattern Recognition, ISSN 0031-3203, February 2014, http://dx.doi.
org/10.1016/j.patcog.2013.08.021

7

http://dx.doi.org/10.1016/j.patcog.2013.08.021
http://dx.doi.org/10.1016/j.patcog.2013.08.021


Summary L. M. Ivanovici

[εg(f)](x) =
∧
z∈Dg

f(x+ z)
∆
= µξ − kσξ, ∀x ∈ Df (13)

[δg(f)](x) =
∨
z∈Dg

f(x− z) ∆
= µξ + kσξ, ∀x ∈ Df (14)

where ξ represents a random variable which models the gray level of
pixels falling within Df ∩ Dg. The mean µξ and the standard deviation σξ
are computed locally, within a neighborhood given by the size and posi-
tion of the structuring element. For small k values (0.2), the probabilistic
pseudo-extrema are close to the mean value and consequently the behav-
ior of the PPM operations is similar to a smoothing filter (see Fig. 5 and
6). For k = 2, an optimum value for Lenna image, the results are similar
with the ones obtained when using the classical morphological operators for
gray-scale images (GLMM). Some differences occur, naturally: the classical
morphology introduces artifacts (e.g. top of the hat). Due to the intrinsic
statistical filtering of PPM, the resulting pseudo-eroded image does not ex-
hibit such artifacts, the shape of the SE not being visible. In addition, PPM
is capable of preserving morphological details (e.g. eyebrows) and texture
(e.g. hat feathers). All these prove that PPM is less influenced by noise,
the morphological or textural structures being better preserved. For a large
value of k = 4, the probabilistic extrema are far away from the local mean,
being pushed towards black and white, the extrema of gray-scale. This case
can be similar to classical morphology using non-flat structuring elements.

(a) PPM, k = 0.2 (b) PPM, k = 2 (c) PPM, k = 4 (d) GLMM

Fig. 5: PPM erosions for various values of k compared to GLMM, both
using a flat structuring element of size 11× 11.
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(a) PPM, k = 0.2 (b) PPM, k = 2 (c) PPM, k = 4 (d) GLMM

Fig. 6: PPM dilations for various values of k compared to GLMM, both
using a flat structuring element of size 11× 11.

For color images the pixel values are vectors, the images being modeled
as f : Df → S ⊂ R3. In order to extend PPM to the color domain, we need
to correctly evaluate the variance of the data, for the purpose of using the
same Chebyshev inequality. In [7] we proposed a color approach based on
principal component analysis (PCA). PCA is a linear transformation of the
data set which identifies a new space, i.e. a set of orthogonal directions, so
that the variance is maximized on one of those directions [31]. The directions
of the transformed space are the eigenvectors of the covariance matrix. In
Figure 7 the construction of the probabilistic pseudo-extrema is illustrated
(on the first and on both principal components) in case of bi-dimensional
vectors.

Fig. 7: Computing probabilistic pseudo-extrema of a bi-dimensional data
set (white dots): using the first principal component (light gray dots) or
using the two principal components (dark gray dots).

After applying PCA and the Chebyshev inequality there is still an issue
to solve, due to the vector nature of data: the two extrema have to be
ordered and labeled as minimum and maximum. In [7] we ordered the
pseudo-extrema constructed on the first principal component using three
pairs of three-dimensional reference points with an a priori order imposed
or chosen for each pair. The ordering is performed using the projections
of the pseudo-extrema on the direction determined by the reference points.
This process is depicted in Figure 8, where the considered a priori ordering

9



Summary L. M. Ivanovici

for the reference points is R+ > R− and consequently the pseudo-extrema
Eα and Eβ will be ordered as Eα > Eβ.

Fig. 8: Ordering Eα and Eβ using the ordered references R− and R+.

In [8], the references were automatically computed as the global pseudo-
extrema on each principal component determined on the entire color distri-
bution of the image. In this way, three pairs of references were obtained:(

R −1 ,R +
1

)
,
(

R −2 ,R +
2

)
,
(

R −3 ,R +
3

)
, with R −i < R +

i , i = 1, 3. The ordering of
the references was performed by using their projections on the black-white
axis of the color space. Thus the two pseudo-morphological operations, di-
lation and erosion, can be defined for a color image f and a structuring
element g having the support Dg:

[εg(f)](x) =
∧
z∈Dg

f(x+ z)
∆
=

=


arg min

i
[
−−−−→
R −0 R +

0 ·
−−→
R −0 i] , i ∈ {Eα,Eβ}

arg min
i

[
−−−−→
R −1 R +

1 ·
−−→
R −1 i], i ∈ {Eα,Eβ}if

−−−−→
R −0 R +

0 ·
−−−→
EαEβ = 0

arg min
i

[
−−−−→
R −2 R +

2 ·
−−→
R −1 i], i ∈ {Eα,Eβ}if

−−−−→
R −0 R +

0 ·
−−−→
EαEβ =

−−−−→
R −1 R +

1 ·
−−−→
EαEβ = 0

(15)

[δg(f)](x) =
∨
z∈Dg

f(x− z) ∆
=

=


arg max

i
[
−−−−→
R −0 R +

0 ·
−−→
R −0 i], i ∈ {Eα,Eβ}

arg max
i

[
−−−−→
R −1 R +

1 ·
−−→
R −1 i], i ∈ {Eα,Eβ} if

−−−−→
R −0 R +

0 ·
−−−→
EαEβ = 0

arg max
i

[
−−−−→
R −2 R +

2 ·
−−→
R −1 i], i ∈ {Eα,Eβ} if

−−−−→
R −0 R +

0 ·
−−−→
EαEβ =

−−−−→
R −1 R +

1 ·
−−−→
EαEβ = 0

(16)

where
−−−−→
R −i R +

i is the ordered direction determined the references R −i and
R +
i , and Eα and Eβ represent the local pseudo-extrema of the colors within

the support of the structuring element. In Figure 9 several results using
the PPM approach on the ”Miro” image are presented. All operations were
applied in RGB color space, since its components are highly correlated and
thus using PCA makes sense.

10
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(a) ε(f), k = 1.5 (b) ε(f), k = 0.2 (c) Miro (d) δ(f), k = 0.2 (e) δ(f), k = 1.5

Fig. 9: Pseudo-erosion and dilation for ”Miro” image using a flat structuring
element of size 11× 11 and two values for the parameter k.

A similarity between the color and gray-scale approaches can be noticed:
(i) the pseudo-dilations make the image lighter, while pseudo-erosions make
it darker, as a consequence of using the black-white axis for ordering the
reference colors; (ii) a low-pass filtering effect is introduced, intrinsic to the
statistical process being used; (iii) the influence of the parameter k value
of the Chebyshev inequality is similar: a small value determines a results
similar to a smoothing filter, while a large value determines a non-linear
behavior.

In [12] we proposed a pseudo-morphology based on the maximum dis-
tance computed for the vector values of the pixels within a neighborhood12.
Given an image represented in the CIE Lab color space, f : Df → R3, with
the support Df ⊂ Z2, we define the two pseudo-extrema in the support Dg

of the flat structuring element g as:

{ea, eb} = arg max
f(i),f(j)

d(f(i), f(j)), ∀i, j ∈ Df ∩Dg (17)

where d(·, ·) represents the CIE Lab ∆E distance [37]. After choosing
the two pseudo-extrema for the local window, the issue of labeling them
can be solved based on distances to the black-white axis or to reference or
convergence colors [7] [8]. We chose a lexicographic ordering <`. For two
vectors v and v′:

∀v,v′ ∈ Rn,v <` v′ ⇔ ∃i ∈ {1, ...n}, (∀j < i, vj = v′j) ∧ (vi < v′i) (18)

We thus define the pseudo-erosion as the minimum, in the lexicographical
sense:

[εg(f)](k) = min`{ea, eb} ∀k ∈ Df (19)

and the pseudo-dilation as the lexicographic maximum:

12R. Coliban, M. Ivanovici, Color and Multispectral Texture Characterization Using
Pseudo-Morphological Tools, IEEE International Conference on Image Processing (ICIP),
Paris, France, October 27-30, 2014, http://dx.doi.org/10.1109/ICIP.2014.7025126
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[δg(f)](k) = max`{ea, eb} ∀k ∈ Df (20)

For multispectral images f : Df → Rn, we use the same definition for the
pseudo-extrema, with the distance measure now representing the Euclidean
distance in Rn, with the labeling performed based on a pre-ordering of the
pixel energy (the lexicographic ordering would have no relevance):

∀v,v′ ∈ Rn,v <e v′ ⇔
n∑
i=1

vi
2 <

n∑
i=1

v′i
2

(21)

Figure 10 shows the results of using the pseudo-dilation operator based
on maximum distance for various sizes of the structuring element for an im-
age (Pompoms) in the data-base CAVE13, Columbia University, New York.

Fig. 10: Pseudo-dilations of image Pompoms for various sizes of the struc-
turing element: 3× 3, 5× 5, 7× 7, 9× 9.

As a direct application for texture analysis, for the Pompoms image we
computed the granulometry and the morphological covariance for the multi-
spectral case, according to the definitions in Chapter 4 of the present thesis
(Figure 11) and we compared them with the ones computed for color and
gray-scale versions of the same image: the evolution of all three curves are
very similar, proving the validity of the operators extension to the multi-
spectral domain.

Fig. 11: Pseudo-granulometry and morphological covariance based on max-
imum distance.

13http://www.cs.columbia.edu/CAVE/databases/multispectral/
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Applications

In what follows we shall focus on a major application - image segmenta-
tion, including an approach based on texture classification. The theoretical
concepts of segmentation approaches are presented in works such [23] and
[15]. We present briefly several segmentation techniques which are presented
together with other approaches in the chapter entitled Color Image Segmen-
tation14 published in Springer.

Watershed segmentation

The watershed segmentation technique is a region-based approach, where
the image is modeled as a landscape [5] [35]. The approach is fundamentally
linked to mathematical morphology. The segmentation process is inspired
by natural phenomena (i.e. precipitation) - the rain falling on the image
landscape will gradually flood the valleys and form basins; the dams between
them will constitute the borders of the segments within the segmentation
maps [6]. When the landscape if completely flooded, the watersheds give
the segmentation map. In Figure 12 the segmentation process is illustrated:
a) the considered basins begin to flood, then the basins V1 and V3 flood two
local minima; b) a dam is built between valleys V1 and V2 and another one
between V2 and V3.

(a) flooding (b) dam formation

Fig. 12: Illustration of the watershed segmentation technique.

The watershed approach is traditionally applied in the original image
domain, but there are approaches like [42] where the segmentation is per-
formed in a feature space. In Figure 13 we show an example of watershed
segmentation, using a local window of size 21×21. Usually a merging phase
follows, in case of over-segmentation.

Chanussot et al. extended the watershed segmentation to the color do-
main using a bit mixing technique for multivalued morphology [10].

14M. Ivanovici, N. Richard, D. Paulus, Color Image Segmentation, in Advanced Color
Image Processing and Analysis, ed. Christine Fernandez-Maloigne, Springer New York,
2013, ISBN 978-1-4419-6190-7, http://www.springer.com/us/book/9781441961891

13
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(a) image (b) landscape and dams

Fig. 13: Exemple of watershed segmentation.

Active contours

The active contours, also known as snakes, were introduced by Terzopoulos
et al. in 1988 [24] and are successfully used for image segmentation. They
are defined as energy-minimizing splines guided by external constraint forces
and influenced by image forces that pull it towards features such as edges.

The initial contour is incrementally deformed according to several spec-
ified energies. According to the original definition, an active contour is a
spline c(s) = [x(s), y(s)], with s ∈ [0, 1], that minimizes the following energy
functional [39]:

ε(c) = εint(c) + εext(c) =

ˆ 1

0
[Eint(c(s)) + Eext(c(s))]ds (22)

where εint(c) represents the internal energy, intrinsic to the spline, and
εext(c) the external energy, computed based on the image. The internal
energy εint is usually:

εint(c) =

ˆ 1

0

1
2 [α(s)

∣∣c′(s)∣∣2 + β(s)
∣∣c′′(s)∣∣2]ds (23)

where c′(s) and c′′(s) are the first and the second derivatives, weighted
by α(s) and β(s), which are usually considered to be constants in most
implementations.

The external energy is given by a certain diffusion model. For extending
the snakes to the color domain, we used the first order moment of the corre-
lation integral to define a diffusion model for color images [21]. In Figure 14
we show results of our multi-scale approach. The hypothesis that is made
is that in such images there are two types of textures, exhibiting different
complexities: one corresponding to the salient object and the other to the
background (the complexity of the latter one being usually smaller).

The external energy is linked to the correlation dimension (practically
being the mean value of the C(δ) distribution) and it represents a measure
of the heterogeneity in a certain neighborhood, at a given resolution. The
external energy forces that drive the active contours are given by the average

14
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(a) initial (b) intermediate (c) final

Fig. 14: Example of segmentation using active contours on an image from
Berkeley data base (100080).

CIE Lab ∆E distance computed locally at different resolutions15, based on
the original image (see Figure 15). For a certain resolution, the value of one
point (x, y) in the energetic surface is given by the average of n2(n2 − 1)/2
distances in a neighborhood of size n× n centered in that specific point.

Eext(x, y)|n×n =
2

n2(n2 − 1)

n2∑
i=1

n2∑
j=i+1

∆E(vi, vj) (24)

(a) 9× 9 (b) 25× 25 (c) 45× 45

Fig. 15: Diffusion pseudo-images for Berkeley image 100080.

Feature-based image segmentation

Very often segmentation is performed in a feature space, not directly on
the pixel data. Usually a classification technique is used (e.g. k-means)
to classify the pixels according to local features computed within a certain
vicinity around it. In Figure 16 we show the results of segmentation based
on the two morphological features presented in Chapter 4: the granulometry
and the morphological covariance. The classification was unsupervised, k-
means for k = 2 based on the hypothesis that there are only two regions in

15M. Ivanovici, D. Stoica, Color diffusion model for active contours - an application to
skin lesion segmentation, Annual International Conference of the IEEE, Engineering in
Medicine and Biology Society (EMBC), 2012, http://dx.doi.org/10.1109/EMBC.2012.
6347202

15
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the image, from the point of view of texture characterization: the object of
interest and the background.

(a) image (b) granulometry (c) morphological cov.

Fig. 16: Example of segmentation using local morphological features.

To illustrate this color textured image segmentation technique, we used
as local texture feature the vector of volumes computed between pseudo-
dilation and pseudo-erosion, for varying sizes of the structuring element.
The two pseudo-morphological operations are presented in Chapter 4 of the
thesis. We compare the results of our approach with two approaches: the
α-trimmed pseudo-morphology, computed in the RGB color space and with
the lexicographical morphological approach, using the HSV color space with
(V,S,H) component priority. We computed the vector of the local volume,
using a sliding window, followed by a k-means classification in two classes.
We also generated a ground-truth segmentation, performed by a human,
which is used as a reference for computing the percentage of the correctly
classified pixels. The results are presented in Figure 17.

ground-truth PPM α-trimmed (V,S,H)-lex.

Fig. 17: Segmentation results using color texture features.

As a quantitative comparison, we computed the percentage of correctly
classified pixels as a segmentation evaluation criterion, as in [9]. The results

16
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are presented in the table below. In most of our experiments, PPM leads to a
better segmentation, proving the increased ability to capture the complexity
of textures and its variation along the analysis scales.

PPM α-trimmed (V,S,H) lex.

Berkeley108073 92.37% 91.41% 90.57%

Berkeley130066 96.06% 95.37% 95.40%

Berkeley43033 96.35% 86.01% 86.19%

Instead of conclusions

The segmentation process requires addressing three issues: (i) the features
capturing the homogeneity of regions, (ii) the similarity measures or dis-
tance functions between features content and (iii) the segmentation frame-
work which optimizes the segmentation map as a function of the feature-
metric pair. We presented the color segmentation frameworks separately,
but very often there is only a fine frontier between them and quite often hy-
brid techniques emerge, that combine for instance pyramids and watersheds
[1]. However, the segmentation approaches evolved towards unanimously-
accepted frameworks: pyramidal approaches, watershed, JSEG, graph cuts,
normalized cuts, active contours or more recently, TurboPixels.

Nowadays the question still remains since Haralick: which is the best
value for the parameters of the homogeneity criteria? There are no recom-
mended recipes. New perspectives come from psychophysics with perceptual
theory, in particular Gestalt theory. As the homogeneity or heterogeneity
definition have been expressed as complexity of a feature distribution, these
perceptual theories search to explain what are the physical parameters that
are taken into account by the human visual system. An open question is
given by the relationship between the similarity law from Gestalt theory
and the homogeneity. Randall in [34] links the similarity law to grouping
into homogeneous regions of color or texture. Nevertheless, the definition
of homogeneity and implicitly the one of complexity is still imperfect, and
represents a niche for the future research.
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