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List of notations 

 

 

 

R  : the set of real numbers  

C  : the set of complex numbers  

[a, b]: interval 

N *: the set of positive integers 

R  : the set of real numbers   

R + : the set of nonnegative real numbers  


R  : the set of nonzero real numbers  

exp(x): the exponential function 

log(x): the logarithmic function with the base e 

R n : Euclidean n-space 

Mn(R), Mn(C) : spaces of n × n-dimensional matrices 

 det A : determinant of A 

kx

f




: partial derivative  

A(s, t), G(s, t), H(s, t) : arithmetic, geometric and harmonic means  

I(s, t) : identric mean  

L(s, t) : logarithmic mean  

Mp(s, t): Hölder (power) mean  

n,i 1 : n,...,,i 21  

R([a, b]) : the space of Riemann-integrable functions on the interval [a, b] 

C0([a, b]) : the space of real-valued continuous functions on the interval [a, b] 

 b,aL2 : the space of integrable functions f on the interval [a, b], with   

b

a

dxxf 2

 

B(H): algebra of bounded linear operators on a real Hilbert space H.  
y,x : inner product  

x : norm of x  

B#A p,  : quasi-arithmetic power means for operators 

BA p  : weighted arithmetic mean for operators 

B!A p : weighted harmonic mean for operators 

B#A p : weighted geometric mean for operators 

B#A :  geometric mean for operators 

 nq p,...,p,pH 21 : the Tsallis entropy 

 np,...,p,pH 21 : the Shannon entropy  

 nq p,...,p,pR 21  : the Rényi entropy  

 nn r,...,r,rp,...,p,pD 21211

  : the quasilinear relative entropy  

 nnq r,...,r,rp,...,p,pR 2121  : the Rényi relative entropy  

 nnq r,...,r,rp,...,p,pD 2121  : the Tsallis relative entropy  

 nq p,...,p,pI 21

 : the Tsallis quasilinear entropy (q-quasilinear entropy)  
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 nnq r,...,r,rp,...,p,pD 2121

 : the Tsallis quasilinear relative entropy  

□: end of a proof 
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Abstract 
 

 

 

 

In this habilitation thesis we have described the significant results achieved by the 

author after obtaining his PhD degree in Mathematics from Simion Stoilow 

Institute of Mathematics of the Romanian Academy, in 2012. Inequalities Theory 

represents an old topic of many mathematical areas which still remains an 

attractive research domain with many applications. The study of convex functions 

occupied and occupies a central role in Inequalities Theory, because the convex 

functions develop a series of inequalities. 

The research results presented here are concerned with the improvement of 

classical inequalities resulting from convex functions and highlighting their 

applications.  

A function RI:f , where I is an interval, is called  convex  if we have 

                                                  bftatfbttaf  11 ,  

for all  10,t,Ib,a  .  

Related to probability theory, a convex function applied to the expected value of 

a random variable is always less than or equal to the expected value of the convex 

function of the random variable. This result, known as Jensen's inequality, 

underlies many important inequalities. 

Another important result related to convex function is the Hermite–Hadamard 

inequality, due to Hermite [107] and Hadamard [99], which asserts that for every 

continuous convex function   Rb,a:f the following inequalities hold: 

 
   

2

1

2

bfaf
dttf

ab

ba
f

b

a













 
 . 

       Related to the Hermite–Hadamard inequality, many mathematicians have 

worked with great interest to generalise, refine and extend it for different classes of 

functions such as: quasi-convex functions, log-convex, r-convex functions, etc and 

apply it for special means (logarithmic mean, Stolarsky mean, etc). 

       The habilitation thesis is focused on the study of important inequalities from 

Inequalities Theory and on their impact in some applications.  

       The thesis consists of four chapters. It also includes a list of notations and a 

bibliography with 211 references.  

       In the first part of this thesis we have presented the scientific and professional 

achievements and the evolution and development plans for career development.  

       The first chapter studies the inequalities developed from convex functions. This 

chapter contains several original results, many of them published in ISI journals. 

These studies are linked to several inequalities such as the Hermite-Hadamard 

inequality, the Fejér inequality, Hammer-Bullen’s inequality and Young’s 

inequality. In the last part of this chapter we present several Grüss-type 

inequalities in discrete form and in integral form. Here we show a refinement of 

Grüss’s inequality via Cauchy–Schwarz’s inequality for discrete random variables 

in finite case. In the end, we have analyzed the bounds of several statistical 

https://en.wikipedia.org/wiki/Real-valued_function
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Jensen%27s_inequality
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indicators and we have given a generalized form of Grüss type inequality and we 

have obtained other integral inequalities.  

       The second chapter studies the inequalities for functionals and inequalities for 

invertible positive operators. Here there are researched the Jensen functional under 

superquadraticity conditions and the Jensen functional related to a strongly convex 

function. We have shown several inequalities on generalized entropies. Generalized 

entropies have been studied by many researchers. Rényi [191] and Tsallis [201] 

entropies are well known as one-parameter generalizations of Shannon’s entropy, 

being intensively studied not only in the field of classical statistical physics [202–

204], but also in the field of quantum physics [198].  

        We have also studied the inequalities for invertible positive operators that 

have applications in operator equations, network theory and in quantum 

information theory.  

        The third chapter explores the inequalities in an inner product space (pre-

Hilbert space). We remark the study of the Cauchy - Schwarz inequality in an inner 

product space and some reverse inequalities for the Cauchy-Schwarz inequality in 

an inner product space. We also make considerations about several inequalities and 

we mention a characterization of an inner product space. 

         In the second part of this habilitation thesis we have presented the evolution 

and development plans for career development. 

        The last chapter examines several future directions for research. We have 

identified three future directions for research, namely: future directions for research 

related to Hermite-Hadamard’s inequality and Hammer-Bullen’s inequality; future 

directions for research related to Young’s inequality and Hardy’s inequality and 

future directions for research related to inequalities in an inner product space.  

        Their study is initiated so as to improve some results on classical inequalities.  

        Original results of this habilitation thesis have been published in journals such 

as: Aequat.  Math., Int. J. Number Theory, J. Inequal. Appl., Math. Inequal., J. 

Math. Inequal., Gen. Math., Appl. Math. Inf. Sci. etc. 
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Rezumat 
 

 

În această teză de abilitate am descris rezultatele semnificative obținute de autor 

după ce a obținut titlul de doctor în matematică la Institutul de Matematică Simion 

Stoilow al Academiei Române în anul 2012. Teoria inegalităților reprezintă un 

subiect vechi al multor domenii matematice, care rămâne un domeniu de cercetare 

atractiv cu multe aplicații. Studiul funcțiilor convexe a ocupat și ocupă un rol central 

în teoria inegalităților, deoarece funcțiile convexe dezvoltă o serie de inegalități. 

Rezultatele cercetărilor prezentate aici se referă la îmbunătățirea 

inegalităților clasice care rezultă din funcțiile convexe și evidențierea aplicațiilor 

acestora. 

O funcție RI:f , în care I este un interval, se numește convexă dacă avem 

                                                  bftatfbttaf  11 ,  

pentru orice  10,t,Ib,a  .  

Legat de teoria probabilității, o funcție convexă aplicată la valoarea așteptată 

a unei variabile aleatoare este întotdeauna mai mică sau egală cu valoarea 

așteptată a funcției convexe a variabilei aleatoare. Acest rezultat, cunoscut sub 

numele de inegalitatea lui Jensen, stă la baza multor inegalități importante. 

Un alt rezultat important legat de funcția convexă este inegalitatea Hermite-

Hadamard, datorată lui Hermite [107] și Hadamard [99], care afirmă că pentru 

orice funcție convexă continuă   Rb,a:f avem următoarea inegalitate: 

 
   

2

1

2

bfaf
dttf

ab

ba
f

b

a













 
 . 

Legat de inegalitatea Hermite-Hadamard, mulți matematicieni au lucrat cu 

mare interes la generalizarea, rafinarea si extinderea acesteia pentru diferite clase 

de funcții cum ar fi: funcțiile cvasi-convexe, funcțiile log-convexe, funcțiile r-convexe 

etc. și aplicarea lor pentru medii speciale (media logaritmică, media Stolarsky, etc).  

Teza de abilitare se axează pe studierea inegalităților importante din teoria 

inegalităților și a impactului acestora în unele aplicații. 

         Teza constă din patru capitole. De asemenea, include o listă de notații și o 

bibliografie cu 211 de referințe.  

În prima parte a acestei lucrări am prezentat realizările științifice și 

profesionale și planurile de evoluție și dezvoltare pentru dezvoltarea carierei.  

Primul capitol studiază inegalitățile rezultate din funcțiile convexe. Acest 

capitol conține mai multe rezultate originale, multe dinte ele publicate în reviste 

ISI. Aceste studii sunt legate de câteva inegalități, precum: inegalitatea Hermite-

Hadamard, inegalitatea Fejér, inegalitatea lui Hammer-Bullen și inegalitatea lui 

Young. 

În ultima parte a acestui capitol prezentăm mai multe inegalități de tip Grüss 

în formă discretă și în formă integrală. Aici vom arăta o rafinare a inegalității lui 

Grüss prin inegalitatea Cauchy-Schwarz pentru variabile aleatoare discrete în 

cazul finit. În final, am analizat marginile mai multor indicatori statistici și am dat 

o formă generalizată a inegalității de tip Grüss și am obținut alte inegalități 

integrale.  
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În al doilea capitol studiem inegalitățile pentru funcționale și inegalități 

pentru operatorii inversabili pozitivi. Aici este cercetată funcționala Jensen în 

condiții de superpătricitate și funcționala  Jensen legată de o funcție puternic 

convexă. Am arătat mai multe inegalități privind entropiile generalizate. Entropiile 

generalizate au fost studiate de mulți cercetători. Entropiile Rényi [191] și Tsallis 

[201] sunt bine cunoscute ca generalizări cu un parametru ale entropiei lui 

Shannon, fiind studiate intensiv nu numai în domeniul clasic al fizicii statistice 

[202-204], ci și în domeniul fizicii cuantice[198]. 

De asemenea, am studiat inegalitățile pentru operatorii inversabili pozitivi 

care au aplicații în: ecuațiile operatorilor, teoria rețelelor și teoria cuantică a 

informațiilor.  

Al treilea capitol explorează inegalitățile într-un spațiu vectorial înzestrat cu 

produs scalar (prehilbertian). Remarcăm studiul inegalității Cauchy-Schwarz într-

un spațiu vectorial înzestrat cu produs scalar și unele inegalități inverse pentru 

inegalitatea Cauchy-Schwarz într-un spațiu prehilbertian. De asemenea, facem 

câteva considerații cu privire la mai multe inegalități și menționăm o caracterizare a 

unui spațiului vectorial înzestrat cu produs scalar. 

În a doua parte a acestei teze de abilitate am prezentat planurile de evoluție 

și dezvoltare pentru dezvoltarea carierei. 

Ultimul capitol analizează mai multe direcții viitoare de cercetare. Am 

identificat trei direcții viitoare de cercetare, și anume: viitoare direcții de cercetare 

legate de inegalitatea lui Hermite-Hadamard și inegalitatea lui Hammer-Bullen; 

viitoarele direcții de cercetare referitoare la inegalitatea lui Young și inegalitatea lui 

Hardy și direcțiile viitoare de cercetare referitoare la inegalitățile dintr-un spațiu 

vectorial înzestrat cu produs scalar. 

Studiul lor este inițiat pentru a îmbunătăți unele rezultate privind 

inegalitățile clasice. 

Rezultatele originale ale acestei teze de abilitate au fost publicate în reviste 

precum: Aequat.  Math., Int. J. Number Theory, J. Inequal. Appl., Math. Inequal., 

J. Math. Inequal., Gen. Math., Appl. Math. Inf. Sci. etc. 
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(B) Scientific and professional achievements and the 

evolution and development plans for career development 

(B-i) Scientific and professional achievements 

 

 

Chapter 1 

 

 

Inequalities developed from convex functions 
 

 
The study of optimization problems is distinguished by a number of properties 

characterized by convex functions. These functions play an important role in many 

areas of mathematics. The convex functions develop a series of inequalities. 

A function RI:f , where I is an interval, is called  convex  if the line 

segment between any two points on the graph of the function lies above or on the 

graph. Equivalently, a function is convex if the set of points on or above the graph of 

the function is a convex set. In fact, we have 

                                                  bftatfbttaf  11 ,  

for all  10,t,Ib,a  . 

As applications of convex function we have the following: every norm is a convex 

function, by the triangle inequality and positive homogeneity; the 

function  Xdetlog

 

on the domain of positive-definite matrices is convex; another 

example is Euler’s gamma function,

 

  




0

1 dtetx tx , 0x  (in fact Euler’s gamma 

function is a log-convex function, i.e., we have        bfafbttaf tt  11 , for all 

 10,t,Ib,a  ); if a function RI:f is log-convex, then it is also convex; related 

to probability theory, a convex function applied to the expected value of a random 

variable is always less than or equal to the expected value of the convex function of 

the random variable. This result, known as Jensen's inequality, which underlies 

many important inequalities, is given as: for a real convex function f, 

numbers  nx,...,x,x 21

 

in its domain, and positive weights nw,...,w,w 21 , we have: 

(1.1)                                      

 















 





















n

i

i

n

i

ii

n

i

i

n

i

ii

w

xfw

w

xw

f

1

1

1

1 . 

When, we have nw...ww  21 , then, we deduce the classical variant of Jensen's 

inequality: 

https://en.wikipedia.org/wiki/Optimization
https://en.wikipedia.org/wiki/Real-valued_function
https://en.wikipedia.org/wiki/Line_segment
https://en.wikipedia.org/wiki/Line_segment
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Convex_set
https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/Triangle_inequality
https://en.wikipedia.org/wiki/Homogeneous_function#Positive_homogeneity
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Jensen%27s_inequality
https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Jensen%27s_inequality
https://en.wikipedia.org/wiki/Jensen%27s_inequality
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(1.2)                                         

 

n

xf

n

x

f

n

i

i

n

i

i 
 





















11 . 

 

1.1 About the Hermite-Hadamard inequality 
 

As a particular case, in Jensen's inequality, for 2n

 

in inequality (1.2), we have: 

(1.1.1)                                       
   

22

bfafba
f










 
.  

An important result related to inequality (1.1.1) is the Hermite–Hadamard 

inequality, due to Hermite [107] and Hadamard [99], which asserts that for every 

continuous convex function   Rb,a:f the following inequalities hold: 

(1.1.2)                                
   

2

1

2

bfaf
dttf

ab

ba
f

b

a













 
 .  

Hardy, Littlewood and Pólya presented in the book [106] the following result, 

which characterise the convex functions, given by: 

Theorem 1.1.1. A necessary and sufficient condition that a continuous function f be 

convex in (a, b) is that  

(1.1.3)                                                  dttf
h

xf

hx

hx







2

1
. 

for a ≤ x − h < x + h ≤ b. It can be shown that this result is equivalent to the first 

inequality in (1.1.2) when f is continuous on [a, b]. 

Related to the Hermite–Hadamard inequality, many mathematicians have 

worked with great interest to generalise, refine, counterpart and extend it for 

different classes of functions such as: quasi-convex functions, log-convex, r-convex 

functions, etc and apply it for special means (logarithmic mean, Stolarsky mean, 

etc). 

In the monograph [51], Dragomir and Pearce presented many 

characterizations of the Hermite-Hadamard inequality.  

Ioan Rașa [165] made the following remark in connection with the above 

refinement on Hermite-Hadamard inequality: if   Rb,a:f is a convex function, 

then  

(1.1.4)                               dttf
ab

c
ba

fc
ba

f

b

a

































 1

222

1
, 

for every 






 


2
0

ab
,c , and 

4

ab
c


   is maximal with this property. 

A series of proofs and improvements of the Hermite-Hadamard inequality 

were given over time (see [32, 54, 55, 68]). In [22], Bessenyei applied Hermite-

Hadamard inequality on simplices and Bessenyei and Páles established in [21] 

several inequalities of Hermite-Hadamard type for generalized convex functions. An 

extension of the Hermite-Hadamard inequality through subarmonic function was 

also given by Mihăilescu and Niculescu in [139]. The Hermite-Hadamard inequality 

is the starting point to Choquet’s theory [166]. 

https://en.wikipedia.org/wiki/Jensen%27s_inequality
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Before stating the results, we recall some useful facts from literature. 

Dragomir, Cerone and Sofo present in [56, 57] the following estimates of the 

precision in the Hermite-Hadamard inequality: 

Proposition 1.1.2. Let   Rb,a:f  be a twice differentiable function such that 

there exist real constants m and M so that Mfm  " . Then 

(1.1.5)                           
 

 
 

242

1

24

22
ab

M
ba

fdttf
ab

ab
m

b

a










 






  

and 

(1.1.6)                           
     

 
 

12

1

212

22
ab

Mdttf
ab

bfafab
m

b

a











 . 

These inequalities follow from the Hermite-Hadamard inequality, for the convex 

functions  
2

2x
mxf   and  

2

2x
Mxf  .  

Theorem 1.1.3 (Minculete-Mitroi [145]). Let   Rb,a:f  be a twice differentiable 

function such that there exist real constants m and M so that M"fm  . Then 

 (1.1.7)        
 

          
 

 22

2

1
11

2

1
abMbafbfafabm 




 



 

for all  1,0 . 

Remark 1.1.4. By integrating each term of the inequality (1.1.7) on [0, 1] with 

respect to the variable  , we recover the inequality (1.1.6). 

Corollary 1.1.5 (Minculete-Mitroi [145]).  Preserving the notation of Theorem 1.1.3, 

the following inequalities hold: 

(1.1.8)  

 
        

 
 22

2

8

21

2
11

2

1

8

21
abM

ba
fbafbafabm 










 


 



 

for all  1,0 . 

Remark 1.1.6. Notice that by integrating all terms of the inequality (1.1.8) on [0, 1] 

with respect to the variable  , we recover the inequality (1.1.5). 

The following result incorporates the classic statement of the Hermite-Hadamard 

inequality. 

Corollary 1.1.7 (Minculete-Mitroi [145]).   Suppose   Rb,a:f  is differentiable 

and convex. Then 

(1.1.9)      
   

 
   

    0dttgtf
ax

1

2

xfaf

ab

ax
dttf

ab

1

2

bfaf
x

a

b

a






























  

and 

 (1.1.10)             0,
2

xa
fdttf

ax

1

ab

ax

2

ba
fdttf

ab

1
x

a

b

a






















 













 


   

for all  ba,yx,   . 

 

1.2   Fejér type inequalities for convex functions  
 

Fejér [71], studying trigonometric polynomials, obtained some inequalities, which 

generalise the Hermite-Hadamard inequality, and thus established the following 

well-known weighted generalization: 
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Theorem 1.2.1. If   Rb,a:f  is continuous and convex and if   Rb,a:g is 

integrable and symmetric with respect to the line   2/bax  , that is, 

     t/bagt/bag  22 . Then 

(1.2.1)                                   
   

 dttg
bfaf

dttgtfdttg
ba

f

b

a

b

a

b

a

 









 

22
.  

Motivated by the above results, in the paper [145] we have shown other 

inequalities of Fejér type: 

Theorem 1.2.2 (Minculete-Mitroi [145]). Let   Rb,a:f  be a twice differentiable 

function such that there exist real constants m and M so that M"fm  . Assume 

  Rb,a:g is integrable and symmetric about 
2

ba 
. Then the following 

inequalities hold: 

 (1.2.2)      
   

           




b

a

b

a

b

a

b

a

dttgtbat
M

dttgtfdttg
bfaf

dttgtbat
m

222
 

and 

(1.2.3)                   .dttgbat
M

dttg
ba

fdttgtfdttgbat
m

b

a

b

a

b

a

b

a

 






 


22
2

82
2

8
 

Remark 1.2.3. For the particular case   1xg , if we apply Theorem 1.2.2 on the 

intervals 






 

2

ba
,a , 







 
b,

ba

2
 , we get: 

(1.2.4)       
     

 
 

48

1

222

1

48

22
ab

Mdttf
ab

ba
f

bfafab
m

b

a





















 






  

which represents an improvement of the Hammer-Bullen inequality [166], given by: 

(1.2.5)                               
   








 





  22

2 ba
f

bfaf
dttf

ab

b

a

. 

The following theorem gives new Fejér-type inequalities. 

 

Theorem 1.2.4 (Minculete-Mitroi [145]). Let   Rb,a:f  be a differentiable, convex 

function with 0"f  and   Rb,a:g  be continuous. Then the following statements 

hold. 

 i) If g is monotonically decreasing, then 

 (1.2.6)  
   

     
   

      0;dttgtfdttg
2

xfaf
dttgtfdttg

2

bfaf
x

a

x

a

b

a

b

a







  

ii) If g is monotonically increasing, then 

 (1.2.7)                 0,dxtg
2

xa
fdttgtfdttg

2

ba
fdttgtf

x

a

x

a

b

a

b

a








 








 
   

for all  ba,yx,   . 

We end this section with weighted statement of a known result concerning 

convex functions. In the light of Proposition 1.2.1, the following statement appears 

as a trivial generalization of a result due to Vasić and Lacković [205], and Lupaș 

[128] (cf. Pećarić et. al [176]) and we omit its proof. 
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Proposition 1.2.5. Let p and q be two positive numbers and 11 bbaa  . Let 

  Rb,a:g  be integrable and symmetric about 
qp

qbpa
A




 . Then the inequalities 

(1.2.8)            
   

 



























yA

yA

yA

yA

yA

yA

dttg
qp

bqfapf
dttgtfdttg

qp

qbpa
f  

hold for 0y  and all continuous convex function   R11 b,a:f  if and only if 

 q,pmin
qp

ab
y




  . 

This inequality is due to Brenner and Alzer [25]. 

From inequality (1.2.6) applied to the convex function pt , with 

     110  \,,p , we have (see [145]) 

(1.2.9)                           ,x,aSx,aAaxb,aSb,aAab
p

p

p

p

p

p

p

p   

where  b,ax . Here  
p/

pp

p

ba
b,aA

1

2 






 
 is the power mean and 

 
 

  11 















p/
pp

p
bap

ba
b,aS , 10,p  , is the Stolarsky mean. Also the limit case 1p  

(or we may equivalently say the case of the convex function 
t

1
) gives us 

(1.2.10)               
   

 
   

















x,aLx,aH
ax

b,aLb,aH
ab

1111
, 

where  
ba

ab
b,aH




2
 is the harmonic mean and  

alogblog

ab
b,aL




  is the 

logarithmic mean. 

Some of the previous results where mentioned in the following papers, thus: 

in [168], Niezgoda, established some generalizations of Fejér inequality for convex 

sequences, in {169} he gave several inequalities for convex sequences and 

nondecreasing convex functions and in [122], Kunt et al. found new inequalities of 

Hermite-Hadamard-Fejér type for harmonically convex functions via fractional 

integrals. 

 

 

1.3  Two reverse inequalities of Hammer-Bullen’s inequality 
 

For certain constraints of f, in [51], Dragomir and Pearce found an improvement of 

Hammer-Bullen ′s inequality given by the following: 

Theorem 1.3.1. Let   Rb,a:f  be a twice differentiable function such that there 

exist real constants m and M so that M"fm  . Then the following inequalities 

hold: 

(1.3.1)       
     

 
 

24

2

2224

22
ab

Mdttf
ab

ba
f

bfafab
m

b

a













 






 . 

This result was mentioned in Remark 1.2.2. 

Next, we provide two reverse inequalities of Hammer-Bullen ′s inequality. 
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Lemma 1.3.2 (Minculete-Dicu-Rațiu [146]). Whenever   Rb,a:f  is a twice 

differentiable function, we have the following equality: 

 

(1.3.2)       
   

      






 














 



b

a

b

a

dxx"fxq
ba

x
ab

dttf
ab

ba
f

bfaf

2

12

22
, 

where 

 



















 









 




b,
ba

x,xb

ba
,ax,xa

xq

2

2
. 

 

Remark 1.3.3. a) Clearly for  b,ax , one has   0
2








 
 xq

ba
x . By some 

elementary computations one obtains: 

 
 

242

3
ab

xq
ba

x

b

a










 
 . 

Therefore, for every  b,ax , we can write 

       xq
ba

xMx"fxq
ba

xxq
ba

xm 






 








 








 


222
. 

Integrating from a to b, multiplying by  ab/ 1  and using relation (1.3.2), we 

obtain the inequalities from (1.3.1). b) Inequalities (1.3.1) can also be obtained by 

applying the Hammer-Bullen inequality for the convex functions  
2

2x
mxf   and 

 
2

2x
Mxf  .  

In the following, we give a reverse inequality of Hammer-Bullen ′s inequality. 

Theorem 1.3.4 (Minculete-Dicu-Rațiu [146]). Let   Rb,a:f  be a twice 

differentiable and convex function. Then the following inequality holds 

(1.3.3)       
   

 
      

16

2

22

a'fb'fab
dttf

ab

ba
f

bfaf
b

a













 



 . 

Applying the inequality of Grüss (see [98]), we obtain the following: 

Theorem 1.3.5 (Minculete-Dicu-Rațiu [146]). Let   Rb,a:f  be a twice 

differentiable function and assume there exist real constants m and M such that: 

  Mx"fm   for all  b,ax . Then  

(1.3.4)       
   

 
         

6416

2

22

2
abmMa'fb'fab

dttf
ab

ba
f

bfaf
b

a
















 



 . 

If we consider   pxxf  , 1p . Obviously f is a convex function. According to 

Theorem 1.3.4 one has: 

     
  

16
2

11  


ap
p

p

ppp ababp
b,aSb,aAb,aA , 
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where  
2

ba
b,aA


  is the arithmetic mean and  

 

 11 















p/
pp

p
bap

ba
b,aS , 10,p  ,  

is the Stolarsky mean. 

For   xlogxf  , 0x , we have that f is a convex function. Applying 

Theorem 1.3.4 for f, we find the inequality  

   
 

 b,aIeb,aGb,aA ab

ab

216

2





, 

where   abb,aG   is the geometric mean and  
 ab/

a

b

a

b

e
b,aI













1

1
 is the identric 

mean. 

In [Minculete-Florea-Furuichi, 147], our purpose was to establish several 

inequalities related to Hermite-Hadamard inequality. We also proved a 

generalization of the Hammer-Bullen inequality. 

Let       Rb,a:fH,fH ba  be two functions defined by: 

    
   

 




x

a

a dttf
xfaf

axxfH
2

 

and 

    
   

 




b

x

b dttf
xfbf

xbxfH
2

. 

Lemma 1.3.6. Let   Rb,a:f  be a twice differentiable function such that 

  0x"f , for all  b,ax . Then we have that the functions  fHa  and  fHb  are 

nonnegative and convex. 

Since the functions  fHa  and  fHb are convex, then applying the Hermite-

Hadamard inequality, we obtain the following: 

Theorem 1.3.7 (Minculete-Florea-Furuichi [147]). Let   Rb,a:f  be a twice 

differentiable function such that   0x"f , for all  b,ax . Then, we have 

(1.3.5)                    
   

 
 

   








 dxxfH
ab

dttf
ab

bfaf
b

a

a

b

a

2

21

2
 

 
  0

2

2

2
2













 






dttf
ab

ba
faf

ba

a  
and 

(1.3.6)                      
   

 
 

   








 dxxfH
ab

dttf
ab

bfaf
b

a

b

b

a

2

21

2
 

                                          

 
  0

2

2

2

2













 





dttf
ab

ba
fbf b

ba

. 

 

Remark 1.3.8. By adding relations (1.3.5) and (1.3.6) we deduce the following 

inequality: 
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(1.3.7)       
   

 
 

      








 dxxfHxfH
ab

dttf
ab

bfaf
b

b

a

a

b

a

2

11

2
 

   
  0

2

222

1
2




























 







dttf
ab

ba
f

bfaf

ba

a

. 

 Theorem 1.3.9 (Minculete-Florea-Furuichi [147]). Let   Rb,a:f  be a twice 

differentiable function such that   0x"f , for all  b,ax . Then, we have 

(1.3.8)                     

      
   

 
 

  
 

    0
421

2 32












 dxxfHH

ab
dxxfH

ab
dttf

ab

bfaf
b

a

as

b

a

a

b

a

 

and 

(1.3.9)                     

       
   

 
 

  
 

    0
421

2 32












 dxxfHH

ab
dxxfH

ab
dttf

ab

bfaf
b

a

bs

b

a

b

b

a

, 

where  b,as . 

To generalize the above results, we can extend the functions 

      Rb,a:fH,fH ba  to the functions       Rb,a:g,fH,g,fH ba  which are 

defined by: 

    
   

    

















x

a

x

a

a dttgtf
xfaf

dttgxg,fH
2

 

and 

    
   

    

















b

x

b

x

b dttgtf
xfbf

dttgxfH
2

. 

If we take the following functions:       Rb,a:g,fH,g,fH ba  defined by: 

        




















 
 

x

a

x

a

a dttg
xa

fdttgtfxg,fH
2

 

and 

        




















 
 

b

x

b

x

b dttg
xb

fdttgtfxfH
2

,  

then, we deduce the following: 

Theorem 1.3.10 (Minculete-Florea-Furuichi [147]). Let   Rb,a:f  be a twice 

differentiable function and   Rb,a:g is a differentiable function symmetric 

about 
2

ba 
. Then the following inequalities hold: 

 (1.3.10)             














 








 








 
 dttgtfdttg

ba
f

ba
fdttg

ba
f

b

a

b

a

b

a
4

3

4

3

2

1

2
 

                            

   
 

   
 dttg

bfaf
tdtg

ba
f

bfaf
b

a

b

a



















 




2222

1
. 
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We also established an estimation of Féjer inequalities for different kinds of 

functions. In this context, we show an alternative proof and a generalization of 

Theorem 1.2.4 in [142], considering the integrability Riemann-Stieltjes. 

Future directions for research related to Hammer-Bullen’s inequality will be 

analyzed in the paper [Minculete-Niezgoda-Mitroi, 142]. 

 

 

1.4   Young type inequalities 
 

 

The Young integral inequality is the source of many basic inequalities. Young 

[208] proved the following: 

Theorem 1.4.1. Suppose that     ,,:f 00  is an increasing continuous function 

such that   00 f  and   


xflim
x

. Then 

(1.4.1)                                           b,a;fYdxxfdxxfab

a b

  


0 0

1 . 

There has been much work on different proofs and generalisations of (1.4.1) 

(Bullen [27] and Mitrinović et al. [155]). 

It is easy to see that in relation  (1.4.1), ab is a lower bound for the Young 

functional Y (f;a,b). 

In 1974, Merkle [138] showed that there cannot be an upper bound to Y (f;a,b) 

which is independent of f. He proves the following theorem which provides a reverse 

inequality. 

Suppose the conditions of Theorem 1.4.1 hold. Then 

(1.4.2)                                         bbf,aafmaxb,a;fY 1 . 

Lemma 1.4.2. If f satisfies the assumptions of Theorem 1.4.1, then 

(1.4.3)                          
 

  af,a;fYdxxfdxxfaaf

a af

  


0 0

1 . 

We remark the relation: 

(1.4.4)                               bbfaafaf,bf;fYb,a;fY 11   .  

Witkowski, in his paper [206], showed another reverse Young’s integral 

inequality, thus: under the assumptions of Theorem 1.4.1, the inequality  

(1.4.5)                                     afbbfaafb,a;fYab  1 . 

holds with equality if and only if  afb  . In [140], Minguzzi generalizes this 

inequality. 

Using conveniently inequality (1.4.5), for    af,bf 1 , we find the following 

inequality:  

(1.4.6)                                    bafabbfaf,bf;fYbfaf   111 . 

Combining relations (1.4.4) and (1.4.6), we obtain again inequality (1.4.5). 

Again, Witkowski [206] gave another result related to Young’s integral 

inequality, thus, under the assumptions of Theorem 1.4.1, the inequality  

(1.4.7)                
 

 
 

  






















a b

dxxf
bf

a
,mindxxf

af

b
,minab

0 0

1

1
11 . 

holds with equality if and only if  afb  . 
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Cerone, in [33], proved that the upper bound obtained by Witkowski given in 

(1.4.5) is always better than that of Merkle (1.4.2). 

For   1 pxxf , 1p , in Theorem 1.4.8, we deduce the inequality: 

(1.4.8)                      
q

b

b

ab
,min

p

a

a

ab
,minab

q

q

p

p

















 11 . 

 

For   1 pxxf , 1p , in Theorem 1.4.1, we deduce the Young inequality: 

(1.4.9)                                     
q

b

p

a
ab

qp

 , 

for all 0b,a  and 1q,p  with 1
11


qp
. 

Minguzzi, in [140], proved a reverse Young’s inequality in the following way: 

(1.4.10)                              ababab
q

b

p

a qp
qp

  110 , 

for all 0b,a  and 1q,p  with 1
11


qp
. 

This inequality is equivalent to the following inequality, for 1
1

 u

u

u xb,xa,
u

p : 

If 0b,a  and  10,p , we change p  and 
p

1
,   a  by pa  and b  by pb 1 , then 

the Young inequality becomes: 

(1.4.11)                                         bppaba pp  11 , 

But, this is true, when 0b,a  and  10,p .  

Especially, when we talk about Young's inequality, we will refer to the last 

form. 

Next, we present some refinements and some reverse inequalities of Young’s 

inequality, which we have used in our research. 

One of reverse inequalities for Young inequality was given by Tominaga in 

[200], using the Specht ratio, in the following way 

(1.4.12)                                          ppba
b

a
Sbppa 









 11 , 

for positive real numbers a, b and  10,p , where the Specht ratio [78, 93] was 

defined by  

  ,h,

hloge

h
hS

h

h

1

1

1

1

1







 

for a positive real number h. 

Note that   1
1




hSlim
h

 and S(h) = S(1/h) > 1 for 01  h,h . We call the 

inequality (1.4.12) a ratio-type reverse inequality for Young’s inequality.  

 Tominaga also showed in [200] the following inequality: 

(1.4.13)                              ppba
b

a
Slogb,aLbppa 








 11 , 

for positive real numbers a,b and  10,p , where the logarithmic mean [26] L(x,y) is 

defined by 
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   yx,
ylogxlog

yx
y,xL 




 ,   xx,xL  . 

We call the inequality (1.4.13) a difference-type reverse inequality for Young’s 

inequality. Based on the scalar inequalities (1.4.12) and (1.4.13), Tominaga showed 

two reverse inequalities for invertible positive operators. 

In [Furuichi-Minculete, 76], we presented two inequalities which give two 

different reverse inequalities for Young’s inequality, namely: 

(1.4.14)             
    

  






 

 1

2

2

11 1
10 ba

m

ba
expbababa , 

and 

(1.4.15)                M
b

a
logbaba

2

1 110








    , 

where 0b,a ,  b,aminm  ,  b,amaxM  , for all  1,0 . 

The above results are the particular cases of the following theorem from 

[Furuichi-Minculete, 76]: 

Theorem 1.4.3. Let   Rb,a:f  be a twice differentiable function such that there 

exist real constant M so that M"f 0 , for  b,ax . Then the following inequalities 

hold: 

(1.1.16)                                 21110 abMbafbfaf    

for all  1,0 . 

 

For 2n , Cartwright-Field’s inequality (see e. g. [30]) may be written as 

follows: 

 (1.4.17)            
 

   
 

 212

2

1
1

2

1
ab

m
babaab

M





  


  , 

where 0b,a ,  b,aminm  ,  b,amaxM  , for all  10, . This inequality is an 

improvement of Young’s inequality and, at the same time, gives a reverse inequality 

for Young inequality. 

Remark 1.4.3. The first inequality of (1.4.17) clearly gives an improvement of the 

first inequality in (1.4.15) and (1.4.16). For 0 < a, b < 1, we find the right hand side 

of the second inequality of (1.4.17) gives tighter upper bound than that of (1.4.16), 

from the inequality 
2

yx

ylogxlog

yx 





, for x, y > 0. For a, b > 1, we find the right 

hand side of the second inequality of (1.4.15) gives tighter upper bound than that of 

(1.4.17), from the inequality 
2

yx

ylogxlog

yx 





, for x, y > 0. In addition, we find the 

right hand side of the second inequality of (1.4.17) gives tighter upper bound than 

that of (1.4.15) for 0b,a , from xex 1 . 

Next, we focus on two immediate particular cases of Theorem 1.3 (Minculete-

Mitroi, [145]) that help us to give improvements of the well known arithmetic-

geometric mean inequality (also known as Young’s inequality). 

1) We apply relation 1.4.17 to the function   Rb,a:f  (a > 0) defined 

by   xlogxf  , which leads to 

(1.4.18)         
       













 

















 
 2

2

12

2

2

11

2

1

a

bapp
exp

ba

bppa

b

bapp
exp

pp
, 
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Since 
  

1
2

1
2

2














 

b

bapp
exp , we obtain a refinement of Young’s inequality, where 

 10,p . 

 

We also obtained a reverse inequality for Young’s inequality. 

2) Next, we apply relation 1.4.17 to the function   Ralog,blog:f , defined 

by    xexpxf  , and we arrive at the following inequality:  

(1.4.19)          
 

 
 

















 

b

a
loga

pp
babppa

b

a
logb

pp pp 212

2

1
1

2

1
, 

where ab 0  and  10,p .  

Young’s inequality  was refined by Kittaneh and Manasrah, in [116], thus 

(1.4.20)                              211 barbabppa pp   , 

where  10,p  and  p,pminr  1 . They use this inequality for the study of matrix 

norm inequalities. 

In [78], Furuichi improves inequality (1.4.11) thus 

(1.4.21)                           pp

r

ba
b

a
Sbppa 






















 11 , 

where  10,p  and  p,pminr  1  and the function S was given above. 

Kober proved in [119] a general result related to an improvement of the 

inequality between arithmetic and geometric means, which for n = 2 implies the 

inequality: 

(1.4.22)                21
2

1 11 barbabppabarba pppp   , 

where  10,p  and  p,pminr  1 . This inequality was rediscovered by Kittaneh 

and Manasrah, in [116]. 

A generalization of inequality (1.4.11) can be found in a paper of Aldaz [11]. 

In [Minculete, 151], we present other improvement of Young’s inequality and 

a reverse inequality as follows 

(1.4.23)                  
 r

pp

r

pp

ab

ba
babppa

ab

ba
ba












 








 
12

1

2

1

2
1

2
, 

for the positive real numbers a, b and  10,p  and  p,pminr  1 . 

This inequality can be presented with Kantorovich constant: 

(1.4.24)                       pprppr ba,hKbppaba,hK   111 212 , 

where a, b>0,  10,p ,  p,pminr  1 ,  
 

h

h
,hK

4

1
2

2


 and 
a

b
h  . Notice that the 

first inequality in (1.4.24) was obtained by Zou et al. in [211] while the second was 

obtained by Liao et al. [124]. 

Finally, we gave, in [Minculete, 152], another improvement of Young’s 

inequality and a reverse inequality, given as: 

(1.4.25)            

               
















 

b

a
logpBbarbabppa

b

a
logpAbar pp 2

2
12

2

11 , 

where  1b,a ,  10,p ,  p,pminr  1 ,  
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                              
 

42

1 rpp
pA 


  and   

 
4

1

2

1 rpp
pB





 .  

Remark 1.4.4. a). Since  
 

0
42

1





rpp
pA  and   

 
0

4

1

2

1








rpp
pB , we 

obtain a refinement of the Kittaneh-Manasrah inequality and a refinement of 

Young’s inequality. 

b) Inequalities (1.4.18) and (1.4.19) give two improvements of Young’s inequality. 

c) Inequality (1.4.19) can be found in [Minculete-Mitroi, 145] and in many other 

paper of Dragomir (see e. g. [53]).  

d) For pp 1  in (1.4.19) we obtain 

(1.4.26)       
 

 
 

















 

b

a
loga

pp
bapbap

b

a
logb

pp pp 212

2

1
1

2

1
, 

where ab 0  and  1,0p . By the sum of relations (1.4.19) and (1.4.25), we deduce 

(1.4.27)        
   























 

b

a
loga

ppbababa

b

a
logb

pp pppp
2

11
2

2

1

222

1
. 

The Heinz mean [83] is defined as  

 
2

,
11 pppp

p

baba
baH

 
 , 

where b,a0  and  10,p . It is easy to see that 

 
2

,
ba

baHab p


 . 

But, using relation (1.4.27), we have 

   






















 

b

a
loga

ppbababa

b

a
logb

pp pppp
2

11
2

2

1

222

1
,  

so, we deduce 

 
   

 


















b

a
loga

pp
b,aHb,aA

b

a
logb

pp
p

22

2

1

2

1
.  

From inequality (1.4.25), we deduce another inequality for the Heinz mean, thus: 

(1.4.28)            

                 


















b

a
logpBbarb,aHb,aA

b

a
logpAbar p

2
2

2
2

1 , 

where  1b,a ,  10,p ,  p,pminr  1 ,  

              
 

 pA
rpp

pA 


 1
42

1
 and   

 
 pB

rpp
pB 





 1

4

1

2

1
.  

Next, we make a  little synthesis of some recent results about Young’s 

inequality.  

In the recent paper [209], Zhao and Wu provided two refining terms of 

Young’s inequality, thus: 

Let 0b,a  and  10,p .  

(i) If 









2

1
0,p , then  

 (1.4.40)                  24
0

2
11 abarbapbapbap pp   , 

(ii) If 







 1

2

1
,p , then  
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 (1.4.41)                 24
0

2
1 11 abbrbapbapbap pp   , 

 

where  p,pminr  1  and  r,rminr 2120  . 

In the same paper, we find the reverse versions of above inequalities: 

Let 0b,a  and  10,p .  

(i) If 









2

1
0,p , then  

 (1.4.42)                24
0

2
1 11 abbrbapbapbap pp   , 

(ii) If 







 1

2

1
,p , then  

 (1.4.43)                24
0

2
11 abarbapbapbap pp   , 

 

where  p,pminr  1  and  r,rminr 2120  . 

Quite recently, in [194], Sababheh and Moslehian gave a full description of all 

other refinements of the reverse Young’s inequality, thus: 

Let 0b,a  and  10,p .  

(i) If 









2

1
0,p , then  

 (1.4.44)                 b,ab,pSbapbapbap n

pp 211
2

1   , 

(ii) If 







 1

2

1
,p , then  

 (1.4.45)                  a,ab,pSbapbapbap n

pp   121
2

1 , 

 

where  x  is the greatest integer less than or equal to x and 

           










 


n

k

pjpjpjpj

kn

k
kk

kk
kk

k

ababpsb,a,pS
1

2 1122 2 11

,    ppj k

k

12  , 

   ppr k

k 2 ,            







 




2

1
121

11 pr
pps kprkpr

k
kk  . 

Furuichi, Ghaemi and Gharakhanlu gave in [83] a reverse Young’s inequality 

for  

p R , namely: Let 0b,a  , n N such that 2n  and   p
2

1
R . Then,  

(i) If 






 




n

n

,p
2

12

2

1 1

, then                                

(1.4.46)         
2

2

2
2

2
1 121211 




















n

k

kpp k

a

b
abpbapbapbap , 

(i) If 






 




2

1

2

12 1

,p
n

n

, then                                

(1.4.47)         
2

2

2
2

2
1 12211 




















n

k

kpp k

b

a
abpbapbapbap . 
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1.5  Grüss-type inequalities in discrete form and in integral 

form 
 

 

In this section we prove an inequality which will helps us find a new refinement of 

the discrete version of Grüss inequality. We have also continued the research in this 

field and we show some inequalities that have been obtained ([Minculete-Rațiu-

Pečarić,143], [Minculete-Ciurdariu, 149]). 

The discrete version of Grüss inequality [32, 110, 113] has the following form: 

                                     2211

11 1 4

1111
   

 

n

i

i

n

i

n

i

iii y
n

x
n

yx
n

, 

where ii y,x
 
are real numbers so that 11  ix and 22  iy

 
for all n,i 1 . 

In 1935, Grüss (see [98]) proved the following integral inequality which gives 

an approximation for the integral of a product of two functions in terms of the 

product of integrals of the two functions: 

Let f and g be two bounded functions defined on [a,b] with    11  xf  and  

  22  xg , where 2121  ,,, are four constants. Then, we have: 

                   
          2211

4

1111
 




  
b

a

b

a

b

a

dxxg
ab

dxxf
ab

dxxgxf
ab  

and the inequality is sharp, in the sense that the constant 1/4 can’t be replaced by a 

smaller one. 

After the number of papers published there can be noticed a great interest for 

this inequality. It is well known that an important resource for studying 

inequalities is [4, 155, 193]. In [181], Peng and Miao established a form of 

inequality of Gruss type for functions whose first and second derivatives are 

absolutely continuous and the third derivative is bound. Also, in [59], Dragomir 

presented several integral inequalities of Gruss type, and in [60], he showed some 

Gruss type inequalities in inner product spaces and applications for the integral. 

Another improvement of Gruss inequality was obtained by Mercer in [136]. 

Moreover, in [125], a Gruss type inequality was used in order to obtain some sharp 

Ostrowski-Gruss type inequalities by Liu.  

Kechriniotis and Delibasis showed in [113] several refinements of Gruss 

inequality in inner product spaces using Kurepa’s results for Gramians. New 

generalizations of the inequality of Gruss were presented in [47] using Riemann-

Liouville fractional integrals. Cerone and Dragomir studied in [32] some 

refinements of Gruss’ inequality.  

As applicable, we obtain some properties of bounds of the variance, the 

standard deviation, the coefficient of variation and of the covariance related to 

several statistical indicators for discrete random variables in finite case 

([Minculete-Rațiu-Pečarić,143], [Minculete-Ciurdariu, 149]). 
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1.5.1 A refinement of Grüss’s inequality via Cauchy–Schwarz’s 

inequality for discrete random variables in finite case 
 

The variance of a random variable 
nii

i

p

x
X













1

 with probabilities 

 
n

pxXP ii

1


 
 for any n,i 1

 
is its second central moment, the expected value 

of the squared deviation from mean   



n

i

iX x
n

XE
1

1
 : 

      



n

i

XiX x
n

XEXVar
1

22 1
 . 

The expression for the variance can be thus expanded: 

     XEXEXVar 22  . 

We note by RV the set of random variables 
nii

i

p

x
X













1

 with probabilities 

 
n

pxXP ii

1


 
 for any ni ,1 . 

The covariance is a measure of how much two random variables change 

together at the same time and is defined as 

        YEYXEXEY,XCov  , 

and is equivalent to the form 

       YEXEXYEY,XCov  . 

Using the inequality of Cauchy-Schwarz for discrete random variables we 

find the inequality given by 

     YVarXVarY,XCov 
2

 

or in the form  

   
     YVarXVarY,XCov  . 

Next, we show a refinement of this inequality. 

Lemma 1.5.1. If X and Y are discrete random variables in finite case, then there is 

the following equality  

(1.5.1)               ),Y,X(abCov)Y(Varb)X(Vara)bYaX(Var 222 
 

where a and b are real numbers.
 

Corollary 1.5.2. If X and Y are discrete random variables in finite case, then there 

are the following equalities:  

(1.5.2)                       )Y,X(Cov)Y(Var)X(Var)YX(Var 2  

and 

(1.5.3)                       )Y,X(Cov)Y(Var)X(Var)YX(Var 2 . 

Remark 1.5.3. From relations (1.5.1) and (1.5.2), we find the parallelogram law in 

terms of variance, namely: 

(1.5.4)                      )Y(Var)X(Var)YX(Var)YX(Var 22  . 

Lemma 1.5.4. If X , Y, Z and T are discrete random variables in finite case, then 

there is the following equality  

(1.5.5)    
)T,Y(bdCov)Z,Y(bcCov)T,X(adCov)Z,X(acCov)dTcZ,bYaX(Cov 
, 
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where a, b, c and d are real numbers. 

Theorem 1.5.5 (Minculete-Rațiu-Pečarić,[143]). If X, Y and Z are discrete random 

variables in finite case, with kZX  , then we have the inequality  

 (1.5.6)    
        

      
      2

2

2

0 Y,XCovYVarXVar
Z,XCovZVarXVar

XVarZ,YCovZ,XCovY,XCov





 . 

Proof. For the discrete random variables  X, Y and Z given in finite case, with 

  0XVar , we take the following random variable: 

 
 

ZYX
XVar

)Z,X(CovY,XCov
W 





 . We calculate the variance of random 

variable W, thus:  
 
 

 
  






























 ZX

XVar

Z,XCov
YX

XVar

Y,XCov
VarWVar   and 

applying relation (1.5.1), we have 

 
 
 

 
 

 
 

 
 






























ZX
XVar

Z,XCov
,YX

XVar

Y,XCov
Cov

ZX
XVar

Z,XCov
VarYX

XVar

Y,XCov
VarWVar





2

2

 

 
  
 

 
  
 

 
 

 
 

.ZX
XVar

Z,XCov
,YX

XVar

Y,XCov
Cov

XVar

Z,XCov
ZVar

XVar

Y,XCov
YVar































2

2

2

2

 

Using Lemma 1.5.4, we deduce the following inequality 

 
 

 
 

 
 

 
 

 
 













)Z,Y(Cov
XVar

Y,XCov)Z,X(Cov

XVar

)Z,X(CovY,XCov

)X,X(Cov
)X(VarXVar

)Z,X(CovY,XCov
ZX

XVar

Z,XCov
,YX

XVar

Y,XCov
Cov

 

 
 XVar

)Z,X(CovY,XCov
)Z,Y(Cov  . 

Returning to calculate the variance for random variable W, we have
 

 
  
 

 
  
 

 
 

.
XVar

)Z,X(CovY,XCov
)Z,Y(Cov

XVar

Z,XCov
ZVar

XVar

Y,XCov
YVar)W(Var































2

2

2

2

 

Therefore, we deduce the equality 

          
  .)Z,X(CovY,XCov)Z,Y(Cov)X(Var

Z,XCovZVar)X(VarY,XCovYVar)X(Var)W(Var)X(Var









2

222

 

Since   0WVar)X(Var , it follows that 

        

     0

2

2

22





Y,XCovYVar)X(Var

)Z,X(CovY,XCov)Z,Y(Cov)X(VarZ,XCovZVar)X(Var 

 

for every R .  

This implies that 
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(1.5.7)
        

           
  2

22

)Z,X(CovY,XCov)Z,Y(Cov)X(Var

Y,XCovYVar)X(VarZ,XCovZVar)X(Var




. 

Taking into account that      0
2
 Z,XCovZVar)X(Var , because kZX  and 

dividing by     2Z,XCovZVar)X(Var  , we obtain the inequality of the statement.  

□ 

Remark 1.5.6. Let X, Y and Z be discrete random variables in finite case, with 

  0YVar  and   0ZVar , if we take the following random variable: 

 
 

ZY
YVar

Y,XCov
XW  , then we have the inequality  

(1.5.8)   
        

   
      2

2

0 Y,XCovYVarXVar
ZVarYVar

YVarZ,XCovZ,YCovY,XCov



 . 

Let nx,...,x,x 21  be real numbers, assume 11  ix
 
for all n,i 1  and the 

average 



n

i

iX x
n 1

1
 . 

In 1935, Popoviciu (see e.g. [20, 84]) proved the following inequality 

(1.5.9)                                      



n

i

Xix
n

XVar
1

2

11

2

4

11
 .                                     

The discrete version of Grüss inequality has the following form: 

(1.5.10)                           2211

11 1 4

1111
   

 

n

i

i

n

i

n

i

iii y
n

x
n

yx
n

, 

where ii y,x
 
are real numbers so that 11  ix

 
and 22  iy

 
for all n,i 1 . 

From the relation          
 


n

i

i

n

i

n

i

iii y
n

x
n

yx
n

YEXEXYEY,XCov
11 1

111

 

and using the inequality of Cauchy-Schwarz for discrete random variables given by 

     YVarXVarY,XCov  , we obtain a proof for Grüss’s inequality. 

Bhatia and Davis show in [20] that the following inequality  

(1.5.11)                           1

1

1

21
  



X

n

i

XXix
n

XVar .                                  

The inequality of Bhatia and Davis represents an improvement of Popoviciu’s 

inequality, because     11

2

11 4   XX . Therefore, we will first have an 

improvement of Grüss’s inequality given by the following relation: 

(1.5.12)         

          22112211

11 1 4

1111
   

 

YYXX

n

i

i

n

i

n

i

iii y
n

x
n

yx
n

. 

If X, Y and Z are discrete random variables in finite case, with kZX  , then 

we have from inequality (1.5.8) the following relation:  

(1.5.13)                
      

   YVarXVar
Z,XCovZVarXVar

XVarZ,YCovZ,XCovY,XCov
Y,XCov 






2

2
2

  . 

Let nx,...,x,x 21  ,
 ny,...,y,y 21  , nz,...,z,z 21 , be real numbers, assume 

ii kzx  for all n,i 1
 
and for any real number k. Then applying inequality (1.5.13) 

we deduce a second refinement of  Grüss’s inequality given by 
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 (1.5.14)  

       









  

 

Sy
n

x
n

yx
n

n

i

i

n

i

n

i

iii

2

11 1

111



















































   

  

n

i

n

i

ii

n

i

n

i

ii y
n

y
n

x
n

x
n 1

2

1

2

1

2

1

2 1111
, 

where 
 

C

BA
S

2


  with 






















   

  

n

i

i

n

i

n

i

iii

n

i

i

n

i

n

i

iii z
n

x
n

zx
n

y
n

x
n

yx
n

A
11 111 1

111111
,




































   

  

n

i

n

i

ii

n

i

i

n

i

n

i

iii x
n

x
n

z
n

y
n

zy
n

B
1

2

1

2

11 1

11111
 

and 
2

11 1

2

11

2

1

2

1

2 1111111






























































   

  

n

i

i

n

i

n

i

iii

n

i

i

n

i

i

n

i

n

i

ii z
n

x
n

zx
n

z
n

z
n

x
n

x
n

C . 

Remark 1.5.7. In [113], Kechriniotis and Delibasis demonstrated other refinements 

of the discrete version of Grüss inequality. 

 

Corollary 1.5.8 (Minculete-Rațiu-Pečarić,[143]). If X and Y are discrete random 

variables in finite case, then there is the following inequality  

(1.5.15)                                 )Y(Var)X(Var)YX(Var   

Remark 1.5.9. This inequality in terms of sums becomes 

     



n

i

Yi

n

i

Xi

n

i

YXii y
n

x
n

yx
n 1

2

1

2

1

2 111
  

Dividing by 
n

1
 and making the following substitutions: iXi ax    and 

iYi by   , we obtain the inequality 

  



n

i

i

n

i

i

n

i

ii baba
1

2

1

2

1

2
 

which is in fact the Minkowski inequality, in the case 0
1




n

i

ia  and 0
1




n

i

ib . 

Corollary 1.5.10.  If X and Y are discrete random variables in finite case, then there 

is the following inequality  

(1.5.16)                                 )Y(Var)X(Var)YX(Var   

Proof.  From relation (1.5.3), we have  
)Y,X(Cov)Y(Var)X(Var)YX(Var 2
 

      )Y,X(CovYVarXVar)Y(Var)X(Var  2
2

. 

Applying the inequality of Cauchy-Schwarz for discrete random variables, we obtain 

   2)Y(Var)X(VarYXVar 
 

which implies the inequality of the statement.  

□ 

In [126, 127], the Lukaszyk–Karmowski metric is a function defining a 

distance between two random variables or two random vectors. In case the random 

http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_vector
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variables X and Y are characterized by discrete probability distribution, the 

Lukaszyk–Karmowski metric D is defined as: 

      
i j

iiji yYPxXPyxY,XD . 

Next, we will give another metric for the set RV. We can look the set RV as a 

vector space. The natural way is by introducing and using the standard inner 

product on RV. The inner product of any two random variables X and Y is defined 

by 

)Y,X(CovY,X  . 

The inner product of X with itself is always non-negative. This product allows 

us to define the "length" of a random variable X through square root: 

 XVar)X,X(CovX,XX  . 

This length function satisfies the required properties of a seminorm and is 

called the Euclidean seminorm on RV. A seminorm allowed assigning zero length to 

some non-zero vectors. The set RV with this seminorm is called seminormed vector 

space. Finally, one can use the norm to define a metric on RV by  

 YXVarYX)Y,X(d  . 

This distance function is called the Euclidean metric on RV. Consequently, 

the set of random variables RV form a Hilbert space, and a seminormed vector 

space. 

Some of the previous results were mentioned in the paper [133], where 

Masjed-Jamei and Omey explore the properties of the covariance leading to new 

classes of inequalities including the Ostrowski and Ostrowski-Grüss inequalities. 

 

 

1.5.2   About the bounds of several statistical indicators 
 
 

Statistical indicators play a very important role in the characterization of the 

various processes: economic, social and technological. In statistics, by the general 

notion of scattering (variance or dispersion) we refer to the individual values of 

measurable deviations from the central value.  

Next, we will obtain some properties of bounds of the variance, the standard 

deviation, the coefficient of variation and of the covariance related to several 

statistical indicators for discrete random variables in finite case. The results are 

developments of the research presented in (Minculete-Rațiu-Pečarić,[143]). 
 

The weighted arithmetic mean (mean value) of a random variable 

nii

i

p

x
X













1

 with probabilities   ii pxXP 
 
 for any n,i 1

 
and 




n

i

ip
1

1  is given 

by   



n

i

iixpXEX
1

. 

http://en.wikipedia.org/wiki/Discrete_probability_distribution
http://en.wikipedia.org/wiki/Square_(algebra)
http://en.wikipedia.org/wiki/Non-negative
http://en.wikipedia.org/wiki/Square_root
http://en.wikipedia.org/wiki/Norm_(mathematics)
http://en.wikipedia.org/wiki/Metric_(mathematics)
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Hilbert_space
http://en.wikipedia.org/wiki/Normed_vector_space
http://en.wikipedia.org/wiki/Normed_vector_space
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The variance of a random variable 
nii

i

p

x
X













1

 with probabilities 

  ii pxXP 
 
 for any n,i 1

 
and 




n

i

ip
1

1

 

is its second central moment, the 

expected value of the squared deviation from mean X : 

     







 

n

i

iiX
XxpXXEXVar

1

22
2 . 

Standard deviation (
X

 ) has a similar role with average linear deviation, but 

keeping the dispersion characteristics; statistics used this indicator which is 

calculated as mean of individual deviations squared from their central tendency, 

and the interval (
X

X  , 
X

X  ) is the medium interval of variation, where we 

have
 

 XVar
X
 . Coefficient of variation (CV(X)) is a relative measure of 

scattering, which describes the ratio between the standard deviation and the 

arithmetic mean, and is given by the formula:  

 
 

 XE

XVar

X
XC X

V 


. 

Two variables have a strong statistical relationship with one another if they 

appear to move together. According to [69], correlation is a measure of a linear 

relationship between two variables,  X and Y, and is measured by the correlation 

coefficient, given by: 

 
 

   YVarXVar

Y,XCov
Y,X 

. 

It is easy to see that   11  Y,X .
  

There is the following inequality: 

(1.5.2.1)                   2
22

22

2

11
4

1
mMXxp...XxpXxp nn  ,                 

where  nx,...,x,xmaxM 21  and  nx,...,x,xminm 21 . For 
n

pi

1
  with n,i 1

 

and 



n

i

ip
1

1 , we deduce Popoviciu’s inequality:
              

                               
       2

22

2

2

1
4

11
mMXx...XxXx

n
n 





  . 

This inequality suggests an uper bound for indicators for the variance, the 

standard deviation, the coefficient of variation and of the covariance, thus: 

                                       
X

mM
XC,mM,mM VXX

22

1

4

1 22 
   

and  

(1.5.2.2)                                             ,qQmMY,XCov 
4

1
 

where  ny,...,y,ymaxQ 21 , and  ny,...,y,yminq 21 .  

The discrete version of Grüss inequality in the weighted form has the 

following form:   
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  qQmMypxpyxp
n

i

ii

n

i

n

i

iiiii   
  4

1

11 1

, 

where ii y,x
 
are real numbers so that Mxm i  and Qyq i 

 
for all n,i 1 . 

The integral variant of inequality of Grüss [98], besides applications in 

mathematical analysis, has some statistical and actuarial applications. We known 

that, the discrete version of Grüss inequality has the following form: 

 

  qQmMy
n

x
n

yx
n

n

i

i

n

i

n

i

iii   
  4

1111

11 1

, 

 

where ii y,x
 
are real numbers so that Mxm i  and Qyq i 

 
for all n,i 1 . 

There are many articles which treated this inequality in integral variant (see 

e.g. [4], [59], [60], [110], [136]). We will focus attention on the discrete version of 

Grüss inequality, being motivaded by usefulness of this inequality, we study the 

inequality of Grüss in the context of elements of statistics, using the concepts of 

variance and covariance for the random variables. 

Bhatia and Davis show in [20], for 
n

pi

1
 , with n,i 1 , that: 

  mXXM
X

2 .                                                         

But, the inequality of Bhatia and Davis remains valid for any ip  with 





n

i

ip
1

1 . 

Thus, we deduce upper bounds better than in  relation (1.5.2.2), thus: 

                ,mXXM
X

2   ,mXXM
X

   
  

X

mXXM
XCV


  

and  

(1.5.2.3)                                  qYYQmXXMY,XCov  .           

It has been shown [136] by A. McD. Mercer that for a discrete random 

variables in finite case, we have:               

 (1.5.2.4)                                         h
X

XXM  22 ,     

where 





n

i i

h

x

n
X

1

1
 is the harmonic mean for discrete random variables in finite 

case. 

From [Minculete, 144] by replacement with the correlation coefficient in 

inequality (1.5.5), we deduce the inequality: 

                                        222 11 Z,XY,XZ,YZ,XY,X   .  

Next, we will present several improvements of the above inequalities related 

to variance.
 

Proposition 1.5.2.1.  For a discrete random variable in finite case X there is the 

following inequality 

(1.5.2.5)                                g
X

g XXMXXm  22 2 ,                        
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where the geometric mean  gX
 
is that value which shows that if we replace each 

individual value, their product would not change and we have the formula:
 

np

n

pp
g x...xxX  21

21  with 



n

i

ip
1

1 .
 

Proof. In the paper [30], Cartwright and Field proved the following inequality: 











  

 

n

i

p

i

n

i

ii

n

i

n

i

iiii
ixxpxpxp

M 11

2

1 12

1
2

1 12

1
 
 













n

i

n

i

iiii xpxp
m

, 

where   n,i,pi 10   and 



n

i

ip
1

1 . But   

  
  
























n

i
X

n

i

iiii

n

i

n

i

iiii xpxpxpxp
1

2

2

1

2

2

1 1

 , 

which implies to the inequality of the statement. 

□ 

Remark 1.5.2.2. a) For     n,i,
n

pi 1
1

 , in this inequality, we obtain 

 

     



g

n XX
n

Xx...XxXx

M

22

2

2

1

2

1
   

 

     
n

Xx...XxXx

m

n

22

2

2

1

2

1 
 , 

 

where n
ng x...xxX  21  . 

b) It is easy to see that inequality (1.5.2.5) is a refinement of inequality (1.5.2.4), 

because the geometric mean is higher than the harmonic mean. Inequality (1.5.2.5) 

provides another bound for the variance, but it is very difficult to compare the terms 

 gXXM 2  and   mXXM   to see which is better.    

Combining the above inequalities and taking into account inequality (1.5.2.5), 

we found other bounds for the standard deviation, the coefficient of variation and of 

the covariance, thus:  

(1.5.2.6)                        ,XXMXXm g
X

g  22   

(1.5.2.7)                   
 

 
 
X

XXM
XC

X

XXm g

V

g 


 22
 

and  

(1.5.2.8)                            
 

    gg YYXXMQY,XCov  2 .                                    

Now, we want to find an upper bound, better than the Bhatia and Davis, for 

the above indicators.  

Theorem 1.5.2.3. For a discrete random variable in finite case X there is the 

following inequality 

(1.5.2.9)                        



n

i

iiiX
mxxMpmXXM

1

2 .                

Proof. We evaluate the sum   



n

i

iii mxxMp
1

 and we deduce the following:  
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     
 


n

i

n

i

iiii

n

i

iii MmxpxpmMmxxMp
1 1

2

1

, 

so we have 

  



n

i

iii mxxMp
1

    ,MmXXmMMmxpXmM
X

n

i

ii  


2
2

1

2   

which is equivalent to the equality 

  



n

i

iii mxxMp
1

   2

X
mXXM  . 

□ 

 

1.5.3  A generalized form of Grüss type inequality and other 

integral inequalities 
 

 

In 1935, Grüss (see [98]) proved the following integral inequality: 

Let f and g be two bounded functions defined on [a,b] with    11  xf  and  

  22  xg , where 2121  ,,, are four constants. Then, we have:  

(1.5.3.1)     
 

          2211
4

1111
 




  
b

a

b

a

b

a

dxxg
ab

dxxf
ab

dxxgxf
ab

 

and the inequality is sharp, in the sense that the constant 1/4 can’t be replaced by a 

smaller one. 

In the following research, on refining the Grüss inequality, we used the same 

work methods as the ones used in the discrete version. The following results were 

extracted from our paper [Minculete-Ciurdariu, 149]. 

Florea and Niculescu in [70] treated the problem of estimating the deviation 

of the values of a function from its mean value. 

The estimation of the deviation of a function from its mean value is 

characterized in terms of random variables. 

We denote by R([a, b]) the space of Riemann-integrable functions on the interval  

[a, b], and by C0([a, b]) the space of real-valued continuous functions on the interval 

[a, b].  

The integral arithmetic mean for a Riemann-integrable function  b,a:f R  is 

the number 

   


b

a

dxxf
ab

fM
1

1 . 

If  f and h are two integrable funtions on  b,a  and   0
b

a

dxxh , then a 

generalization for the integral arithmetic mean is the number  

 
   

 




b

a

b

a
h

dxxh

dxxhxf

fM  

called the h-integral arithmetic mean for a Riemann-integrable function f. 
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We find the following property of the h-integral arithmetic mean for a 

Riemann-integrable function f : 

    kfMkfM hh   

where k is a real constant. 

If the function f is a Riemann-integrable function, we denote by 

   2

11 fMfM)fvar(   

the variance of f . 

The expression for the variance of f can be expanded in this way: 

       



















b

a

b

a

dxdttf
ab

xf
ab

fvar

2

11
. 

In the same way, we defined the h-variance of a Riemann-integrable function 

f by 

   2
fMfM)f(var hhh 

. 

The expression for the h-variance can be thus expanded: 

 

 

 

   

 

 




 





















b

a

b

a

b

a

b

a

h dxxh

dtth

dtthtf

xf

dxxh

fvar

2

1
. 

It is easy to see another form of the h-variance, given by the following: 

   fMfM)f(var hhh

22 
. 

and we have 

   fvarkfvar hh  , 

where k is a constant. 

In [9], Aldaz showed a refinement of the AM-GM inequality and used in the 

proof that 

 

 
21

211

/
b

a

b

a

/

dxxf

dxxf




















 

 

is a measure of the dispersion of 21/f  about its mean value, which is, in fact, 

comparable to the variance, 

 
  














2

21

21

xf

xf
var

/

/

, where    

b

a

dxxfxf 2

2
. 

The covariance is a measure of how much two Riemann-integrable functions 

change together at the same time and is defined as 

        gMgfMfMg,fcov 111  , 

and is equivalent to the form 

                 





b

a

b

a

b

a

dxxg
ab

dxxf
ab

dxxgxf
ab

gMfMfgMg,fcov
111

111 . 
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In fact, the covariance is the Chebyshev functional attached to functions f and 

g. In [113] it is written as T(f , g). The properties of the Chebyshev functional have 

been studied by Elezović, Marangunić and Pečarić in their paper, [66]. For other 

generalizations of Grüss inequality, see [156, 175]. 

The h-covariance is a measure of how much two random variables change 

together and is defined as 

        gMgfMfMg,fcov hhhh  , 

and is equivalent to the form 

       
     

 

   

 

   

 












b

a

b

a

b

a

b

a

b

a

b

a
hhhh

xh

dxxhxg

xh

dxxhxf

xh

dxxhxgxf

gMfMfgMg,fcov . 

In [174], Pečarić used the generalization of the Chebyshev functional notion 

attached to functions f and g to the Chebyshev h-functional attached to functions f 

and g defined by  h;g,fT . Here, Pečarić showed some generalizations of the 

inequality of Grüss by the Chebyshev h-functional. It is easy to see that, in terms of 

the covariance, this can be written as    g,fcovh;g,fT h . 

In terms of covariance, the inequality of Gruss becomes  

(1.5.3.2)                                     2211
4

1
 g,fcov  

And, in terms of Chebyshev functional, the inequality of Gruss becomes 

    2211
4

1
 g,fT . 

If there is additional information about the mean values of the two functions 

in the inequality of Grüss then Zitikis argued in his paper, [210], that the inequality 

can be sharpened and he also gave a probabilistic interpretation for it. 

 

Lemma 1.5.3.1 ([Minculete-Ciurdariu, 149]). Let f be a Riemann-integrable function 

defined on [a,b] with    11  xf , where 11, are two constants. Then we have:  

(1.5.3.3)                                         211
4

1
fvarh ,  

where     ,b,a:h 0  is a Riemann- integrable function  with   0
b

a

dxxh .  

Lemma 1.5.3.2 ([Minculete-Ciurdariu, 149]). Let f be a Riemann-integrable function 

defined on [a,b] with    11  xf , where 11, are two constants and a Riemann-

integrable function
 

  ),0[,: bah
 
 with   0

b

a

dxxh . Then we have the following 

relations: 

(1.5.3.4)                 
   

 

   

 



















































11var 

b

a

b

a
b

a

b

a
h

dxxh

dxxhxf

dxxh

dxxhxf

f .        

We can prove an inequality for integrable functions similar to the inequality 

of Cauchy-Schwarz for random variables given by the following. 
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Theorem 1.5.3.3 ([Minculete-Ciurdariu, 149]). If f , g, h R([a, b]), then we have the 

inequality 

(1.5.3.5)                                      .gvarfvarg,fcov hhh 
2

 

Proposition 1.5.3.4 ([Minculete-Ciurdariu, 149]). Let f  and g be two  Riemann-

integrable functions defined on [a,b] with    11  xf
 
and   22  xg , where 

2121  ,,,
 

are four constants and we have a Riemann-integrable function
 

  ),0[,: bah
 
 with   0

b

a

dxxh . Then we have 

(1.5.3.6)                 2211   gMgMfMfMg,fTg,fcov hhhhh  

                                                     
  .2211

4

1
   

Theorem 1.5.3.5 ([Minculete-Ciurdariu, 149]). If f, g, q  R([a,b]), with kqf   
 
and 

  0fvarh , then we have the inequality 

(1.5.3.7)  
        

      
       .g,fcovgvarfvar

q,fcovqvarfvar

fvarq,gcovq,fcovg,fcov
hhh

hhh

hhhh 2

2

2

0 



  

                                                     
 

Lemma 1.5.3.6 ([Minculete-Ciurdariu, 149]). Let f and g be two Riemann-integrable 

functions defined on [a,b]. Then we have 

(1.5.3.8)                                  .fMfMfgM hhh

222   

Applying the inequality between the arithmetic mean and the geometric 

mean and Lemma 1.5.3.6, we deduce the following relation: 

Theorem 1.5.3.7 ([Minculete-Ciurdariu, 149]). Let f and g be two Riemann-

integrable functions defined on [a,b]. Then we have 

(1.5.3.9)                    .fgMfMfMg,fcovgvarfvar hhhhhh

2220   

 

Next, we show a refinement of Grüss’ inequality for normalized isotonic 

linear functional. There are many directions in which the inequality of Gruss [98] 

has been generalized. Using the notion of normalized isotonic linear functional 

which appears in the paper [52], we will give a generalization of the inequality of 

Gruss which is related to a theorem of Andrica and Badea, [13]. 

Let E be a nonempty set, L a linear class of real-valued functions and  

g : E→R  having the properties: 

(L1) f , g  L imply (αf + βg)  L for all α,β  R , 

(L2) 1  L, i.e. if 0f  (t) = 1, ( )t  E, then 0f   L. 

An isotonic linear functional (in [13] is called positive definite functional) A : 

L→R  is a functional satisfying: 

(A1) A(αf + βg) = αA(f ) + βA(g), for all f , g  L and α,β  R . 

(A2) If f  L and f ≥ 0, then A(f ) ≥ 0. 

(A3) The mapping A is said to be normalized if A(1) = 1. 

Theorem 1.5.3.7 ([Minculete-Ciurdariu, 149]). Let f L be such that f 2  L and 

assume that there exist real numbers 1  and 1  
so that 11  f  . Then for any 

normalized isotonic linear functional A : L→R  one has the inequality 

(1.5.3.10)                                  .fAfAfAfA 11

22   
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From the inequality of Cauchy-Schwarz for a normalized isotonic linear 

functional [52], we have for f , g, f2, g2  L where f , g :E →R  and A : L→R  is any 

normalized isotonic linear functional: 

(1.5.3.11)                                    .gAfAfgA 222


 
Related to a counterpart of the Cauchy-Schwarz inequality, we have the following: 

Theorem 1.5.3.8. Let f , g, fg  L such that f 2, g2  L and   11  xf
 
and 

  22  xg , where 2121  ,,,
 
are given real numbers. Then for any normalized 

linear isotonic functional A : L→R  one has the inequality 

(1.5.3.12)                     .gAgAfAfAgAfAfgA 2211    

Finally, we find several applications. Taking into account the integral 

arithmetic mean and h-integral arithmetic mean for a Riemann-integrable function  

f : [a, b]→R  we can rewrite the following inequalities: 

a) In the case when p ≥ 0 the integral form of the inequality from Theorem 2.4 (see 

[17]) was given by Theorem 2.5. Under the conditions of Theorem 2.5, the inequality 

becomes 

(1.5.3.13)                                 
 
 

.
gM

fM

g

f
M

p

m

p

m

1

1

1
1

1











 

 (b) In [164], Mortici gave a new refinement of Radon’s inequality. Using the 

integral form of the reverse of inequality from Theorem 2.5 (see [17]) we obtain, for  

p(–1, 0), m  (–1, 0), m ≤ p, and  f , g : [a, b]→ R  are two integrable functions on 

[a, b] with g(x) > 0, ( )x  [a, b], a continuous function on [a, b], the inequality 

(1.5.3.14)                                 
 
 

.
gM

fM

g

f
M

p

m

p

m

1

1

1
1

1











 

In our paper [Rațiu-Minculete, 189], we have shown several refinements and 

counterparts of Radon’s inequality. We establish that the inequality of Radon is a 

particular case of Jensen’s inequality. Starting from several refinements and 

counterparts of Jensen’s inequality by Dragomir and Ionescu, we obtain a 

counterpart of Radon’s inequality. In this way, using a result of Simić, we find 

another counterpart of Radon’s inequality. We obtain several applications using 

Mortici’s inequality to improve Hölder’s inequality and Liapunov’s inequality. 

To determine the best bounds for some inequalities, we used Matlab program 

for different cases. 



Habilitation thesis Nicușor Minculete 

 

 38 

 

Chapter 2 
 

 

Inequalities for functionals and inequalities for 

invertible positive operators  
 

In functional analysis and in the calculus of variations, a functional is 

a function from a vector space into its underlying field of scalars. Among the most 

studied functionals in the theory of inequalities we remark the Jensen functional 

and Chebychev functional. Next, we study the Jensen functional under 

superquadraticity conditions and the Jensen functional related to a strongly convex 

function. 

Related to operators, an operator means a bounded linear operator on a 

complex Hilbert space H without specified. We study several properties which imply 

the establishment of inequalities between different types of operators. 

 

 

2.1  Inequalities for functionals  
 

If f is a real valued function defined on an interval I, Ix,...,x,x n 21 , and 

 1021 ,p,...,p,p n   
such that 




n

i

ip
1

1 , then the Jensen functional is defined by 

    
 













n

i

n

i

iiii xpfxfp,,fJ
1 1

xp  

and the Chebychev functional is defined by 

    
 
















n

i

i

n

j

jjii xfxpxp,,fT
1 1

xp . 

Under the conditions from Definition 2.1.8, we have defined the generalized 

Jensen functional by 

        Jk (f, p1,…, pk, q, x1,…, xk) :=   
  
























k

k

i

ik

n,...,n

j,...,j

k

i

n

j

ijiji

k

i

ijikjij xpqfxqfp...p
1

1

1

1 1 11

 

and the generalized Chebychev functional by: 

       Tk (f, p1,…, pk, q, x1,…, xk) := .xqfxpxqp...p
k

k

i

i

ik

n,...,n

j,...,j

k

i

iji

k

i

n

j

ijijijikjij  
  



























1

1

1

1 11 1

 

In [179], Pečarić and Beesack discuss about the monotonicity property of 

discrete Jensen’s functional. Dragomir (see [58]) investigated boundedness of 

normalized Jensen’s functional, that is functional  xp,,fJ  satisfying
 




n

i

ip
1

1 . He 

obtained the following lower and upper bound for normalized functional:  

     xqxqxq ,,J
q

p
max,,J,,J

q

p
min

i

i

ni
i

i

ni




















 11

0 , 

https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/Calculus_of_variations
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Scalar_(mathematics)
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where XXK:   is a convex function on convex subset K of linear space X, 

  n

n Kx,...,x,x  21x  and  np,...,p,p 21p ,  nq,...,q,q 21q  are positive real n-

tuples with 



n

i

i

n

i

i qp
11

1 .
 

The Jensen’s inequality can be regarded in a more general manner, including 

positive linear functionals acting on a linear class of real valued functions. 

 

 

2.1.1  The Jensen functional under superquadraticity conditions 

and the Jensen functional related to a strongly convex function 
 

 

In this section, in the first part, we give a recipe which describes upper and lower 

bounds for the Jensen functional under superquadraticity conditions. Some results 

involve the Chebychev functional. We give a more general definition of these 

functionals and establish analogous results. These results were shown in our paper 

[Mitroi-Symeonidis-Minculete, 158]. 

For the reader’s convenience, let us briefly state known facts regarding the 

principal tools, superquadraticity and the Jensen functional. See Abramovich and 

Dragomir [1] for details and proofs. 

 

Definition 2.1.1.1 ([2]). A function f defined on an interval  a,I 0  or  ,0 , is 

superquadratic if for each x in I there exists a real number C(x) such that 

(2.1.1.1)                                         xyxCxyfxfyf   

for all y ∈ I. 

We say that f is a subquadratic function if −f is superquadratic. The set of 

superquadratic functions is closed under addition and positive scalar multiplication. 

Example ([3]). The function   pxxf  , p ≥ 2 is superquadratic with 

    1 ppxx'fxC .  Similarly,    pp/xxg 11 , p > 0 is superquadratic with  

C(x) = 0. Also h(x) = x2 log x with C(x) = h’(x) = x(2 log x + 1) is a superquadratic 

function (but not monotone and not convex). Some elementary functions are not 

superquadratic, such as f (x) = x and f (x) = exp x. 

Lemma 2.1.1.2 ([2]). Let f be a superquadratic function with C(x) defined as above. 

(i) Then f(0) ≤ 0. 

(ii) If f(0) = f’(0) = 0, then C(x) = f’(x), whenever f is differentiable at x > 0. 

(iii) If f ≥ 0, then f is convex and f(0) = f’(0) = 0. 

Definition 2.1.1.3 ([1]). Let f  be a real valued function defined on an interval I, let 

Ix,...,x,x n 21 , and let  1021 ,p,...,p,p n   
be such that 




n

i

ip
1

1 . The 

Jensen functional is defined by 

(2.1.1.3)                                    
 













n

i

n

i

iiii xpfxfp,,fJ
1 1

xp  

and the Chebychev functional is defined by 

(2.1.1.4)                                    
 
















n

i

i

n

j

jjii xfxpxp,,fT
1 1

xp .                    
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Proposition 2.1.1.4 ([1]). Let 0ix , n,i 1 , and 0ip , n,i 1 , with 



n

i

ip
1

1 . If f 

is superquadratic, then 

(2.1.1.5)                                     
 
















n

i

n

j

jjii xpxfp,,fJ
1 1

xp . 

Theorem 2.1.1.5 ([Mitroi-Symeonidis-Minculete, 158]). Let f be a superquadratic 

function defined on an interval  a,I 0  or  ,0 , Ix,...,x n 1  and  101 ,p,...,p n   

such that 1
1




n

i

ip  and a real number  10, . Then we have 

(2.1.1.6)                  
  






































n

i

n

i

iiii

n

i

ii

n

i

i

n

i

iii xpxfpxpfxxpfp
1 111 1

1  . 

Proof. Let f be a superquadratic function with C(x) defined as above and a real 

number  10, . Then replacing y by   yx  1 , where  10, , we deduce the 

inequality  

(2.1.1.7)                             xyxCxyfxfyxf  1 . 

Now, in inequality (2.1.1.7) we make the following substitutions: 



n

i

iixpx
1

 and 

ixy  . Therefore, we have                         

  

























































 



n

i

iii

n

i

ii

n

i

iii

n

i

iii

n

i

ii xpxxpCxpxfxpfxxpf
11111

1  . 

Multiplying by 0ip  this inequality and summing from n,i 1 , we deduce the 

statement. 

□ 

Remark 2.1.1.6. For 1 , we obtain inequality from Proposition 2.1.1.4. 

Corollary 2.1.1.7 ([Mitroi-Symeonidis-Minculete, 158]). Let 0f  be a 

superquadratic function defined on an interval  a,I 0  or  ,0 , Ix,...,x n 1  and 

 101 ,p,...,p n   such that 1
1




n

i

ip . Then we have 

(2.1.1.8)                              
 
















n

i

n

i

iiii xpxfpx,p,fJ
1 12

1
2 . 

Proof. For 
2

1
  in Theorem 2.1.1.5, we have the inequality 

(2.1.1.9)          


 


















































n

i

n

i

iiii

n

i

ii

n

i

i

n

i

ii

i xpxfpxpf

xxp

fp
1 111

1

2

1

2
. 

From Lemma 2.1.1.2, we know that f is convex . Therefore, applying Jensen’s 

inequality, we have 
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                                  



















































i

n

i

ii

i

n

i

ii

xfxpf

xxp

f
1

1

2

1

2
.  

Using this inequality and inequality (2.1.1.9),  we obtain inequality 

   
 



























n

i

n

i

iiii

n

i

ii

n

i

ii xpxfpxpfxfp
1 111 2

1
2 , which implies the inequality 

(2.1.1.8). 

□ 
Motivated by the above results, we introduce, in a natural way, other functionals. 

 

Definition 2.1.1.8. Assume that we have a real valued function f defined on an 

interval I, the real numbers ijp , k,i 1   and in,j 1  are such that 0ijp , 1
1




in

j

ijp  

for all k,i 1  (we put pi = (pi1, pi2,…, 
iinp )), xi =   i

i

n

inii Ix,...,x,x 21  for all k,i 1   

and q = (q1, q2,…,qk), qi > 0 are such that 1
1




k

i

iq . We define the generalized 

Jensen functional by 

(2.1.1.10)                        

    Jk (f, p1,…, pk, q, x1,…, xk) :=   
  
























k

k

i

ik

n,...,n

j,...,j

k

i

n

j

ijiji

k

i

ijikjij xpqfxqfp...p
1

1

1

1 1 11

 

and the generalized Chebychev functional by: 

(2.1.1.11)                        

    Tk (f, p1,…, pk, q, x1,…, xk) := .xqfxpxqp...p
k

k

i

i

ik

n,...,n

j,...,j

k

i

iji

k

i

n

j

ijijijikjij  
  



























1

1

1

1 11 1

 

We also easily notice that for k = 1 this definition reduces to Definition 

2.1.1.3. In [160], the following estimation is obtained: if f is a convex function then 

we have 

(2.1.1.12)   















k

k

kk

kjj

kjj

nj

...

nj r...r

p...p
min

1

1

11
1

1

1

1
 Jk (f, r1,…, rk, q, x1,…, xk)   

                         Jk (f, p1,…, pk, q, x1,…, xk)    

                         

















k

k

kk

kjj

kjj

nj

...

nj r...r

p...p
max

1

1

11
1

1

1

1
 Jk (f, r1,…, rk, q, x1,…, xk) 

In this section, we investigate upper and lower bounds that we have if the 

function f is superquadratic. 

Now we extend the earlier results. The following lemma describes the 

behavior of the functional under the superquadraticity condition: 

Lemma 2.1.9. Let pi, xi, q be as in Definition 2.1.1.8. If f is superquadratic then we 

have 
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 (2.1.1.13)       Jk (f, p1,…, pk, q, x1,…, xk)    
 













k

k

ik

n,...,n

j,...j

k

i

ijikjij xxqfp...p
1

1

1

1 1

 

where  
 


k

i

n

j

ijiji

i

xpqx
1 1

. 

Using the same recipe as in the proof of Corollary 2.1.1.7, we get: 

Corollary 2.1.1.10 ([Mitroi-Symeonidis-Minculete, 158]). Let pi, xi, q be as in 

Definition 2.1.1.8. Let 0f  be a superquadratic function defined on an interval 

 a,I 0  or  ,0 , Ix,...,x n 1  and  101 ,p,...,p n   such that 1
1




n

i

ip . Then we 

have 

(2.1.1.14)    Jk (f, p1,…, pk, q, x1,…, xk)    
 
















k

k

ik

n,...,n

j,...j

k

i

ijikjij xxqfp...p
1

1

1

1 12

1
. 

The next result can be expressed as: 

Theorem 2.1.11([Mitroi-Symeonidis-Minculete, 158]). Let pi, xi, q be as in 

Definition 2.1.1.8 and the positive real numbers ijr , k,i 1  and in,j 1 be such that 

1
1




in

j

ijr  for all k,i 1 . We put ri =  
iini r,...,r1  for all k,i 1 ,


















k

k

kk

kjj

kjj

nj

...

nj r...r

p...p
minm

1

1

11
1

1

1

1
 and  


















k

k

kk

kjj

kjj

nj

...

nj r...r

p...p
maxM

1

1

11
1

1

1

1
. 

If f is a superquadratic function, then:  

(2.1.1.15)    Jk (f, p1,…, pk, q, x1,…, xk)    mJk (f, r1,…, rk, q, x1,…, xk)    

           













  

 

k

i

n

j

ijijiji

i

xprqmf
1 1

  
 
















k

k

ikk

n,...,n

j,...,j

k

i

ijikjijkjij xxqfr...mrp...p
1

1

11

1 1

 

 and 

(2.1.1.16)    MJk (f, r1,…, rk, q, x1,…, xk)    Jk (f, p1,…, pk, q, x1,…, xk)     

          













  

 

k

i

n

j

ijijiji

i

xprqf
1 1

  
 
















k

k

ikk

n,...,n

j,...,j

k

i

ijikjijkjij xxqfp...pr...Mr
1

1

11

1 1

 

where  
 


k

i

n

j

ijiji

i

xpqx
1 1

. 

Remark 2.1.1.12. Let p1 = · · · = pk = p and x1 = · · · = xk = x. In this case we see 

that Lemma 2.1.9  recover Proposition 2.1.1.4.  

More results can be found in paper [Mitroi-Symeonidis-Minculete, 158]. In 

[118], Kluza and Niezgoda quoted the above results for the introduction and study 

of Jeffreys–Csiszár and Jensen–Csiszár f-divergences. Some bounds of Crooks and 

Lin types for such divergences are provided. To this end, the concavity of the 

composition of monotone functions is discussed.  

Next, we describe some results concerning upper and lower bounds for the 

Jensen functional related to the concept of a strongly convex function. 

Definition 2.1.1.13. A function f defined on an interval I is strongly convex with 

modulus 0c  [or c-strongly convex] if  
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(2.1.1.17)                               2111 xycyfxfyxf   ,  

for all  10,,Iy,x   . 

We call f strongly convex if there exists a 0c  such that is strongly convex 

with modulus c. Strongly convex functions were introduced by Polyak [182]. A 

function f is called strongly concave with modulus c (or approximately convex of 

order 2 [170]) if − f is strongly convex with modulus c. 

Obviously, every strongly convex function is convex. Affine functions are not 

strongly convex. The function f (x) = cx2 + bx + a is strongly convex with modulus c 

and the inequality (2.1.1.17) holds with equality sign. 

According to Hiriart–Urruty and Lemaréchal [109], we have: 

Proposition 2.1.1.14. The function f is strongly convex with modulus c if and only 

if the function g (x) = f (x) − cx2 is convex. 

In [137], the following result is proved: 

Proposition 2.1.1.15. Considering n,i,pi 10  , with 1
1




n

i

ip  and 



n

i

iixpx
1

,  the 

function f strongly convex with modulus c, we have 

(2.1.1.18)                     
 













n

i

ii

n

i

n

i

iiii xxpcxpfxfp,,fJ
1

2

1 1

xp .  

This is re-proved using the probabilistic approach in a paper of Rajba and 

Wasowicz [187, Corollary2.3]. Notice that the set of strongly convex functions is 

closed under addition and positive scalar multiplication. 

In what follows we shall also be interested in a more general Jensen 

functional and its behaviour in the context of strong convexity. 

Theorem 2.1.1.16 ([Mitroi-Symeonidis-Minculete, 159]). Let f be a strongly convex 

function with modulus c defined on an interval I, Ix,...,x n 1  and  101 ,p,...,p n   

such that 1
1




n

i

ip . Then 

(2.1.1.19)                

                 



n

i

ii

n

i

ii

n

i

ii xxpcxxfpxfxxfp
1

2

1

2

1

1111  , 

for  10,,  . 

Moreover, from (2.1.1.19) for 
2

i
i

xx
x


  we get a double inequality which refines 

the Merentes-Nikodem inequality (2.1.1.18): 

Proposition 2.1.1.17 ([Mitroi-Symeonidis-Minculete, 159]). Let f be a strongly 

convex function with modulus c defined on an interval I, Ix,...,x n 1  and 

 101 ,p,...,p n   such that 1
1




n

i

ip . Then 

(2.1.1.20)             






























 


n

i

ii

n

i

ii

n

i

i
i xxpcxxp

c
xf

xx
fp,,fJ

1

2

1

2

1 22
2xp .  

We state the following lemma about the behaviour of the generalized Jensen 

functional under the strong convexity condition: 
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Lemma 2.1.1.18 ([Mitroi-Symeonidis-Minculete, 159]).  Let pi, xi, q be as in 

Definition 2.1.1.8. If f is strongly convex with modulus c, then we have 

(2.1.1.21)      Jk (f, p1,…, pk, q, x1,…, xk)    
 













k

k

ik

n,...,n

j,...j

k

i

ijikjij xxqp...pc
1

1

1

1

2

1

,  

where  
 


k

i

n

j

ijiji

i

xpqx
1 1

. 

For strongly convex functions we have the following bounds: 

Theorem 2.1.1.19 ([Mitroi-Symeonidis-Minculete, 159]). Let pi, xi, q be as in 

Definition 2.1.1.8 and the positive real numbers ijr , k,i 1  and in,j 1 be such that 

1
1




in

j

ijr  for all k,i 1 . We put ri =  
iini r,...,r1  for all k,i 1 ,


















k

k

kk

kjj

kjj

nj

...

nj r...r

p...p
minm

1

1

11
1

1

1

1
 and  


















k

k

kk

kjj

kjj

nj

...

nj r...r

p...p
maxM

1

1

11
1

1

1

1
. 

If f is a strongly convex function with modulus c, then we have:  

(2.1.1.22)    Jk (f, p1,…, pk, q, x1,…, xk)    mJk (f, r1,…, rk, q, x1,…, xk)    

          
2

1 1

1

1

11 
 













k

k

ikk

n,...,n

j,...,j

k

i

ijikjijkjij xxqr...mrp...pc  
2

1 1













  

 

k

i

n

j

ijijiji

i

xprqmc  

 and 

(2.1.1.23)    MJk (f, r1,…, rk, q, x1,…, xk)    Jk (f, p1,…, pk, q, x1,…, xk)     

         
2

1 1

1

1

11 
 













k

k

ikk

n,...,n

j,...,j

k

i

ijikjijkjij xxqp...pr...Mrc  
2

1 1













  

 

k

i

n

j

ijijiji

i

xprqc  

where  
 


k

i

n

j

ijiji

i

xpqx
1 1

. 

We show in [Mitroi-Symeonidis-Minculete, 159] some applications to function 

gamma of Euler. 

The function gamma is defined via a convergent improper integral as  

  




0

1 dxext xt , for all 0t , 

it is known as Euler integral of the second kind. The following infinite product 

definition for the gamma function is due to Weierstrass,  

  
















1

1

1
n

n

tt

e
n

t

t

e
t



, 

where ....5772160  is the Euler-Mascheroni constant. This relation can be 

written as  

(2.1.1.24)                            





















1

1
n n

t
log

n

t
tlogttlog  , 

where the base of the logarithm is e. 
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Proposition 2.1.1.20 ([Mitroi-Symeonidis-Minculete, 159]). The function defined by 

  R,:f 0 ,
 
    tarctantttlogtf  22 1   is strongly convex with modulus 1 on 

 ,0 . 

Proof. From relation (2.1.1.24), we get 

(2.1.1.25)               
























 





1

22
222 1

1
1

111
n n

t
log

n

t
tlogttlog  . 

We consider the function 

    222 1 ttarctantttlogtg    

defined on ),0[  . It easy to see that 

  ttarctan
ntn

t
t

t
t'g

n

2
1

11
2

1 1
22














 





 

and 

 
    



























0
2

1
22

2

22

2

2
1

11
2

1

1
4

1

2

nn ntnnt
t

t

t
t"g . 

The inequality  

02
1

11
22

1

11
2

00
2






















 







 nn nnntn
 

yields   0t"g , therefore g is convex, so f is strongly convex with modulus 1 on 

 ,0 . 

□ 

It is straightforward that: 

Corollary 2.1.1.21. The function   R,:f 0 ,
 
    tarctanttlogtf  12  is 

strongly convex with modulus 1  on  ,0 . 

Next, we give inequalities related to a strongly convex function. 

An important inequality is given by F. C. Mitroi [157], as a particular case of 

the Dragomir inequality [58], for a convex function f on [a,b], we have the following 

inequality:  

(2.1.1.26)                                   

 
   

        














 



 bafbfaf

ba
f

bfaf
,min  11

22
12  

                                                             
 

   















 





22
12

ba
f

bfaf
,max  ,

 

for all  10, . 

Lemma 2.1.1.22. If f is a function integrable and convex on  b,a , we have the 

following inequality: 

(2.1.1.27)    
       

  F
ab

xba
xf

ab

afbf
x

ab

bafabf
F

ab

xba

















































2
1

2
1 , 

 where 
   








 





22

ba
f

bfaf
F , for every  b,ax  . 

Proof. For  10,
ab

xb





  when  b,ax  , we have 

ab

ax




 1 , 
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 
ab

xba
,min









2
1

2

211
1


  and  

ab

xba
,max









2
1

2

211
1


 . 

If we replace these in inequality (2.1.1.26), we prove the inequality of the statement. 
□ 

Next, we obtain a reverse inequality of Jensen’s inequality. 

Proposition 2.1.1.23. If f is a function integrable and convex on  b,a , we have the 

following inequality: 

(2.1.1.28) 

 
   
















 














































 



  22

2

2111 1

11 1

ba
f

bfaf

ab

x
n

ba

ab

xba

n
x

n
fxf

n

n

i

in

i

i
n

i

n

i

ii
, 

for every  b,ax i  . 

 

Proof. If  b,ax i  , for all n,i 1 , then using inequality (2.1.1.27), we have 

       
  F

ab

xba
xf

ab

afbf
x

ab

bafabf
F

ab

xba i

ii

i

















































2
1

2
1  

where 
   








 





22

ba
f

bfaf
F . By summing from 1 to n, we find the following 

inequality: 

(2.1.1.29) 

   



































 






n

i

i

ab

xba

n

ba
f

bfaf

1

21
1

22
 

       
 

 











n

i

i

n

i

i xf
n

x
abn

afbf

ab

bafabf

11

1
 

   

































 






n

i

i

ab

xba

n

ba
f

bfaf

1

21
1

22
, 

If  b,ax i  , for all n,i 1 , then  b,ax
n

n

i

i 
1

1
 and using inequality (2.1.1.27), we 

have 

(2.1.1.30) 

   
















 

































22

2

1
1 ba

f
bfaf

ab

x
n

ba
n

i

i

 

       
  























n

i

i

n

i

i x
n

fx
abn

afbf

ab

bafabf

11

1
 

                                           
   
















 

































22

2

1
1 ba

f
bfaf

ab

x
n

ba
n

i

i

, 
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Therefore, combining inequalities (2.1.1.29) and (2.1.1.30), we obtain the inequality 

from statement. 
□ 

From Proposition 2.1.1.14, we have that: if the function f is strongly convex 

with modulus c then the function g (x) = f (x) − cx2 is convex. 

We apply the above results for the function g, thus: 
Corollary 2.1.1.24. If f is a strongly convex function with modulus c, then we have: 

(2.1.1.27)    

       
     11

2
1

2
1 F

ab

xba
bxaxcxf

ab

afbf
x

ab

bafabf
F

ab

xba















































  

 where 
     

222

2

1

ba
c

ba
f

bfaf
F










 



 , for every  b,ax  . 

 

Proposition 2.1.1.25. If f is a strongly convex function with modulus c, we have the 

following inequality: 

(2.1.1.28) 

  1

1

11

2

1

2

1 1

2

211111
F

ab

x
n

ba

ab

xba

n
x

n
x

n
cx

n
fxf

n

n

i

in

i

i
n

i

n

i

ii

n

i

n

i

ii





































































  



  

, 

for every  b,ax i  , where 
     

222

2

1

ba
c

ba
f

bfaf
F










 



 . 

 

2.1.2    Several inequalities on generalized entropies 
 

 

Generalized entropies have been studied by many researchers (we refer the 

interested reader to [6]). Rényi [191] and Tsallis [201] entropies are well known as 

one-parameter generalizations of Shannon’s entropy, being intensively studied not 

only in the field of classical statistical physics [202–204], but also in the field of 

quantum physics in relation to the entanglement [198].  

The Tsallis entropy is a natural one-parameter extended form of the Shannon 

entropy, hence it can be applied to known models which describe systems of great 

interest in atomic physics [84]. However, to our best knowledge, the physical 

relevance of a parameter of the Tsallis entropy was highly debated and it has not 

been completely clarified yet, the parameter being considered as a measure of the 

non-extensivity of the system under consideration.  

One of the authors of the present paper studied the Tsallis entropy and the 

Tsallis relative entropy from a mathematical point of view. Firstly, fundamental 

properties of the Tsallis relative entropywere were discussed in [81]. The 

uniqueness theorem for the Tsallis entropy and Tsallis relative entropy was studied 

in [85]. Following this result, an axiomatic characterization of a two-parameter 

extended relative entropy was given in [86].  

In [74], information theoretical properties of the Tsallis entropy and some 

inequalities for conditional and joint Tsallis entropies were derived. In [87], matrix 

trace inequalities for the Tsallis entropy were studied. And, in [88], the maximum 
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entropy principle for the Tsallis entropy and the minimization of the Fisher 

information in Tsallis statistics were studied.  

Quite recently, we provided mathematical inequalities for some divergences 

in [89], considering that it is important to study the mathematical inequalities for 

the development of new entropies. We show several results from our paper 

[Furuichi-Minculete-Mitroi, 75], here we define a further generalized entropy based 

on Tsallis and Rényi entropies and study mathematical properties by the use of 

scalar inequalities to develop the theory of entropies. 

We start from the weighted quasilinear mean for some continuous and 

strictly monotonic function RI: , defined by 

(2.1.2.1)                             













 




n

j

jjn xpx,...,x,xM
1

1

21 
, 

where 



n

j

jp
1

1 , 0jp , Ix j  , for n,j 1 , and 1n .  

If we take   xx  , then  nx,...,x,xM 21  coincides with the weighted 

arithmetic mean   



n

j

jjn xpx,...,x,xA
1

21
. If we take   xlogx  , then 

 nx,...,x,xM 21  coincides with the weighted geometric mean 

  



n

j

p

jn
jxx,...,x,xG 21
. If   xx   and 

j

qj
p

lnx
1

 , then  nx,...,x,xM 21  is equal to 

Tsallis entropy [201]:  

(2.1.2.2)           



n

j j

qj

n

j

jq

q

jnq
p

lnpplnpp,...,p,pH
11

21

1
,  10  q,q . 

where  np,...,p,p 21 is a probability distribution with 0jp
 
for all n,j 1

 
and the 

q-logarithmic function for 0x
 

is defined by  
q

x
xln

q

q







1

11

, which uniformly 

converges to the usual logarithmic function log(x) in the limit q→1. Therefore, the 

Tsallis entropy converges to Shannon entropy in the limit q→1: 

(2.1.2.3)             





n

j

jjnnq
q

plogpp,...,p,pHp,...,p,pHlim
1

2121
1

. 

Thus, we find that Tsallis entropy is one of the generalizations of Shannon 

entropy. It is known that Renyi entropy [191] is also a generalization of Shannon 

entropy. Here, we review a quasilinear entropy [6] as another generalization of  

Shannon entropy. For a continuous and strictly monotonic function φ on (0, 1], the 

quasilinear entropy is given by 

(2.1.2.4)                       













 




n

j

jjn pplogp,...,p,pI
1

1

21  . 

If we take   xlogx 
 
in (2.1.2.4), then we have 

   nn

log p,...,p,pHp,...,p,pI 21121  . We may redefine the quasilinear entropy by 

(2.1.2.5)                     



























 




n

j j

jn
p

plogp,...,p,pI
1

1

21

1
 , 

for a continuous and strictly monotonic function   on (0, ∞). If we take   xlogx   
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in (2.1.2.5), we have    nn

log p,...,p,pHp,...,p,pI 211211  . The case   qxx  1
 
is also 

useful in practice, since we recapture Rényi entropy, namely 

   nqn

x p,...,p,pRp,...,p,pI
q

21211

1




, where Rényi entropy [191] is defined by 

(2.1.2.6)                      















 



n

j

q

jnq plog
q

p,...,p,pR
1

21
1

1
. 

From a viewpoint of application on source coding, the relation between the 

weighted quasilinear mean and Renyi entropy has been studied in Chapter 5 of 

[191] in the following way: 

Theorem A ([191]) For all real numbers q > 0 and integers D > 1, there exists a code 

(x1, x2, . . . , xn) such that 

(2.1.2.7)           
 

 
 

Dlog

p,...,p,pR
x,...,x,xM

Dlog

p,...,p,pR nq

n

D

nq

x
q

q

21

21

21
1   , 

where the exponential function 
x

q

q

D

1

 is defined on [1,∞). 

By simple calculations, we find that  

  





n

j

jjn

D
q

xpx,...,x,xMlim
x

q

q

1

21
1

1 ,  

and 

 

 






n

j

jDj

nq

q
plogp

Dlog

p,...,p,pR
lim

1

21

1
. 

Motivated by the above results and recent advances on the Tsallis entropy 

theory, we investigate the mathematical results for generalized entropies involving 

Tsallis entropies and quasilinear entropies, using some inequalities obtained by 

improvements of Young’s inequality. 

Definition 2.1.2.1. For a continuous and strictly monotonic function   on (0,∞) and 

two probability distributions {p1, p2, . . . , pn} and {r1, r2, . . . , rn} with pj > 0, rj > 0  

for all n,j 1 , the quasilinear relative entropy is defined by 

(2.1.2.7)                     



























 




n

j j

j

jnn
p

r
plogr,...,r,rp,...,p,pD

1

1

21211  . 

The quasilinear relative entropy coincides with the Shannon relative entropy 

if   xlogx  , i.e., 

   nn

n

j j

j

jnn

log r,...,r,rp,...,p,pD
p

r
logpr,...,r,rp,...,p,pD 21211

1

21211  


. 

We denote by  nnq r,...,r,rp,...,p,pR 2121  the Rényi relative entropy [3] defined 

by 

(2.1.2.6)                  















 




n

j

q

j

q

jnnq rplog
q

r,...,r,rp,...,p,pR
1

1

2121
1

1
. 

This is another particular case of the quasilinear relative entropy, namely for 

  qxx  1  we have 
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 
qn

j

q

j

j

jnn

x

p

r
plogr,...,r,rp,...,p,pD

q


































 



1

1

1

1

21211

1

 .r,...,r,rp,...,p,pRrplog
q

nnq

n

j

q

j

q

j 2121

1

1

1

1

















 



  

If we use the inequality (1.4.23), then we obtain 

                  

 r

jj

jjq

j

q

jjj

r

jj

jjq

j

q

j
rp

rp
rprqqp

rp

rp
rp

















 














 
12

1

2

1

2
1

2
, 

where  10,q  and  q,qminr  1 . It follows that 

  
 

 nnq

n

j

r

jj

jj

jj r,...,r,rp,...,p,pR
rp

rp
rqqplog

q
2121

1

12

2
1

1

1






























 








           

                                                    




























 



 




n

j

r

jj

jj

jj
rp

rp
rqqplog

q 1

2

2
1

1

1
. 

 

We denote by 

(2.1.2.7)       ,
p

r
lnprlnplnpr,...,r,rp,...,p,pD

n

j j

j

qj

n

j

jqjq

q

jnnq 



11

2121
 

the Tsallis relative entropy which converges to the usual relative entropy 

(divergence, Kullback-Leibler information) in the limit q→1:  

    





n

j j

j

jnnnnq
q p

r
logpr,...,r,rp,...,p,pDr,...,r,rp,...,p,pDlim

1

212112121
1

. 

On the other hand, the studies on refinements for Young’s inequality have 

given a great progress in the papers [10, 11, 53, 76, 77, 78]. In the present paper, we 

give some inequalities on Tsallis entropies applying two types of inequalities 

obtained in [77, 157]. 

As an analogy with (2.1.2.5), we may define in our paper [75] the following 

entropy: 

Definition 2.1.2.2. For a continuous and strictly monotonic function   on (0,∞) and 

q > 0 with 1q , the Tsallis quasilinear entropy (q-quasilinear entropy) is defined 

by 

(2.1.2.8)                     



























 




n

j j

jqnq
p

plnp,...,p,pI
1

1

21

1
 , 

where {p1, p2, . . . , pn} is a probability distribution with pj > 0 for all n,j 1 . 

We notice that if   does not depend on q, then  

   nnq
q

p,...,p,pIp,...,p,pIlim 2121
1

 


, 

For x > 0 and q > 0 with 1q , we define the q-exponential function as the 

inverse function of the q-logarithmic function by      q
q xqxexp  1

1

11 , if  

1 + (1 – q)x >0, otherwise it is undefined. If we take    xlnx q , then we have  
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   nqn

ln

q p,...,p,pHp,...,p,pI q

2121  . Furthermore, we have 

 
qn

j

q

jq

qn

j

q

jjqn

x

q plnpplnp,...,p,pI
q







































 


1

1

1

1

1

1

1

21

1

 
 nq

n

j

j

q

j

q

qn

j

q

j

p,...,p,pH
q

pp

q

p

21

1

1

1

1

1

11

1




















































. 

Proposition 2.1.2.3 ([Furuichi-Minculete-Mitroi, 75]). The Tsallis quasilinear 

entropy is nonnegative: 

  021 nq p,...,p,pI . 

We note here that the q-exponential function gives us the following 

connection between Renyi entropy and Tsallis entropy [201]:  

(2.1.2.9)                   nqqnq p,...,p,pHexpp,...,p,pRexp 2121  . 

We should note here  nqq p,...,p,pHexp 21  is always defined, since we have 

(2.1.2.10)                    



n

j

q

jnq pp,...,p,pHq
1

21 011 . 

Definition 2.1.2.4. For a continuous and strictly monotonic function   on (0,∞) and 

two probability distributions {p1, p2, . . . , pn} and {r1, r2, . . . , rn} with pj > 0, rj > 0 for 

all n,j 1 , the Tsallis quasilinear relative entropy is defined by 

(2.1.2.11)                     



























 




n

j j

j

jqnnq
p

r
plnr,...,r,rp,...,p,pD

1

1

2121  , 

 

For    xlnx q , the Tsallis quasilinear relative entropy becomes Tsallis 

relative entropy, 

                nnq

n

j j

j

qjnn

ln

q r,...,r,rp,...,p,pD
p

r
lnpr,...,r,rp,...,p,pD q

2121

1

2121 













 



, 

and for   qxx  1 , we have 

 
qn

j

q

j

q

jq

qn

j

q

j

j

jqnn

x

q rpln
p

r
plnr,...,r,rp,...,p,pD

q






















































 


1

1

1

1

1

1

1

1

2121

1
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1
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


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




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








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
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
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






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


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


































 

Proposition 2.1.2.5 ([Furuichi-Minculete-Mitroi, 75]). If   is a concave increasing 

function or a convex decreasing function, then we have nonnegativity of the Tsallis 

quasilinear relative entropy: 

  02121 nnq r,...,r,rp,...,p,pD . 

Proof. We firstly assume that   is a concave increasing function. The concavity of 

  shows that we have  
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








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
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
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
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




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


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 n

j j

j

j

n

j j
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j
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r
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r
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11

  

which is equivalent to 

  

















n

j j

j

j
p

r
p

1

1   

From the assumption, 1
 
is also increasing so that we have 




























 




n

j j

j

j
p

r
p

1

11  . 

Therefore, we have 0
1

1 



























 




n

j j

j

jq
p

r
pln  , since lnq x is increasing and  lnq(1) = 

0. For the case that   is a convex decreasing function, we can similarly prove the 

nonnegativity of the Tsallis quasilinear relative entropy. 

□ 

Remark 2.1.2.6. The following two functions satisfy the sufficient condition in the 

above proposition: 

(i)    xlnx q
 
for 10  q,q . 

(ii)   qxx  1
 
for 10  q,q . 

It is notable that the following identity holds: 

(2.1.2.12)             nnqqnnq r,...,r,rp,...,p,pDexpr,...,r,rp,...,p,pRexp 212122121  . 

Next, we give inequalities for the Tsallis quasilinear entropy and f -

divergence. For this purpose, we review the results obtained in [157] as one of the 

generalizations of refined Young’s inequality. 

Proposition 2.1.2.7 ([157]). For two probability vectors  np,...,p,p 21p  and 

 nr,...,r,r 21r  such that 00  jj r,p , 1
11




n

j

j

n

j

j rp  and  nx,...,x,x 21x  such 

that 0jx , we have 

(2.1.2.13)             pxrxpx ,,fT
p

r
max,,fT,,fT

p

r
min

i

i

ni
i

i

ni 

















 11

0 ,  

where       
 
































n

j

n

j

jjjj xpfxfp,,fT
1 1

1 px  

for a continuous increasing function   : I→I and a function f : I→J such that 

                                     bfafbaf   111  

for any Ib,a   and any  10, .  

We have the following inequalities on the Tsallis quasilinear entropy and 

Tsallis entropy: 

Theorem 2.1.2.8 ([Furuichi-Minculete-Mitroi, 75]). For 0q , a continuous and 

strictly monotonic function ψ on (0,∞) and a probability distribution 

 nr,...,r,r 21r with 0jr  for all n,j 1 , and 1
1




n

j

jr , we have 

(2.1.2.14)                     











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









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











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
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
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n
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j j

qi
ni r
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nrn

lnrminn
11

1

1

1111
0  , 
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   nqnq r,...,r,rHr,...,r,rI 2121    
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1111
 . 

 

Proof. If we take the uniform distribution 









n

,...,
n

,
n

111
p ≡ u in Proposition 2.1.2.7, 

then we have 

(2.1.2.15)                        uxrxux ,,fTrmaxn,,fT,,fTrminn i
ni

i
ni 


11

0 ,  

 

(which coincides with Theorem 3.3 in [157]). In the inequalities (2.1.2.15), we put 

   xlnxf q  and 
j

j
r

x
1

  for any n,j 1 , then we obtain the statement. 

□ 

 

Corollary 2.1.2.9 ([Furuichi-Minculete-Mitroi, 75]). For 0q  and a probability 

distribution  nr,...,r,r 21r with 0jr  , for all n,j 1  and 1
1




n

j

jr , we have 

(2.1.2.16)                     
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1111
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 nqq r,...,r,rHnln 21  
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Proof. Put    xlnxf q  in Theorem 2.1.2.8. 

Remark 2.1.2.10.  Corollary 2.1.2.9 improves the well-known inequalities 

  nlnr,...,r,rH qnq  210 . If we take the limit q→1, the inequalities (2.1.2.16) 

recover Proposition 1 in [58]. 

Corollary 2.1.2.11 ([Furuichi-Minculete-Mitroi, 75]). For two vectors 

 na,...,a,a 21a and  nb,...,b,b 21b  for all n,j 1 , we have 

(2.1.2.17)          
  
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i

i

n

i
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1 1 1

22

2

11

2

1

2

2

1
. 

Theorem 2.1.2.12 ([Furuichi-Minculete-Mitroi, 75]). Let RI:f  be a twice 

differentiable function such that there exists real constant m and M so that 

  Mx"fm 0  for any Ix . Then we have 

(2.1.2.18)           














nji

ijji

n

i

ii

n

i

ii

nji

ijji xxpp
M

xpfxfpxxpp
m

1

2

111

2

22
, 

where ,p j 0  1
1




n

j

jp  and Ix j   for all n,j 1 . 

Corollary 2.1.2.13 ([Furuichi-Minculete-Mitroi, 75]). For two vectors 

 na,...,a,a 21a and  nb,...,b,b 21b  for all n,j 1 , we have 
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(2.1.2.19)                
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1 11
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Corollary 2.1.2.14. Under the assumptions of Theorem 2.1.2.12, we have 
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where ,p j 0  1
1




n

j

jp  and Ix j   for all n,j 1 . 

We also have the following inequalities for Tsallis entropy: 

Theorem 2.1.2.15 ([Furuichi-Minculete-Mitroi, 75]). For two probability 

distribution  np,...,p,p 21p  and  nr,...,r,r 21r  such that ,r,p jj 00  n,j 1 , 
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where mq and Mq are positive numbers depending on the parameter q ≥ 0 and 

satisfying q

q

jq Mqrm   1

 and q

q

jq Mqpm   1 , for all n,j 1 . 

Corollary 2.1.2.16 ([Furuichi-Minculete-Mitroi, 75]). For two probability 

distribution  np,...,p,p 21p  and  nr,...,r,r 21r  such that ,r,p jj 00  n,j 1 , 
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where m1 and M1 are positive numbers satisfying 1

2

1 Mrm j  

 and 1

2

1 Mpm j   , 

for all n,j 1 . 

Proof . Take the limit q→1 in Theorem 2.1.2.15. 

□ 

 

Remark 2.1.2.17. The second part of the inequalities (2.1.2.22) gives the reverse 

inequality for the so-called information inequality 
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(2.1.2.23)                       
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which is equivalent to the non-negativity of the relative entropy 

                                            021211 nn r,...,r,rp,...,p,pD . 

Using the inequality (2.1.2.23), we derive the following result. 

Proposition 2.1.2.18 ([Furuichi-Minculete-Mitroi, 75]). For two probability 

distribution  np,...,p,p 21p  and  nr,...,r,r 21r  such that ,r,p jj 00  n,j 1 , 
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Proof.  In the inequality (2.1.2.23), we take the substitutions 
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. Then we have the present 

proposition. 

□ 

Above we consider  np,...,p,p 21p  and  nr,...,r,r 21r  such that 

,r,p jj 00  n,j 1 ,  to be probability distributions. Tsallis relative entropy 

(divergence) is given by 

                  
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It converges to the classic Kullback-Leibler information:  
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The Jeffreys divergence is defined by 

(2.1.2.25)                                    prrprp 111 DDJ  . 

and the Jensen-Shannon divergence is defined as 
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(see e.g. [161]). 

Before stating the results we establish the notation. The two-parameter 

extended logarithmic function (see e.g. [161]) to the  q,r -logarithmic function for 

0x  is defined by  
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, 

which uniformly converges to the usual logarithmic function log(x) in the limit q→1 

and r→1.  

This is a decreasing function with respect to indices. Correspondingly, the 

inverse function of  xln q,r  is denoted by 

                                             
  xexplogexpxexp rqq,r  . 
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We start from the Tsallis (r,q)-quasilinear entropies and Tsallis (r,q)-

quasilinear divergences as they were defined in [89]. 

Definition 2.1.2.19. For a continuous and strictly monotonic function   on (0,∞) 

and q,r > 0 with 1r,q , the Tsallis quasilinear entropy ((r,q)-quasilinear entropy) 

is defined by 
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For    xlnx q,r  we have the following entropic functional: 

(2.1.2.28)                                  
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This also gives rise to another case of interest 
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which in particular case coincides with Arimoto’s entropy. 

Definition 2.1.2.20. For a continuous and strictly monotonic function   on (0,∞), 
0r,q  with 1r,q , and two probability distributions  np,...,p,p 21  and  nr,...,r,r 21  

with pj > 0, rj > 0 for all n,j 1 , the (r,q)-quasilinear divergence  is defined by 
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For    xlnx q,r  we the following: 
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By analogy to the entropy computation, we find the following Arimoto type 

divergence:
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Proposition 2.1.2.21 ([Mitroi-Minculete, 161]). Let r be a real number. Assume 

00  q,p  satisfy 
q

p
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  . If 21  p  or if 21  q , then we have 
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Theorem 2.1.2.22 ([Mitroi-Minculete, 161]). Assume that real numbers p, q
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where  
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 . 

 

As we have seen in all these examples, in many cases the use of the (r,q) – 

generalized logarithmic function nicely completes the picture obtained with the q-

logarithm and can be useful in applied areas (signal and image processing, 

information theory). 

 

 

2.2   Inequalities for invertible positive operators 
 

 

In Theory of Operators we found various characterizations and the relationship 

between operator monotonicity and operator convexity given by Hansen and 

Pedersen [104],Chansangiam [34]. 

In [121], Kubo-Ando has studied the connections between operator monotone 

functions and operator means. The operator monotone function plays an important 

role in the Kubo-Ando theory of operator connections and operator means. Other 

information about applications of operator monotone functions to theory of 

operators mean can be found in [180]. Theory of operator mean plays a central role 

in operator inequalities, operator equations, network theory, and quantum 

information theory.  

Let H be a real Hilbert space. Denote by B(H) the algebra of bounded linear 

operators on H. We write 0A  to means that A  is a strictly positive operator, or 

equivalently, 0A  and A  is invertible. We note that I is the identity operator. 

In [19], we found the quasi-arithmetic power mean p,#  with exponent   and 

weight p given by  

   


/

p, pBApB#A
1

1  ,  0B,A . 

Several special cases of the family of quasi-arithmetic power means are the 

following: for 1 , we have the weighted arithmetic mean as follows 

  pBApB#A:BA p,p  11 ,  0B,A ; 

for 1 , we obtain the weighted harmonic mean given as 

   111

1 1


  pBApB#A:B!A p,p ,  0B,A ; 

for 0 , we have the weighted geometric mean given by 
pp

p,p BAB#AlimB#A 


 1

0



,  0B,A  and A, B commutes. 

The geometric mean was defined by Pusz and Woronowicz in [186]: 

 Hy,x,yBxAy,Tx:TmaxB#A //  21210 ,  0B,A . 

In fact, this definition is the formula given by Ando in [15]: 

  2121212121 ///// ABAAAB#A  ,  0B,A . 

Another definition of the geometric mean (see e.g. [14], [16]) is given by 

















 00

BX

XA
andX|XsupB#A ,  0B,A . 

An important remark [14] is that the geometric mean B#A  is the unique 

positive solution to the Riccati equation 
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BXXA 1 . 

The p-weighted geometric mean is defined [16] by 

  21212121 /p///

p ABAAAB#A  , 

where   10,p  and 0B,A . 

 

Furuta-Yanagida proved, in [92], the following inequality  

BAB#AB!A ppp  . 

From the known inequality 

     ptptptp p 
 11
11 , 

which implies 

       /p/
ptptptp

11
11 

 ,   010  ,,p , 

we deduce an inequality for the quasi-arithmetic power mean p,#  

B#AB#AB#A p,pp,   . 

Theorem  B ([200]) For invertible positive operators A and B with 

MIB,AmI 0 , we have 

(i) (Ratio-type reverse inequality) 

(2.2.1)                                        B#AhSpBAp p1 , 

 (ii) (Difference-type reverse inequality) 

(2.2.2)                                  BhSh,LB#ApBAp p 11  , 

where  10,p .  

Next, we show two reverse inequalities which are different from (2.2.1) and 

(2.2.2) given in our paper [Furuichi-Minculete, 76]. 

We first show the following remarkable scalar inequality: 

Theorem. 2.2.1 ([Furuichi-Minculete, 76]). Let   Rb,a:f  be a twice 

differentiable function such that there exist real constant M so that M"f 0 , for 

 b,ax . Then the following inequalities hold: 

                                     21110 abpMpbppafbfpapf   

for all  10,p . 

If we take, in inequality from above Theorem,   xlogxf   and afterwards 
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                                  M
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1 110


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



  . 

From here, we consider bounded linear operators acting on a complex Hilbert 

space H. If a bounded linear operator A satisfies  AA , then A is called a 

selfadjoint operator. If a self-adjoint operator A satisfies 0x|A|x  for any 

Hx|   , then A is called a positive operator. In addition, BA   means 0BA . 
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Theorem  2.2.2 ([Furuichi-Minculete, 76]). For  10,p , two invertible positive 

operators A and B satisfying the ordering IMIB,AmI 0  with 
m

M
h   we 

have 

(i) (Ratio-type reverse inequality) 
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 (ii) (Difference-type reverse inequality) 

(2.2.4)                       BhlogppB#ApBApB#A pp

211  . 

Remark 2.2.3. It is natural to consider that our inequalities are better than 

Tominaga’s inequalities under the assumption BA  . The inequality that underlies 

the proof of  inequality (2.2.1) is one of reverse inequalities for Young inequality 

that was given by Tominaga [200] by 

  ppba
b

a
Sbppa 









 11 . 

Therefore, we compare this inequality with the inequality 

 
   pppppp ba

m

bapp
expbababppa  







 

 1

2

2

11 1
10  

used in the proof of inequality (2.2.3), thus [Furuichi-Minculete, 76]: 

(i) Take 
2

1
h  and 

20

1
p  , then we have 

                     01282950
1

11

2

.hS
h

ppexp 




















 . 

(ii) Take 
2

1
h  and 

10

1
p  , then we have 

                      03269860
1

11

2

.hS
h

ppexp 




















 . 

Thus, we can conclude that there is no ordering between (2.2.3) and (2.2.1). 

In [201], Tsallis defined the one-parameter extended entropy for the analysis 

of a physical model in statistical physics. The properties of Tsallis relative entropy 

was studied in [81] and [82], by Furuichi, Yanagi and Kuriyama. 

The relative operator entropy 

    21212121 //// ABAAlogA:B|AS 

 for two invertible positive operators A and B on a Hilbert space was introduced by 

Fujii and Kamei in [73]. The parametric extension of the relative operator entropy 

was introduced by Furuta in [91] as 

      212121212121 ///p///

p ABAAlogBAAA:B|AS  , 

for Rp and two invertible positive operators A and B on a Hilbert space. Note 

that    B|ASB|AS 0 . 

In [207], Yanagi, Kuriyama and Furuichi introduced a parametric extension 

of relative operator entropy by the concept of Tsallis relative entropy for operators, 

thus 
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 
 

p

AABAAA
:B|AT

/p///

p




 21212121

,  10,p , 

where A and B are two positive invertible operators on a Hilbert space. 

The relation between relative operator entropy S (A|B) and Tsallis relative 

operator entropy  B|ATp  was considered in [82], as follows:  

(2.2.5)                        ABB|ATB|ASB|ATAABA pp  

1 . 

The following known property of the Tsallis relative operator entropy is given in 

[108]: 

Proposition 2.2.4. For any strictly positive operators A and B and 

   1001 ,,q,p   with p ≤ q, we have 

(2.2.6)                                            B|ATB|AT qp  . 

This proposition can be proved by the monotone increasing 
p

x p 1
 on 

Rp for any x > 0, and implies the following inequalities (which include the 

inequalities (2.2.5)): 

       A − AB−1A = T−1(A|B) ≤ T−p(A|B) ≤ S(A|B) ≤ Tp(A|B) ≤ T1(A|B) = B – A, 

for any strictly positive operators A and B and p ∈ (0, 1]. 

The main result from our paper [Moradi-Furuichi-Minculete,163] is a set of 

bounds that are complementary to (2.2.5). Some of our inequalities improve well-

known ones. Among other inequalities, it is shown that if A, B are invertible 

positive operators and p ∈ (0,1] , then                   

   ABB#AB#AB|ATAIBAA
IBAA

A ppp

p










































1
2

1

2

1

2

1

1

2

1

2

1

2

1

2

1

2
, 

which is a considerable refinement of (2.2.5), where I is the identity operator. We 

also prove a reverse inequality involving Tsallis relative operator entropy  B|ATp . 

Theorem 2.2.5 ([Moradi-Furuichi-Minculete,163]). For any invertible positive 

operator A and B such that A ≤ B, and p ∈ (0,1] we have 

(2.2.7)                     

      ABB#AB#AB|ATAIBAA
IBAA

A ppp

p










































1
2

1

2

1

2

1

1

2

1

2

1

2

1

2

1

2
, 

Proof. Consider the function   1 pttf , p ∈ (0,1] . It is easy to check that f (t) 

is convex on  ,1 . Bearing in mind the fact 






x p
p

p

x
dtt

1

1 1
, 

and utilizing the left-hand side of Hermite-Hadamard inequality, one can see that 

 
p

x
x

x pp
1

1
2

1
1










 


, 

where x ≥ 1 and p ∈ (0,1] . On the other hand, it follows from the right-hand side of 

Hermite-Hadamard inequality that  
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 1
2

11 1








 


 

x
x

p

x pp

, 

for each x ≥ 1 and p ∈ (0,1] . 

Replacing x by 2

1

2

1


BAA in above inequalities, and multiplying 2

1

A  on both 

sides, we get the desired result. 

□ 

Proposition 2.2.6 ([Moradi-Furuichi-Minculete,163]). For x ≥ 1 and 1
2

1
 p , we 

have  

(2.2.8)                                    1
2

11
1








 





x
x

x

x
p

. 

Proof. In order to prove (2.2.7), we set the function  
x

x
xf

p

p

1

2

1
1








 




, where  

 x ≥ 1 and 1
2

1
 p . Since   0

2

1

2

1
1








 







 



x

log
x

x'f

p

p , for x ≥ 1. Therefore, we 

have    
 

0
1

12
21 






xx

xx
xfxf /p , for x ≥ 1. Consequently, we deduce the 

inequality of the statement. 

□ 

Corollary 2.2.7 ([Moradi-Furuichi-Minculete,163]). For any invertible positive 

operators A and B such that A ≥ B, and p ∈ (0,1] , we have 

(2.2.9)            B|ATABB#AB#AB#AB#A ppppp   11
2

1
 

                                 0
2

1
2

1

2

1

2

1

1

2

1

2

1

2

1


































 







B#AB#AAIBAA
IBAA

A pp

p

. 

In [81], we found several results about the Tsallis relative operator entropy. 

Furuta [91] showed two reverse inequalities involving Tsallis relative operator 

entropy  B|ATp  via generalized Kantorovich constant  pK . 

Dragomir, Cerone and Sofo in [56, 57] and Niculescu and Persson in [166] 

present the following estimates of the precision in the Hermite-Hadamard 

inequality: 

Proposition 2.2.8. Let   Rb,a:f  be a twice differentiable function such that 

there exist real constants m and M so that Mfm  " . Then 

(2.2.10)                           
 

 
 

242

1

24

22
ab

M
ba

fdttf
ab

ab
m

b

a










 






  

and 

(2.2.11)                           
     

 
 

12

1

212

22
ab

Mdttf
ab

bfafab
m

b

a











 . 

In this context, since 




x p
p

p

x
dtt

1

1 1
, we have 
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Lemma 2.2.9. For the real numbers 1x and    1001 ,,p  , the following 

inequalities 

(2.2.12)     
 

    
 

24

1
21

2

1
1

1

24

1
210

313

3 








 










 x
pp

x
x

p

xx
xpp

pp
p  

and  

(2.2.13)     
 

  
 

12

1
21

1

2

1

12

1
210

313

3 












 x

pp
p

xxxxx
xpp

ppp
p  

hold. 

Proof. For 1x , we obtain the equality in relations (2.2.12) and (2.2.13). 

We consider 1x  and the function   Rx,:f 1  defined by   1 pttf with 

   1001 ,,p  . It follows that     21  ptpt'f with      021 3  ptppt"f , so 

the function f is convex and        2121 3   ppMt"fmxpp p , 

Therefore, we apply the above theorem and we have 

 

  
 

 
  

 
24

1
21

2

1

1

1

24

1
21

212

3 








 












 x
pp

x

xp

xx
xpp

pp
p , 

which is equivalent to inequality (2.2.12).  

Using the second inequality from the above theorem we have 

 

  
 

 
  

 
12

1
21

1

1

2

1

12

1
21

212

3 














 x

pp
xp

xxx
xpp

pp
p . 

□ 

Theorem 2.2.10 ([Moradi-Furuichi-Minculete,163]). For any invertible positive 

operator A and B such that BA  , and  10,p , we have  

(2.2.14)
    

              


 B|ATpB|ATpB|ATpB|ApT
pp

pppp 321 32313
24

21
 

    






 





 21

1
2121

21

2

/

p
//

/

p A
IBAA

AABB|AT  

  
 ABB#AB#A

pp



33

24

21
23  

and  

(2.2.15)
  
 

     

  
              


 B|ATpB|ATpB|ATpB|ApT

pp
pppp 321 32313

12

21
 

     B|ATABB#AB#A ppp 1
2

1
 

  
 ABB#AB#A

pp



33

12

21
23  

Proof. If A and B are positive invertible operators such that BA  , then replacing x 

with the positive operator 2121 // BAA  and multiplying by 21/A relations (2.2.12) 

and (2.2.13) we obtain  
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    

   

  
24

33
21

2

33
24

21

23

21

1
2121

21

321

ABB#AB#A
pp

A
IBAA

AABB|AT

B#AB#AB#AB#A
pp

/

p
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/

p

pppp


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








 












 

and  

    

   

    .B#AB#AB#AB#A
pp

B|ATABB#AB#A

B#AB#AB#AB#A
pp

pppp

ppp

pppp

321

1

321

33
12

21

2

1

33
12

21















 

 

But, replacing   AB|ApTB#A pp   in the above inequalities implies the 

inequalities of the statement. 

□ 

In this moment, we see that equality 

                 

   
  
















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

 
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


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 
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1

1

4

2

1
1
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2

2

1
1

12

1

pppt
t
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t
t

p
dx

x
x        

 

which can be written as 

                       
 












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


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
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
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
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
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 
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 1
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1

4
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2

14

2

1
1

12

1

pppt
t

p

t

p
dx

x
x .                             

Remark 2.2.11. Therefore, the inequality from Theorem 2.2.10, can be rewritten 

as: 

For any strictly positive operators A and B such that BA  , and  10,p , we have 

(2.2.16)
  

         B|ATB|AT
p

BA
|AT

BA
|AT ppp 11

1

1

22
4 


















 








 


       

 

                                                                  AB#AB|ATB|AT pp   21
4

1

2

1
 

 

or, multiplying by 01 p , we obtain 

(2.2.17)
  

            B|ATB|ATAB#A
p

B|ATB|AT
p

ppp 121
4

1

2

1








       

 

                                                          














 
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





 
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22
14 1

BA
|AT

BA
|ATp pp

 
The below inequality implies inequality (2.2.15).
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1
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p

t

p

t

p

t
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p

t

p

ppppp

.                             

We can prove that 
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Because we put    
  





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





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












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2
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1

1

1 1

p

t

p

t
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t
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t
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ppp

p , for 1t , 10  p . 

But 
 

 21
1

2

1

1

1 






 pp

p
p

tt
p

t

dt

tdh
, 

   
01

2

3

2

2 3

2

2


















t
p

ptp

dt

thd p
p

, for 

1t , 10  p , thus we have
   

0
1


dt

dh

dt

tdh pp
. It follows that     01  pp hth . 

Therefore, we deduce the inequality 

 
 2

11

1
4

1

1

11

2

1

1

1

1

1

1

11

2

1













































 

t
p

t

p

t

p

t

pp

t

p

t

p

t ppppp

, 

which implies the inequality    

(2.2.18)
  

                   B|ATB|AT
p

B|ATB|AT ppp 11
1

1

2

1



 

       

 

                                               .AB#AB|ATB|AT pp   21
4

1

2

1
 

In a recent study, Furuichi and Minculete showed that: 

Theorem 2.2.12. For any strictly positive operators A and B such that BA  , and 

 10,p , we have 

(2.2.19)
  

                              
   qq

B#ABA

pp

B#ABA qqpp










11
.

       

 

Proof. We have the identity:

 
  1

1

1

1

1 1

2









 



p

x

pp

x
dydty

px t

p .  

Therefore, we deduce the following inequality, for 1x , 10  p , 

   
 

 
 1

11

1

11

1 1

22









 



qq

xpx

pp

xpx
dydtyy

qpx t

qp , 

But, for 1y , 10  q,p , we have 22   qp yy , which implies 

    

x t

qp dydtyy
1 1

22 0 ,  

so we obtain 

 
 

 
 1

11

1

11










qq

xpx

pp

xpx qp

. 

It follows that 

 
 
 qq

xqqx

pp

x)p(px qp










1

1

1

1
,  

which, replacing x by  2121 // BAA  , and multiplying by 21/A to left and to right, 

implies the statement. 

□ 

More interesting things happen when we apply these considerations to the 

operators. 

For instance, from the inequality (1.4.24) it follows that: 
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Theorem 2.2.13 ([Moradi-Furuichi-Minculete,163]). Let A, B be two invertible 

positive operators such that hIBAAI'hI 


2

1

2

1

 or  II'hBAAhI 


2

1

2

1

0 , 

then we have 

(2.2.20)
  

                        B#A,'hKBAB#A,'hK p

r

pp

r 22 1 .

 

 

where  10,p ,  p,pminr  1 . 

Ando’s inequality [16] says that if A, B are positive operators and   is a 

positive linear mapping, then  

(2.2.21)                                B#AB#A pp  , p ∈ [0,1] .  

Concerning inequality (2.2.21), we have the following corollary: 

Corollary 2.2.14 ([Moradi-Furuichi-Minculete,163]). Let A, B be two invertible 

positive operators such that hIBAAI'hI 


2

1

2

1

 or  II'hBAAhI 


2

1

2

1

0 .  

Let   is a positive linear mapping on  HB , then we have 

(2.2.22)            
 
 

 
 

     


B#ABA
,hK

B#A
,hK

,'hK
pprpr

r

2

1

2

2
11

 

                                                        
 

   
 

 B#A
,'hK

,hK
BA

,'hK
pr

r

pr




2

2

2

1 1

. 

where  10,p  and  p,pminr  1 . 

Remark 2.2.15. It is well-known that the generalized Kantorovich constant K(h, p) 

[94] is defined by  

(2.2.23)                        
  

p

p

pp

hh

h

p

p

hp

hh
:p,hK 


















11

11
, 

for all Rp , 10,p  . By virtue of a generalized Kantorovich constant, in the matrix 

setting, 

Bourin et al. in [24] gave the following reverse of Ando’s inequality for a 

positive linear map: let  A and B be positive operators such that mA≤B≤MA, and let 

  be a positive linear map. Then 

(2.2.24)                     
 

 B#A
p,hK

B#A pp 
1

, p ∈ [0,1], 

where 
m

M
h  . The above result naturally extends one proved in Lee [123] for 

m

M
h  . 

After discussion on inequalities related to the operator mean with positive 

linear map, we give a result on Tsallis relative operator entropy with a positive 

linear map. It is well-known that Tsallis relative operator entropy has the following 

information monotonicity: 

 (2.2.25)                              B|ATB|AT pp  , p ∈ [0,1], 

Using relation (1.4.23), we have the following counterpart of (2.2.25): 

Theorem 2.2.16 ([Moradi-Furuichi-Minculete,163]). Let A, B be two invertible 

positive operators. Let   be normalized positive linear map on B(H), then 

(2.2.26)               B|ATB#ABA
p

r
p 

2
 

                                                    AB   
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 

      B|ATB#ABA
p

r
p




12
, 

where  10,p  and  p,pminr  1 . 

Tsallis relative entropy  BADp  for two positive operators A and B is defined 

by: 

      pp

p BATrATr
p

:BAD  11
, p ∈ (0,1] . 

In information theory, relative entropy (divergence) is usually defined for 

density operators which are positive operators with unit trace. However, we 

consider Tsallis relative entropy defined for positive operators to derive the relation 

with Tsallis relative operator entropy. If A and B are positive operators, then 

(2.2.27)                           B|ATTrBADBATr pp  , p ∈ (0,1] . 

Note that the first inequality of (2.2.27) is due to Furuta [91] and the second 

inequality is due to Furuichi et al. [81]. 

As a direct consequence of Theorem 2.2.16, we have the following interesting 

relation,  for    XTr
Hdim

X
1

 : 

Theorem 2.2.17 ([Moradi-Furuichi-Minculete,163]). Let A, B be two positive 

operators on a finite dimensional Hilbert space H , then 

(2.2.28)            
     

  B|ATTr
BATr

B#ATr
p

r
p







 




2

12
 

                                                    BATr   

                                                           BAD
BATr

BTrATr
p

r
p







 


2

2
, 

where  10,p  and  p,pminr  1 . 

The inequalities in Theorem 2.2.5 are improvements of the inequalities 

(2.2.5). In the present section, we give the alternative tight bounds for the Tsallis 

relative operator entropy. 

Theorem 2.2.18 ([Furuichi-Minculete, 79]). Let A and B be strictly positive 

operators and let 11  p  with 0p . If BA  , then 

(2.2.29)                   
   

2
2

B|ASB|AS
B|ATB|AS

p

p/p


 . 

If AB  , then 

(2.2.30)                 
   

   B|ASB|AT
B|ASB|AS

/pp

p

2
2




.  

Proof. For 1x  and 11  p  with 0p , we define the function   xlogxtf pt  

with 10  t . Since 
 

  0
32

2

2

 xlogxp
dt

tfd pt  for 1x  , the function  tf  is convex 

on t, for the case 1x . Therefore, we have 

(2.2.31)                        xlog
x

p

x
xlogx

pp
/p








 





2

112
, 

by Hermite-Hadamard inequality, since  




1

0

1

p

x
dttf

p

. By Kubo-Ando theory 

[121], we have the following inequality 
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   
p

AB#A
ABAAlogBAAA

p////p///


 2121212212121

     
2

21212121212121212121 ////////// ABAAlogBAAAABAAlogA  
 , 

which is the inequality (2.2.29). The inequalities (2.2.30) can be similarly shown by 

the concavity of the function f(t) on t, for the case 0 < x ≤ 1. 

□ 

We note that both sides in the inequalities (2.2.29) and (2.2.30) converge to 

S(A|B) in the limit p → 0. From the proof of Theorem 2.2.18, for strictly positive 

operators A and B, we see 

    

1

0

B|ATdtB|AS ppt . 

Remark 2.2.19 ([Furuichi-Minculete, 79]). For the case 10  p  we see 

(2.2.32)            
   

 B|AS
B|ASB|AS

B|ATB|ASB|AS p

p

p/p 



2

2   

from inequalities (2.2.29) since function xlogx p  is monotone, increasing on 

10  p  and xlogxxlog
x p

p




2

1
 for  1x  and 10  p . For the case 01  p , 

we also see 

 (2.2.33)         
   

     B|ASB|ASB|AT
B|ASB|AS

B|AS /pp

p

p 


 2
2  

from inequalities (2.2.30) since function xlogx p  is monotone, increasing on 

01  p  and xlogxxlog
x p

p




2

1
 for  10  x  and 01  p . 

□ 
We will make some considerations about the generalized Kantorovich 

constant K(h, p) given in relation (2.2.23), namely:  

                                     
  

p

p

pp

hh

h

p

p

hp

hh
:p,hK 


















11

11
, 

for all Rp , 10,p  .  

If we take 1 pha  and   hh
p

p
b p 




1
, then we have 

       111  hphhphpbppa pp , so we deduce the following relation: 

 
 bppa

ba
p,hK

pp

1

1






, 

for all Rp , 10,p  .  

Taking into account the above remark, we can estimate the generalized 

Kantorovich constant using several inequalities related to Young’s inequality. By 

exemple, using the inequality given by Kittaneh and Manasrah [116], in the 

following form 

                        
 

   
  

 bppa

bar

bppa

ba

bppa

bar pp











 

1

1

1
1

1

2
1

2

, 

where  10,p  and  p,pminr  1 , we find 
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(2.2.34)  

     
     

  
 

       
  11

111
1

11

11
22










hpp

hhphpr
p,hK

hpp

hhphpr pppp

, 

where 1h ,  10,p  and  p,pminr  1 . 

In [Minculete, 151], we show another improvement of the Young inequality, 

see relation (1.4.23), thus: 

                               
 

 r

pp

r

ab

ba

ba

bppa

ab

ba


 






 











 
12

1

2

2

1

2
, 

for the positive real numbers a, b and  10,p  and  p,pminr  1 . This implies the 

following estimate for the generalized Kantorovich constant 

     
 
      

 
  

r

pp

p
r

pp

p

hhh

hphp

ppp,hKhhh

hphp

pp












































1
22

14

1

1

11

14

1

1

1
, 

so, we obtain 

(2.2.35)    
  

 
   

  
 

r

p

pp
r

p

pp

hphp

hhh
ppp,hK

hphp

hhh
pp









































2

1

2
1

14
1

1

14
1 , 

where  10,p  and  p,pminr  1 . 

Using inequality (1.4.24) which is given by Kantorovich constant, we have: 

                                       
 

 2
1

2 1

1
,'hK

ba

bppa
,'hK r

pp

r 





 , 

where a, b>0,  10,p ,  p,pminr  1 ,  
 

'h

'h
,'hK

4

1
2

2


 and 
a

b
'h  . This inequality 

implies the following inequality 

(2.2.36)                                   221 ,'hKp,hK,'hK rr   , 

where  10,p ,  p,pminr  1 ,  
 

'h

'h
,'hK

4

1
2

2


 and 
1

1

1 






p

p

h

h

p

p
'h . 
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Chapter 3 
 

 

Inequalities in an inner product space 
 
 

The aim of this sections is to show new results about the Cauchy - Schwarz 

inequality in an inner product space and many other estimates of some classical 

inequalities.  

We show a refinement of the triangle inequality in a normed space using 

integrals and the Tapia semi-product.  

The theory of inequalities plays an important role in many areas of 

Mathematics. Among the most used inequalities we find the triangle inequality. We 

present several characterizations of it. 
We also show another reverse inequality for the Cauchy-Schwarz inequality 

and for triangle inequality in an inner product space. 

We find an improvement of  Buzano’s inequality and Richard’s inequality, 

which are extensions of the Cauchy - Schwarz inequality.   

Starting from a geometrical inequality, we present several inequalities 

concerning the Cauchy - Schwarz inequality and a characterization of an inner 

product space.  

 

 

3.1  On the Cauchy - Schwarz inequality in an inner product 

space 
 

 

In a beautiful presentation, Niculescu [167] makes a radiography of the inequalities 

that have played an important role in the Theory of Inequalities. The Cauchy 

Inequality is one of them. 

In 1821, Cauchy [31] showed the following identity:  

(3.1.1)                       


































nji

ijji

n

i

ii

n

i

i

n

i

i babababa
1

2

2

11

2

1

2 .  

In fact this is Lagrange's identity, because, in 1773, Lagrange proved the 

identity  

    

 


































31

2

2
3

1

3

1

2
3

1

2

ji

ijji

i

ii

i

i

i

i babababa , 

used in the study of some problems about the triangular pyramids.  

In fact, we have 
2222

bab,aba  , for all b,a 3
R . 

In a more compact vector notation, Lagrange's identity is expressed as:  

(3.1.2)                              














nji

ijji

n

i

ii bababab,aba
1

2

2

1

222
, 

where a and b are n-dimensional vectors with components that are real numbers.  

A direct consequence of Lagrange's identity is the Cauchy-Buniakovski-

Schwarz Inequality (CBS).  
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(3.1.3)                                             

2

11

2

1

2



































n

i

ii

n

i

i

n

i

i baba .  

This inequality was studied in many papers [8], [12], [17]. 

If    ,,XX
 
is an inner product space, then we have the Cauchy-Schwarz 

inequality, given by the following:  

(3.1.4)                                              y,xyx  . 

For all Xy,x  and b,a R , we have that  
22222

2 yby,xabxabyax,byaxbyax   

implies  

(3.1.5)                               y,xyxabybxabyax  2
22

. 

In relation (3.1.5), for nonzero vectors x and y and 
1

 xa  and 
1

 yb , we obtain           

 y,xyx
yxy

y

x

x





2
2

, 

 it follows that 

(3.1.6)                             y,xyx
y

y

x

x
yx 

2

2

1
. 

Therefore, we have y,xyx  , because 0
2

1
2


y

y

x

x
yx .

  

 

Remark 3.1.1. Another proof for equality (3.1.6) can be given using Lagrange’s 

barycentric identity (see e.g. [167]) 

2

1
2

2

1 1

2 111
 

 


nji

jiji

n

k

n

k

kkkk xxmm
M

xm
M

zxzm
M

. 

For 0z , 2n ,  11xmx  , 22xmy  , we obtain   

(3.1.7)                               

2

2121

21

21

2

2

2

1

2

m

y

m

x

mm

mm

mm

yx

m

y

m

x








 . 

If we take  xm 1  and ym 2  in relation (3.1.7), we deduce the equality 

(3.1.6). A consequence of this equality is the following: 

(3.1.8)                        

2

21

21

21

2

2

2

1

2

21

2

4 m

y

m

xmm

mm

yx

m

y

m

x

mm

yx













. 

Maligranda proved in [130] the following: 

Theorem C. For nonzero vectors x and y in a normed space   ,XX  it is true that 

(3.1.9)                                y,xmin
y

y

x

x
yxyx














 2  

and 

(3.1.10)                              y,xmax
y

y

x

x
yxyx














 2 . 

If either 1 yx  or cxy   with 0c , then equality holds in both (3.1.9) and 

(3.1.10).  
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Theorem 3.1.2. If   ,,XX
 

is an inner product space over the field of real 

numbers R  and the norm 
 
is generated by an inner product , , then we have 

(3.1.11)            
















y,xyxy,xmin

y

y

x

xyxyx
2

2
 

                                                   

 y,xmax
y

y

x

xyxyx

















2

2
. 

for nonzero vectors x and y in X .  

Proof. In relation (3.1.5) for 1a  and 1b  we deduce           

                                            y,xyxyxyx  2
22

. 

So, we deduce the equality, for nonzero vectors x and y in a normed space, given by 

the following: 

                                             22
2 yxyxy,xyx  ,  

which means that 

                                          
 

yxyx
yxyx

y,xyx




2
.  

Using this equality and inequalities of Maligranda, we find the following 

inequality:  

(3.1.12)   
 

 ,y,xmax
y

y

x

x

yxyx

y,xyx
y,xmin

y

y

x

x


































 2

2
2

 
which is equivalent to the inequality of the statement. 

□ 
Remark 3.1.3. From inequality (3.1.11) and using the triangle inequality, we have 

 yxyxyxyx  22 . Therefore, we obtain a refined of the Cauchy-

Schwarz inequality, given by: 

(3.1.13)      

           y,xmaxyx
y

y

x

x
y,xyxy,xminyx

y

y

x

x






























 22 . 

Corollary 3.1.4. If   ,,XX
 
is an inner product space over the field of real 

numbers R  and the norm 
 
is generated by an inner product , , then we have 

(3.1.14)                           ,y,xyxyx
y

y

x

x















2  

for nonzero vectors x and y in X .  

Proof. We show that for vectors x and y in a normed space  .,XX   it is true that           

(3.1.15)                             .yxy,xmin
yxyx




2
 

We suppose that yx  , so   xy,xmin  . Therefore, we have 

yxyxxyxx  2
2

, which implies yyxx  , which is true. 

Combining relations (3.1.11) and (3.1.15), we obtain the relation (3.1.14). 

□ 
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In our paper [Minculete-Păltănea, 148], we obtain refined estimates of the 

triangle inequality in a normed space using integrals and the Tapia semi-product. 

The particular case of an inner product space is discussed in more detail. 

The theory of inequalities plays an important role in many areas of 

Mathematics. Among the most used inequalities we find the triangle inequality. 

This inequality is the following: 

                                                   yxyx  . 

for any vectors x and y in the normed linear space   ,XX over the real numbers 

or complex numbers. Its continuous version is 

                                                     

b

a

b

a

dxxfdxxf . 

where   XR b,a:f  is a strongly measurable function on the compact interval 

 b,a  with values in a Banach space X and  f   is the Lebesgue integrable on  b,a . 

Diaz and Metcalf [49] proved a reverse of the triangle inequality in the particular 

case of spaces with inner product. Several other reverses of the triangle inequality 

were obtained by Dragomir in [50]. Also, in [51], there are given some inequalities 

for the continuous version of the triangle inequality using the Bochner integrable 

functions.  

In [188], Rajić gives a characterization of the norm triangle equality in pre-

Hilbert C*-modules. In [130, 131], Maligranda proved a refinement of the triangle 

inequality. In [112] Kato, Saito and Tamura proved the sharp triangle inequality 

and reverse inequality in Banach space for nonzero elements Xx,...,x,x n 21 , which 

is in fact a generalization of Maligranda’s inequality. Another extension of 

Maligranda’s inequality for n elements in a Banach space was obtained in Mitani 

and Saito [154]. The problem of characterization of all intermediate values C 

satisfying  
 


n

k

n

k

kk xxC
1 1

0 , for nx,...,x,x 21 in a Banach space is studied by 

Mineno, Nakamura and Ohwada [153], Dadipour et al. [46], Sano et al. [195] and 

others. For other different results about the triangle inequality we mention only 

[178]. 

The main aim of this paper is to provide an improvement of the inequality 

due to Maligranda. Some other estimates which follow from the triangle inequality 

are also presented. Moreover, we can rewrite them as estimates for the so-called 

norm-angular distance or Clarkson distance (see e.g. [40]) between nonzero x and y 

as  
y

y

x

x
y,x  . 

This distance was generalized to the p-angular distance in normed space in 

[130]. In [64], Dragomir characterizes this distance obtaining new bounds for it. A 

survey on the results for bounds for the angular distance, named Dunkl-Williams 

type theorems (see [65]), is given by Moslehian et al. [162]. 

In our paper [Minculete-Păltănea, 148] we show several estimates of the 

triangle inequality using integrals. 

Let   ,XX  be a real normed space. 

Lemma 3.1.5. For any Xy,x  , the function   syxsg  , Rs , is convex. 
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Applying Hermite-Hadamard’s inequality and Hammer-Bullen’s inequality, we 

found the following: 

Theorem 3.1.6 ([Minculete-Păltănea, 148]). For any Xy,x  , we have 

(3.1.16)                             yxdyxyx  
1

0

12  , 

(3.1.17)                             

1

0

14  dyxyxyx . 

Corollary 3.1.7 ([Minculete-Păltănea, 148]). For nonzero elements x, y from a space 

with inner product   ,,XX
 
 and Rb,a , ba  , we have 

(3.1.18)  
 

 

 

  







1

0

1

0

12

2

12

2

 dyxyx

y,xyx
yxyx

dyxyx

y,xyx
. 

Inequality (3.1.18) represents an improvement of the Cauchy-Schwarz 

inequality. 

Next, we will study estimates of the triangle inequality using the Tapia semi-

product. The Tapia semi-product on the normed space X (see [199]) is the function 

   XX:, T R , defined by 

 
   

t

xtyx
lim:y,x

t
t

T

 





0
0

, 

where   2

2

1
xx  , Xx .  

The above limit exists for any pair of elements Xy,x  . The Tapia semi-

product is positive homogeneous in each argument and satisfies the inequality 

  yxy,x T   for all Xy,x  . In the case when the norm   is generated by an 

inner product , , then   y,xy,x T  , for all Xy,x  . 

The Maligranda inequality (see Theorem C) can be written as: for nonzero 

vectors x and y in a normed space   ,XX  it is true that 

(3.1.19)      y,xmax
y

y

x

x
yxyxy,xmin

y

y

x

x





























 22 . 

If in inequality (3.1.19) we replace y by ty with t>0, then we obtain         

            

   yt,xmax
y

y

x

x
tyxytxyt,xmin

y

y

x

x





























 22 , 

which is equivalent to 

             

   yt,xmax
ty

y

x

x

t

xtyx
yyt,xmin

ty

y

x

x 1
2

1
2
































 ,  

so, by passing to limit for 00  t,t , we deduce 

   yt,xmax
t

lim
y

y

x

x

t

xtyx
limyyt,xmin

t
lim

y

y

x

x

t
t

t
t

t
t

1
2

1
2

0
0

0
0

0
0








 

































. 
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Since 
 

 
x

y,x

xtyxt

xtyx
lim

t

xtyx
lim T

t
t

t
t















22

0
0

0
0

 and for 00  t,t , we have 

  ytyt,xmin  , so   yyt,xmin
t


1

, we deduce the inequality 

(3.1.20)                            Ty,xyxyx
y

y

x

x















2 . 

This inequality can be written as 

(3.1.21)                                   xyyxy,xyx T  .  

        For nonzero elements Xy,x  , if we replace x by 
x

x
 and y by 

y

y
  in inequality 

(3.1.20), then we find the following inequality 

(3.1.22)                                 1














y

y

x

x

y

y
,

x

x

T

. 

    If   ,,XX
 
is a space with inner product, then for nonzero elements x, y, 

inequality (3.1.20) becomes 

(3.1.23)                           y,xyxyx
y

y

x

x















2 . 

This inequality represents an improvement of Cauchy-Schwarz’s inequality. 

For nonzero elements Xy,x 

 

denote  
y

y

x

x
y,xv  . Then inequality 

(3.1.20) becomes: 

Theorem. 3.1.8 ([Minculete-Păltănea, 148]). Let Xy,x   be nonzero vectors. Then, 

we have  

(3.1.24)                                     1 y,xvyxy,x T . 

Theorem. 3.1.9 ([Minculete-Păltănea, 148]). Let Xy,x   be nonzero vectors such 

that xy   and xyyx  . Then, we have  

(3.1.25)       yx
y

y
,

yx

yx
xy,xvyxyx

T

































 12 , 

(3.1.26)       
 

 yx
y

y
,

y,xv

y,xv
xy,xvyxyx

T





























 12 , 

(2.1.27)       yx
x

x
,

yx

yx
yy,xvyxyx

T

































 12  

and 

(3.1.28)       
 

 yx
x

x
,

y,xv

y,xv
yy,xvyxyx

T





























 12 . 

It is easy to see that we can write    y,xvy,x  . Using inequalities (3.1.26) 

and (3.1.27) we deduce the following double inequality: 
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Corollary 3.1.10 ([Minculete-Păltănea, 148]). For nonzero vectors x and y, such that 

xyyx  , we have 

(3.1.29)    
 

  


y

y

x

x
y,xA

y,xmin

yxyx


 
B

y,xmax

yxyx



, 

where 

 
,

y,xmin

yx

x

x
,

yx

yx
A

T

01 



































 
   

.
y,xmax

yx

y

y
,

y,xv

y,xv
B

T

01 


































  

In [Minculete-Păltănea, 148] to section 4 we derive many inequalities in an 

inner product space from Theorem 3.1.9. 

 

 

3.2  Reverse inequalities for the Cauchy-Schwarz inequality in 

an inner product space  
 

Let X be an inner product space over the field of real numbers R . The inner product 

 ,  induces an associated norm, given by  x,xx , for all Xx  , thus X is a 

normed vector space. 

For nonzero vectors x and y in X we define the angular distance  y,x  

between x and y by   

 
y

y

x

x
y,x  , 

(see [40]). 

Therefore, using relation (3.1.6), we prove that  

(3.2.1)                                         y,xyxy,xyx 
2

2

1
 . 

Theorem 3.2.1. If   ,,XX
 

is an inner product space over the field of real 

numbers R  and the norm 
 
is generated by an inner product , , then we have 

(3.2.2)                                      
  

,
y,xmax

yxyx
y,xyx

2

2
2 

  

for nonzero vectors x and y in X . 

Proof. Massera-Schäffer proved in [134] the following inequality: for nonzero vectors 

x and y in X there is the inequality 

(3.2.3)                                              yxy,xmaxy,x  2 . 

Combining relations (3.2.1) and (3.2.3) we deduce the inequality of the statement, 

which is in fact a reverse inequality of Cauchy-Schwarz inequality. 

Remark 3.2.2. Dunkl and Wiliams showed, in [65], the inequality  

(3.2.4)                                                    
yx

yx
y,x






4
 . 

Using this inequality, we obtain another reverse inequality of Cauchy-Schwarz 

inequality. 

Lemma 2.2.3 ([Stoica-Minculete-Barbu, 197]). In an inner product space X over the 

field of real numbers R , we have 
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(3.2.5)                              yxy
2

1 222
y,xyx  , for all Xyx , .                                                

Proof. For 0y  we obtain the equality in relation (3.2.5). For alln Xy,x  , 0y , 

we have

2

22

222

y
y

y,x
x

y

y,xyx



, which means that 

y
y

y,x
xyy,xyx

2

222
 . 

Therefore, the inequality of the statement is equivalently with 

y
y

y,x
xyx

22

1
 , which is equivalent to 

                                                

2

2

2

2

1
y

y

y,x
xyx  ,  

which implies  

2

2

2

2

222
2

4

1

y

y,x

y

y,x
xyy,xx  , 

so, it follows that 0
2

1
2

2















 x

y

y,x
, for all Xy,x  , 0y . 

Remark 3.2.4. It is easy to see that  

(3.2.6)                      yxy
2

1 222
y,xyx  , for all Xy,x  . 

Theorem 3.2.5 ([Stoica-Minculete-Barbu, 197]). In an inner product space X over 

the field of real numbers R , we have 

(3.2.7)                                
222

yxyx
222

32 y,xyx  ,                                

for all Xy,x  . 

Proof. From the parallelogram law, for every Xy,x  , we deduce the following 

equality: 

  2222
22 yyxxyx  , 

which is equivalent to  

 
2

222

2

1
42 yxyxyx   

so 

(3.2.8)                                   
422

1
2222

yxyx
yx 


 .                                              

Therefore, combining the relations (3.2.5) and (3.2.8), we obtain the following 


222

yxyx    2222

2

3
2

2

1
yyxyx   

                      


2

2

2

3

2

1
2 yyx yxy

2

1
32 

222
32 y,xyx  . 
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Replacing y  by y
 
in above inequality, we prove the inequality of the statement. 

Corollary 3.2.6. In an inner product space X over the field of real numbers R , we 

have 

(3.2.9)                                 
222

32

1
yxyx y,xyx  ,                                

for all Xy,x  . 

Proof. It is easy to see that y,xyxy,xyx 
222

 and using inequality 

(3.2.7), we have the inequality of the statement.           

 

Corollary 3.2.7 ([Stoica-Minculete-Barbu, 197]). In an inner product space X over 

the field of real numbers R , we have 

(3.2.10)                                        yxy
2

1
 y,xyx  ,                                

for all Xy,x  . 

Proof. From Lemma 3.2.3, we have   yxy
2

1 222
y,xyx  , so  

 yxy
2

1
y,xyxy,xyx 

222
. 

Remark 3.2.8. From Corollary 3.2.7, it is easy to see that  

(3.2.11)               








 yxy,xyxmin
2

1

2

1
y,xyx  , for all Xy,x  . 

This inequality represents another reverse inequality for the Cauchy-Schwarz 

inequality in an inner product space. 

Several applications are given below: 

1. In triangle ABC the inequality 

 34
222

BAACBC
,
 

is true, where 
 
is the area of the triangle ABC. 

Proof. Let E3 be the Euclidean punctual space. If we take the vectors 

ABc,ACb,BCa   in inequality (3.2.7), then using the Lagrange identity, 
2222

bab,aba  , we obtain the following inequality: 

                                  3432
222

ACBCBAACBC
,
                             

which is in fact  the Ionescu-Weitzenböck inequality. 

2.  Using inequality (3.2.2) and the relation for  y,x , we deduce de following 

inequality for the angular distance  yx, : for nonzero vectors x and y in X, we have 

a lower bound for the angular distance  y,x  given by  

                                           .y,x
y

y

x

x















22  
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3. For the space  ,,Rn  , where  nx,...,x,xx 21 ,  ny,...,y,yy 21 , we have 

nn yx...yxyxy,x  2211  and 22

2

2

1 nx...xxx  . We use inequality (3.2.10),                                        

y,xyx  yxy
2

1
  , thus: 






















































 



n

i

ii

n

i

i

n

i

ii

n

i

i

n

i

i yxyyxyx
1

2

1

2

11

2

1

2

2

1
0  . 

4. For the space    ,,b,aC0  , where   b,aCg,f 0 , we have    
b

a

dxxgxfg,f  

and  

b

a

dxxff 2 . We use inequality (3.2.10), thus: 

              









b

a

b

a

b

a

b

a

b

a

dxxgxfdxxgdxxgxfdxxgdxxf

2

222

2

1
0 . 

5. From inequality (3.2.9), we have  
222

32

1
yxyx y,xyx  , and  

replacing y  by y
 
in this inequality implies 

 
222

32

1
yxyx y,xyx  . 

 

3.3    Considerations about the several inequalities in an inner 

product space 
 

 

The objective of this section is to show new results concerning the Cauchy - Schwarz 

inequality in an inner product space. We find an improvement of  Buzano’s 

inequality and Richard’s inequality, which are extensions of the Cauchy - Schwarz 

inequality [Minculete, 141].   

From Lagrange's identity, given above, we found the following inequality 

which states: if a = (a1, …, an) and b = (b1, …, bn) are two n-tuples of real numbers, 

then 

(3.3.1)                                nnnn ba...bab...ba...a  11

22

1

22

1 , 

with equality holding if and only if a= b. This result is called the Cauchy-Schwarz-

Buniakowski inequality or simply the Cauchy inequality. 

Many refinements for Cauchy-Schwarz-Buniakowski inequality can be found 

in literature (see [8], [12], [17] and [154]). In particular, we mention one of them: 

Ostrowski [171], in 1952, proved the following: if x = (x1, …, xn), y = (y1, …, yn) and z 

= (z1, …, zn) are n-tuples of real numbers such that x and y are not proportional and 

                                        




n

k

kkzy
1

0 , and



n

k

kkzx
1

1 , then 

 (3.3.2)                            

2

11

2

1

2

1

2

1

2











 



n

k

kk

n

k

k

n

k

k

n

k

k

n

k

k yxyxz/y . 
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For all Xy,x   in an inner product space   ,,XX
 

over the field of 

complex numbers C  or real numbers R , then we have the Cauchy-Schwarz 

inequality, given by the following:  

yxy,x  . 

The Cauchy-Schwarz inequality can be written, as in Aldaz [8] and Niculescu 

[167], in terms of the angular distance between two vectors, thus 

 (3.3.3)                           

 















2

2

1
1

y

y

x

x
yxy,x ,        

for all nonzero vectors Xy,x  . 

Buzano [28] showed an extension of the Cauchy-Schwarz inequality, given by 

the following:  

(3.3.4)                                      bab,axb,xx,a 
2

2

1
 .  

for any Xb,a,x  . 

It is easy to see that for a = b, the inequality (3.3.4) becomes the Cauchy-

Schwarz inequality. 

Another inequality which is included the Buzano inequality is mentioned by 

Precupanu [185] and Dragomir [62]: 

(3.3.5)

               

   bab,axb,xx,abab,ax 
22

2

1

2

1
 ,  

for any Xb,a,x  . In [95], Gavrea showed an extention of Buzano’s inequality in 

inner product space. 

For real inner spaces, Richard [192] found the following stronger inequality 

(3.3.6)

                              

baxb,axb,xx,a 
22

2

1

2

1
 ,  

for any Xb,a,x  . 

In [183], Popa and Rașa showed that, for any Xb,a,x  , the inequality 

(3.3.7)

                     

 22222

2

1

2

1
b,aImbaxb,axb,xx,aRe 








  , 

holds. 

Dragomir [61] presented the following refinement of the Richard inequality: 

(3.3.8)                           22
11 xba,maxb,xx,axb,a   ,  

for all vectors b,a,x  in an inner product space X and  C . 
This inequality was found in another way by Khosravi et al. [114]. 

In [129], Lupu and Schwarz proved the following inequality: 
(3.3.9)                   a,cc,bb,acbab,aca,cbc,ba 2

222222
 ,   

for any vectors Xc,b,a  . 

These inequalities are applied to the theory of Hilbert C *- modules over non-

commutative C *- algebras, see Aldaz [8], Pečarić and Rajić [178] and Dragomir [61], 

[62]. 

In the beginning, we prove two lemmas: 
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Lemma 3.3.1 ([Minculete, 141]). In an inner product space X over the field of 

complex numbers C , we have 

 (3.3.10)

                               

2

2

2

2
y

y

y,x
x

y

y,x
yyx   ,   

for all Xy,x  , 0y , and for every  C . 

Proof. By several calculations, we deduce the following: 


2222

yy,xy,xxyx,yxyx 

                                   

             ,y
y

y,x
x

y

y,x
y

y

y,x
x

y

y,x
y

y

y,x
y

2

2

2

2

2

2






























   

because we have 
2

2

2

2

2
y

y,x
xy

y

y,x
x  . 

□ 

Remark 3.3.2. Let Xe,x   with 1e . If we take ey   and    in relation 

(3.3.10), then we obtain 
222

ee,xxe,xex   . Consequently, we 

deduce
22

exinfee,xx
C







 which is a result found in [129]. 

Lemma 3.3.3 ([Minculete, 141]). In an inner product space X over the field of 

complex numbers C , we have 

 (3.3.11)

                                          

axaxxx,a
22

2

1

2

1
 ,   

for all Xa,x  . 

Proof. For 0x  the equality is true. For 0x  inequality (3.3.11) becomes 

a
x

xx,a
a 

2
2 . If we take in equality (3.3.10) x

x

x,a
y,

2
2  , then by simple  

calculations, we deduce the following: 

.ax
x

x,a
a

x

x,a

x

x,a

x

xx,a
a

2

2

2

22

2
22 

 
Consequently, inequality (3.3.11) is true.  

□ 

Remark 3.3.4. A simple proof of Richard’s inequality can be given by combining the 

Cauchy-Schwarz inequality and relation (3.3.11), thus:   

     b,axxx,ab,axb,xx,a
22

2

1

2

1

 

baxbaxxx,a
22

2

1

2

1
 . 

Theorem 3.3.5 ([Minculete, 141]). In an inner product space X over the field of 

complex numbers C , we have 

 (3.3.12)

             

  2222222
2 yz,xz,yy,xRey,xyxzy   ,   

for all Xz,y,x  , and for every  C . 
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Corollary 3.3.6 ([Min_JMI]). In an inner product space X over the field of real 

numbers R , we have 

 (3.3.13)                        
222

2

22

2

y,xyxz,x
y

z,yy,x

z

y















  ,        

for all Xz,y,x  , 0y , 0z . 

Proof I. If 0y , 0z , then we apply Theorem 3.3.5 for  R , and we have 

                          02
2222222
 y,xyxyz,xz,yy,xzy   ,        

for all Xz,y,x  , and for every  R . Since 0
22
zy , then the discriminant is 

negative, i.e.,     0
2222222
 y,xyxzyyz,xz,yy,x . Therefore, we 

prove the statement.        

Proof II. For 
2

yz,xz,yy,x   in relation (3.3.12), we have     

  2
222222

2 yz,xz,yy,xzyy,xyx  . 

For 0x , inequality (3.3.13) is true. In the situation 0x , 0y , if we replace in 

the above relation x and y by 
x

x
 and 

y

y
, then we deduce the statement.  

□ 

Remark 3.3.7. If we take 1z,x and 0z,y , in inequality (3.3.13), then we find 

the inequality of Ostrowski for inner product spaces over the field of real numbers, 

 (3.3.14)                              

      

22222
y,xyxz/y   ,        

for all Xz,y,x  , 0y , 0z .  

It is easy to see that for nRXz,y,x   we obtain inequality (3.3.2). 

Theorem 3.3.8 ([Minculete, 141]). In an inner product space X over the field real or 

complex numbers, for any nonzero vectors Xb,a,x  , we have   

 (3.3.15)

                 

0
2

1

2

1
2

22





bax

A
b,axb,xx,abax  ,   

where 

                                  
2

2222222

2

1








 b,abaxb,xbxx,aA . 

Remark 3.3.9. a) For real or complex inner spaces, inequality (3.3.15) represents 

an improvement of Richard’s inequality, given thus:  

                          
bax

A
baxb,axb,xx,a




2

22

2

1

2

1
 , 

where 

                               
2

2222222

2

1








 b,abaxb,xbxx,aA .  

b) Also, using above inequality, and from the continuity property of the modulus, 

i.e.,   ,  , C , we deduce the inequality  

(3.3.16)
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    ,
bax

A
bab,axb,xx,a

bax

A
bab,ax







2

2

2

2

2

1

2

1
   

which is in fact a refinement of Buzano’s inequality. 

In [120], we found the following result of Kouba: 

Lemma 3.3.10. Let X be a real vector space equipped with an inner product ,  

and its corresponding norm  . For any Xv,u,z,y,x  , with ,vu 1 we have 

(3.3.17)

                       

  222
1 zv,uz,vz,u  ,

 (3.3.18)

            

 y,xyxzyxz,xyz,yx 
22222

.

 Using AG inequality, we deduce y,zz,xyxz,xyz,yx 2
2222
  and  

from inequality (ii) we obtain 

 y,xyxzy,zz,x 
2

2

1
, 

for any Xz,y,x  .  

This inequality has been studied at this section as Buzano’s inequality [28]. 

We remark an improvement of the Buzano inequality given by: 

(3.3.19)

            

 y,xyxz
yx

z,xyz,yx
y,zz,x 




2

2222

2

1

2
, 

for any Xz,y,x  .  

 

 

3.4  Several inequalities and a characterization of an inner 

product space 
 

 

The aim of this section is to present several inequalities concerning the Cauchy - 

Schwarz inequality and a characterization of an inner product space.  

We start from a geometrical interpretation in a triangle. In what follows, we 

will use the notations: a, b, c – the lengths of the sides; ah  - the length of the 

altitude of A; aw - the length of the bisector of the angle A; and R is the 

circumradius. 

In [18], we found the result of Ballieu (1949) given thus: in a triangle ABC, 

for every  10,t , the following inequality: 

(3.4.1)                                            
tt

t
tt

cb

aA
sin




2
2 1 , 

is true. 

For 1t , the inequality of Ballieu becomes  

(3.4.2)                                         
cb

aA
sin




2
. 

This is equivalent to the inequality 

                                                aa wh  . 
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It is known that 
R

bc

aR

abc

a

S
ha

24

22
  and 

2

2 A
cos

cb

bc
wa


 . By simple calculations, 

we have  

aa wh  
2

2

2

A
cos

cb

bc

R

bc


 

2

2

2

1 A
cos

cbR 
 

2

2

2

A
cos

cb

a

R

a


 

2

2

2

22
4

A
cos

cb

a

R

A
cos

A
sinR


 

cb

aA
sin




2
. 

 

 

 

 

 

 

 

 

 

 

 

 

In the above figure, we have xAB  , yAC  , 
x

x
AM  , 

y

y
AN   , 

y

y

x

x
NM  , and yxCB  . Therefore the inequality of Ballieu becomes: 

(3.4.3)                                                       
yx

yx

y

y

x

x






2
. 

This inequality is in fact the inequality of Kirk and Smiley [115], for a real inner 

product space.  

Using the inequality of Ballieu, for  10,t , we deduce 

(3.4.4)                                                       
tt

tt

yx

yx

y

y

x

x






2
. 

If we apply the cosine law for the angle A, then we have  

(3.4.5)                                   
ACAB

BCACAB

AM

MNAM
Acos









22

2 222

2

22

,  

which is equivalent to the identity 

yx

yxyx

y

y

x

x






2222

2 , 

which implies the following relation: 

(3.4.6)                                          
 

yx

yxyx

y

y

x

x






222

. 

Next, we study the behavior of this equality in a real inner product space. 
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Theorem 3.4.1. If   ,,XX
 

is an inner product space over the field of real 

numbers R  and the norm 
 
is generated by an inner product , , then we have 

(3.4.7)                                    2222
byaxyxabybxaab   

for vectors x and y in X  and b,a R . 

Proof. For all Xy,x  and b,a R , we have that  
22222

2 yby,xabxabyax,byaxbyax  . 

It follows that

      222222
2 yxabyy,xxabbyaxybxaab  . 

Therefore, we obtain the statement. 

□ 

Corollary 3.4.2. If   ,,XX
 
is an inner product space over the field of real 

numbers R  and the norm 
 
is generated by an inner product , , then we have 

(3.4.8)                                     
 

yx

yxyx

y

y

x

x






222

 

for nonzero vectors x and y in X . 

Proof. For 
x

a
1


 
and 

y
b

1
  , in inequality (3.4.7), we deduce equality (3.4.8). 

□ 

In 1964, Kirk and Smiley [115] showed that if the inequality  

(3.4.9)                                          
yx

yx
y,x






2
   

holds for all nonzero elements x and y of a normed linear space X , then X is an 

inner product space. In the same work, they also showed that the equality holds in 

(3.4.9) if and only if yx   or 0 yxxy .  

Theorem 3.4.3. If X is a normed linear space over the field of real numbers R  and 

we have the equality 

 (3.4.10)                            
 

yx

yxyx

y

y

x

x






222

 

for nonzero vectors x and y in X , then X is an inner product space. 

Proof. If X is an inner product space, from Corollary 3.4.2, we deduce the equality. 

If X is a normed linear space and we have equality (3.4.10), then we show that  

 
yx

yx

y

y

x

x
y,x






2
  

for all nonzero elements x and y. 

We have yxyx   so  22
yxyx  . Multiplying by  2yx   

we obtain      2222
yxyxyxyx  .  

It follows that 

      22222
4 yxyxyxyxyxyx  . 

Therefore, dividing by   24 yxyx  , we deduce the inequality  
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 

 2

222
4

yx

yx

yx

yxyx









 , 

which is equivalent to  
 2

22

4

yx

yx

y

y

x

x




 . 

Consequently, we have 
yx

yx

y

y

x

x






2
 . So, from Kirk and Smiley inequality, we 

deduce that X is an inner product space. 

□ 

Maligranda’s inequality, given above, can be written as the following:  

(3.4.11)              
 





y

y

x

x

y,xmin

yxyx
a

 
b

y,xmax

yxyx



. 

If we replace y by –y in Maligranda’s inequality, we obtain the following 

                              y,xmin
y

y

x

x
yxyx














 2  

which implies 

                             y,xmin
y

y

x

x
y,xminyxyx  2  

But   yxyxy,xmin 2 , so   

                              y,xmin
y

y

x

x
yxyx  . 

Similarly, since   yxyxy,xmax 2 , we deduce   

                              y,xmax
y

y

x

x
yxyx  . 

Remark 3.4.4. It is easy to see that in an inner product space X, the inequality of 

Maligranda,  

 





y

y

x

x

y,xmin

yxyx
a

 
b

y,xmax

yxyx



, 

 is very simple because 

(3.4.12)                        
   

ab
y,xmax

yxyx

y,xmin

yxyx

y

y

x

x






  

and baba  , so  y,x  is the geometric mean of a and b. 

Theorem 3.4.5. If   ,,XX
 

is an inner product space over the field of real 

numbers R  and the norm 
 
is generated by an inner product , , then we have 

(3.4.13)    

 
 

   y,xyxyxyx
y,xmin

y,xmax 2

2

 
 

 2
2

yxyx
y,xmax

y,xmin
 . 

Proof. Using relation (3.1.6) in the following form:  
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y,xyx
y

y

x

x
yx 

2

2

1

 
and the inequality of Maligranda, we deduce the inequality 

 














 
 y,xyx

y,xmin

yxyx
yx

2

2

1

 

2

2

1













 


y,xmax

yxyx
yx , 

which is equivalent to the inequality of the statement. 

□ 

Remark 3.4.7. Inequality (3.4.13) shows a refinement of Cauchy-Schwarz’s 

inequality and a reverse inequality for Cauchy-Schwarz’s inequality. 
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(B-ii) The evolution and development plans for career  

development  

4 Future directions for research 
 

 

The purpose of this chapter is to present some of the lines that describe the present 

and future projects in scientific research and the teaching career.  

I shall continue my research in the field of theory of inequalities related to 

inequalities for functionals, inequalities for invertible positive operators and 
inequalities in an inner product space. At the same time, I shall focus on certain 

types of inequalities and their applications in generalized entropies.  

I shall continue to elaborate new scientific papers in all fields quated above, 

or other areas of mathematics, especially related to real and complex analysis.  

I intend to write a scientific monograph related to my contributions in the 

theory of inequalities related to inequalities for functionals, inequalities for 

invertible positive operators and inequalities in an inner product space.  

I would like to publish a book for students in computer science, mathematics, 

economics and finance. Several of my future research projects are described in the 

following. 
 

 

4.1 Future directions for research related to Hermite-

Hadamard’s inequality and Hammer-Bullen’s inequality 
 

 

In this section, we intend to give two reverse inequalities of Bullen’s 

inequality which represent the generalizations of results from [Minculete-Rațiu-

Pečarić, 143]. We also present several applications about Stolarsky’s mean, the 

logarithmic mean and the identric mean. The results obtained below are part of 

recent research. 

 

In the monographs [166, 176] we find, for a convex function   Rb,a:f , 

Bullen’s inequality, namely: 

(4.1.1)                              
   








 





  22

2 ba
f

bfaf
dxxf

ab

b

a

. 

For a particularization of function f, Dragomir and Pearce in [51] obtained a 

refinement of Hammer-Bullen’s inequality, given by the following: 

Theorem B. Let   Rb,a:f  be a twice differentiable function for which there 

exists real constant m and M such that:    Mx"fm  , for all  b,ax  . Then                       

(4.1.2)        
     

 
 

.
ab

Mdxxf
ab

ba
f

bfafab
m

b

a
24

2

2224

22












 






  

In [Minculete-Rațiu-Pečarić, 143] there were obtained two reverse inequalities of 

Bullen’s inequality  
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(4.1.3)       
   

 
  

,
)a('f)b('fab

dxxf
ab

ba
f

bfaf
b

a
16

2

22













 



  

(4.1.4) 
   

 
     

6424

2

22

2
abmM)a('f)b('fab

dxxf
ab

ba
f

bfaf
b

a
















 



  

and Acu and Gonska, in [5], extendend Bullen’s inequality for continuous functions 

using the second order modulus of smoothness. 

Inspired by the above work, I started a new joint project with F. C. Mitroi-

Symeonidis and M. Niezgoda related to Hermite-Hadamard inequality. We would 

like to propose a new inequalities for Stolarsky’s mean, logarithmic mean, and 

identric mean. 

 

Lemma 4.1.1 ([Minculete-Niezgoda-Mitroi, 142]). Let   Rb,a:f  be a twice 

differentiable function. Then we have the following:                           

(4.1.5)                                

b

a

b

a

c dxxfbfcbafaccfabdxx"fxqcx 2 ,  

where bca   and 

                                             
 
 









b,cxxb

c,ax,xa
:xqc  .  

Proof. We make the calculations:  

                 
b

c

c

a

b

a

c dxx"fxbcxdxx"fxacxdxx"fxqcx  

           
b

c

c

a

dxx'fcbxdxx'fcax 22  

             

b

a

dxxfbfcbafaccfab 2 . 

Remark 4.1.2. a) It is easy to see that for  b,ax  , we have     0 xqcx c  and, by 

some elementary computations,  we obtain: 

(4.1.6)                               acbcabcba
ab

dxxqcx

b

a

c 333
6

222 


  . 

Therefore, for  b,ax   we can write: 

(4.1.7)                                       xqcxMx"fxqcxxqcxm ccc   . 

Integrating from a to b and using Lemma 4.1.1, we find the relation:  

(4.1.8)                          

   

             

   .acbcabcba
abM

dxxfbfcbafaccfab

acbcabcba
abm

b

a

333
6

2

333
6

222

222









   
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Theorem 4.1.3 ([Minculete-Niezgoda-Mitroi, 142]).  Let   Rb,a:f  be a twice 

differentiable and convex function. Then we have the following inequality that holds:                           
(4.1.9)                       

                          a'fb'fcb,camaxdxxfbfcbafaccfab

b

a

 
22

4

1
20 ,  

where bca  . 

Proof. Since f is a convex function, it follows that   0x"f , for every  b,ax  . 

Because we have         22

4

1
0 cb,camaxxqcx c  , then we deduce the 

following inequality:             x"fcb,camaxx"fxqcx c

22

4

1
0   , for every 

 b,ax  . Therefore, by integrating, the last inequality from a to b, we obtain:  

               a'fb'fcb,camaxdxx"fxqcx

b

a

c  
22

4

1
0 . 

Using equality (4.1.5) in the previous inequality, we find the inequality from the 

statement. 

Theorem 4.1.4 ([Minculete-Niezgoda-Mitroi, 142]).  Let   Rb,a:f  be a twice 

differentiable function for which there exists real constant m and M such that 
  Mx"fm  , for all  b,ax  . Then                       

(4.1.10)                     

                   
ab

a'fb'f
acbcabcbadxxfbfcbafaccfab

b

a



  333

6

1
2 222

                                           

    .cb,camax
mM 22

16





 where bca  . 

Proof. Taking into account that         22

4

1
0 cb,camaxxqcx c   and 

  Mx"fm  , for all  b,ax  , and applying the inequality of Grüss (see e. g. [51, 

166]), then we obtain the following inequality:  

            






 

b

a

b

a

c

b

a

c dxx"f
ab

dxxqcx
ab

dxx"fxqcx
ab

111
          

                                                                                          22

16
cb,camax

mM



 .  

By simple calculations, we deduce the inequality of the statement. 

Remark 4.1.5. a) If we choose  bac   1 , with  10,  then inequalities 

(4.1.9) and (4.1.10) become:  

(4.1.11)                       

b

a

dxxfbfafabbafab 2110   
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 
       ,a'fb'f,max

ab



 22

2

1
4

  

 

(4.1.12)     

             

 
        

   
  ;,max

mMab

|
a'fb'fab

dxxf

bfafabbafab|

b

a

22
2

1
16

6

131
2

11

















  

b) For
2

1
  in inequalities (4.1.11) and (4.1.12), we deduce the inequalities (4.1.3) 

and (4.1.4). 

Some applications can be identified, thus: 

 a) If we consider   pxxf  , with 1p , then inequality (4.1.11) becomes:  

(4.1.13) 

                       

    
  

       
,

baba
b,aL

,max
)ab)(ab(pbaba

ppp
p

p

ppppp

2

11

1
82

11

1

22
11



















 

where  
 

1

1

















ppp

p
bap

ba
b,aL  is Stolarsky’s mean. 

b) We consider  
x

xf
1

 , with 0x , in inequality (4.1.11), then we obtain: 

(4.1.14)                       

 

 

 

 

 
   

  
,

,max
ba

baab

baba

b,aL

baba
22

22

2

1
4

1

1

1

2

1

1

1

2



























 

where  
alnbln

ab
b,aL




  is the logarithmic mean. 

c) If we consider   xlnxf  , with 0x , then inequality (4.1.11) becomes:  

(4.1.15)              
 

  
,ebabab,aIbaba

,max
ab

ab 22
2

1
4121 11


 




 

 where  
ab

a

b

a

b

e
b,aI















1

1
 is the identric mean. 

 

 I would like to start a new joint project with Shigeru Furuichi related to 

Hermite-Hadamard’s inequality. We would like to propose a new improvements for  

Young’s inequality. 



Habilitation thesis Nicușor Minculete 

 

 92 

We establish several inequalities using Hermite-Hadamard’s inequality (if 

  Rb,a:f  is convex function, then 
 
   

  






 






b

a

ba
fdxxf

ab

bfaf

2

1

2
) for the 

function f . 

Since   R,:f 1  
with 










2

1
0,  defined by  

   
 





 x

x

x
xxf 2

1
1 




 

is convex function, for all 1x , 









2

1
0, , we use Hermite-Hadamard’s inequality 

on the interval  a,1 , with 1a . Thus, we obtain the inequalities: 

 

   
  







 






a

a
fdxxf

a

aff

1
2

1

1

1

2

1




. 

But   01 f ,  
 





 a

a

a
aaf 2

1
1 


 ,  

  
 

12

1

211

1

2

1
1

2

1



















 








a

a

aaa
f

 

and
 

 
   

  
 

  11

12
1

111

1

2

1
1

1

1 1

2

1


















 a

a
aln

a

a
dxxf

a

a













 . 

 From Hermite-Hadamard’s inequality, we deduce 

 

 












 


 a

a

a
a 2

1
1

2

1

   
  

 
  


















11

12
1

111

1

2

1
1

1

2 a

a
aln

a

a













  
 

12

1

211

1

2

1
1





















a

a

aa
,  

where 









2

1
0,  and 1a . 

In this inequality, if we take 1
y

x
a  , so yx  , we will find an inequality of 

type Young.  In the same way, we use Bullen inequality or Hammer-Bullen 

inequality, which states that: 

                                            
   

 








 



b

a

dttf
ab

ba
f

bfaf 2

22
 . 

So, 
   

 








 



a

dxxf
a

a
f

aff

1
1

2

2

1

2

1



, which implies another inequality of type 

Young. 
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Now, we take the function   R,:f 10  
with 








 1

2

1
,  defined by  

   
 





 x

x

x
xxf 2

1
1 




 

 
is convex function, for all 10  x , 








 1

2

1
, .  

We use Hermite-Hadamard’s inequality on the interval  1,0 . Thus, we obtain 

the inequalities: 

   
  











1

0
2

1

2

10



fdxxf

ff

. 

But    10f ,   01 f ,  
 





 a

a

a
aaf 2

1
1 


 ,  






 









 12
1

1

2
1

2

1
f

 

and
 

 
 

 
 1

2

11

1

2
1

2

1

0








 









 lndxxf . 

 From Hermite-Hadamard’s inequality, we deduce 

 

   1
2

1

 
 

 











1

2

11

1

2
1

2 









ln 



 


 12
1

1

2
1 ,  

where 







 1

2

1
,

.
 

In the same way, we use Hammer-Bullen inequality and we will obtain another 

inequality of type Young. 
                                 

             Below, we propose another research idea related to the function gamma of 

Euler. 

            The function gamma is defined via a convergent improper integral as  

  




0

1 dxext xt , for all 0t , 

it is known as Euler integral of the second kind. The following infinite product 

definition for the gamma function is due to Weierstrass,  

  
















1

1

1
n

n

tt

e
n

t

t

e
t



, 

where ....5772160  is the Euler-Mascheroni constant. This relation can be 

written as  

(4.1.24)                            





















1

1
n n

t
log

n

t
tlogttlog  , 

where the base of the logarithm is e, thus we obtain 

    


















 





1

1
1

1
11

n n

t
log

n

t
tlogttlog  . 

We consider the function   R,:f 0  defined by     ttlogtf  1 . 
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It easy to see that 

  



















1 1

11

1

1

n ntnt
t'f  

and 

 
     








 








0
2

1
22

1

1

1

1

1

nn ntntt
t"f . 

We remark that   0t"f , which implies that f is convex and 'f  is increasing, so 

    00  'ft'f . Therefore, f is increasing, so we have     00  ftf . 

         We intend to study the properties of the functional Jensen and the functional 

Chebyshev for the function     ttlogtf  1 . For this function, we will apply 

Hermite-Hadamard’s inequality or Hammer-Bullen’s inequality. We will also 

study the functional Jensen and the functional Chebyshev for the functions log-

convex (  G,A - convex) or, more generally, for  N,M - convex, where M and N are 

means. 

          Connected with the functional Jensen, in the future, we would like to study 

other properties of generalized entropies as the following: 

a) the Tsallis entropy [201] defined by:  

  



n

j j

q

q

jnq
p

lnpp,...,p,pH
1

21

1
,  10  q,q , 

where  np,...,p,p 21 is a probability distribution with 0jp
 
for all n,j 1

 
and the 

q-logarithmic function for 0x ;  

b) the Rényi entropy [191] defined by 

 















 



n

j

q

jnq plog
q

p,...,p,pR
1

21
1

1
; 

c) the quasilinear relative entropy defined by 

 



























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


n

j j

j

jnn
p

r
plogr,...,r,rp,...,p,pD

1

1

21211  ; 

d) the Rényi relative entropy [3] defined by 

 















 




n

j

q

j

q

jnnq rplog
q

r,...,r,rp,...,p,pR
1

1

2121
1

1
; 

e) the Tsallis relative entropy defined by

     



n

j j

j

qj

n

j

jqjq

q

jnnq
p

r
lnprlnplnpr,...,r,rp,...,p,pD

11

2121
; 

f) the Tsallis quasilinear entropy (q-quasilinear entropy) defined by 

 



























 




n

j j

jqnq
p

plnp,...,p,pI
1

1

21

1
 , 

where {p1, p2, . . . , pn} is a probability distribution with pj > 0 for all n,j 1 , 

g) the Tsallis quasilinear relative entropy defined by 

                         

 



























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


n

j j

j

jqnnq
p

r
plnr,...,r,rp,...,p,pD

1

1

2121  . 
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4.2  Future directions for research related to Young’s 

inequality and Hardy’s inequality 
 
 

Inspired by the method used like Elliott in proving Hardy’s inequality, I started 

new work related to Young’s inequality and its applications. 

              We consider the function   1 pttf ,  10,p . It is easy to check that  tf  is 

convex on  ,1 . Taking into account that 






x p
p

p

x
dtt

1

1 1
, 

and using the right side of Hermite-Hadamard inequality, we deduce 

 

  1
2

1
1

1 1





 

x
x

x
p

x pp

. 

              In the above inequality, we replace x  by 
b

a
, with ba  , we obtain Young’s 

inequality, which, in general form, says that, if 0b,a  and  10,p , then  

 bppaba pp  11 . 

              This inequality is equivalent to the following inequality, for 

1
1

 u

u

u xb,xa,
u

p : 

xy
v

y

u

x vu

 , 

for all 0y,x  and 1v,u  with 1
11


vu
. 

 

For 1u , 


 1
v , with 1

11


vu
, 1 xx , yy  , and using Young’s 

inequality we deduce the following relation: 

(4.2.1)                                               xyyx 111   , 

which is used by Elliott [67] in proving Hardy’s inequality [173]: If 1q  and 

0na , then  

(4.2.2)                              












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




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
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
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q

n

q
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q

n a
q

q

n

a...aa
  

unless all the ai are zero. The constant is the best possible. 

In 1926, Copson [41] generalized Hardy inequality by replacing the arithmetic 

mean of a sequence by a weighted arithmetic mean, thus: 

If ,...,n,a,,q nn 21001   , q

n

n

na


1

  converge,  then 
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











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
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
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

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
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2211
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q
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n
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q
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
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
 .  

unless all the ai are zero. The constant is the best possible. 
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          Inspired by the above work, I would like to start a new project related to 

Hardy inequality. We would like to propose a new refinement of Young’s 

inequality which can be use in the proof of Hardy’s inequality and Carleman’s 

inequality. 

           Young’s inequality was refined by Kittaneh and Manasrah in [116] or given 

as a particular case of Kober’s inequality [119], thus: 

(4.2.4)           212 111 )ba(p,pmaxbabppa)ba(p,pmin pp   ,  

where b,a  are nonnegative real numbers and  10,p . 

For 
1

1





p , we have 
1

1






p , and for, 1 xa , yb  , we use inequality 

(4.2.4), we deduce the following relation: 

(4.2.5)                
2
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1

1








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
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
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
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

 yxxyyxyx ,  

for all 1 , and 0y,x . 

Lemma 4.2.1. If 1q , N,...,n,an 210   and 
n

a...aa
M n

n


 21 , then 
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
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2212
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1

1
. 

Proof. Using the same method as Elliott [67] in proving Hardy’s inequality, we 

note 
n

a...aa
M n

n


 21

 and we make the following calculations: 
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1 
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By convention, we take 10 M . 

If we apply inequality (4.2.5) for 1 nMx , nMy   and 1 q , we deduce 
   

(4.2.7)            1

12212

11 1 



  n

q

n

/q

n

/q

n

q

n

q

n MqMMMMqM  

                                                           2212

11 1 /q

n

/q

n

q

n

q

n MMnMqM 

  . 

 

Therefore, we obtain 

      n

q

n

q

n

/q

n

/q

n

q

n

q

n

q

n aM
q

q
MMM

q

n
MqM

q

n

q

qn
M 12212

11
11

1
1

1

1

1
1 
























  

                      2212

11
1

1
1

1

1

1
1 /q

n

/q

n

q

n

q

n

q

n MMn
q

n
MqM

q

n

q

qn
M 

 



















 , 

which is equivalent to 

      n

q

n

q

n

/q

n

/q

n

q

n

q

n aM
q

q
MMM

q

n
nMMn

q

12212

11
11

1
1

1

1 










  

       2212

11
1

1
1

1

1 /q

n

/q

n

q

n

q

n MM
q

nn
nMMn

q



 






 , 
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Next, we pass the sum from 1 to N, thus:  

(4.2.8)       


















N

n

n

q

n

N

n

q

n

N

n

/q

n

/q

n

q

N aM
q

q
MMMn

qq

NM

1

1

11

2212

1
1

1
1

1

1
 

                                      




 






N

n

/q

n

/q

n

q

N MMnn
qq

NM

1

2212

11
1

1

1
,  

which implies, 

    



















N

n

/q

n

/q

n

N

n

n

q

n

N

n

q

n MMn
q

aM
q

q
M

1

2212

1

1

1

1

1
1

1

1
. 

But, using Hölder’s inequality with indices 1q  and 
1q

q
, we have 

  q/q
N

n

q

n

q/
N

n

q

n

N

n

n

q

n MaaM

1

1

1

11

1



























  , 

which implies 
 

    





































N

n

/q

n

/q

n

q/q
N

n

q

n

q/
N

n

q

n

N

n

q

n MMn
q

Ma
q

q
M

1

2212

1

1

1

1

11

1
1

1

1
,  

so, multiplying by 

  q/q
N

n

q

nM
















1

1

, we deduce the inequality 

    
  q/q

N

n

q

n

N

n

/q

n

/q

n

q/
N

n

q

n

q/
N

n

q

n MMMn
q

a
q

q
M

















































1

11

2212

1

1

1

1

1

1
1

1

1
. 

It follows that, by raising to the power q, the following inequality 

 

    
 q

N

n

q

n

q
N

n

/q

n

/q

n

N

n

q

n

qN

n

q

n MMMn
q

a
q

q
M












































 

1

11

2212

1

11

1
1

1

1
. 

□ 

 

 

Theorem 4.2.2. If 1q , ,...,n,an 210   and 
n

a...aa
M n

n


 21 , then 

(4.2.9)              
 q

n

q

n

q

n

/q

n

/q

n

n

q

n

q

n

q

n MMMn
q

a
q

q
M























































 

1

11

2212

1

11

1
1

1

1
. 

 

Proof. Using Lemma 4.2.1 and passing to limit for N , we obtain the 

statement. 

□ 

Remark 3.2.3. a) Inequality (4.2.9) represents an improvement of Hardy’s 

inequality. 

b) If the numerical series 


1n

na converges,  then 0


q

N
N

NMlim .  

Therefore, inequality (4.2.8) becomes  

(4.2.10) 
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            .MMnnMqaMqMMn
n

/q

n

/q

n

n

q

n

n

n

q

n

n

/q

n

/q

n 























 
1

2212

1

11

1

1

2212

1 111  

 c) Copson’s inequality (see inequality (4.2.3)), which is a generalization of Hardy’s 

inequality, can be refined by the same method. Thus, we identify a new research 

direction. 

Another important result is Carleman’s inequality [29], given by the following: 

Let ,...a,a,a 321 be a sequence of non-negative real numbers, then 

(4.2.11)                                     









11

1

21

n

n

n

n/

n aea...aa , 

where the series 


1n

na  is convergent. The constant e in the inequality is optimal, 

that is, the inequality does not always hold if e is replaced by a smaller number. 

The inequality is strict if some elements in the sequence is non-zero. 

Carleman discovered this inequality during his important work on quasi-

analytical functions. This problem can be solved by using the Lagrange multiplier 

method. 

But, below, we present a solution using the inequality from Lemma 4.2.1, thus:  if 

1q , N,...,n,an 210   and 
n

a...aa
M n

n


 21 , then 

             
 q

N

n

q

n

q
N

n

/p

n

/p

n

N

n

q

n

qN

n

q

n MMMn
q

a
q

q
M












































 

1

11

2212

1

11

1
1

1

1
. 

If we replace ka , by q/

ka1  in the above inequality, then we find the following 

inequality 

(4.2.12)                                Aa
q

q

n

a
N

n

n

q

q

N

n

n

k

q/

k








































11

1

1

1
, 

where  

 

 q
q

N

n

n

k

q/

k

q

N

n

/q
n

k

q/

k

/q
n

k

q/

k

n

a

n

a

n

a

n
q

A

















































































































































 






1

1

1

1

1

2
21

1

1

2
1

1

1

1
1

1

1
. 

In inequality (4.2.12) passing to limit for q  and using the fundamental limit  

  n/

n

q
n

k

q/

k

q
a...aa

n

a

lim
1

21
1

1


























, we obtain the inequality 

(4.2.13)                                   nAaea...aa
N

n

n

N

n

n/

n  
 11

1

21 , 

https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Non-negative
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/E_(mathematical_constant)
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where  

            
 q

N

n

n/

n

q
N

n

n/

n

n/

n
q

a...aaa...aaa...aan
q

limnA








 























 

1

1

1

21

1

221

21

121

1211
1

1
. 

Theorem 4.2.4. If 1q , ,...,n,an 210   and 
n

a...aa
M n

n


 21 , then 

(4.2.14)              
 q

n

q

n

q

n

/q

n

/q

n

n

q

n

q

n

q

n MMMn
q

a
q

q
M























































 

1

11

2212

1

11

1
1

1

1
 

Another proof is given by Redheffer [190] using the inequality: 

 

(4.2.15)                                  
 


N

n

N

n

n

nnnnN baGbnNG
1 1

1 , 

which holds for all ,...,n 21 and all positive sequences  nb  and where 

  n/

nn a...aaG
1

21  is the geometric mean. 

In particular case, for: a) 1nb , for all ,...,n 21 , we have 

  



N

n

Nn

N/

NN Aa
N

a...aaG
1

1

21

1
 , 

i.e., we obtain the AG-inequality; 

b) 
n

bn

1
1 , for all ,...,n 21 , we have 

    












N

n

n

nN

n

n/

n

N/

N a
n

a...aaa...aaN
11

1

21

1

21

1
1  , 

which implies when n , the Carleman inequality. 

Next, we give another improvement of Young’s integral inequality: 

Theorem 4.2.5. Suppose the conditions of Theorem 1.4.1 hold and more  bfa 1  

and f is convex or  bfa 1  and f is concave. Then 

(4.2.16)      
     

     b,a;fYdxxfdxxf
abfafb

abab

a b




  




0 0

1
1

2
. 

Proof. The inequality (3.2.16) has a geometric interpretation involving the areas of 

the two functions, the rectangular area and the area of a triangle. 

 

Minguzzi, in [140], proved a reverse Young’s inequality in the following 

way: 

(4.2.17)                              ababab
q

b

p

a qp
qp

  110 , 

for all 0b,a  and 1q,p  with 1
11


qp
. 

This inequality is equivalent to the following inequality, for 1
1

 u

u

u xb,xa,
u

p : 

If 0b,a  and  10,p , we change p  and 
p

1
,   a  by pa  and b  by pb 1 , then 

inequality (3.2.17) becomes: 
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 (4.2.18)                       pppppp ababbabppa   11110 , 

But, this is true 0b,a  and  10,p .  

In [Minculete, 151] we present another improvement of Young’s inequality 

and a reverse inequality as follows 

                                 
 r

pp

r

pp

ab

ba
babppa

ab

ba
ba












 








 
12

1

2

1

2
1

2
, 

for the positive real numbers a, b and  10,p  and  p,pminr  1 . 

The first inequality can be found and in [121, Zuo] given by the Kantorovich’s ratio 

defined by 

 
 

,h,
h

h
hK 0

4

1
2




  

and the second inequality is studied by Liao in [124], thus: 

  pprppr ba
b

a
Kbppaba

b

a
K 

















 111 1 , 

where ab 0  and  10,p  and  p,pminr  1 .  

This implies, the inequality 

(4.2.19)     
 






















 















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





 


 1
2
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2
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2

1

r

pppp

r
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ab

ba
bababppa

ab

ba
ba , 

where ab 0  and  10,p  and  p,pminr  1 .  

But, since 

1
1 1 


  t,tlogt

p

t
tlog p

p

,  10,p , 

we have  

1
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2

2





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 





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

 
r
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ba
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ba
logr  

and  

 
 

.
ab

ba

ab

ba
log

ab

ba
bar

rr

pp 1
222

12

1221

1 






 








 







 




  

So, we have 

(4.2.20)

 
    .

ab

ba
log

ab

ba
barbabppa

ab

ba
logbra

r

pppppp








 







 








 




22
121

2
2

21

111

  

This inequality can be used to determine new inequalities for positive operators. 

Another idea to refine Young’s inequality is the following: for 01  p,x , we have  

   
 

x

p

x

pp

x

p
p

tdtlogtpxlogxdt'tlogtdtt
p

x

1

1

11

11
 

     

x

p

x

pppp tdtlogtlogptpxlogpxxlogxdt'tlogtlogtpxlogx
1

1

1

2 1  

which implies the inequality  
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(4.2.21)                              ,xlogx
p

x
xlogpxxlogx p

p
pp 




12  

for all 01  p,x . 

(4.2.22)                              ,xlogpxxlogx
p

x
xlogx pp

p
p 21




  

for all 01  p,x . 

Inspired by the above work, I would like to start a new joint project with 

Shigeru Furuichi related to other inequalities of Young type. The results below have 

been developed together with Shigeru Furuichi in private communications: 

Lemma 4.2.6. If 0a  , then the function RR :h  defined by  
x

a
xh

x 1
  is 

increasing. 

Proof. We consider 0a  and the function RR :h  defined by  
x

a
xh

x 1
 . 

Taking into account that ulnu 1  for any 0u , we deduce 0
1

1
1


xx a

ln
a

 , so  

01  xx ax)a(lna . Therefore, we have   0
1

2





x

ax)a(lna
x'h

xx

, i.e., the 

function h is increasing. 

Proposition 4.2.7. For ba   and Rs,q,p  with spq  , the following inequality 

(4.2.23)            qqppss babqqa
q

babppa
p

babssa
s

  111 1
1

1
1

1
1

,  

holds. 

Proof. For 0q  or 0p  or 0s  , the inequality is true. 

We apply Lemma 4.2.6 for 1t  and Rs,q,p  with spq  , and then we have 

the inequality  
s

t

p

t

q

t spq 111 






, which is equivalent to  

     1
1

1
1

1
1










t
s

t
t

p

t
t

q

t spq

. 

If we take 1
b

a
t  in above inequality and multiplying by b, then we deduce 

the statement. 

For 
2

1
p  and sq 

2

1
in inequality (4.2.23), we deduce 

(4.2.24)                   qqss babqqa
q

bababssa
s

  1
2

1 1
1

1
1

,  

so, for qq  1
2

1
in inequality (4.2.24), we deduce 

(4.2.25)              qqqq babqqa
q

babaqbaq
q

 


1
2

1 1
1

1
1

1
,  

 

which, in fact, proved the Kittaneh-Manasrah inequality. 

Since 




x p
p

p

x
dtt

1

1 1
, we have the following double integral:
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   1
1

1
1 1

2 


  
 t

p

t
dydxyp

pt x

p , for 1x,t . 

Lemma 4.2.8. For the real numbers 1y and 









2

1
0,p , the following inequality 

(4.2.26)                            }p,pmax{ypp
p




1
2

1
1 2

1

, 

and for the real numbers 1y and 







 1

2

1
,p , the following inequality 

(4.2.27)                            2

1

11
2

1 


p

ypp}p,pmin{ . 

Theorem 4.2.9. For the real numbers 1t and  10,p , the following inequalities 

(4.2.28)     

     2
1 1

2

1

2

3

11111
2

1













 



t}p,pmax{ppttdydxypp}p,pmax{y p

t x
p

 

and 

(4.2.29)     

     2
1 1

2

1

2

3

1111
2

1
1 












 



t}p,pmin{tpptdydx}p,pmin{yppy p

t x
p

 

 

Proof. For  10,p , the equalities (4.2.28) and (4.2.29) are true.  For  10,p , we 

have the following calculations: 

 

 

   

    ,t}p,pmax{tpt

t}p,pmax{dydxypp

dydx}p,pmax{yppy

p

t x

p

t x
p

2

2

1 1

2

1 1

2

1

2

3

1111

111

1
2

1
1



















 

 





  

 

which is equivalent to inequality (4.2.28). 

In an analogous way, we deduce the inequality (4.2.29). 

Corollary 4.2.10. For the real numbers 1t and  10,p , the following inequalities 

(4.2.30)        

             2
1 1

2

1

2

3

11111
2

1
 



t}p,pmax{ppttdydxypp}p,pmax{y p

t x
p

 

and 

(4.2.31)        

                .t}p,pmin{tpptdydx}p,pmin{yppy p

t x
p 2

1 1

2

1

2

3

1111
2

1
1  



 

 

Proof. Using the inequality Kittaneh and Manasrah in the form 

     22

11111  t}p,pmax{tpptt}p,pmin{ p
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and from    dxxfdxxf

b

a

b

a

  , we deduce the statement. 

Theorem 4.2.11. For the real numbers ba  and 









2

1
0,p , the following inequality: 

(4.2.32)     

     21

1 1

2

1

2

3

1111 ba}p,pmax{bppabadydxyypbp pp

b/a x
p













 



   

and for the real numbers ba  and 







 1

2

1
,p , the following inequality: 

(4.2.33) 

    .ba}p,pmin{babppadydxyy}p,pmin{
b pp

b/a x
p 2

1

1 1

2

1

2

3

1111
2















 



   

Proof. If  
ba

ab
b,aH




2
 is the harmonic mean, then we 

have      b,amax
ba

ab
b,aHb,amin 




2
, which implies 

 

                              }p,pmax{ppp,pH}p,pmin{  1
2

1
11

2

1
1

2

1

.

 

But    
















2

1

2

1

1111
2

1 pp

yppypp}p,pmax{  and using Theorem 4.2.9, we 

obtain 

     21

1 1

2

1

2

3

1111 ba}p,pmax{bppabadydxyypbp pp

b/a x
p













 



   

and since  

















11
2

1
1

2

1
1 2

1

2

1
pp

y}p,pmin{}p,pmin{ypp  and from Theorem 

4.2.9  we deduce the statement. 

 

 

4.3. Future directions for research related to inequalities in an 

inner product space 
 

 

Maligranda [130] proved the following: 

Theorem C. For nonzero vectors x and y in a normed space   ,XX  it is true that 

(4.3.1)                            y,xmin
y

y

x

x
yxyx














 2  

and 

(4.3.2)                             y,xmax
y

y

x

x
yxyx














 2 . 
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Remark 4.3.1. If either 1 yx  or cxy   with 0c , then equality holds in both 

(4.3.1) and (4.3.2).           

We have that 
22222

2 yby,xabxabyax,byaxbyax  , so 

implies  

(4.3.3)                              y,xyxabybxabyax  2
22

. 

In relation (4.3.3) for 1a  and 1b  we obtain           

(4.3.4)                                 y,xyxyxyx  2
22

. 

So, we deduce the equality, for nonzero vectors x and y in a normed space, 

given by the following: 

(4.3.5)                                    22
2 yxyxy,xyx  ,  

which means that 

(4.3.6)                                   
 

yxyx
yxyx

y,xyx




2
.  

This equality shows the equivalence between Cauchy-Schwarz's inequality 

and Minkowski's inequality. 

Theorem 4.3.2. For nonzero vectors x and y in a normed space   ,XX  it is true 

that 

(4.3.7)     
 

 y,xmax
y

y

x

x

yxyx

y,xyx
y,xmin

y

y

x

x


































 2

2
2  

Remark. If either 1 yx  or cxy   with 0c , then equality holds in (4.3,7).  

From (4.3.6), for Xz,y,x  , we have 

 (4.3.8)                 
 

zyxzyx
zyxzyx

zy,xzyx




2
.  

We can reason and inversely: we find inferior and superior margin for 

Cauchy's inequality (see Radon’s inequality [Rațiu-Minculete, 189]) and return to 

Minkowski's inequality written in norms. 

In relation (4.3.3) for 1a  and 1b  we obtain           

(4.3.9)                                    yxyxyxyx ,2
22

 . 

  In relation (4.3.3) for 
1

 xa  and 
1

 yb  we obtain           

  

 




















yx

y,x
y,xyx

yxy

y

x

x
12

1
24

2

. 

In relation (4.3.3) for 
1

 xa  and 
1

 yb  we obtain           

 y,xyx
yxy

y

x

x





2
2

, 

 

 it follows that 

(4.3.10)                             y,xyx
y

y

x

x
yx 

2

2

1
. 
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For nonzero vectors x and y in X we define the angular distance  y,x  between x 

and y by   

                                                  

 
y

y

x

x
y,x  . 

(see [40]) 

Therefore, we prove that  

(4.3.11)                                  y,xyxy,xyx 
2

2

1
 . 

Using the Massera-Schäffer inequality, proved in 1958 (see [134]): for nonzero 

vectors x and y in X there is the inequality 

(4.3.12)                                      yxy,xmaxy,x  2 . 

Combining relations (4.3.10) and (4.3.12) we deduce the inequality:  

(4.3.13)                                
  2

2
2

y,xmax

yxyx
y,xyx


 , 

which is equivalent with  

           
      222

2 y,xmaxy,xyxy,xmaxyx  . 

Relation (4.3.10) can be written as 

      

y,xyxyxxy
yx




2

2

1
, 

Therefore, we obtain 

(4.3.14) 
     

2

2

2

2
2

1

2

1
yxxy

y,xmin
y,xyxyxxy

y,xmax
 . 

We apply these inequalities in an inner product space: 

a)  ,Rn  , where for  nx,...,x,xx 21 ,  ny,...,y,yy 21  we have  

nn yx...yxyxy,x  2211  and 22

2

2

1 nx...xxx  . 

But, we find 

     2
1

1

222

1
ii

n,i

n

i

iiii
n,i

yxxymaxnyxxyyxxyyxxyminn 





 . 

Combining this inequality with inequality (4.3.15), we deduce 

(4.3.15)      

 

  

 

  2

2

1

2

2

1

22 y,xmin

yxxymax
n

y,xyx
y,xmax

yxxymin
n ii

n,i
ii

n,i







, 

 for all nRy,x  .  

 

b)   ,b,aC0  , where for  b,aCg,f 0  we have  

   
b

a

dxxgxfg,f  and  

b

a

dxxff 2 . 

If we replace in inequality (4.3.10), then we deduce 
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   

       

        .dxxgxfdxxgdxxf

dxxgdxxfxfdxxg

dxxgdxxf

b

a

b

a

b

a

b

a

b

a

b

a
b

a

b

a



 






















22

2

22

222

1

 

Inspired by the above work, I would like to start a new joint project with 

Radu Păltănea related to inequalities in an inner product space. We would like to 

propose the extending of the notions of variance and covariance to vectors. 

Vector projection is an important operation in the Gram-Schmidt 

orthonormalization of vector space bases. 

The projection of a vector x onto a vector y is given by y
y

y,x
xprojy 2
 . 

If in  ,,Rn  , we denote by u , the vector  111 ,...,,u  , then  











  

 

n

i

n

i

iiu x
n

,...,x
n

u
u

u,x
xproj

1 1
2

11
. 

 

In  ,,Rn , we define the variance of a vector x by  

2

2

1
xprojx

u
)xvar( u  

and the covariance of a vectors x and y by  

  yprojy,xprojx
u

y,xcov uu 
2

1
. 

  ,,b,aC0  , where for  b,aCg,f 0  we have  

   
b

a

dxxgxfg,f  and  

b

a

dxxff 2 . 

The projection of a vector f onto a vector g is given by g
g

g,f
fprojg 2
 . 

If in   ,b,aC0  , we take    1xg , we have  

 


b

a

dxxf
ab

,f
fproj

1
1

1

1
21 . 

Thus, in   ,b,aC0 , we define the variance of a function f  by  

2

12
1

1
fprojf)fvar(   

and the covariance of a vectors f and g by  

  gprojg,fprojfg,fcov 112
1

1
 . 
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Another future direction for research in inequalities between the elements of 

an inner product space is related to Cauchy-Schwarz’s inequality in an inner 

product space and its applications.  

Next, we develop these inequalities for linear combinations of vectors. 

Let  ne,...,e,e 21  be an orthonormal system of vectors in unitary space 

  ,,XX  over the field of real numbers.  

For Xx , we put  





n

k

kk ee,xxx
1

 and   



n

k

kkn y,ee,xy,xy,xS
1

, 

where Xy,x  .  

In [63], Dragomir proved the following inequality  

 

(4.3.16)                              y,ySx,xSy,xS nnn 
2

 

where Xy,x  . This inequality can be found in [113]. 

In relation (4.3.16) the equality holds if and only if  ne,...,e,e,y,x 21 is linearly 

dependent. For 1n , we apply inequality (4.3.16) on  b,aL2  for   
















 g

ab
y,f

ab
x,

ab
e

111
1 , where  b,aLg,f 2 , and we obtain an 

inequality in terms of the Chebyshev functional, as follows:  

(4.3.17)                               g,gTf,fTg,fT 
2

, 

where  b,aLg,f 2  and  

           





b

a

b

a

b

a

dxxg
ab

dxxf
ab

dxxgxf
ab

g,fT
111

.  

This inequality proved the Grüss inequality, which for f and g two bounded 

functions defined on [a,b] with    11  xf  and    22  xg , where 

2121  ,,, are four constants, we have    211
4

1
f,fT , so we obtain 

    2211
4

1
 g,fT . 

In terms of h-covariance inequality (2.4.15) becomes  

                                                  gvarfvarg,fcov hhh 
2

.  

where     ,b,a:h 0  is a Riemann- integrable function with   0
b

a

dxxh .  

From [113] we found the following identity.  

 y,xSy,ee,xy,xy,x n

n

k

kk  
1

. 

But, we remark that y,xy,xy,x  , so we deduce  

  



n

k

kn e,xxx,xSx,xx,xx,xx
1

222

. 

It is easy to see that yxyx    for every real numbers  , . 
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Inequality (2.4.14) is in fact the Cauchy-Schwarz inequality for vectors y,x , 

i.e., 
222

yxy,x  . 

Proposition 4.3.3. With above notations, we have 

(4.3.18)    
 
 

   
 

        2
2

0 y,xSy,ySx,xSz,xS
y,yS

z,ySy,xS

z,zS

y,yS
nnnn

n

nn

n

n 









  , 

for all Xz,y,x  , ne,...,e,e,y 21 , ne,...,e,e,z 21 are linearly independent.  

Proof. Using Corollary 2.3.6, we have 

                             

222

2

22

2

y,xyxz,x
y

z,yy,x

z

y


















  ,        

for all Xz,y,x  , ne,...,e,e,y 21 , ne,...,e,e,z 21 are linearly independent. By 

substitution we deduce the statement.  

□ 

This inequality represents an improvement of inequality (4.3.16). 

Similarly to the ones mentioned above for 1n , we apply inequality (4.3.16) 

on  b,aL2  for   


















 h

ab
z,g

ab
y,f

ab
x,

ab
e

1111
1 , where 

 b,aLg,f 2 , and we obtain an inequality in terms of the Chebyshev functional, as 

follows:  

(4.3.19)       
 
 

   
 

        2
2

0 g,fTg,gTf,fTh,fT
g,gT

h,gTg,fT

h,hT

g,gT









 , 

where  b,aLh,g,f 2  ,     0h,hT,g,gT , and  

           





b

a

b

a

b

a

dxxg
ab

dxxf
ab

dxxgxf
ab

g,fT
111

.  

This inequality is an improvement of inequality (4.3.17). 

Let   ,,XX  be a inner product space over the field of real numbers.  

For 1n  in inequality (4.3.16) and the vector Xe with 1e , we have 

(4.3.20)                  2222
e,yye,xxy,ee,xy,x  . 

Next, we obtain a refinement of inequality (4.3.20), thus: 

Corollary 4.3.4. For all Xz,y,x,e   with 1e and e,y , e,z are linearly 

independent, we have 

(4.3.21)             2222
0 y,ee,xy,xe,yye,xxA   , 

where 
  

2

2222

22























 z,ee,xz,x

e,yy

z,ee,yz,yy,ee,xy,x

e,zz

e,yy
A .  

Proof. Using Proposition 4.3.3 for 1n  , we obtain the statement. 

□ 

Theorem 4.3.5. For all Xz,y,x,e   with 1e , we have 

(4.3.22)         

     2222
y,ee,xzz,yz,xe,xz,ye,yz,xe,ze,zzy,x   
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         22222222
e,ze,yz,ye,zzye,ze,xz,xe,zzx  . 

Proof. We consider the vectors Xz,y,x,e  with 1e , we take ee,zzw  ,  e,z  

are linearly independent. It follows that 
222

e,zzw   and 0w,e . For 

w

w
u  , we have 01  u,e,ue , so, applying inequality (4.3.16), we obtain  

 

  y,ee,xy,xy,uu,xy,ee,xy,xy,xS 2  

  z,ee,yz,yz,ee,xz,x
w


2

1
 

  y,ee,xzz,yz,xe,xz,ye,yz,xe,z
w

y,x
2

2

1
 . 

Therefore, we have 

    y,ee,xzz,yz,xe,xz,ye,yz,xe,z
w

y,xy,xS
2

22

1
 . 

It follows that 

   222

2

2

2 2
1

e,xzz,xe,ze,xz,x
w

xx,xS  . 

But, using the Cauchy-Schwarz inequality, 
22

ze,z  , we deduce  

                                   222

2

2

2 2
1

e,xe,zz,xe,ze,xz,x
w

xx,xS      

                                             2
2

2 1
e,ze,xz,x

w
x  . 

Consequently, we obtain the inequality 

 
 

22

2

2

2

e,zz

e,ze,xz,x
xx,xS




 . 

Similarly, we deduce  
 

22

2

2

2

e,zz

e,ze,yz,y
yy,yS




 .  

According with inequality (4.3.16), we find       y,ySx,xSy,xS 22

2

2   and 

combining with above inequalities, we obtain the statement. 

□ 

We intend to study other applications of inequality (4.3.16) and we will investigate 

another improvement of this inequality.  
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Conclusions 
 

 

In the present work we have described results related to mathematical inequalities 

and its applications. We obtained a series of inequalities related to inequalities for 

functionals, inequalities for invertible positive operators and inequalities in an 

inner product space. We presents several applications to the inequalities found to 

probability and statistics. 

This habilitation thesis contains a number of new and basic inequalities 

related to Hermite-Hadamard’s inequality, Grüss’s inequality, Hammer- Bullen’s 

inequality and Cauchy-Schwarz’s inequality (in an inner product space) 

investigated in order to achieve a diversity of desired goals. 

We conclude with a list of items that are part of our current and future 

directions research. The domain of mathematical inequalities is quite lively, but it 

can always generate novelty elements and interesting applications. 

We summarize the list of our current and future directions research as 

follows: 

- A first direction of research refers to the reconsideration of Hermite-

Hadamard’s inequality and with a new approach we can find an 

improvement and new applications of it. We would like to propose a new 

inequalities for Stolarsky’s mean, logarithmic mean, identric mean, etc. 

- Connected with the functional Jensen, in the future, we would like to 

study other properties of generalized entropies as the following: the 

Tsallis entropy, the Rényi entropy, the quasilinear relative entropy, the 

Rényi relative entropy, the Tsallis relative entropy, the Tsallis quasilinear 

entropy (q-quasilinear entropy), the Tsallis quasilinear relative entropy.  

- Inspired by the above work and the recent results, I would like to start a 

new project related to Hardy inequality. We would like to propose a new 

refinement of Young’s inequality which can be use in the proof of Hardy’s 

inequality and Carleman’s inequality. 

- Another future direction for research in inequalities between the elements 

of an inner product space is related to Cauchy-Schwarz’s inequality in an 

inner product space and its applications. As the main starting point, we 

refer to the inequality,       y,ySx,xSy,xS nnn 
2

, given by Dragomir in 

[63]. 
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