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List of notations

R : the set of real numbers
C : the set of complex numbers
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N *: the set of positive integers
R : the set of real numbers
R+ : the set of nonnegative real numbers
R" : the set of nonzero real numbers
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log(x): the logarithmic function with the base e
R : Euclidean n-space
Miu(R), Mn(C) : spaces of n X n-dimensional matrices
det A : determinant of A
of

—— partial derivative
ox,,

A(s, t), G(s, t), H(s, t) : arithmetic, geometric and harmonic means

I(s, t) : identric mean

L(s, t) : logarithmic mean

Mp(s, t): Holder (power) mean

i=L,n:1=12,.,n

R([a, b]) : the space of Riemann-integrable functions on the interval [a, b]
C%[a, b]) : the space of real-valued continuous functions on the interval [a, b]

b
L, (a,b): the space of integrable functions f on the interval [a, b], with J f? (x)dx <0

B(H): algebra of bounded linear operators on a real Hilbert space H.
<x, y>: inner product

[

A#, B : quasi-arithmetic power means for operators

: norm of x

AV B : weighted arithmetic mean for operators
A! B: weighted harmonic mean for operators
A#, B: weighted geometric mean for operators

A# B: geometric mean for operators
H, (pl,pz,..., pn): the Tsallis entropy

H(pl,pz,..., pn): the Shannon entropy
R, (pl,pZ,..., pn) : the Rényi entropy

DY (py, Py D,
R,(p,.Dyres 1,
D, (pl,pZ,..., pn|
1Y (pl, Dy sens pn): the Tsallis quasilinear entropy (q-quasilinear entropy)

Ty s Ty peens rn) : the quasilinear relative entropy

r,r,,.., I ) :the Rényi relative entropy
1>72 n

r,r,,..., 1, ) : the Tsallis relative entropy
1>72 n
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Ty 3Ty e rn): the Tsallis quasilinear relative entropy
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Abstract

In this habilitation thesis we have described the significant results achieved by the
author after obtaining his PhD degree in Mathematics from Simion Stoilow
Institute of Mathematics of the Romanian Academy, in 2012. Inequalities Theory
represents an old topic of many mathematical areas which still remains an
attractive research domain with many applications. The study of convex functions
occupied and occupies a central role in Inequalities Theory, because the convex
functions develop a series of inequalities.

The research results presented here are concerned with the improvement of
classical inequalities resulting from convex functions and highlighting their
applications.

A function f : I — R, where [ is an interval, is called convex if we have

flea+@1—tp)<tf(a)+(1-1)f(b),

for all a,bel,te [0,1].

Related to probability theory, a convex function applied to the expected value of
a random variable is always less than or equal to the expected value of the convex
function of the random variable. This result, known as Jensen's inequality,
underlies many important inequalities.

Another important result related to convex function is the Hermite—-Hadamard
inequality, due to Hermite [107] and Hadamard [99], which asserts that for every
continuous convex function f : [a,b]— R the following inequalities hold:

f[a;bJsﬁj:f(t)dt sw.

Related to the Hermite—Hadamard inequality, many mathematicians have
worked with great interest to generalise, refine and extend it for different classes of
functions such as: quasi-convex functions, log-convex, r-convex functions, etc and
apply it for special means (logarithmic mean, Stolarsky mean, etc).

The habilitation thesis is focused on the study of important inequalities from
Inequalities Theory and on their impact in some applications.

The thesis consists of four chapters. It also includes a list of notations and a
bibliography with 211 references.

In the first part of this thesis we have presented the scientific and professional
achievements and the evolution and development plans for career development.

The first chapter studies the inequalities developed from convex functions. This
chapter contains several original results, many of them published in ISI journals.
These studies are linked to several inequalities such as the Hermite-Hadamard
inequality, the Fejér inequality, Hammer-Bullen’s inequality and Young’s
inequality. In the last part of this chapter we present several Griiss-type
inequalities in discrete form and in integral form. Here we show a refinement of
Griss’s inequality via Cauchy—Schwarz’s inequality for discrete random variables
in finite case. In the end, we have analyzed the bounds of several statistical
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indicators and we have given a generalized form of Griiss type inequality and we
have obtained other integral inequalities.

The second chapter studies the inequalities for functionals and inequalities for
invertible positive operators. Here there are researched the Jensen functional under
superquadraticity conditions and the Jensen functional related to a strongly convex
function. We have shown several inequalities on generalized entropies. Generalized
entropies have been studied by many researchers. Rényi [191] and Tsallis [201]
entropies are well known as one-parameter generalizations of Shannon’s entropy,
being intensively studied not only in the field of classical statistical physics [202—
204], but also in the field of quantum physics [198].

We have also studied the inequalities for invertible positive operators that
have applications in operator equations, network theory and in quantum
information theory.

The third chapter explores the inequalities in an inner product space (pre-
Hilbert space). We remark the study of the Cauchy - Schwarz inequality in an inner
product space and some reverse inequalities for the Cauchy-Schwarz inequality in
an inner product space. We also make considerations about several inequalities and
we mention a characterization of an inner product space.

In the second part of this habilitation thesis we have presented the evolution
and development plans for career development.

The last chapter examines several future directions for research. We have
identified three future directions for research, namely: future directions for research
related to Hermite-Hadamard’s inequality and Hammer-Bullen’s inequality; future
directions for research related to Young’s inequality and Hardy’s inequality and
future directions for research related to inequalities in an inner product space.

Their study is initiated so as to improve some results on classical inequalities.

Original results of this habilitation thesis have been published in journals such
as: Aequat. Math., Int. J. Number Theory, J. Inequal. Appl., Math. Inequal., J.
Math. Inequal., Gen. Math., Appl. Math. Inf. Sci. etc.
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Rezumat

In aceastd tezd de abilitate am descris rezultatele semnificative obtinute de autor
dupa ce a obtinut titlul de doctor in matematica la Institutul de Matematica Simion
Stoilow al Academiei Roméane in anul 2012. Teoria inegalitatilor reprezinta un
subiect vechi al multor domenii matematice, care raméane un domeniu de cercetare
atractiv cu multe aplicatii. Studiul functiilor convexe a ocupat si ocupa un rol central
in teoria inegalitatilor, deoarece functiile convexe dezvolta o serie de inegalitati.

Rezultatele cercetarilor prezentate aici se refera la imbunatatirea
inegalitatilor clasice care rezulta din functiile convexe si evidentierea aplicatiilor
acestora.

O functief : I — R, in care [ este un interval, se numeste convexa daca avem

flta+@1-tp)<tf(a)+(1-1)f(b),

pentru orice a,be l,t e [0,1].

Legat de teoria probabilitatii, o functie convexa aplicata la valoarea asteptata
a uneil variabile aleatoare este intotdeauna mai mica sau egala cu valoarea
asteptata a functiel convexe a variabilei aleatoare. Acest rezultat, cunoscut sub
numele de inegalitatea lui Jensen, sta la baza multor inegalitati importante.

Un alt rezultat important legat de functia convexa este inegalitatea Hermite-
Hadamard, datorata lui Hermite [107] si Hadamard [99], care afirma ca pentru
orice functie convexa continua f : [a,b] — R avem urmatoarea inegalitate:

f[aijJsﬁj:f(t)dt SM’

2

Legat de inegalitatea Hermite-Hadamard, multi matematicieni au lucrat cu
mare interes la generalizarea, rafinarea si extinderea acesteia pentru diferite clase
de functii cum ar fi: functiile cvasi-convexe, functiile log-convexe, functiile r-convexe
etc. si aplicarea lor pentru medii speciale (media logaritmica, media Stolarsky, etc).

Teza de abilitare se axeaza pe studierea inegalitatilor importante din teoria
inegalitatilor si a impactului acestora in unele aplicatii.

Teza consta din patru capitole. De asemenea, include o lista de notatii si o
bibliografie cu 211 de referinte.

In prima parte a acestei lucriri am prezentat realizirile stiintifice si
profesionale si planurile de evolutie si dezvoltare pentru dezvoltarea carierei.

Primul capitol studiaza inegalitatile rezultate din functiile convexe. Acest
capitol contine mai multe rezultate originale, multe dinte ele publicate in reviste
ISI. Aceste studii sunt legate de cateva inegalitati, precum: inegalitatea Hermite-
Hadamard, inegalitatea Fejér, inegalitatea lui Hammer-Bullen si inegalitatea lui
Young.

In ultima parte a acestui capitol prezentam mai multe inegalitati de tip Griiss
in forma discreta si in forma integrala. Aici vom arata o rafinare a inegalitatii lui
Griiss prin inegalitatea Cauchy-Schwarz pentru variabile aleatoare discrete in
cazul finit. In final, am analizat marginile mai multor indicatori statistici si am dat
o forma generalizata a inegalitatii de tip Griiss si am obtinut alte inegalitati
integrale.
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In al doilea capitol studiem inegalititile pentru functionale si inegalitati
pentru operatorii inversabili pozitivi. Aici este cercetata functionala Jensen in
conditii de superpatricitate si functionala Jensen legata de o functie puternic
convexa. Am aratat mai multe inegalitati privind entropiile generalizate. Entropiile
generalizate au fost studiate de multi cercetatori. Entropiile Rényi [191] si Tsallis
[201] sunt bine cunoscute ca generalizari cu un parametru ale entropiei lui
Shannon, fiind studiate intensiv nu numai in domeniul clasic al fizicii statistice
[202-204], ci si in domeniul fizicii cuantice[198].

De asemenea, am studiat inegalitatile pentru operatorii inversabili pozitivi
care au aplicatii in: ecuatiile operatorilor, teoria retelelor si teoria cuantica a
informatiilor.

Al treilea capitol exploreaza inegalitatile intr-un spatiu vectorial inzestrat cu
produs scalar (prehilbertian). Remarcam studiul inegalitatii Cauchy-Schwarz intr-
un spatiu vectorial inzestrat cu produs scalar si unele inegalitati inverse pentru
inegalitatea Cauchy-Schwarz intr-un spatiu prehilbertian. De asemenea, facem
cateva consideratii cu privire la mai multe inegalitati si mentionam o caracterizare a
unul spatiului vectorial inzestrat cu produs scalar.

In a doua parte a acestei teze de abilitate am prezentat planurile de evolutie
s1 dezvoltare pentru dezvoltarea carierei.

Ultimul capitol analizeaza mai multe directii viitoare de cercetare. Am
identificat trei directii viitoare de cercetare, si anume: viitoare directii de cercetare
legate de inegalitatea lui Hermite-Hadamard si inegalitatea lui Hammer-Bullen;
viitoarele directii de cercetare referitoare la inegalitatea lui Young si inegalitatea lui
Hardy si directiile viitoare de cercetare referitoare la inegalitatile dintr-un spatiu
vectorial inzestrat cu produs scalar.

Studiul lor este initiat pentru a imbunatati unele rezultate privind
inegalitatile clasice.

Rezultatele originale ale acestei teze de abilitate au fost publicate in reviste
precum: Aequat. Math., Int. J. Number Theory, J. Inequal. Appl., Math. Inequal.,
J. Math. Inequal., Gen. Math., Appl. Math. Inf. Sci. etc.
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(B) Scientific and professional achievements and the
evolution and development plans for career development

(B-i) Scientific and professional achievements
Chapter 1

Inequalities developed from convex functions

The study of optimization problems is distinguished by a number of properties
characterized by convex functions. These functions play an important role in many
areas of mathematics. The convex functions develop a series of inequalities.

A function f: I — R, where I is an interval, is called convex if the line
segment between any two points on the graph of the function lies above or on the
graph. Equivalently, a function is convex if the set of points on or above the graph of
the function 1s a convex set. In fact, we have

flea+@1—t)p)<tf(a)+(1-1)f(b),
forall a,bel,te [0,1].

As applications of convex function we have the following: every norm is a convex
function, by the triangle inequality and positive homogeneity; the
function —logdet(X) on the domain of positive-definite matrices is convex; another

example 1s FKuler’s gamma function, F(x)z j t*'e’'dt ,x >0 (in fact Euler’s gamma
0

function is a log-convex function, i.e., we have f(ta+(1—t)p)<f (a)f"(b), for all
abel,te [0,1]); if a function f:I — Ris log-convex, then it is also convex; related
to probability theory, a convex function applied to the expected value of a random
variable is always less than or equal to the expected value of the convex function of
the random variable. This result, known as Jensen's inequality, which underlies
many important inequalities, i1s given as: for a real convex function f,
numbers x,,x,,..., X, Inits domain, and positive weights w,,w,,...,w, , we have:

iwixi Zn:wlf(xz)

n

(1.1) fl = <

2w | 2w

i=1 P
When, we have w, =w, =... =w,, then, we deduce the classical variant of Jensen's
inequality:
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3, gﬂx»

(1.2) fl = <

n n

1.1 About the Hermite-Hadamard inequality

As a particular case, in Jensen's inequality, forn =2 in inequality (1.2), we have:

(1.1.1) f(‘“bjs fla)+7(b)
2 2

An important result related to inequality (1.1.1) i1s the Hermite-Hadamard

inequality, due to Hermite [107] and Hadamard [99], which asserts that for every

continuous convex function f : [a,b]— R the following inequalities hold:
a+b 1 fla)+£(b)
1.1.2 S——|fitpht £ ————.
(1.1.2) f( . ) b_a!f()d ;

Hardy, Littlewood and Pélya presented in the book [106] the following result,
which characterise the convex functions, given by:
Theorem 1.1.1. A necessary and sufficient condition that a continuous function f be
convex in (a, b) is that

x+h

1
(1.1.3) flx)< %xjhf(t)dt.

fora<x —h <x+ h <b. It can be shown that this result is equivalent to the first
inequality in (1.1.2) when f is continuous on [a, b].

Related to the Hermite-Hadamard inequality, many mathematicians have
worked with great interest to generalise, refine, counterpart and extend it for
different classes of functions such as: quasi-convex functions, log-convex, r-convex
functions, etc and apply it for special means (logarithmic mean, Stolarsky mean,
ete).

In the monograph [561], Dragomir and Pearce presented many
characterizations of the Hermite-Hadamard inequality.

Ioan Rasa [165] made the following remark in connection with the above
refinement on Hermite-Hadamard inequality: if f :[a,b]— Ris a convex function,

then

1 a+b a+b 1 |
(1.1.4) §(f[ . —cJ+f( . +CDSb—a!f(t)dt’

for every c e {0, b—Ta} ,and c= 1s maximal with this property.

A series of proofs and improvements of the Hermite-Hadamard inequality
were given over time (see [32, 54, 55, 68]). In [22], Bessenye1l applied Hermite-
Hadamard inequality on simplices and Bessenyei and Pales established in [21]
several inequalities of Hermite-Hadamard type for generalized convex functions. An
extension of the Hermite-Hadamard inequality through subarmonic function was
also given by Mihailescu and Niculescu in [139]. The Hermite-Hadamard inequality
1s the starting point to Choquet’s theory [166].

11
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Before stating the results, we recall some useful facts from literature.
Dragomir, Cerone and Sofo present in [56, 57] the following estimates of the
precision in the Hermite-Hadamard inequality:

Proposition 1.1.2. Let f: [a,b]—)R be a twice differentiable function such that

there exist real constants m and M so that m< f"<M . Then

(1.1.5) (b af jft)dt [a+bJ<M(b;Z)2
and
(1.1.6) m(bI;) iC );f( Ift)dt<M( 2)

These inequalities follow from the Hermlte-Hadamard inequality, for the convex
2 2
functions f(x)—m% and f(x)—M%.

Theorem 1.1.3 (Minculete-Mitroi [145]). Let f : [a, b]—) R be a twice differentiable
function such that there exist real constants m and M so that m < f"< M . Then

mM( /1(12 /1) (b a)2

(1.1.7) b—a) <if(a)+1-2)f()-f(Aa+1-Ap)< M

for all 2 €0,1].

Remark 1.1.4. By integrating each term of the inequality (1.1.7) on [0, 1] with
respect to the variable A, we recover the inequality (1.1.6).

Corollary 1.1.5 (Minculete-Mitroi [145]). Preserving the notation of Theorem 1.1.3,

the following inequalities hold:
(1.1.8)

2
822 o af <2 a-0- )+ -2k ) 52 < e =2 -
forall A e [0,1].

Remark 1.1.6. Notice that by integrating all terms of the inequality (1.1.8) on [0, 1]
with respect to the variable 1, we recover the inequality (1.1.5).

The following result incorporates the classic statement of the Hermite-Hadamard
inequality.

Corollary 1.1.7 (Minculete-Mitroi [145]). Suppose f : [a, b] — R is differentiable
and convex. Then

(1.1.9) fla)+f®) Zajf(t)dtzx a(f( a)+fle) 1 j-f(t)g(t)dtJZO

2 x—a
a

[\

and

(1.1.10) j fle)dt—f (‘“bjzz:a[ j fle)dt—f (a”j] 0,

forall x,y e (a,b) .

1.2 Fejér type inequalities for convex functions

Fejér [71], studying trigonometric polynomials, obtained some inequalities, which
generalise the Hermite-Hadamard inequality, and thus established the following
well-known weighted generalization:

12
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Theorem 1.2.1. If f:[a,b] > R is continuous and convex and if g :[a,b]—>R,is
integrable and symmetric with respect to the line x =(a+b)/2, that 1is,
g((@a+b)/2+t)=g((a+b)/2—t). Then

(1.2.1) (a+b)Jg (t)dt <If 2 (¢ )t < Ma)+ 1) j'g (¢ )t

Motivated by the above results, in the paper [145] we have shown other
inequalities of Fejér type:
Theorem 1.2.2 (Minculete-Mitroi [145]). Let f : [a, b]—> R be a twice differentiable
function such that there exist real constants m and M so that m< "< M. Assume
a+b

g: [a,b]—)RJs integrable and symmetric about Then the following

inequalities hold:

b
(1.2.2) —Jt—a)(b t)g t)clt< Igt)dt J'f t)dt<—J't a)b—t)g(t)dt
and

(1.2.3) mIZt—a by’ t)dt<jf g(t)it — f (CHbj'[ (tﬁts%i@t—a—bfg(t)dt.

a

Remark 1.2.3. For the partlcular case g(x)=1, if we apply Theorem 1.2.2 on the
intervals {a, a;—b}[a +5 ,b} , we get:

2
b-a) _1(f(a)+f0) [a + bj 1 | (b-a)
1.2.4 <— - Lt < M ~——+
20 meg =l e e b_alf()d 48
which represents an improvement of the Hammer-Bullen inequality [166], given by:
2 7 f(a)+f(b) a+b
(1.2.5) b_a:[f(t)dté ST

The following theorem gives new Fejér-type inequalities.

Theorem 1.2.4 (Minculete-Mitroi [145]). Let f : [a, b]—) R be a differentiable, convex
function with f">0 andg : [a, b]—) R, be continuous. Then the following statements
hold.

) Ifgis monotonically decreasing, then

a:26) Ot e =" et o

a

i) If g is monotonically increasing, then

a2n |t~ f(a;bﬁg(t)dtzjf(t)g(t)dt_ [“”ﬁgt)dpo

forall x,y e (a,b) .

We end this section with weighted statement of a known result concerning
convex functions. In the light of Proposition 1.2.1, the following statement appears
as a trivial generalization of a result due to Vasi¢ and Lackovi¢ [205], and Lupas
[128] (cf. Pecaric et. al [176]) and we omit its proof.

13
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Proposition 1.2.5. Let p and g be two positive numbers and a, <a<b<b,. Let

g :|a,b] > R, be integrable and symmetric about A = patgb

p+q
(1.2.8) f(pgwb}jgt)dm'[f t)dt<pf +qf Jgt)dt

hold for y>0 and all continuous convex functzon f: [al,bl]—>R if and only if

. Then the inequalities

a .
y< +qmm{ ,q)

This inequality is due to Brenner and Alzer [25].
From inequality (1.2.6) applied to the convex function ¢, with
pe (— oo,O) [1 oo)\{ 1} we have (see [145])

(1.2.9) {[A ab] —[S ab]} x a{[A ax] —[S ax]},

a®? +b?
2

1/p
where xela,b]. Here Ap(a,b):( ] 1s the power mean and

/(p)1
a®? -b” ) ..
S, (a,b)z [—J , p#0,]1, 1s the Stolarsky mean. Also the limit case p — -1

pla-b)

. .1 .
(or we may equivalently say the case of the convex function Z) gives us

(1.2.10) b- “){H(i, b L(i,b)} > _G{H((lz,x) - L(;,x)} ’

where H(a,b)zzib 1s the harmonic mean and L(a,b):b_—a 1s the

a+b logb—loga
logarithmic mean.

Some of the previous results where mentioned in the following papers, thus:
in [168], Niezgoda, established some generalizations of Fejér inequality for convex
sequences, in {169} he gave several inequalities for convex sequences and
nondecreasing convex functions and in [122], Kunt et al. found new inequalities of
Hermite-Hadamard-Fejér type for harmonically convex functions via fractional
integrals.

1.3 Two reverse inequalities of Hammer-Bullen’s inequality

For certain constraints of £, in [51], Dragomir and Pearce found an improvement of
Hammer-Bullen 's inequality given by the following:
Theorem 1.3.1. Let f: [a, b]—) R be a twice differentiable function such that there

exist real constants m and M so that m< f"< M. Then the following inequalities

hold:

(1.3.1) m(b_a)2 < f(a)+f(b)+f(a+b}b?ajf(t)dt < M(b;Z)Z .

24 2 2

This result was mentioned in Remark 1.2.2.
Next, we provide two reverse inequalities of Hammer-Bullen 's inequality.

14
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Lemma 1.3.2 (Minculete-Dicu-Ratiu [146]). Whenever f: [a,b]—)R is a twice
differentiable function, we have the following equality:

asy [elfO), farb) 2 fft)dt—%l - ok,

2 2 2

where

Remark 1.3.3. a) Clearly for x [a,b], one has (x —aijq(x)Z 0. By some

elementary computations one obtains:

et

Therefore, for every x e[a,b], we can write
a+b a+b a+b
m(x - qu(x) < [x - qu(x)f" (x)< M[x - qu(x)
Integrating from a to b, multiplying by 1/ (b - a) and using relation (1.3.2), we
obtain the inequalities from (1.3.1). b) Inequalities (1.3.1) can also be obtained by

2
applying the Hammer-Bullen inequality for the convex functions f(x)—m% and

x2

In the following, we give a reverse inequality of Hammer-Bullen 's inequality.
Theorem 1.3.4 (Minculete-Dicu-Ratiu [146]). Let f : [a,b]—) R be a twice

differentiable and convex function. Then the following inequality holds

15y [0, farb) s jft)de a)f (b)-£(a)

16

Applying the inequality of Griss (see [98]), we obtain the following:
Theorem 1.3.5 (Minculete-Dicu-Ratiu [146]). Let f:|a,b] >R be a twice

differentiable function and assume there exist real constants m and M such that:
m<f"(x)< M forall x €[a,b]. Then

(1.3.4) %f(a);f@)ﬁ(a;bj_bfaif(t)dt_(b—a)(f'l(g)—f'(a))%_(M ,Z)ib af

If we consider f(x)z x?, p>1. Obviously fis a convex function. According to

Theorem 1.3.4 one has:
-1 a—1
Ala?,b” )+ A?(a,b)-2S? (a,b) < p(b_“)(li; — ),

15
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where A(a,b)= 20

1/(p-1)

. . . ap _ bp

is the arithmetic mean and S, (a,b)= {—}
pla-b)

1s the Stolarsky mean.
For f(x)=—logx, x>0, we have that f is a convex function. Applying

Theorem 1.3.4 for f, we find the inequality

(b-a)*
A(a,b)G(a,b)e 60 > I*(a,b),
p \1/(b-a)
where G(a,b)=+ab is the geometric mean and I(a,b)= (b j is the identric
ela

mean.

In [Minculete-Florea-Furuichi, 147], our purpose was to establish several
inequalities related to Hermite-Hadamard inequality. We also proved a
generalization of the Hammer-Bullen inequality.

Let H [f] H,[f]:[a,b] > R be two functions defined by:

B e 1L
and

O [

Lemma 1.3.6. Let f:[a,b] >R be a twice differentiable function such that
f"(x)=>0, for all xela,b]. Then we have that the functions H,|f] and H,[f] are

nonnegative and convex.
Since the functions H,[f] and H,[f]are convex, then applying the Hermite-

Hadamard inequality, we obtain the following:
Theorem 1.3.7 (Minculete-Florea-Furuichi [147]). Let f : [a, b]—> R be a twice

differentiable function such that f”( )> 0, for all x e [a b] Then, we have

(1.3.5) fla)+f J'ft)dt > [Nk >

2
f<a>+f(a§ ) fo(tho

2 b-a
and
(1.3.6) f(a);f(b)—bia:!:f(t)dt > _[Hb[f](x)dx >
f(b)+f[a'2*bj

Remark 1.3.8. By adding relations (1.3.5) and (1.3.6) we deduce the following
inequality:

16
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(1.3.7) fla )2 jf (thit >

IH (1) + H, [ Joc e >

2 2
o !f(t)dt >0.

% f(a);f(b)+f[a;b)_

Theorem 1.3.9 (Minculete-Florea-Furuichi [147]). Let f : [a, b]—) R be a twice
differentiable function such that f" (x) >0, forall x e [a, b]. Then, we have
(1.3.8)

f(a);f(b) ! j . j H. [,e]x)d“( . [ .12, [ > 0
and a
(1.3.9)
f(a)+ F(b ’ 7 h
( )2 ()_biay(t)dtz(b—zaz)z!Hb[f](x)dx+ I Al =0

where s € {a,b}.

To generalize the above results, we can extend the functions
H,[f}H,[f]:[a.b] >R to the functions H,[f,g)}H,[f.g]:[a,b] >R which are

defined by:
[jgodt} et
" 1, [7¥) (jgth -t

If we take the following functions: Ha [f gl Hy [f g]:[a,b] > R defined by:

o) et [t

)= a1 [””j[jga)dtj,

then, we deduce the following:
Theorem 1.3.10 (Minculete-Florea-Furuichi [147]). Let f: [a,b]—)R be a twice

differentiable function and g : [a,b]—)RJs a differentiable function symmetric

and

about & ; O Then the following inequalities hold:
(1.3.10) ( }j (t)it < —[ (3a4+ b) + f(a 4f’bj}ig(t)dt < if(t)g(t)dt <
E(f( );f( )+f(a;bj]ig(t)& < f(a); f(b)j[g(t)dt.

17
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We also established an estimation of Féjer inequalities for different kinds of
functions. In this context, we show an alternative proof and a generalization of
Theorem 1.2.4 in [142], considering the integrability Riemann-Stieltjes.

Future directions for research related to Hammer-Bullen’s inequality will be
analyzed in the paper [Minculete-Niezgoda-Mitroi, 142].

1.4 Young type inequalities

The Young integral inequality is the source of many basic inequalities. Young
[208] proved the following:
Theorem 1.4.1. Suppose that f : [O, oo) — [O, oo) 1S an increasing continuous function

such that f(0)=0 and limf(x)=o. Then

(1.4.1) ab<Jf x)dx+J.f x)dx f a, b)

There has been much work on dlfferent proofs and generalisations of (1.4.1)
(Bullen [27] and Mitrinovi¢ et al. [155]).

It is easy to see that in relation (1.4.1), ab is a lower bound for the Young
functional Y (f;a,b).

In 1974, Merkle [138] showed that there cannot be an upper bound to Y (f;a,b)
which is independent of f. He proves the following theorem which provides a reverse
inequality.

Suppose the conditions of Theorem 1.4.1 hold. Then
(1.4.2) Y(f;a,b)< max{af(a), bf ! (b)}

Lemma 1.4.2. If f satisfies the assumptions of Theorem 1.4.1, then

(1.4.3) jfx)dx+ jf () = Y(f; . f(a).

We remark the relatlon.
(1.4.4) Y(f;a,b)+Y(f: 77 (0) f(@))=af(@)+bf ' (b).

Witkowski, in his paper [206], showed another reverse Young’s integral
inequality, thus: under the assumptions of Theorem 1.4.1, the inequality

(1.4.5) ab<Y(f;a,b)<af(a)+f ()b -fla)).
holds with equality if and only if b:f(a). In [140], Minguzzi generalizes this

inequality.

Using conveniently inequality (1.4.5), for f(b),f(a), we find the following
inequality:
(1.4.6) F@)f )< Y(f: £ () f(a) < bf " (b)+ alf(a)-b).

Combining relations (1.4.4) and (1.4.6), we obtain again inequality (1.4.5).
Again, Witkowski [206] gave another result related to Young’s integral
inequality, thus, under the assumptions of Theorem 1.4.1, the inequality

(1.4.7) ab> mm{ }j £ )dx + mm{ } [ (e

holds with equality if and only ifb=f ( )

18
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Cerone, in [33], proved that the upper bound obtained by Witkowski given in
(1.4.5) 1s always better than that of Merkle (1.4.2).
For f(x)=x"", p>1,in Theorem 1.4.8, we deduce the inequality:

p q
(1.4.8) abzmin{l,a—b}a—+min{1,a—b}b—.
a’ ) p b? | q

For f(x): x??', p>1,in Theorem 1.4.1, we deduce the Young inequality:

P q
(1.4.9) ab<® 0
p q
. 1 1
for all a,b>0 and p,g >1 with —+—=1.
P q
Minguzzi, in [140], proved a reverse Young’s inequality in the following way:
p q
(1.4.10) OSa—+b——OLbS(b—a’Hqu‘1 —a),
D q

for all a,b>0 and p,q >1 with l+l:1.
P q

u

This inequality is equivalent to the following inequality, for p=—,a=x",b=x*":
u

If a,b>0 and pe(O,l), we change p and l, a by a” and b by b'?, then
p

the Young inequality becomes:
(1.4.11) a’b'? <pa+(1-pp,
But, this is true, when a,b>0 and p e [0,1].

Especially, when we talk about Young's inequality, we will refer to the last
form.

Next, we present some refinements and some reverse inequalities of Young’s
inequality, which we have used in our research.

One of reverse inequalities for Young inequality was given by Tominaga in
[200], using the Specht ratio, in the following way

(1.4.12) pa+(1-ph< S(%)al’bl‘p,

for positive real numbers a, b and pe[O,l], where the Specht ratio [78, 93] was
defined by
1
S(h)=—"" ha,
elog !
for a positive real number A.
Note that zhilrlls(h)ﬂ and S(h) = S(1/h) > 1 for h#1,h>0. We call the

inequality (1.4.12) a ratio-type reverse inequality for Young’s inequality.
Tominaga also showed in [200] the following inequality:

(1.4.13) pa+(1-p < L(a,b)log S(%)Hx"b“’,

for positive real numbers a,b and p e [0,1], where the logarithmic mean [26] L(x,y) is
defined by
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_ x-y -
L(x,y)= log x —logy’(x #7v), L(x,x)=x.
We call the inequality (1.4.13) a difference-type reverse inequality for Young’s
inequality. Based on the scalar inequalities (1.4.12) and (1.4.13), Tominaga showed
two reverse inequalities for invertible positive operators.
In [Furuichi-Minculete, 76], we presented two inequalities which give two
different reverse inequalities for Young’s inequality, namely:

2
(1.4.14) 0<ia+(1-Ap-a*d™ <a’b"™ exp{ﬂb(1 — l)(Za -b) }— a’b'*,
m
and
2
(1.4.15) 0<da+(1-Ap-a*b” 31(1—/1){105;%} M,

where a,b>0, m=min{a,b}, M = maxia,b}, for all 1 <|0,1].

The above results are the particular cases of the following theorem from
[Furuichi-Minculete, 76]:
Theorem 1.4.3. Let f : [a, b]—)R be a twice differentiable function such that there
exist real constant M so that 0< f"< M, for x € [a, b]. Then the following inequalities
hold:
(1.1.16) 0<Af(@)+(1-2)f(0)-f(Aa+1—Ap)< MAL-A)b-a)
for all A <e0,1].

For n=2, Cartwright-Field’s inequality (see e. g. [30]) may be written as
follows:

(1.4.17) M(

b-af <ia+(-b-a'b <A gy
2M 2m

where a,b>0, m=min{a,b},M =max{a,b}, for all A€ [(),1]. This inequality is an
improvement of Young’s inequality and, at the same time, gives a reverse inequality
for Young inequality.
Remark 1.4.3. The first inequality of (1.4.17) clearly gives an improvement of the
first inequality in (1.4.15) and (1.4.16). For 0 < a, b < 1, we find the right hand side
of the second inequality of (1.4.17) gives tighter upper bound than that of (1.4.16),

—Y <x+y,forx,y>0. For a, b > 1, we find the right
logx —logy 2
hand side of the second inequality of (1.4.15) gives tighter upper bound than that of

—Y XY forx, y> 0. In addition, we find the
logx —logy 2
right hand side of the second inequality of (1.4.17) gives tighter upper bound than
that of (1.4.15) for a,b >0, from e* >1+x.

Next, we focus on two immediate particular cases of Theorem 1.3 (Minculete-
Mitroi, [145]) that help us to give improvements of the well known arithmetic-
geometric mean inequality (also known as Young’s inequality).

1) We apply relation 1.4.17 to the function f:[a,b]>R (a > 0) defined
by f(x)=—logx, which leads to

(1.4.18) exl{p(l—p)(@—b)2 j _pa+(l-ph _ exp[p(l—p)(a—b)Z],

from the inequality

(1.4.17), from the inequality

2b* afb' 2a*
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p1-p)a-b)
2b*

Since exp( ]2 1, we obtain a refinement of Young’s inequality, where

pe [0,1].

We also obtained a reverse inequality for Young’s inequality.
2) Next, we apply relation 1.4.17 to the function f: [log b,log a] — R, defined

by f (x) = exp(x), and we arrive at the following inequality:
(1.4.19) @bwg{%j <pa+(1-ph-a’b? < p(lT_p)alogZ(%J,
where 0 <b<a and p|[01].
Young’s inequality was refined by Kittaneh and Manasrah, in [116], thus
(1.4.20) pa+(1—p)b2apb1_p +r(\/5—\/5)2,
where p e [0,1] and r= min{p,l — p}. They use this inequality for the study of matrix

norm inequalities.
In [78], Furuichi improves inequality (1.4.11) thus

(1.4.21) pa_;_(l_p)bzs[[%erapbl—p,

where p e [0,1] and r = min{p,l — p} and the function S was given above.

Kober proved in [119] a general result related to an improvement of the
inequality between arithmetic and geometric means, which for n = 2 implies the
inequality:
(1.4.22) a’b'? + r(\/a - \/5)2 <pa+(1-ph<a”b ™ +(1- r)(\/a - \/3)2 ;
where pe[0,1] and r=min{p,1-p}. This inequality was rediscovered by Kittaneh
and Manasrah, in [116].

A generalization of inequality (1.4.11) can be found in a paper of Aldaz [11].

In [Minculete, 151], we present other improvement of Young’s inequality and
a reverse inequality as follows

2r 2(1-r)
+b a+b
(1.4.23) a’b'? (a_j <pa+(1-ph<a’? (—j :
2-\/ab ( )b 2-/ab

for the positive real numbers a, b and p e [0,1] and r= min{p,l — p}.
This inequality can be presented with Kantorovich constant:
(1.4.24) K" (h,2)a”b? < pa+(1-ph < K7 (h2)a"b'?,
2
where a, b>0, p€[0,1], r=min{p,1-p}, K(h2)= %and h = b . Notice that the
a

first inequality in (1.4.24) was obtained by Zou et al. in [211] while the second was
obtained by Liao et al. [124].

Finally, we gave, in [Minculete, 152], another improvement of Young’s
inequality and a reverse inequality, given as:
(1.4.25)

r(Va b + A(p)logz(%j <pa+(1-ph-a'b <(1-r\a-bf + B(p)log{%j,

where a,b>1, pe (0,1), r= min{p,l —p},
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A(p)=PL=P) T ang pip)-RUop) 1o

Remark 1.4.4. a). Since A(p):p(lT_p)—£20 and B(p):p(12—p)_1;r <0, we

obtain a refinement of the Kittaneh-Manasrah inequality and a refinement of
Young’s inequality.

b) Inequalities (1.4.18) and (1.4.19) give two improvements of Young’s inequality.

¢) Inequality (1.4.19) can be found in [Minculete-Mitroi, 145] and in many other
paper of Dragomir (see e. g. [53]).

d) For p—>1-p in (1.4.19) we obtain

(1.4.26) p(2 )blg(bj (1-pla+ pb-a'”b? < (12 P) 1o [bj

where O<b<a and pe [0,1]. By the sum of relations (1.4.19) and (1.4.25), we deduce

_ pl1-p 1-ppp _
(1.4.27) Mblog%%) < a;b _a’ '2“1 o" p(12 p)alogz[%).
The Heinz mean [83] is defined as
(a b)_ apbl”’ +a1”’bp
e 2
where 0 <a,b and p €[0,1]. It is easy to see that

Jab <H,(ab)< a;b.

But, using relation (1.4.27), we have

_ pLl-p 1-ppp _
p(l p)blog2 a £a+b_a b"+a’"b Sp(l p)al0g2 a ,
2 b 2 2 2 b

M

so, we deduce
pll pll-p a
(2 )blog (bj<A(a b)- Hp(a,b)g%alogz(gj.

From inequality (1.4.25), we deduce another inequality for the Heinz mean, thus:
(1.4.28)

r(\/a —\/5)2 + A(p)logZL%j < A(a,b)-H,(a,b)<(1 —r)(\/a —\/5)2 +B(p)log2(%j,
where a,b>1, pe (O 1), r= min{p,l—p},

Ap)=PLP) T 4 p) ana B(p)=PLP) 1T )
Next, we make a little synthesis of some recent results about Young’s
inequality.
In the recent paper [209], Zhao and Wu provided two refining terms of
Young’s inequality, thus:
Let a,b>0 and pel0,1].

@If pe {o,ﬂ, then
(1.4.40) (- pla+ pb=ab? + pa—b) +r,(a-abf,
Gi) If p e B@ then
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(1.4.41) (1-pla+pb>a'?b” +(1—p)(\/5—\/5)2 +1, (\/E—%)z,

where r =min{p,1-p} and r, = min{2r,1 —2r}.

In the same paper, we find the reverse versions of above inequalities:
Let a,b>0 and pe[0,1].

@OIf pe {o,ﬂ, then

(1.4.42) (1-pla+pb<a' b +(1—p)(JE—JE)2 —ro(\/B—‘%/%)z,
(i) If pe B@ then

(1.4.43) (1-pla+pb<a'?b” +p(\/5—\/5)2 —7"0(\/5—%)2,

where r = min{p,l - p} and r, = min{2r,1 — 2r}.
Quite recently, in [194], Sababheh and Moslehian gave a full description of all

other refinements of the reverse Young’s inequality, thus:

Let a,b>0 and pe[0,1].

W) If pe {0, é}, then

(1.4.44) (1-pla+pb<ab? +(1 —p)(\/E —\/5)2 -8, (2p, \/%,b),
Gi) If p e E ,1}, then

(1.4.45) (1-pla+pb<a' "+ plVa b -8, (20 - p)ab,a),

where [x] is the greatest integer less than or equal to x and

Sn (p: a, b) = isk (p(%e/bzkljk (p)ajk (e) - zi/byﬂijk (p)ilajk ()1 j ’ jk (p) = [2k_1 pJ’
k=1

r(p)=12" . 5,(p)=(-1)""2" p+(—1)r’e(p}*{—rk(pz)+1} :

Furuichi, Ghaemi and Gharakhanlu gave in [83] a reverse Young’s inequality

for

pe R, namely: Let a,b>0 , ne Nsuch that n>2 and %;ﬁpe R. Then,

n—1
Q) If pe{%? 2n+1}, then

(1.4.46) (1-pla+pb<a'?b? +(1—p)(JE—JZ)2 +(2p—1)@i2k_2[2§/g_1j ,

n-1
2 1 ,l} , then
2n

(i)pr&{ 2

(1.4.47) (1-pa+pb<a'?b? +p(\/a—\/5)2 +(1—2p)\/%zn:2“[2'{/%‘1] '
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1.5 Griiss-type inequalities in discrete form and in integral
form

In this section we prove an inequality which will helps us find a new refinement of
the discrete version of Griiss inequality. We have also continued the research in this
field and we show some inequalities that have been obtained ([Minculete-Ratiu-
Pecari¢,143], [Minculete-Ciurdariu, 149]).

The discrete version of Griiss inequality [32, 110, 113] has the following form:

;;xl'yi _;;xi ;;yi < Z(Fl -7 )(f‘2 _7/2)’

where x,,y, are real numbers so that 7, <x, <Tyand y, <y, <T, forall i=1,n.

In 1935, Griiss (see [98]) proved the following integral inequality which gives
an approximation for the integral of a product of two functions in terms of the
product of integrals of the two functions:

Let f and g be two bounded functions defined on [a,b] with y, < f(x)srl and

7, < 8lx)<T,, where y,,7,,T,,T,are four constants. Then, we have:

ﬁf fla)e () —ﬁf flekic - [alokin

b—a Si(n_%)(rz_?/z)
and the inequality is sharp, in the sense that the constant 1/4 can’t be replaced by a
smaller one.

After the number of papers published there can be noticed a great interest for
this inequality. It is well known that an important resource for studying
inequalities is [4, 155, 193]. In [181], Peng and Miao established a form of
inequality of Gruss type for functions whose first and second derivatives are
absolutely continuous and the third derivative is bound. Also, in [59], Dragomir
presented several integral inequalities of Gruss type, and in [60], he showed some
Gruss type inequalities in inner product spaces and applications for the integral.
Another improvement of Gruss inequality was obtained by Mercer in [136].
Moreover, in [125], a Gruss type inequality was used in order to obtain some sharp
Ostrowski-Gruss type inequalities by Liu.

Kechriniotis and Delibasis showed in [113] several refinements of Gruss
inequality in inner product spaces using Kurepa’s results for Gramians. New
generalizations of the inequality of Gruss were presented in [47] using Riemann-
Liouville fractional integrals. Cerone and Dragomir studied in [32] some
refinements of Gruss’ inequality.

As applicable, we obtain some properties of bounds of the variance, the
standard deviation, the coefficient of variation and of the covariance related to
several statistical indicators for discrete random variables in finite case
([Minculete-Ratiu-Pecarié¢,143], [Minculete-Ciurdariu, 149]).
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1.5.1 A refinement of Griiss’s inequality via Cauchy-Schwarz’s
inequality for discrete random variables in finite case

X.
The wvariance of a random variable X :[ LJ with  probabilities
Pi)icicn

1 . .
P(X = xi)= p;, =— for any i =1,n 1s its second central moment, the expected value
n

of the squared deviation from mean u, = E[X]= lle :
n =1

Var(X) = B[X - i P ]= =3 - a0y

i=1
The expression for the variance can be thus expanded:
Var(X) = E|[X? |- E*[X].

We note by RV the set of random variables X = [xlj with probabilities
pi 1<i<n

P(X =x,)=p, _1 for any i =1,n.
n

The covariance is a measure of how much two random variables change

together at the same time and is defined as
Cou(X,Y)= E[(X - E[X]Y - E[Y])],
and is equivalent to the form
Cou(X,Y)= E[XY]- E[X]E[Y].

Using the inequality of Cauchy-Schwarz for discrete random variables we

find the inequality given by
|COU(X , Yf < Var(X)Var(Y)

or in the form

ICou(X,Y) < JVar(XVar(Y).
Next, we show a refinement of this inequality.
Lemma 1.5.1. If X and Y are discrete random variables in finite case, then there is
the following equality
(1.5.1) Var(aX +bY)=a*Var(X)+b*Var(Y ) +2abCou(X,Y),
where a and b are real numbers.
Corollary 1.5.2. If X and Y are discrete random variables in finite case, then there
are the following equalities:

(1.5.2) Var(X+Y)=Var(X)+Var(Y)+2Cou(X,Y)
and
(1.5.3) Var(X-Y)=Var(X)+Var(Y)—-2Cou(X,Y).

Remark 1.5.3. From relations (1.5.1) and (1.5.2), we find the parallelogram law in
terms of variance, namely:

(1.5.4) Var(X+Y)+Var(X-Y)=2Var(X)+2Var(Y).

Lemma 1.5.4. If X, Y, Z and T are discrete random variables in finite case, then
there is the following equality

(1.5.5)

Cov(aX +bY,cZ +dT)=acCov(X,Z)+adCouv(X,T)+bcCou(Y,Z)+bdCou(Y,T)
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where a, b, c and d are real numbers.
Theorem 1.5.5 (Minculete-Ratiu-Pecaric,[143]). If X, Y and Z are discrete random
variables in finite case, with X # kZ , then we have the inequality

2
[Cov(X,Y )Cou(X,Z)- Cov(Y,Z)V(;tr(X)] < Var(X)Var(Y) — [CouX, V)]
Var(X War(Z)-[Cou(X, Z)|
Proof. For the discrete random variables X, Y and Z given in finite case, with

(1.5.6) 0<

Var(X)#0, we take the following random variable:
w = CMX )+ 2C0UXZ) w57 We caleulate the variance of random
Var(X)
variable W, thus: Var(W)=Var MX— Y|-4 MX—Z and
Var(X) Var(X)
applying relation (1.5.1), we have
Var(W)=Var CoulX.Y) y 3, gy CUXZ) 3 /)
Var(X) Var(X)
—91Cou Cou(X,Y) y, Cov(X,Z)X_Z _
Var(X) Var(X)
2 2
= Var(Y) - —[COU(X’ Y)] + A2 Var(Z ) - —[COU(X’ Z)] -
Var(X) Var(X)
_91Cou MX_ ,MX—Z _
Var(X) Var(X)

Using Lemma 1.5.4, we deduce the following inequality
cm{ Cou(X,Y) X_v, Cou(X,Z) X Zj _ CouX,Y)Cou(X,Z) Cou(X.X) -

Var(X) Var(X) Var(X)Var(X)
_ Cov(X,Y)Cou(X,Z) Cou(X,Z)Cou(X,Y) 4 Cou(Y.Z)
Var(X) Var(X) e
_ Cou(Y.Z) - Cou(X,Y)Cou(X,Z)
Var(X)

Returning to calculate the variance for random variable W, we have

Var(W) = Var(Y)- % npE [Var(Z)— %j _

Cou(X,Y)Cou(X,Z)
Var(X ) ]

- Zl(Cov(Y, Z)—

Therefore, we deduce the equality
Var(X)Var(W) = Var(X)Var(Y)-[Cou(X,Y)] + 22 (Var(X)Var(Z)— [Cov(X, Z)[ )—
—2A(Var(X)Cou(Y,Z) - Cou(X,Y)Cou(X,Z))
Since Var(X)Var(W)> 0, it follows that
22 (Var(X)Var(z) - [Cou(X, 2)F )- 24(Var( X )Cou(Y, Z) - Cov(X, Y )Cou( X, Z)) +
+Var(X)Var(Y)-[Cou(X,Y) 20
for every i e R.
This implies that
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(L5.7) (Var( X )Var(z)-[Cov(X, Z) Var(X )Var(¥) - [Cov(X, Y )

> (Var(X)Cou(Y,Z) - Cou(X,Y )Cov(X,Z))
Taking into account that Var(X)Var(Z)-[CouX,Z)] #0, because X #kZ and
dividing by Var(X)Var(Z)-[Cou(X,Z)[’, we obtain the inequality of the statement.
O

Remark 1.5.6. Let X, Y and Z be discrete random variables in finite case, with
Var(Y)#0 and Var(Z)#0, if we take the following random variable:

W=X- C?/L)((;)/)Y — AZ, then we have the inequality
ar
2
(1.5.8) 0< [CoulX, Y)CoulY, Z)~ CoulX, ZVar(Y)]" _ Var(X Var(Y)-|Cou(X,Y ).

Var(Y Var(Z)
Let x,,x,,..., x, be real numbers, assume y, <x, <I forall i = 1,n and the

1 n
average [y = —in .
n

i=1

In 1935, Popoviciu (see e.g. [20, 84]) proved the following inequality

(1.5.9) v@r(x):%i(xi Sy ) < i(rl )

The discrete version of Griiss inequality has the following form:
1< 1 1 1
(1.5.10) —inyi ——in —Zyi S—(I“1 —;/1)(1“2 —;/2),
n55 niE nig 4

where x;,y, are real numbers so that y, <x;, <T, and y, <y, <T, forall i = Ln.
. 1 ISR 4

F the relation Cou(X,Y)=E|XY |- E|X|E|Y |[=— Y, —— = ,

rom the relation Cou(X,Y)= E[XY |- E[X]E[Y] ni_zlxlyl ni_zlxl nizlyl

and using the inequality of Cauchy-Schwarz for discrete random variables given by
|COU(X , Y] < JVar(XVar(Y), we obtain a proof for Griiss’s inequality.
Bhatia and Davis show in [20] that the following inequality
1 n
(1.5.11) Var(X):;Z(xi — gy ) < (T, = pay Ny — 7).

i=1

The inequality of Bhatia and Davis represents an improvement of Popoviciu’s
inequality, because (I}, -y, ) > 4(T, — uy ux — 7, ). Therefore, we will first have an

improvement of Griiss’s inequality given by the following relation:
(1.5.12)

1< 1<¢- 1 1
_inyi__zxi_zyi S\/(Fl_:uXX:uX_7/1XF2_IUYX/JY_72)£_(F1_71)(F2_72)'
no=5 L= (=) 4

If X, Y and Z are discrete random variables in finite case, with X # kZ, then
we have from inequality (1.5.8) the following relation:

[Cov(X,Y)Couv(X,Z)- Cou(Y, Z WVar(X)[
Var(X Var(Z)-[Cou(X, Z)}

Let x,,%5,.0, X, 5 Y1s¥9sees Yy 5 Z1529s52,, be real numbers, assume

(1.5.13)  [Cou(X,Y)} + <Var(XWVar(Y) .

x; # kz,for all i = 1,n and for any real number k. Then applying inequality (1.5.13)
we deduce a second refinement of Griiss’s inequality given by
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(1.5.14)
1L 1 1 | 1¢ , (1 Y[1e, (1 Y
{;;xiyi_;;xi;;yi} +8< ;;xz _(;;%J ;;yi _(;;yij s
where S :M with
18 13 13 18 1 13
Z(;;xiyi _;;xi ;;yzj(;;xlzl _;;xi ;;zij’
2
z(lzyizi__zyz ZZ J[ Z ?[llejJ
n5s i=1 noa
and

s g [ 8 et imas)

n ns3 ns3

Remark 1.5.7. In [113], Kechriniotis and Delibasis demonstrated other refinements
of the discrete version of Griiss inequality.

Corollary 1.5.8 (Minculete-Ratiu-Pecarié,[143]). If X and Y are discrete random
variables in finite case, then there is the following inequality

(1.5.15) JVar(X+Y) < JVar(X) +/Var(Y)
Remark 1.5.9. This inequality in terms of sums becomes

L S RS R YR

i=1 i=1 i=1

Dividing by ,/[— and making the following substitutions: x, —uy =a;, and
n

y; — ly =b,, we obtain the inequality
Jz 0, +6,) \/Za +sz2
i=1

which is in fact the Minkowski inequality, in the case Zai =0 and Zbi =0.

i=1 i=1

Corollary 1.5.10. If X and Y are discrete random variables in finite case, then there
is the following inequality .
(1.5.16) JVar(X-Y) > NVar(X) —Var(Y))|

Proof. From relation (1.5.3), we have
Var(X-Y)=Var(X)+Var(Y)—-2Couv(X,Y)

= (\/Var(X) —JVar(Y) )2 + Z(JVar(X)Var(Y) —Cou( X, Y))
Applying the inequality of Cauchy-Schwarz for discrete random Varia]f;les, we obtain
Var(X - )2 ([Var(X) - {Var(Y)f
which implies the inequality of the statement.

o
In [126, 127], the Lukaszyk—-Karmowski metric is a function defining a
distance between two random variables or two random vectors. In case the random
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variables X and Y are characterized by discrete probability distribution, the
Lukaszyk—Karmowski metric D is defined as:

D(X,Y)= ZZ

Next, we will give another metric for the set RV. We can look the set RV as a
vector space. The natural way is by introducing and using the standard inner

product on RV. The inner product of any two random variables X and Y is defined
by

X; _yj‘P(X:xi)P(Y:yi)‘

(X,Y)=Cou(X,Y).

The inner product of X with itself is always non-negative. This product allows
us to define the "length" of a random variable X through square root:

|X] = (X, X) = JCou(X, X) = \[Var(X).

This length function satisfies the required properties of a seminorm and is
called the Euclidean seminorm on RV. A seminorm allowed assigning zero length to
some non-zero vectors. The set RV with this seminorm is called seminormed vector
space. Finally, one can use the norm to define a metric on RV by

d(X,Y)=|X-Y|=Var(X-Y).

This distance function is called the Fuclidean metric on RV. Consequently,
the set of random variables RV form a Hilbert space, and a seminormed vector
space.

Some of the previous results were mentioned in the paper [133], where
Masjed-Jameil and Omey explore the properties of the covariance leading to new
classes of inequalities including the Ostrowski and Ostrowski-Griiss inequalities.

1.5.2 About the bounds of several statistical indicators

Statistical indicators play a very important role in the characterization of the
various processes: economic, social and technological. In statistics, by the general
notion of scattering (variance or dispersion) we refer to the individual values of
measurable deviations from the central value.

Next, we will obtain some properties of bounds of the variance, the standard
deviation, the coefficient of variation and of the covariance related to several
statistical indicators for discrete random variables in finite case. The results are
developments of the research presented in (Minculete-Ratiu-Pecéarié¢,[143]).

The weighted arithmetic mean (mean value) of a random variable

X - n
X =[ J with probabilities P(X =x,)=p, for any i=1n and ) p, =1 is given
p 1<i<n

; i=1

by X = E[X]=Zn:pixi .
i=1
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x.
The variance of a random variable X :( ’j with probabilities
p 1<i<n

i

P(X=x,)=p, for any i=1,n and Zpi =1 1is its second central moment, the

i=1

expected value of the squared deviation from mean X:
ot = Var(x)- B| (X - X[ |- S pil, - XF
i=1

Standard deviation (o) has a similar role with average linear deviation, but

keeping the dispersion characteristics; statistics used this indicator which 1is
calculated as mean of individual deviations squared from their central tendency,

and the interval ()_(—J}, )_(—0'}—() 1s the medium interval of variation, where we

have o = Var(X). Coefficient of variation (Cv(X)) i1s a relative measure of

scattering, which describes the ratio between the standard deviation and the
arithmetic mean, and is given by the formula:

Oy JVar(X)
Cy(X)===
E[X]

Two variables have a strong statistical relationship with one another if they
appear to move together. According to [69], correlation is a measure of a linear
relationship between two variables, X and Y, and is measured by the correlation
coefficient, given by:

Cou(X,Y)

pIXY)= JVar(XWVar(Y)-

It is easy to see that —1< p(X,Y)<1.
There is the following inequality:

(1.5.2.1) pl(x1 —X)2 +p2<x2 —X)2 + ... +pn(xn —)_()2 < i(M—m){

: 1 ...
where M = max{xl,xg,..., xn} and m = mm{xl,xz,..., xn} For p, =— withi=1,n
n

and Z p; =1, we deduce Popoviciu’s inequality:
i=1
1 = = —pl_ 1
;[(xl —X)2 + (x2 —X)2 +..+ (xn —X)Z} < Z(M—m)z.
This inequality suggests an uper bound for indicators for the variance, the
standard deviation, the coefficient of variation and of the covariance, thus:

o < i(M—m)Z,O'X < %(M—m),CV(X)s M —m

2X

and

(1.5.2.2) [Cou(X,Y) Si(M—m)(Q—Q),

where @ = max{yl,yz,..., yn}, and q = min{yl,yz,..., yn}.
The discrete version of Griiss inequality in the weighted form has the
following form:
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< M mfQ-q),

Zn:p X.y; - Zp,xlzpyl
i=1

where x,,y, are real numbers so that m<x, < Mand q<y, <@ forall i = Ln.

The integral variant of inequality of Griss [98], besides applications in
mathematical analysis, has some statistical and actuarial applications. We known
that, the discrete version of Griiss inequality has the following form:

Zx i ——Zx —Zyz

< M m)@Q-q),

where x,,y; are real numbers so that m<x;, <Mand ¢g<y, <@ forall i = Ln.

There are many articles which treated this inequality in integral variant (see
e.g. [4], [09], [60], [110], [136]). We will focus attention on the discrete version of
Gruss inequality, being motivaded by usefulness of this inequality, we study the
inequality of Griiss in the context of elements of statistics, using the concepts of
variance and covariance for the random variables.

Bhatia and Davis show in [20], for p, = l, with i =1,n, that:
n

ot <(M-X)T-m).

But, the inequality of Bhatia and Davis remains valid for anyp, with

Z p;,=1.
i=1
Thus, we deduce upper bounds better than in relation (1.5.2.2), thus:

o2 <(M-X)X-m) oy <M -X|X-m) cV(X)S\/(M—?_;(X?_f—m)

X

and
(1.5.2.3) Coo(X,Y) < (M -X|X-m)|@-Y|Y -q).

It has been shown [136] by A. McD. Mercer that for a discrete random
variables in finite case, we have:

(1.5.2.4) o <2M(X -X»),
where X_h :nL is the harmonic mean for discrete random variables in finite
case.

From [Minculete, 144] by replacement with the correlation coefficient in
inequality (1.5.5), we deduce the inequality:
[ - (X V)] - p*(X,2)]2 (oY, 2)- p(X, Y)p(X, Z))"
Next, we will present several improvements of the above inequalities related
to variance.
Proposition 1.5.2.1. For a discrete random variable in finite case X there is the
following inequality

(1.5.2.5) omlX - X, )< 0% <2M(X -X,),

2
5%
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where the geometric mean ()_(g) is that value which shows that if we replace each
individual value, their product would not change and we have the formula:

J— n
— AP D Py ; —
Xeg=x x> xl with E p; =1.
i=1

Proof. In the paper [30], Cartwright and Field proved the following inequality:
2 2
Zpi [xi _ZpixiJ < Zpixi - I |xzp < _Zpi(xi _Zpixij ’
2M 43 i1 i1 i=1 2m 3 i-1

where p, >0,(V)i =1,n and Zpi =1. But

i=1

2 2
Zpi(xi _ZpixiJ :Zpixiz _[Zpixij :U)% ,
i1 i-1 1 i-1

i=

which 1implies to the inequality of the statement.

Remark 1.5.2.2. a) For p. = l,(V)i = I,_n, in this inequality, we obtain
n

1l X ey X el X 5 5

2M n
< 1 (x1 —)_()2 +(x2 —)_()2 +... +(xn —)_()2
- 2m n ’
where X, =00%, Xy e X, .

b) It is easy to see that inequality (1.5.2.5) is a refinement of inequality (1.5.2.4),
because the geometric mean is higher than the harmonic mean. Inequality (1.5.2.5)
provides another bound for the variance, but it is very difficult to compare the terms
ZM()_( —}_(g) and (M - )_(X}_(— m) to see which 1s better.

Combining the above inequalities and taking into account inequality (1.5.2.5),
we found other bounds for the standard deviation, the coefficient of variation and of
the covariance, thus:

(1.5.2.6) 2m(X X, ) <o, <\2M(X-X.),
Jem(X - X, ) Jem(x -X,)
(1.5.2.7) m <, (X)< = :

X

and
(1.5.2.8) Cov(X,Y) <2/ MQIX X, |Y-Y.).

Now, we want to find an upper bound, better than the Bhatia and Davis, for
the above indicators.

Theorem 1.5.2.3. For a discrete random variable in finite case X there is the
following inequality

(1.5.2.9) (M—)?X)?—m)— o2 = ipi(M—xi)(xi —m).

i=1

Proof. We evaluate the sum Z p;(M —x, \x, —m) and we deduce the following:

i=1

32



Habilitation thesis Nicusor Minculete

n

S (M= Y, —m) = (M +m)> pc, =S pt — Mim,
=1

i1 i-1
so we have

ipi(M—xi)(xi— ) M+m pr —Mm=(M+m))_(—o-)3(—)_(2_Mm,
which i1s equivalent to the equality

ipi(M_xiXxi —m) = (M—}_(X}_(—m)—o%.

=1

O

1.5.3 A generalized form of Griiss type inequality and other
integral inequalities

In 1935, Griiss (see [98]) proved the following integral inequality:
Let f and g be two bounded functions defined on [a,b] with y, Sf(x)SFl and

7, < 8lx)<T,, where y,,7,,T,,T,are four constants. Then, we have:

(1.5.3.1) —jf x)dQC——J‘f x)dx aj‘g(x)dx Si(m _yl)(r2 _72)

and the inequallty is sharp, in the sense that the constant 1/4 can’t be replaced by a
smaller one.

In the following research, on refining the Griiss inequality, we used the same
work methods as the ones used in the discrete version. The following results were
extracted from our paper [Minculete-Ciurdariu, 149].

Florea and Niculescu in [70] treated the problem of estimating the deviation
of the values of a function from its mean value.

The estimation of the deviation of a function from its mean value is
characterized in terms of random variables.

We denote by R([a, b]) the space of Riemann-integrable functions on the interval
[a, b], and by CO([a, b]) the space of real-valued continuous functions on the interval
[a, b].

The integral arithmetic mean for a Riemann-integrable function f :[a,b] >R is

the number

M7= ek

b
If f and h are two integrable funtions on [a,b] and Ih(x)dx>0, then a

generalization for the integral arithmetic mean is the number

If (o )l
j (x)s

called the h-integral arithmetic mean for a Rlemann-integrable function f.

M, [f]=
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We find the following property of the h-integral arithmetic mean for a

Riemann-integrable function f :
Mh[fik]: Mh[f]ik

where k 1s a real constant.
If the function fis a Riemann-integrable function, we denote by

var(f)= Mll(f_Ml(f))QJ

the variance of f .
The expression for the variance of f can be expanded in this way:

var(f)=ﬁj(f(x)—ﬁif(t)dt] dx.

In the same way, we defined the A-variance of a Riemann-integrable function
f by
2
var, () = M, |(F - M, () |

The expression for the h-variance can be thus expanded:

Lo j Fe)n(e)dt
var, ()= ——— [| flx)- h{zx)dx .
J.h(x)dx “ Ih (t)dt
It is easy to see another form of the h-varlance, given by the following:
var, (f) = M,|f* |- M;[f]

and we have
var, (f £ k) =var, (f),

where k is a constant.
In [9], Aldaz showed a refinement of the AM-GM inequality and used in the

proof that

1_i F72 (e
=)

is a measure of the dispersion of f'/* about its mean value, which is, in fact,

comparable to the variance,

[Hffll//;( ﬁ ] where |f(x )|, = jf2(x)dx .

The covariance is a measure of how much two Riemann-integrable functions
change together at the same time and is defined as

cov(f,g)z M, [(f—M1 [f])(g—M1 [g])],

and is equivalent to the form

coulf &)= 34, el 34, [, [g] -~ [ ke ——— [ el

biaig@hh.
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In fact, the covariance is the Chebyshev functional attached to functions f and
g. In [113] it is written as T(f, g). The properties of the Chebyshev functional have
been studied by Elezovi¢, Maranguni¢ and Pecari¢ in their paper, [66]. For other
generalizations of Griiss inequality, see [156, 175].

The h-covariance is a measure of how much two random variables change
together and is defined as

cov, (f,8)= M, [(f - M, [f g - M, [£])].

and is equivalent to the form
b

[ Fle el [ Flenlekie [ gl
COUh(f’g):Mh[fg]_Mh[f]Mh[g]:a 5 E— — .

In [174], Pecari¢ used the generalization of the Chebyshev functional notion
attached to functions f and g to the Chebyshev A-functional attached to functions f
and g defined by T(f, g;h). Here, Pecari¢ showed some generalizations of the

inequality of Griiss by the Chebyshev A-functional. It is easy to see that, in terms of
the covariance, this can be written as T(f,g; k)= cov, (f,g).

In terms of covariance, the inequality of Gruss becomes
(1.5.3.2) lcou(f, g ) gi(r1 7T, =7,)
And, in terms of Chebyshev functional, the inequality of Gruss becomes
7(7.8) =5 (0 - M0 - 7).

If there is additional information about the mean values of the two functions
in the inequality of Griiss then Zitikis argued in his paper, [210], that the inequality
can be sharpened and he also gave a probabilistic interpretation for it.

Lemma 1.5.3.1 ([Minculete-Ciurdariu, 149]). Let f be a Riemann-integrable function
defined on [a,b] with y, < f(x)<T,, where ,,T,are two constants. Then we have:

(1.5.3.3) uarh(f)Si(Fl -7 ),

b
where h :[a,b]—[0,:) is a Riemann- integrable function with Ih(x)dx >0.
Lemma 1.5.3.2 ([Minculete-Ciurdariu, 149]). Let f be a Riemann-integrable function
defined on [a,b] with y, < f(x)<T,, where y,T,are two constants and a Riemann-
b

integrable function h:[a,b]—[0,00) with h(x)dx >0. Then we have the following

a

relations:

T £ 00nGoax | 6o
j.h(x)dx j.h(x)dx

We can prove an inequality for integrable functions similar to the inequality
of Cauchy-Schwarz for random variables given by the following.

(1.5.3.4) var, (f)<| T, -

=71 |-
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Theorem 1.5.3.3 ([Minculete-Ciurdariu, 149]). If f, g, h e R([a, b]), then we have the
inequality
(1.5.3.5) |covh (f,g]2 <var, (f)varh (g)

Proposition 1.5.3.4 ([Minculete-Ciurdariu, 149]). Let f and g be two Riemann-
integrable functions defined on [a,b] with y, < f(X)S I and y, < g(x)SFQ, where
V1,72,11, 1, are four constants and we have a Riemann-integrable function

b
h:[a,b]—>[0,:0) with J.h(x)dx > 0. Then we have

(1.5.3.6) |Covh(f:g) =|GT(f:g] < \/(rl _Mh[f])(Mh[f]_71XF2 _Mh[g])(Mh[g]_72)

1
SZ(rl _7/1)(r2 _72)'
Theorem 1.5.3.5 ([Minculete-Ciurdariu, 149)). If f, g, ¢ € R([a,b]), with f # kg and
var, (f);t 0, then we have the inequality

_ leov, (£, g)cov, (f,q) - cov, (g.q)van, (F)F _ (o v 1 3
(1.5.3.7) 0< var. (o (@)—loov, . <wvar, (f)var, (g)- [cov, (f,8)[.

Lemma 1.5.3.6 ([Minculete-Ciurdariu, 149]). Let f and g be two Riemann-integrable
functions defined on [a,b]. Then we have

(1.5.3.8) M:lfe]< M, |r2 M, |72

Applying the inequality between the arithmetic mean and the geometric
mean and Lemma 1.5.3.6, we deduce the following relation:
Theorem 1.5.3.7 ([Minculete-Ciurdariu, 149]). Let f and g be two Riemann-
integrable functions defined on [a,b]. Then we have

(1.5.3.9) 0 <wvar, (f)varh (g)— [covh (f,g)] <M, [f2 ]Z\/[h [fQ]—M}f [fgl

Next, we show a refinement of Griiss’ inequality for normalized isotonic
linear functional. There are many directions in which the inequality of Gruss [98]
has been generalized. Using the notion of normalized isotonic linear functional
which appears in the paper [52], we will give a generalization of the inequality of
Gruss which is related to a theorem of Andrica and Badea, [13].

Let E be a nonempty set, L a linear class of real-valued functions and
g : E— R having the properties:

(L1)f,g € Limply (af + fg) € Lforalla,f € R,
L2)1 e L,ieif f, ®)=1,(V)t € E, then f, € L.

An isotonic linear functional (in [13] 1s called positive definite functional) A :

L— R 1is a functional satisfying:

(A1) A(af + Bg) = aA(f) + BA(g), for all f,g e Land a,f € R.

(A2) If f € L and f> 0, then A(f) > 0.

(A3) The mapping A is said to be normalized if A(1) = 1.

Theorem 1.5.3.7 ([Minculete-Ciurdariu, 149]). Let f €L be such that f 2 € L and
assume that there exist real numbers y, and T, so that y, <f <I, . Then for any

normalized isotonic linear functional A : L— R one has the inequality

(1.5.3.10) A(f?)-[A(FF < (@, - A(FXA(F)-,))
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From the inequality of Cauchy-Schwarz for a normalized isotonic linear
functional [52], we have for f, g, f2, g2 € L wheref, g:E —R and A: L—>R is any
normalized isotonic linear functional:

(1.5.3.11) [A(fe)] < Alr?)A(e?)

Related to a counterpart of the Cauchy-Schwarz inequality, we have the following:
Theorem 1.5.3.8. Let f , g, fg € L such that f 2, g2 € L and y, < f(X)SF1 and

7, < g(x)<T,, where y,,y,,I,,T, are given real numbers. Then for any normalized
linear isotonic functional A : L— R one has the inequality

(1.5.312)  Alfg)- Af)A(g) < (I - A(FNA(F)- 1 XT; - Alg NAlg)- 7).

Finally, we find several applications. Taking into account the integral
arithmetic mean and h-integral arithmetic mean for a Riemann-integrable function
f: [a, b]—> R we can rewrite the following inequalities:

a) In the case when p > 0 the integral form of the inequality from Theorem 2.4 (see
[17]) was given by Theorem 2.5. Under the conditions of Theorem 2.5, the inequality
becomes

m+1 Mm+1
(1.5.3.13) Ml{f . }2 1p [f]

g M| [g ]
(b) In [164], Mortici gave a new refinement of Radon’s inequality. Using the
integral form of the reverse of inequality from Theorem 2.5 (see [17]) we obtain, for

pe=1,0),m e (-1,0), m<p,and f, g: [a, b]> R, are two integrable functions on

[a, b] with g(x) > 0, (V)x € [a, b], a continuous function on [a, b], the inequality

m+1 m+1
(1.5.3.14) Ml{f }S M, [f]
g’ | M?lg]

In our paper [Ratiu-Minculete, 189], we have shown several refinements and
counterparts of Radon’s inequality. We establish that the inequality of Radon is a
particular case of Jensen’s inequality. Starting from several refinements and
counterparts of Jensen’s inequality by Dragomir and Ionescu, we obtain a
counterpart of Radon’s inequality. In this way, using a result of Simi¢, we find
another counterpart of Radon’s inequality. We obtain several applications using
Mortici’s inequality to improve Holder’s inequality and Liapunov’s inequality.

To determine the best bounds for some inequalities, we used Matlab program
for different cases.

37



Habilitation thesis Nicusor Minculete

Chapter 2

Inequalities for functionals and inequalities for
invertible positive operators

In functional analysis and in the calculus of variations, a functionalis
a function from a vector space into its underlying field of scalars. Among the most
studied functionals in the theory of inequalities we remark the Jensen functional
and Chebychev functional. Next, we study the dJensen functional under
superquadraticity conditions and the Jensen functional related to a strongly convex
function.

Related to operators, an operator means a bounded linear operator on a
complex Hilbert space H without specified. We study several properties which imply
the establishment of inequalities between different types of operators.

2.1 Inequalities for functionals

If f is a real valued function defined on an interval I, x,,x,,..,x,€l, and

Dy1sPysees D, € (0,1) such that Z p; =1, then the Jensen functional is defined by

i=1

I7..3)= 3 sl f(szJ

and the Chebychev functional is deflned by

T(f,p.x Zp (x —Zp,x,j

Under the conditions from Definition 2.1.8, we have defined the generalized
Jensen functional by

,,,,,

k n;
i (f, Diseess Phy Qs Xlyeuey Xk) 1= Z Dy, Dy, (quxl, J—f(ZinpijxijJ
i1

..... n k
Tk (f, Piye.es Pl @ X1,y X1) 1= Z Py kakZQ( —Zpgxij}(zqixiji}
o1 i-1

Juseesdi=
In [179], Pecari¢ and Beesack dlscuss about the monotonicity property of
discrete Jensen’s functional. Dragomir (see [58]) investigated boundedness of

normalized Jensen’s functional, that is functional (f, p, x) satisfying Z p;, =1. He
=1
obtained the following lower and upper bound for normalized functional:
0< mm{p‘ }J((D,q, x) < J(db,q, )< max{p’ }J(db,q, x),
q

1<i<
= i q;
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where ®: K < X — X 1s a convex function on convex subset K of linear space X,
x = (x,,%,,.., x,)e K" and p=(p,,py,... ,)> 4=(q,,95...q,) are positive real n-

tuples with Zn:pi =Zn:qi =1.

=1 =1
The Jensen’s inequality can be regarded in a more general manner, including
positive linear functionals acting on a linear class of real valued functions.

2.1.1 The Jensen functional under superquadraticity conditions
and the Jensen functional related to a strongly convex function

In this section, in the first part, we give a recipe which describes upper and lower
bounds for the Jensen functional under superquadraticity conditions. Some results
involve the Chebychev functional. We give a more general definition of these
functionals and establish analogous results. These results were shown in our paper
[Mitroi-Symeonidis-Minculete, 158].

For the reader’s convenience, let us briefly state known facts regarding the
principal tools, superquadraticity and the Jensen functional. See Abramovich and
Dragomir [1] for details and proofs.

Definition 2.1.1.1 ([2]). A function f defined on an interval I=[O,a] or [O,oo), IS
superquadratic if for each x in I there exists a real number C(x) such that

(2.1.1.1) f(@)-£(x)= fy - )+ Clae Xy —x)

forally €1

We say that f is a subquadratic function if —f is superquadratic. The set of
superquadratic functions is closed under addition and positive scalar multiplication.

Example ([3]). The function f(x)=xp, p > 2 1s superquadratic with

C(x)=f'(x)= px?™. Similarly, g(x)= —(1 +x/P )p , p >0 is superquadratic with

C(x) = 0. Also h(x) = x2 log x with C(x) = h'(x) = x(2 log x + 1) is a superquadratic
function (but not monotone and not convex). Some elementary functions are not
superquadratic, such as f (x) = x and f (x) = exp x.

Lemma 2.1.1.2 ([2]). Let f be a superquadratic function with C(x) defined as above.
(1) Then f(0) < 0.

(11) If f(0) = f(0) = 0, then C(x) = f(x), whenever f is differentiable at x > 0.

(1) If f> 0, then [ is convex and f(0) = f(0) =

Definition 2.1.1.3 ([1]). Let f be a real valued function defined on an interval I, let

X,,%y,....,%, €I, andlet p,,p,,..., p, € (0,1) be such that Zpi =1. The
=1
Jensen functional is defined by

(2.1.1.3) J(f,p,x pr f(zn:pixij

and the Chebychev functional is defmed by

(2.1.1.4) T(f,p,x Zp (x —Zp J
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Proposition 2.1.1.4 ([1]). Let x, 20, i=1,n, and p, >0, i=1,n, with Zpi =1.Iff

i=1
n
X; —ijxj .
j=1

Theorem 2.1.1.5 ([Mitroi-Symeonidis-Minculete, 158]). Let f be a superquadratic
function defined on an interval I =[0,a] or [0,), x,,.., x, € I and p,,..., p, €(0,1)
i=1

(2.1.1.6) ipif((l _ﬁ')ipixi + ﬂxl} _f(ipixiJ 2 ipif[ixi - ipixi J

Proof. Let f be a superquadratic function with C(x) defined as above and a real
number A € [0,1]. Then replacing y by (1-A)x + Ay, where 1 €[0,1], we deduce the

inequality

(2.1.1.7) F@=A)e+ Ay)—flx)> f(l|y—x|)+ AC(xc Ny —x).

i1s superquadratic, then

(2.1.1.5) J(f,p,X)Zipif(

such that Zpi =1 and a real number A €[0,1]. Then we have

Now, in inequality (2.1.1.7) we make the following substitutions: x = Z p;x; and
i=1
y =x,. Therefore, we have

f((l_/l)zn:pixi Mxi}f(g‘pixij > f{ﬂ

n

X; _Zpixi

i=1 =1

Multiplying by p, >0 this inequality and summing from i = 1,n, we deduce the

statement.

Remark 2.1.1.6. For A =1, we obtain inequality from Proposition 2.1.1.4.
Corollary 2.1.1.7 ([Mitroi-Symeonidis-Minculete, 158]). Let f >0 be a

superquadratic function defined on an interval I = [O, a] or [0, oo), X, %, €1 and
Dy s D, €(0,1) such that Zpi =1. Then we have

i-1
n

X — Zpixi :
i-1

Proof. For A = % in Theorem 2.1.1.5, we have the inequality

(2.1.1.8) J(f.p,x)> 221@1‘(

1
2

n

n Zpixi +xi n n 1
(2.1.1.9) Zpif MT _f(zpixijzzpif{g

|

From Lemma 2.1.1.2, we know that fis convex . Therefore, applying Jensen’s
inequality, we have

n
Xi _Zpixi
i1
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T g

Using this inequality and inequality (2.1.1.9), we obtain inequality

Zn:pif(xi)_f(znlpixi 2 ZZn:pif(é X, —Zn:pi

(2.1.1.8).

X, j, which implies the inequality

Motivated by the above results, we introduce, in a natural way, other functionals.

Definition 2.1.1.8. Assume that we have a real valued function f defined on an

interval 1, the real numbers p;, i=1,k and j=1,n; aresuch that p; >0, Zpif =1

1

forall i= 1k (we put pi = (pi1, piz,..., Dy, )), Xi :(xil,xig,..., X, )e 1" forall i -1,k

k

and q =(q1, q2,...,qk), qi > 0 are such that Zqi =1. We define the generalized
=1

Jensen functional by

(2.1.1.10)
Jr (f, p1,..., Pk, Q, X1,..., Xk) := Z D, -+ Py, (quxy J (Zk:qlipnyJ
----- jr=1 i=1 =1
and the generalized Chebychev f;mctwnal by: ]
(2.1.1.11)
Frreip=1 j=1 i=1

We also easily notice that for £ = 1 thls definition reduces to Definition
2.1.1.3. In [160], the following estimation is obtained: if f is a convex function then
we have

(2.1.1.12) min {M} Jr (f, r1,..., Tk, q, X1,..., Xk) <

Jr (f, p1,-.., Pk 4, X1,..., Xk)

Dyj - Dy
< max{l—" Jr (f, ri,..., Tr, q, X1,..., Xk)
rl
J

1<), <ny : "rkjk
1<j,<ny
In this section, we investigate upper and lower bounds that we have if the
function fis superquadratic.
Now we extend the earlier results. The following lemma describes the
behavior of the functional under the superquadraticity condition:
Lemma 2.1.9. Let pi, xi,  be as in Definition 2.1.1.8. If f is superquadratic then we
have
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.....

(2.1.1.13) Jr (f, p1,..., Pk, A, X1,..., XEk) Z D, -+ Py, [qu i —a_cj

Jrseedi =1
_ k 7
where x = Zinpijxij :
=1 j=1

Using the same recipe as in the proof of Corollary 2.1.1.7, we get:
Corollary 2.1.1.10 ([Mitroi-Symeonidis-Minculete, 158]). Let pi, xi, q be as in
Definition 2.1.1.8. Let f >0 be a superquadratic function defined on an interval

I=[0,a] or [0,), x,,...x, €I and p,,.., p, €(0]1) such that Zn:pi =1. Then we

have

(2.1.1.14) Jr (f, p1,..., Pk Q, X1,..., Xk) Z Dy, Py, (2

Jisedp=1

LL]_x

The next result can be expressed as:
Theorem 2.1.11([Mitroi-Symeonidis-Minculete, 158]). Let pi, xi, q be as in

Definition 2.1.1.8 and the positive real numbers r;, i =1,k and j=1,n; be such that

Zr =1 forall i=1,k. We put ri-= (ll, o )forall i=Lk,m= mm{pul"'pkjk} and

1<j<m . .
rl]l ot rk]k

1<), <ny

Dij ---Dy;
M = max{ —2—" 1,
s Ty

1<j,<ny,

If f is a superquadratic function, then:
(2.1.1.15) Jr (f, p1,..., Pk 4, X1,..., Xk) — mdr (f, r1,..., T, q, X1,..., Xk)

k n; Ny e,
me[ £ izl(rij Dy Xy ]"‘ . Z (plh Dy, — k]k) (quxl] —
= J= 1

and
(2.1.1.16) MdJ: (f, ru,..., Y&, q, X1,..., Xr) — J& (f, p1,..., Pk Q, X1,..., XF)

k n; ..., k
Z}{ iZ(n;—pij ij}L Z (M’"ul T, _pijl---pkjk)f(zqixiji —xJ
i=1 j=1 Juseede =L
_ & 7
where x = Zinpijxij .
=1 =l

i=1
Remark 2.1.1.12. Let p1 = - - ‘= pr=p and x1 = - - ‘= x¢ = X. In this case we see
that Lemma 2.1.9 recover Proposition 2.1.1.4.

More results can be found in paper [Mitroi-Symeonidis-Minculete, 158]. In
[118], Kluza and Niezgoda quoted the above results for the introduction and study
of Jeffreys—Csiszar and Jensen—Csiszar f-divergences. Some bounds of Crooks and
Lin types for such divergences are provided. To this end, the concavity of the
composition of monotone functions is discussed.

Next, we describe some results concerning upper and lower bounds for the
Jensen functional related to the concept of a strongly convex function.

Definition 2.1.1.13. A function f defined on an interval I is strongly convex with
modulus ¢ >0 [or c-strongly convex] if
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(2.1.1.17) (- 2+ ay) < (U= 2)f (x)+ A () - Al - 2Ny — ),
forall x,yel,Aec [0,1].

We call f strongly convex if there exists a ¢ >0 such that is strongly convex
with modulus c. Strongly convex functions were introduced by Polyak [182]. A
function f is called strongly concave with modulus ¢ (or approximately convex of
order 2 [170]) if — f is strongly convex with modulus c.

Obviously, every strongly convex function is convex. Affine functions are not
strongly convex. The function f (x) = cx2 + bx + a is strongly convex with modulus c
and the inequality (2.1.1.17) holds with equality sign.

According to Hiriart—Urruty and Lemaréchal [109], we have:

Proposition 2.1.1.14. The function f is strongly convex with modulus c if and only
if the function g (x) = f (x) — cx? is convex.

In [137], the following result is proved:

Proposition 2.1.1.15. Considering p, 20,1 =1,n, with Zp =1 andx = Zpl ., the

i=1 i=1
function f strongly convex with modulus c, we have

(2.1.1.18) J(f.p.x) Eipf 4§inxq2f§ipin—5f-

This 1s re-proved using the probabilistic approach in a paper of Rajba and
Wasowicz [187, Corollary2.3]. Notice that the set of strongly convex functions is
closed under addition and positive scalar multiplication.

In what follows we shall also be interested in a more general Jensen
functional and its behaviour in the context of strong convexity.

Theorem 2.1.1.16 ([Mitroi-Symeonidis-Minculete, 159]). Let f be a strongly convex
function with modulus c defined on an interval I, x,,...,x, € I and p,,..., p, € (0,1)

such that Zpi =1. Then
i=1

(2.1.1.19)

Zp = Auae+ g )< 0 ()szf( - e+ )-ea=2)u*Y py o -xf
for 2., UE [0,1]. :

Moreover, from (2.1.1.19) for x, — Xy we get a double inequality which refines

the Merentes-Nikodem inequality (2.1.1.18):
Proposition 2.1.1.17 ([Mitroi-Symeonidis-Minculete, 159]). Let f be a strongly
convex function with modulus c defined on an interval I, x,,...,x, € I and

Dyses D, € (0,1) such that ipi =1. Then

i=1

(2.1.1.20)  J(f.p,x >2{pr[’“”} (Fc)}%gpi(xi-;)zz(;gpi(xi_;)z.

We state the following lemma about the behaviour of the generalized Jensen
functional under the strong convexity condition:
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Lemma 2.1.1.18 ([Mitroi-Symeonidis-Minculete, 159]). Let pi, xi, q be as in
Definition 2.1.1.8. If f is strongly convex with modulus c, then we have

100"k

Ny, k _ 2
(2.1.1.21)  Jr (f, p1,..., Pk A, X1,..., Xk) =C Z D, Dy, (Zqixiji —xJ ,
1 i=1

]'1,-~J'k:
_ k n;
where x = Zinpijxij .
=1 j=1

For strongly convex functions we have the following bounds:
Theorem 2.1.1.19 ([Mitroi-Symeonidis-Minculete, 159]). Let pi, xi, q be as in

Definition 2.1.1.8 and the positive real numbers r;, i =1,k and j=1,n; be such that

& . e . | P1j Py

E r; =1 forall i=1,k. We put m:(ril,..., rin_) forall i=1,k,m= min {lh—k”} and
- ' EESCT B G L
j=1 1j; i,

1<j,<ny,
Dy ---Dy;
J; 2
M = maxs——=¢.
1<), <n . .
1= rlh...r’ka
1<jp<ny,

If f is a strongly convex function with modulus c, then we have:
(2.1.1.22) Jr (f, p1,..., Pk Q, X1,..., Xk) — mJr (f, r1,..., Yk, q, X1,..., Xk)

ny,..., Ny k _ 2 k n 2
>c Z (pijl...pkjk —mr; .1, Zqixiji -x| +mec Zin(rij ~- Py )xu
Jiseesdp=1 i=1 i=1 j=1
and
(2.1.1.23) Mk (f, r,..., ¥k, q, X1,..., X)) — Ji (f, p1,..., Pk Q, X1,..., Xk)
2 2
ny,..., ny k _ k n;
= C (M’"ijl-"’"kjk = Pyj, -+ Py, {Zqixiji —xj +e zin(’?j by,
st i=1 i=1 j=1

_ k 7
where x = Zinpijxij .
i=1 j=1

We show in [Mitroi-Symeonidis-Minculete, 159] some applications to function
gamma of Euler.
The function gamma is defined via a convergent improper integral as

o0

r(t)= J‘xHe*xdx ,forall t>0,
0
it 1s known as Euler integral of the second kind. The following infinite product
definition for the gamma function is due to Weierstrass,

r(t)= %ﬁ(l +£j_1e2 ,

n=1 n
where y =0.577216.. is the Euler-Mascheroni constant. This relation can be
written as

(2.1.1.24) logT(t) =t - log —i(i—log(lJriD,
n=1 n n

where the base of the logarithm is e.
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Proposition 2.1.1.20 ([Mitroi-Symeonidis-Minculete, 159]). The function defined by
f: [0, 00)—> R, f(t): logF(t2 +1)+ n® +tarctant is strongly convex with modulus 1 on
[0,00).

Proof. From relation (2.1.1.24), we get

(2.1.1.25)  logTi* +1)=7[¢* +1)~logli +1)—i[t2; : _log(1+ 2 +1D.

n=1 n

We consider the function
g(t)=logT(t* +1)+ > +tarctant —t*
defined on [0,). It easy to see that

+ ———— |+arctant — 2t
Z( t* +n+1}

g'(t)= -

and

2 © 0
g"(t):L2+4t22;2+22(l—2;}—2.

n=l (t2 +n +1) n=0

5 | 22 )2

yields g"(t)z 0, therefore g is convex, so f is strongly convex with modulus 1 on
[0,0).

The inequality

It is straightforward that:
Corollary 2.1.1.21. The function f : [0,00)—) R, f(t): logl"(t2 +1)+tarctant is
strongly convex with modulus 1—y on [0,).

Next, we give inequalities related to a strongly convex function.

An important inequality is given by F. C. Mitroi [157], as a particular case of
the Dragomir inequality [58], for a convex function f on [a,b], we have the following
inequality:

(2.1.1.26)

2min{a] - z)[f la)+ /) f(a : b}] < 2f(@)+ (1~ A (b) - flAa+ (- Ap) <
2 maxiil —z)(f(a)+ f(b)—f(a +bD,

2 2

for all 2 e[0,1].
Lemma 2.1.1.22. If f is a function integrable and convex on [a,b], we have the
following inequality:

(2.1.1.27) {1—MJFSW(“) af(b) | fb)- () ()3[1+MJF,

—-a b-a b- b-a
where F = f(a);f(b)—f(a;b} for every x e [a,b].

xX—a

Proof. For A = b- e[0,1] when x €[a,b], we have 1- 4 = 5
—_a —-a
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1—|1—2/1|_1_|a+b—2x| 1+|1—2/’t|_1+|a+b—2x|

b—a b—a
If we replace these in inequality (2.1.1.26), we prove the inequality of the statement.
]

min{i,1 - A} = and max{i1-A}=

Next, we obtain a reverse inequality of Jensen’s inequality.
Proposition 2.1.1.23. If f is a function integrable and convex on [a, b], we have the

following inequality:
(2.1.1.28)

2 n
a+b—n;xi

S e < 3 L M0 et

noo

i=1
for every x, €la,b].

Proof. If x, [a, b], for all i =1,n, then using inequality (2.1.1.27), we have

(1 IL]F  bfla)=afb) . f)-fla) . (1 . IL]F
b-a b-a b—a b-—a
where F = f(a);—f(b)—f(a;bj. By summing from I to n, we find the following
inequality:
(2.1.1.29)
f(a)+f(b)_f(a+b] 1% la+b-2x,] §
2 2 n~< b-a B
bf(a)-af(b) , fb)-fla)y~, 1
b-a nb-a) & ;f(xl)é
fla)+f(b) (a+b 1 a+b—2x,|
( 2 _f( 2 D(HZ; b-a )

If x, e [a,b], for all i=1,n, then lle € [a,b] and using inequality (2.1.1.27), we
=1

n<
have
(2.1.1.30)
2 n
b—23"4x.
1_a+ an f(a)+f(b)_f(a+b) 3
b-a 2 2 B
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Therefore, combining inequalities (2.1.1.29) and (2.1.1.30), we obtain the inequality

from statement.
(]

From Proposition 2.1.1.14, we have that: if the function f is strongly convex
with modulus ¢ then the function g (x) = f (x) — cx? is convex.

We apply the above results for the function g, thus:
Corollary 2.1.1.24. If f is a strongly convex function with modulus c, then we have:
(2.1.1.27)

(1 - —|a ;li;2x|JE < bf(ab):zf(b) +x f(bg: Z(a) — f(x)+ c(x — a)(x — b) < {1 + —|a ;b__a2x|JE

2

where F, = fla)+ 1b) —f(aerJ —c (a-b) , for every x e[a,b].
2 2 2

Proposition 2.1.1.25. If f is a strongly convex function with modulus c, we have the

following inequality:

(2.1.1.28)

9 &
a+b—n;xi

1 1 1 1 ) |1 &lat+b-2x, .
;;f(xi)_f(;;xiJ_c{;;x?_(;in] < ;;| o - F,,

i=1 a

for every x, €a,b], where F, = f(a);f(b)_f(a;b]_c(a —2b)2 |

2.1.2 Several inequalities on generalized entropies

Generalized entropies have been studied by many researchers (we refer the
interested reader to [6]). Rényi [191] and Tsallis [201] entropies are well known as
one-parameter generalizations of Shannon’s entropy, being intensively studied not
only in the field of classical statistical physics [202—204], but also in the field of
quantum physics in relation to the entanglement [198].

The Tsallis entropy is a natural one-parameter extended form of the Shannon
entropy, hence it can be applied to known models which describe systems of great
interest in atomic physics [84]. However, to our best knowledge, the physical
relevance of a parameter of the Tsallis entropy was highly debated and it has not
been completely clarified yet, the parameter being considered as a measure of the
non-extensivity of the system under consideration.

One of the authors of the present paper studied the Tsallis entropy and the
Tsallis relative entropy from a mathematical point of view. Firstly, fundamental
properties of the Tsallis relative entropywere were discussed in [81]. The
uniqueness theorem for the Tsallis entropy and Tsallis relative entropy was studied
in [85]. Following this result, an axiomatic characterization of a two-parameter
extended relative entropy was given in [86].

In [74], information theoretical properties of the Tsallis entropy and some
inequalities for conditional and joint Tsallis entropies were derived. In [87], matrix
trace inequalities for the Tsallis entropy were studied. And, in [88], the maximum
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entropy principle for the Tsallis entropy and the minimization of the Fisher
information in Tsallis statistics were studied.

Quite recently, we provided mathematical inequalities for some divergences
in [89], considering that it is important to study the mathematical inequalities for
the development of new entropies. We show several results from our paper
[Furuichi-Minculete-Mitroi, 75], here we define a further generalized entropy based
on Tsallis and Rényi entropies and study mathematical properties by the use of
scalar inequalities to develop the theory of entropies.

We start from the weighted quasilinear mean for some continuous and
strictly monotonic function  : I — R, defined by

(2.1.2.1) M, (x,, %y, xn)zyxl[ipjw(xj)J,

where ij =1, p; >0, x; e, for j=1,_n,and nx>1.
j=1

If we take w(x)=x, then M v (x,,%,,..,x,) coincides with the weighted

arithmetic mean  A(x,,x,,.., x,)= ijxj . If we take wl(x)=logx, then
j=1

M, (%), %y, ) coincides with the weighted geometric mean

G(x,,x,,..., xn)sﬁxf" If y(x)=x and x;=In, pi’ then Mw(xl,xZ,..., x,) is equal to
j= J

Tsallis entropy [201]:
n n 1

(2.1.2.2) Hq(pl,pz,..., pn)s —Zp}‘.’ In, p; :ij In, p—, (q >0,q9 # 1).
j=1 j

Jj=1 J
where {pl, Dyseees pn}is a probability distribution with p; >0 for all j =1,n and the

, which uniformly

g-logarithmic function for x>0 is defined by In, (x)z i

converges to the usual logarithmic function log(x) in the limit g—1. Therefore, the
Tsallis entropy converges to Shannon entropy in the limit g—1:
(2.1.2.3) lqi_r)rleq (pl,p2,..., pn): H(pl,pz,..., pn)s —ij logp; .
j=1

Thus, we find that Tsallis entropy is one of the generalizations of Shannon
entropy. It is known that Renyi entropy [191] is also a generalization of Shannon
entropy. Here, we review a quasilinear entropy [6] as another generalization of
Shannon entropy. For a continuous and strictly monotonic function ¢ on (0, 1], the
quasilinear entropy is given by

(2.1.2.4) I°(py, pyses 0, )= —log ¢ (ipj(é(pj )J :

j=1
If we take ¢(x): log x in (2.1.2.4), then we have
I8 (pl,pZ,..., D, ) =H, (pl,pz,..., D, ) We may redefine the quasilinear entropy by

o (1
(2.1.2.5) 1Y(p1. Py ) = logﬂ”l[zpf‘/’(;ﬁ’

J=1 J

for a continuous and strictly monotonic function y on (0, «). If we take y/(x) =logx
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in (2.1.2.5), we have I"(p,,p,,... p,)=H,(p,,py,.... P, ). The case w(x)=x"7 is also

useful in  practice, since we recapture Rényi entropy, namely
lekq (pl ’p2 2000y pn ) = Rq (pl3p2 2000y pn )7 Where Rényl entropy [191] j‘S deflned by

1 n
(2126) Rq(pl,vpz)"" pn)El qlog(zp;l]

— =

From a viewpoint of application on source coding, the relation between the
weighted quasilinear mean and Renyi entropy has been studied in Chapter 5 of
[191] in the following way:

Theorem A ([191]) For all real numbers q > 0 and integers D > 1, there exists a code

(x1, x2, . . ., xn) such that

2.1.2.7) By(puoporo ) g (%), %y 0 2, ) < B, (P, Py )
log D Da- log D

1-q

)

where the exponential function D ¢ is defined on [1,o).
By simple calculations, we find that

n
limM (xl,xz,..., xn): ijxj ,
j=1

q—1 D%qx
and
R (p Dosreees D ) u
lim——2r on s o .
g—1 lOgD ;pl En P,

Motivated by the above results and recent advances on the Tsallis entropy
theory, we investigate the mathematical results for generalized entropies involving
Tsallis entropies and quasilinear entropies, using some inequalities obtained by
improvements of Young’s inequality.

Definition 2.1.2.1. For a continuous and strictly monotonic function y on (0,0) and
two probability distributions {p1, pe, . .., pny and {ry, re, . . ., ra} with pj >0, rj >0
forall j= 1,n, the quasilinear relative entropy is defined by

Ty Ty T, ) =-log t//{ipjt//(;—j]] :

J=1 J

(2.1.2.7) DY (py, yseess D,

The quasilinear relative entropy coincides with the Shannon relative entropy
if w(x)=logx, i.e.,

0 P rn).

Dk (pl’pZ’"" o R rn)s —Zn:pj log% =D, (pl,pz,..., P,

Jj=1 J
13Ty seees rn) the Rényi relative entropy [3] defined

We denote by R, (pl,pz,---, pn|
by

(2.1.2.6) R,(py, Pyseos D,

71,7y rn)s

1 n
lo Ipl-a |
q-1 g(;p’ ! ]

This is another particular case of the quasilinear relative entropy, namely for
w(x)=x"? we have
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n r. 1-q 1-q
D (D), Dyreees DTy, )= —log [_,]
D;

j=1

Ty 3Ty e rn)

1 n
~ log(E jp;’r;qJ =R, (p,, Dy D,
q -1 j=1

If we use the inequality (1.4.23), then we obtain

2r 2(1-r)
o P;+T; | P+
pr} q[ o, } <qp; +(1=q)r; <p,"r; q[ o ] |

2\p;1; 2\p;1;

where q €(0,1) and r=min{g,1 - q} It follows that

1
——lo gp. +(1-
q_]_ g j=1( J ( {

=

Ty 3Ty e rn)

p13p

—2r
1 & .47
<——log| > (qp, +(1- q)r,-{ BTl }

q-1 p= 2./p;r;

We denote by
2.1.2.7) D, (p,,psrr P,

13Ty senes n) ij(ln pJ—lnqrj):—Zn:pjlnqi,
= p;

the Tsallis relative entropy Wthh converges to the usual relative entropy
(divergence, Kullback-Leibler information) in the limit g—1:

RTyren T, )= Zp,log—

On the other hand, the studies on refinements for Young S 1nequahty have
given a great progress in the papers [10, 11, 53, 76, 77, 78]. In the present paper, we
give some inequalities on Tsallis entropies applying two types of inequalities
obtained in [77, 157].

As an analogy with (2.1.2.5), we may define in our paper [75] the following
entropy:

Definition 2.1.2.2. For a continuous and strictly monotonic function y on (0,0) and

I rn)zD (pl,pz, D,

lqi_rg' Dq (pl s Pgseess pn|

q > 0 with ¢ #1, the Tsallis quasilinear entropy (g-quasilinear entropy) is defined
by
(2.1.2.8) I;’(pl,pz,..., p.)= In,w~ {Zp l/l( ! D
J=1 pJ
where {p1, ps, . . ., pn} is a probability distribution with p; > 0 for all j=1,n.
We notice that if v does not depend on ¢, then

Gm I} (P, Py P2) =17 (P> Doy D)

For x > 0 and ¢ > 0 with ¢ #1, we define the g-exponential function as the

1
inverse function of the g-logarithmic function by exp, (x)=[1+@1-q)x]ia, if
1+ (1 - @)x >0, otherwise it is undefined. If we take y(x)=In,(x), then we have
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Ié”‘f (D), Dgrr P, )= H, (p,>Dy»er P, ). Furthermore, we have

1 1
If;liq (pl,pZ,..., pn): lnq[znlpjqu Jl . i (Zp} j1—q
O B
n i )
(;pj J - 4 (qu —pj)
B ]__q =+ 1_q :Hq(pl’pz"":pn)-

Proposition 2.1.2.3 ([Furuichi-Minculete-Mitroi, 75]). The Tsallis quasilinear
entropy is nonnegative:

I;’(pl,pZ,..., p,)=0.

We note here that the g-exponential function gives us the following
connection between Renyi entropy and Tsallis entropy [201]:

(2.1.2.9) exp R, (pl,pg,..., pn)= exp, H, (pl,pg,..., pn).
We should note here exp, H, (pl, Doseees pn) 1s always defined, since we have

(2.1.2.10) 1+(1-q)H,(p,. Pyrs P,)=D.P% >0.
=1

Definition 2.1.2.4. For a continuous and strictly monotonic function y on (0,0) and
two probability distributions {p1, pe, . .., pat and {r;, re, . . ., ra} with p; >0, r; > 0 for
all j =1,n, the Tsallis quasilinear relative entropy is defined by

o)

For y(x)=1In,(x), the Tsallis quasilinear relative entropy becomes Tsallis

2.1.2.11) DY (py, Pyseess 12|

relative entropy,

Ty 3Ty penes rn),

D" (py, pyseess D,

Ty Ty e ) ijln{ ] Dq(pl,pz,...,pn|

and for y(x)=x"7, we have

1

n P Y 11" g
Ty s Ty peens rn):—lnq Zp](p—’J =—In (Zp] 1q]

=l j

D;"" (py, Dy P, |

1-q n

1 n A é Z(pj_p?’"jlfq)
Y]]

13Ty e rn)

_ Zp] e ' :Dq(pl,pz,...,pn|

. = J=1
1-¢q j=1 p; 1-q
Proposition 2.1.2.5 ([Furuichi-Minculete-Mitroi, 75]). If v is a concave increasing

function or a convex decreasing function, then we have nonnegativity of the Tsallis
quasilinear relative entropy:

D;’(p13p2;-.., pn|r1,r2,..., I"n)Z O_
Proof. We firstly assume that y is a concave increasing function. The concavity of

w shows that we have
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which is equivalent to

n r.
From the assumption, ' is also increasing so that we have 1> 1//‘1(2 pﬂ/(—’}].
Jj=1 J
n r.
Therefore, we have —in, z//‘l(z p}.y{—’j} >0, since Ing x is increasing and Ing(1) =
= j
0. For the case that y is a convex decreasing function, we can similarly prove the
nonnegativity of the Tsallis quasilinear relative entropy.
O
Remark 2.1.2.6. The following two functions satisfy the sufficient condition in the
above proposition:

(1) l//( ):ln ( )for qg>0,g=1.
(ii) w(x)=x"7 for ¢ >0, #1.

It is notable that the following identity holds:

(2.1.2.12) expR, (D1 Dy Pl rases r,)= exp,_, D, (D1, Do Palrisrases r.).

Next, we give inequalities for the Tsallis quasilinear entropy and f -
divergence. For this purpose, we review the results obtained in [157] as one of the
generalizations of refined Young’s inequality.

Proposition 2.1.2.7 ([157]). For two probability vectors p = {pl,pz,..., pn} and

r=1{r,r,..,1,} such that p; >0,r, >0, ij :er =1 and x=1{x,,%,,..., x, | such
j=1 j=1
that x; >0, we have

(2.1.2.13) OSmin{;—i}T(f,x,p)s T(f,x,r)< max{; } (f.x,p),

1<i<n 1<i<n

where T(f,x,p)= Z p,flx;)- f{w‘l[ j: pwlx; )N

j=1
for a continuous increasing function v : I—1I and a function f : I—< such that
Fl ™ (0= 2 (@) + ap (b)) < (- 2)f(@) + A (b)
forany a,bel and any A e [0,1].
We have the following inequalities on the Tsallis quasilinear entropy and

Tsallis entropy:
Theorem 2.1.2.8 ([Furuichi-Minculete-Mitroi, 75]). For g¢>0, a continuous and

strictly monotonic function w on (0,000 and a probability distribution

r={r,7y,.., 7, fwith r; >0 for all j=1n,and er =1, we have

Jj=1

13 1
2.1.2.14 0< N1 Z LS,
( ) n'ﬁlZZ’ {n v ( W{ B n'3 . r]}
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(7"1,1"2, i n) (7‘1”"2’ b4 n)
<nr1rﬁax {ln 7 [ Z L D——Zl }
1= -1 j =
Proof. If we take the uniform distribution p = {1 ,— 1 reees l} = u in Proposition 2.1.2.7,
nn n
then we have
(2.1.2.15) 0<n717;u<n{ rT(f,x,0)<T(f,x,r) < nrﬁgx{ rT(f,x,u),

(which coincides with Theorem 3.3 in [157]). In the inequalities (2.1.2.15), we put
flx)= ~In, (x) and X; =rl for any j=1,n, then we obtain the statement.

J

Corollary 2.1.2.9 ([Furuichi-Minculete-Mitroi, 75]). For g >0 and a probability

distribution r = {rl,rg,..., rn}with r; >0, forall j=1,_n and er =1, we have

j=1

(2.1.2.16) 0 <nmin, }{ln (nz—j——Zl }

Jlj

<ln,n-H (1,7"2,..., r )

n

l —|-=>In
<nmaxt }{n {nZ ] >in }
Proof. Put f(x)= ~In, (x) in Theorem 2.1.2.8.

Remark 2.1.2.10. Corollary 2.1.2.9 improves the well-known inequalities
0<H, (rl,r2,..., rn)s In,n. If we take the limit g—1, the inequalities (2.1.2.16)
recover Proposition 1 in [58].

Corollary 2.1.2.11 ([Furuichi-Minculete-Mitroi, 75]). For two vectors

a= {al,a2,..., a, }and b= {bl,bz,..., bn} for all j=1,n, we have

(2.1.2.17) (Zazj[ZbQJ—(Zabj ZZ(aibj—ajbi)%Z(aibj—ajbi)?

=1 j=1 1<i<j<n
Theorem 2.1.2.12 ([Furuichi-Minculete-Mitroi, 75]). Let f : I — R be a twice

differentiable function such that there exists real constant m and M so that
0<m< f"(x)é M for any x € I. Then we have

2.1.2.18) = Zp plx, —x,) sgpif(xi)—z{gpixij— > o, -, )

1<L<]<n 1<i<j<n

where p; >0, ij =land x; el forallj=1,n.

j=1
Corollary 2.1.2.13 ([Furuichi-Minculete-Mitroi,_7 5]). For two vectors
a= {al,az,..., a, }and b= {bl,bz,..., bn} for all j=1,n, we have
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2
(2.1.2.19) ZPipj(xj—xi)2 =ij(xj_zpixiJ .
j:l =1

1<i<j<n

Corollary 2.1.2.14. Under the assumptions of Theorem 2.1.2.12, we have
2 2
m n n n n M n n
(2.1.2.20) Eij[xj - Zpixl) < Zpif(xi)— f(Zpixij < ?Zp{xj —Zpixi] ,
j=1 i=1 i=1 i=1 j=1 i=1

where p; >0, ij =1land x; el forallj=1,n.
j=1
We also have the following inequalities for Tsallis entropy:
Theorem 2.1.2.15 ([Furuichi-Minculete-Mitroi, 75]). For two probability

distribution p=1{p,,py,... ,} and r=1{r,,r,,..., 7, } such that p; >0,r;>0,j=1n,

n n

ij :er =1, we have

Jj=1 Jj=1

2 2
- D m 1 1 1
(2.1.2.21) ln( —]]—ln n+—=% pip.(———J [___]
q Z rj q 2 Z J isien p p

j=1 1<i<j<n p;, b

Sznlpjlnql—i“pjlnqL
< 4 .

2
Z ;P (———J -—=L > b, (——iJ :

1<i<j<n pL 1<i<j<n p p

]1r]

<in (Zn:p—J

where mq and My are positive numbers depending on the parameter g > 0 and
satisfying m, < qrj‘q‘1 <M, and m, < qp;"‘1 <M, forall j=1n.

Corollary 2.1.2.16 ([Furuichi-Minculete-Mitroi, 75]). For two probability
distribution p = {pl,pg,..., pn} and r = {rl,rz,..., rn} such that p; >0,r; >0, j=1,n,

ij :er =1, we have
j=1 j=1
2
1 1 1
21222) zog[z J ogn+™ S b, [___J M (___]
j 1<z<]<n

j=1 1<i<j<n p] pz p] pi

< 1 1
Sijlog——ijlog—
= = D;
2 2
Sy M 1 1 m 1 1
<log| 2 == |- S P | = ), PP |,
(12_1: er 2 lsiZj:Sn ! P, D; 2 45, ’ p; D

.« . . . 72 ,2
where mi1 and M1 are positive numbers satisfying m; <r;” <M, and m, <p;” <M,,

forall j=1,n.
Proof . Take the limit g—1 in Theorem 2.1.2.15.
O

Remark 2.1.2.17. The second part of the inequalities (2.1.2.22) gives the reverse
inequality for the so-called information inequality
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(2.1.2.23) 0<> p; logl—zpj logi,
J=1 Ty = p;
which is equivalent to the non-negativity of the relative entropy

D, (pl,pz,..., pn|r1,r2,..., rn)z 0.

Using the inequality (2.1.2.23), we derive the following result.
Proposition 2.1.2.18 ([Furuichi-Minculete-Mitroi, 75]). For two probability

distribution p = {pl,pQ,..., pn} and r = {rl,rz,..., rn} such that p; >0,r; >0, j=1,n,

n n
ij :er =1, we have
= =
n n

(2.1.2.24) Z(l—pj)logll ZZ(l—p,-)logll

Jj=1 J J=1 J

1-p.
Proof. In the inequality (2.1.2.23), we take the substitutions p, — pl]
n J—
1-r X . n1—p. n1—r.
and r; — ., which satisfy Z Pj _ . =1. Then we have the present
n-1 ‘e n-1 “=Hn-1
proposition.

O
Above we consider p= {pl,pQ,..., pn} and r= {rl,rz,..., r } such that

n

p; >0,r; >0, j:1,_n, to be probability distributions. Tsallis relative entropy

(divergence) 1s given by

Dq (p"r): Dq (pl’p2 sones pn|r1,r2,..., rn): —ipj lnq l:_f .
j=1 j

It converges to the classic Kullback-Leibler information:
tim D, (plx) = D, (plr) = -3 p, log -
j=1 j

The Jeffreys divergence is defined by

(2.1.2.25) J, (p"r) =D, (p||r)+ D, (r”p)
and the Jensen-Shannon divergence is defined as
1 1
(2.1.2.26) JS, (pfr)= EDl(p‘ p; rj + EDl(er;rJ ,

(see e.g. [161]).
Before stating the results we establish the notation. The two-parameter
extended logarithmic function (see e.g. [161]) to the (r,q)-logarithmic function for

x >0 1s defined by
expl_—q(xl_’ —1)—1

In,, (x)= In,expln, x = g ,
which uniformly converges to the usual logarithmic function log(x) in the limit g—1
and r—1.
This 1s a decreasing function with respect to indices. Correspondingly, the
inverse function of In, , (x) is denoted by

exp, , (x) = exp, logexp, x.
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We start from the Tsallis (r,g)-quasilinear entropies and Tsallis (r,q)-
quasilinear divergences as they were defined in [89].
Definition 2.1.2.19. For a continuous and strictly monotonic function y on (0,00)

and q,r > 0 with g,r #1, the Tsallis quasilinear entropy ((r,q)-quasilinear entropy)
1s defined by

(2.1.2.27) 1Y (P, Dyss ) =0, wr [Zp,{ B

For y(x)=in, . (x) we have the following entropic functional:

n 1
(2.1.2.28) H,,(p)=) p;n,, —
=) p;j

This also gives rise to another case of interest

. n 1r
I& , (p)= In,expln,, [ijrj =In, exp 1 i

r 2 J=1

1
(S0 ||

which in particular case coincides with Arimoto’s entropy.
Definition 2.1.2.20. For a continuous and strictly monotonic function y on (0,0),

q,r >0 with q,r #1, and two probability distributions {pl,pz,..., pn} and {rl,rz,..., rn}
with p; >0, ;>0 for all j= 1,n, the (r,g)-quasilinear divergence is defined by

21229 D1, )=t S| 2 ||
= j

For y(x)= In,, (x) we the following:

(2.1.2.30) D,,(pl)=-3p, n,, ;—f
2 J

By analogy to the entropy computation, we find the following Arimoto type
divergence:

1
Dg)q(p”r) —In, exp| - —— (Zpr 1- r]

Proposition 2.1.2.21 ([Mitroi-Minculete, 161]). Let r be a real number. Assume

p>0,g>0satisfy p=— . If 1< p<2orifl<qg<2, then we have

Q| =

(2.1.2.31) Dr’q(p||r)+H2_r)2_q(p)21 Zp exp(ln p—+ln pj]

J=1 J
Theorem 2.1.2.22 ([Mitroi-Minculete, 161]). Assume that real numbers p, q satisfy

L+L—1 If 1<p<2orifl<q<2, then we have

1-p 1-¢q

(2.1.2.32) J,)p(p||r)+Jr]q(p||r)22 Zl:pJ exp{ﬂn p—J+r exp[Zln p_ﬂ

J=1 J r

)]
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2
where E(x)= {exp(l_Tp In, xj - exp(l_Tq In, xﬂ ,a = mm{l,l} .

b q

As we have seen in all these examples, in many cases the use of the (r,q9) —
generalized logarithmic function nicely completes the picture obtained with the g-
logarithm and can be useful in applied areas (signal and image processing,
information theory).

2.2 Inequalities for invertible positive operators

In Theory of Operators we found various characterizations and the relationship
between operator monotonicity and operator convexity given by Hansen and
Pedersen [104],Chansangiam [34].

In [121], Kubo-Ando has studied the connections between operator monotone
functions and operator means. The operator monotone function plays an important
role in the Kubo-Ando theory of operator connections and operator means. Other
information about applications of operator monotone functions to theory of
operators mean can be found in [180]. Theory of operator mean plays a central role
In operator 1inequalities, operator equations, network theory, and quantum
information theory.

Let H be a real Hilbert space. Denote by B(H) the algebra of bounded linear
operators on H. We write A >0 to means that A is a strictly positive operator, or
equivalently, A >0 and A is invertible. We note that I is the identity operator.

In [19], we found the quasi-arithmetic power mean #, A with exponent « and

weight p given by
A#, B=[1-p)a“+pB°|"“, A,B>0.

Several special cases of the family of quasi-arithmetic power means are the
following: for a =1, we have the weighted arithmetic mean as follows
AV B:=A#  B=(Q1-p)A+pB, A,B>0;

for a« =-1, we obtain the weighted harmonic mean given as
Al B:=A#,, B=[1-p)A" +pB*|', A,B>0;
for ¢ — 0, we have the weighted geometric mean given by
A#,B= liﬁ)zA#a’p B=A"?B? A,B>0 and A, B commutes.
The geometric mean was defined by Pusz and Woronowicz in [186]:
A#B = max{T >0: ‘<Tx,y>‘ < HAl/sz-HBl/zy ,Vx,y e H}, A,B>0.
In fact, this definition is the formula given by Ando in [15]:
A#B=A"*(A"2BA"*)"*AV?, A,B>0.
Another definition of the geometric mean (see e.g. [14], [16]) is given by

A X
A#stup{Xl()SX and {X B}ZO}, A,B>0.

An important remark [14] is that the geometric mean A#B is the unique
positive solution to the Riccati equation
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XA'X =B.
The p-weighted geometric mean is defined [16] by

A#pB:Al/Z(A71/2BA71/2)pA1/27
where pe(0,1) and A,B>0.

Furuta-Yanagida proved, in [92], the following inequality
Al, B< A#,B< AV ,B.

From the known inequality
{1-p)+pt|" <t” <(1-p)+pt,
which 1mplies
{(1 —p)+pt™ }71/0{ <tP < {(1 —Dp)+pt© }UQ, pe(01),a>0,
we deduce an inequality for the quasi-arithmetic power mean #,
A# , B<A# B<A#,6 B.

Theorem B ([200]) For invertible positive operators A and B with
O<mlI< A, B<MI, we have

(1) (Ratio-type reverse inequality)

(2.2.1) (1-p)A+pB<S(h)A#, B,
(it) (Difference-type reverse inequality)
(2.2.2) (1-p)A+pB<A#, B+ L(1,h)S(h)B,

where pe[0,1].

Next, we show two reverse inequalities which are different from (2.2.1) and
(2.2.2) given in our paper [Furuichi-Minculete, 76].

We first show the following remarkable scalar inequality:
Theorem. 2.2.1 ([Furuichi-Minculete, 76]). Let f: [a, b]—) R be a twice

differentiable function such that there exist real constant M so that 0< "< M, for
x €[a,b]. Then the following inequalities hold:
0< pf(a)+(1—p)f(b)-f(pa+(1—ph)< Mp(l-p)b—a)
for all p<[0,1].
If we take, in inequality from above Theorem, f(x)=—logx and afterwards
f(x)=—logx, then we obtain

2
0<pa+(1-ph-a’b"™” <a’b'? exp{p(l_p)(ga_b) }—a"b”’,

m

and
2
0 Spa+(1—p)b—apb1‘p < p(l—p){log%} M.

From here, we consider bounded linear operators acting on a complex Hilbert
space H. If a bounded linear operator A satisfies A=A", then A is called a
selfadjoint operator. If a self-adjoint operator A satisfies <x|A|x>ZO for any

| x> € H , then A is called a positive operator. In addition, A > B means A—-B>0.
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Theorem 2.2.2 ([Furuichi-Minculete, 76]). For pe[O,l], two invertible positive

operators A and B satisfying the ordering O<mI<A,B<MI<I with h= M we

m
have
(1) (Ratio-type reverse inequality)
2
(2.2.3) A#t B< (1—p)A+szexp[p(1—p)(1—%j ]A#pB,

(it) (Difference-type reverse inequality)
(2.2.4) A# B<(1-p)A+pB< A#, B+ p(1-p)iog® h)B.

Remark 2.2.3. It is natural to consider that our inequalities are better than
Tominaga’s inequalities under the assumption A < B. The inequality that underlies
the proof of inequality (2.2.1) is one of reverse inequalities for Young inequality
that was given by Tominaga [200] by

pa+(1-ph< S(%)a’)blp .
Therefore, we compare this inequality with the inequality

2
0< pa+(1-ph-a?b™” <a’b'? exp{p(l_p)ga_b) }—a"b”’

m

used in the proof of inequality (2.2.3), thus [Furuichi-Minculete, 76]:
(1) Take h = 1 and p = 1 , then we have
2 20

2
exp{p(l - p)(1 - %) } ~S(h)=-0.0128295.

(11) Take h = % and p = % , then we have

2
exp{p(l - p)(1 - %j } ~S(h)=0.0326986.

Thus, we can conclude that there is no ordering between (2.2.3) and (2.2.1).

In [201], Tsallis defined the one-parameter extended entropy for the analysis
of a physical model in statistical physics. The properties of Tsallis relative entropy
was studied in [81] and [82], by Furuichi, Yanagi and Kuriyama.

The relative operator entropy

S(A | B) — A2 log(A—l/zBA—1/2 )A1/2
for two invertible positive operators A and B on a Hilbert space was introduced by
Fujii and Kamei in [73]. The parametric extension of the relative operator entropy
was introduced by Furuta in [91] as

Sp (A | B) — A1/2(A71/2BA71/2)ﬂ lOg(Ail/zBAil/z )A1/2 ’
for p € R and two invertible positive operators A and B on a Hilbert space. Note
that S,(A|B)=S(A|B).
In [207], Yanagi, Kuriyama and Furuichi introduced a parametric extension

of relative operator entropy by the concept of Tsallis relative entropy for operators,
thus
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1/2 -1/2 -1/2 1/2 _
T (A|B)=2 (A =paef AT -a ,pe(01],
D
where A and B are two positive invertible operators on a Hilbert space.
The relation between relative operator entropy S (A|B) and Tsallis relative

operator entropy 7, (A | B) was considered in [82], as follows:

(2.2.5) A-AB'A<T ,(A|B)<S(A|B)<T,(A|B)<B-A.
The following known property of the Tsallis relative operator entropy is given in
[108]:

Proposition 2.2.4. For any strictly positive operators A and B and
p,q €[-1,0)U(01] with p < q, we have
(2.2.6) T (A|B)<T,(A|B).
x? -1
D
peRfor any x > 0, and implies the following inequalities (which include the
inequalities (2.2.5)):
A-ABA=T-1(A|B)<T-(A|B)<SAI|B) <Ty(A|B)<Ti(A|B)=B—-A,
for any strictly positive operators A and B and p € (0, 1].

This proposition can be proved by the monotone increasing on

The main result from our paper [Moradi-Furuichi-Minculete,163] 1s a set of
bounds that are complementary to (2.2.5). Some of our inequalities improve well-
known ones. Among other inequalities, it is shown that if A, B are invertible

positive operators and p € (0,1] , then
1 1 p-1

' Az2BA 24T L _L 1
A?|=————~| |A®BA*-T|A*<T,(A|B)<

. (a#, B-A#,,B+B-A),

N |

which is a considerable refinement of (2.2.5), where I is the identity operator. We
also prove a reverse inequality involving Tsallis relative operator entropy 7, (A | B).

Theorem 2.2.5 ([Moradi-Furuichi-Minculete,163]). For any invertible positive
operator A and B such that A < B, and p € (0,1] we have

(2.2.7)
1 1 p-1
i v omas R 1
Ax| AZBAC+T (A 2BA —IJAQ <T,(A|B)<~(A#, B~ A#,, B+B- A),
2 2° 7 ’

Proof. Consider the function f(t): t’™, p e (0,1] . It is easy to check that f (?)
is convex on [1,»). Bearing in mind the fact

.Ttp_ldt _x-l
l p

and utilizing the left-hand side of Hermite-Hadamard inequality, one can see that
p’I p _
x+1 (x 3 1) < x? -1 ’
2 p
where x > 1 and p € (0,1] . On the other hand, it follows from the right-hand side of
Hermite-Hadamard inequality that
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-1
x? -1 S(xp 2+1j(x_1)’

p
for each x> 1 and p € (0,1] .

1 1 1
Replacing x by A 2BA %1in above inequalities, and multiplying A% on both
sides, we get the desired result.

Proposition 2.2.6 ([Moradi-Furuichi-Minculete,163]). For x > 1 and %g p<1,we

have
x-1 (x+1)"
(2.2.8) —s(—j x—1).
=<2 ) &Y
. x+1)7 1
Proof. In order to prove (2.2.7), we set the function f, (x)z S —T, where
X

1 . , x+1Y", (x+1
x> 1 and ESpﬁl. Since f,'(x)= S log S >0, for x > 1. Therefore, we

have 1, (x)2 /., x)= J}J_ﬂ_

inequality of the statement.

>0, for x > 1. Consequently, we deduce the

Corollary 2.2.7 ((Moradi-Furuichi-Minculete,163]). For any invertible positive
operators A and B such that A> B, and p € (0,1] , we have

(2.2.9) A# B-A#, B<2(A# B-A#, B+B-A)<T,(A|B)
p-1

1 2 2 1 1
< A3 % (A >BA 2_1}42 <A#  B-A# B<0.

In [81], we found several results about the Tsallis relative operator entropy.
Furuta [91] showed two reverse inequalities involving Tsallis relative operator
entropy T, (A | B) via generalized Kantorovich constant K(p).

Dragomir, Cerone and Sofo in [56, 57] and Niculescu and Persson in [166]
present the following estimates of the precision in the Hermite-Hadamard
inequality:

Proposition 2.2.8. Let f: [a,b]—)R be a twice differentiable function such that
there exist real constants m and M so that m< f"<M . Then

(b af a+b (b-af
(2.2.10) m jf (et —f [ J< M=
and

(b-af _fla)+f)_ 1 | (b-a)’
(2.2.11) m s R b_a:[f(t)dtsM T

. . ( x
In this context, since It"‘ldt =
D
1
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Lemma 2.2.9. For the real numbers x >1and p €[-1,0)U(0,1), the following
inequalities

@212 0<(p-1hp-2hr BT <L o2 < poaypg) L)

24 p 2 24
and
3 -1 3
(2'2'13) O<(p_1Xp_2)xp—3 (x—l) Sxp—xl’ +x—1_xp_1g(p_lxp_2)(x—1)
12 2 P 12
hold.

Proof. For x =1, we obtain the equality in relations (2.2.12) and (2.2.13).
We consider x >1 and the function f : [I,x] - R defined by f(t)=¢"" with

p e[-1,0)u(0,1). It follows that f'(t)=(p—1)">with f"(t)=(p-1)p-2§*> >0, so
the function fis convex and (p—1)p—-2x?* =m< f"({t)< M =(p-1)p-2),
Therefore, we apply the above theorem and we have

(p—-1)p—2p? (x—1) < x? -1 _(erljp_l S(p—l)(p—Z)(x_l)z,

24  plx-1) { 2 24
which 1s equivalent to inequality (2.2.12).
Using the second inequality from the above theorem we have

e = R s

O

Theorem 2.2.10 ([Moradi-Furuichi-Minculete,163]). For any invertible positive
operator A and B such that A< B, and pe [0,1], we have

(2.2.14)

w(pr(A |B)-3(p-1)T,, (A B)+3(p-2)T, ,(A|B)-(p-3)T, ,(A] B))s

T (A | B)_(B_A)Al/QEA—1/2BA—1/2 +IJp_1A1/2 _
p —_

2

%(A#33—3A#ZB+3B—A)

and
(2.2.15)

%21’_2)(1?%(14 | B)-3(p-1)T,, (A1 B)+3(p-2)T, ,(A|B)-(p-3)T, ,(A] B))g

%(A#pB—A#pl B+B-A)-T,(A|B)<

W(A#gB—BA#ZBﬁ%B—A)

Proof. If A and B are positive invertible operators such that A < B, then replacing x
with the positive operator A '/?BA"?and multiplying by A'/*relations (2.2.12)
and (2.2.13) we obtain
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~1)p-2

T, (Al B)—(B—A)A”{A_l/zBA_m * IJNA“Z <
] <

2
A#, B-3A#,B+3B- A
24

(p-1\p-2)
and

~1)\p-2

1
E(A#p B-A#, B+B-A)-T,(A|B)<
%‘5’_2) (A#, B-3A# , B+3A#, , B— A#, , B)

But, replacing A#, 6 B= pr(AlB)+A in the above inequalities i1mplies the

inequalities of the statement.

In this moment, we see that equality
¢ p-2 p-1 p
I(x—l x+1 do — 2 (t—l t+1 4 t+1 1
) 2 p-1 2 pp-1)|L 2

which can be written as

o5 a5 )55

Remark 2.2.11. Therefore, the inequality from Theorem 2.2.10, can be rewritten
as:
For any strictly positive operators A and B such that A< B, and p € (0,1), we have

(2.2.16) 4{TP(A|A;Bj—Tp_l(A|A;Bﬂspl_l[Tp(A|B)—T1(A|B)]

<=[r,(A|B)-T

p-1

(A B)]+iA#2 (B-A)

DO |

or, multiplying by p—1<0, we obtain
-1 -1
(2.2.17) pT[Tp(A|B)—Tp,1(A|B)]+pTA#2(B—A)sTp(A|B)—:1;(A|B)

S4(p—1{Tp(A|A;BJ—TP_I(AlA;BH

The below inequality implies inequality (2.2.15).

p p-1 p _ _ p __ p-1 _
4 (t+1j |4 [t+1) PR lgl(t 1t 1J+1(t_1)2_
p 2 p-1 2 p(p—l) p-1 2 p p-1 4

We can prove that
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1(#—1_#‘1—1} t" -1 t-1
2\ p p-1) plp-1) p-1’
t"-1  t-1 1(;:1?—1 t" -1

—-= - ],fort21,0<p<1.
plp-1) p-1 2\ p  p-1

-1 2 -3
But dhp(t)ztp -1 1(tp_1_tp_2),dhp(t):(Z_p)tp (3_pt—1j>0,f0r

Because we put £, (t)=

dt p-1 2 dt? 2 2—-p
dh,(t) dh (1
t>1,0< p<1, thus we have ;t()z (;t( ):O.Itfollows that h,(t)>h,(1)=0.

Therefore, we deduce the inequality

D _ p-1 _ P _ _ P _ p-1 _
l(t 1 ¢ 1]3 t" -1t 1<l[t 1 ¢ 1j+l(t_1)2’
p

2 p-1 plp-1) p-1-2 p p-1 4
which implies the inequality
1 1
(2.2.18) 5[Tp(A |B)-T,,(A|B)|< P [T.(A|B)-T,(A|B)|

< é[Tp(A |B)-T,,(A| B)]+iA#2 (B-A)

In a recent study, Furuichi and Minculete showed that:

Theorem 2.2.12. For any strictly positive operators A and B such that A< B, and

pe(0,1), we have

AV _B-A# B . AV B-A#_ B

p(l-p) q-q)

x? -1 x-1

pp-1) p-1°

Therefore, we deduce the following inequality, forx >1,0< p<1,
x t p_1_ _ qa 1 _ .
J‘J’(yp,Q —y"’2)dydt _x"-1 p(x 1)_x 1 p(x 1)
& plp-1) qlg-1)

But, fory>1,0< p,g <1, we have y” < y?? which implies

ﬁ(y” — ¥ dydt <0,
11

(2.2.19)

x t
Proof. We have the identity: j j yP2dydt =
11

b

so we obtain
xp—l—p(x—1)<xq—1—p(x—1)
plp-1) = qlg-1)

It follows that

px+(1-p)-x® _ qx+(1-q)—x*
pi-p) = qll-q)
which, replacing x by A™/?BA™"/?, and multiplying by A'’*to left and to right,
implies the statement.

More interesting things happen when we apply these considerations to the

operators.
For instance, from the inequality (1.4.24) it follows that:
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Theorem 2.2.13 ([Moradi-Furuichi-Minculete,163]). Let A, B be two invertible

1 1 1 1
positive operators such that I<hWI<A *BA?<hl or O<hI<A2?BA?<WI<I,
then we have
(2.2.20) K'(W,2)A#t, B< AV, B<K'' (W ,2)A#, B.
where p e [0,1], r= min{p,l —p}.
Ando’s inequality [16] says that if A, B are positive operators and ® is a
positive linear mapping, then

(2.2.21) @(A#, B)< ®(AW, (B), p € [0,1] .

Concerning inequality (2.2.21), we have the following corollary:
Corollary 2.2.14 ([Moradi-Furuichi-Minculete,163]). Let A, B be two invertible

1 1 1 1
positive operators such that I<h'I <A 2BA 2<hl or O<hlI<A:*BA?<hI<I.
Let ® is a positive linear mapping on B(H), then we have

K'(W,2) 1
1 K'"(h,2)
K’ (hr,2) CD(AVPB) < K’ (hy’z) (D(A#P B)

where p e [0,1] and r = min{p,l —p}.
Remark 2.2.15. It is well-known that the generalized Kantorovich constant K(h, p)
[94] 1s defined by

h* —h ~1h*-1Y
(2.2.23) K(h,p):= (p—l)(h—l)[ppl - _}11] ,

for all pe R, p#0,1. By virtue of a generalized Kantorovich constant, in the matrix

setting,

Bourin et al. in [24] gave the following reverse of Ando’s inequality for a
positive linear map: let A and B be positive operators such that mA<B<MA, and let
® be a positive linear map. Then

1
2.2.24 OAWH DOB)<———D\A#, B), 0,1],
(2.2.24) ()#p()K(h’p)(p)pe[]
where h:%. The above result naturally extends one proved in Lee [123] for
m
h=1
m

After discussion on inequalities related to the operator mean with positive
linear map, we give a result on Tsallis relative operator entropy with a positive
linear map. It is well-known that Tsallis relative operator entropy has the following
information monotonicity:

(2.2.25) @(T,(A| B)<T,(®(A)| ®(B)), p € [0,1],
Using relation (1.4.23), we have the following counterpart of (2.2.25):
Theorem 2.2.16 ([Moradi-Furuichi-Minculete,163]). Let A, B be two invertible

positive operators. Let ® be normalized positive linear map on B(H), then
2r

(2.2.26) o (©(AVB)- (A d(B))+T,(@(A)| @(B))
<®(B-A)
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< 2(1p_ r) (®(AVB)-®(A#B))+T,(A|B),

where p e (0,1] and r = min{p,l —p}.

Tsallis relative entropy D, (A||B) for two positive operators A and B is defined
by:
D,(4|B):= l(Tr[A]—Tr[Al-PBP ), pe@1].
D

In information theory, relative entropy (divergence) is usually defined for
density operators which are positive operators with unit trace. However, we
consider Tsallis relative entropy defined for positive operators to derive the relation
with Tsallis relative operator entropy. If A and B are positive operators, then

(2.2.27) Tr{A-B]< D, (A|B)<Tr[T,(A| B)], p € (0,1] .
Note that the first inequality of (2.2.27) is due to Furuta [91] and the second

inequality is due to Furuichi et al. [81].
As a direct consequence of Theorem 2.2.16, we have the following interesting

relation, for ®(X)= 7 1 T Tr[X]:
im

Theorem 2.2.17 ([Moradi-Furuichi-Minculete,163]). Let A, B be two positive
operators on a finite dimensional Hilbert space H , then

(2.2.28) 2(17")[7%[14#3]—@}—%[@ (A|B)]
<Tr[A-B]
<2( rfapre)- A, (ajm),

where pe(0,1] and r=min{p,1-p}.

The inequalities in Theorem 2.2.5 are improvements of the inequalities
(2.2.5). In the present section, we give the alternative tight bounds for the Tsallis
relative operator entropy.

Theorem 2.2.18 ([Furuichi-Minculete, 79]). Let A and B be strictly positive
operators and let —1< p<1 with p#0.If A<B, then
S(A|B)+S_(A|B
(2.2.29) S,,.(A|B)<T,(A|B)< (4l )2 (Al ).
If B< A, then

(2.2.30)

S(A|B)+S,(A|B)
2
Proof. For x>1 and —-1<p<1 with p#0, we define the function f(t)=x”t log x

<T,(A|B)<S,,,(A|B).

2
with 0<¢<1. Since %(t) pix™ (logx)3 >0 for x>1 , the function f(t) 1s convex

2

on t, for the case x >1. Therefore, we have

P _ p
(2.2.31) X% logx <% L [x 2+1Jlogx,
D

x? -1

1
by Hermite-Hadamard inequality, since I f(t)dt: . By Kubo-Ando theory
0

[121], we have the following inequality
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AV2(A12BA Y2 /21 AVZBAY2)AY2 < A#pB_A
( J”* tog( Ja s
L Al/2 lOg(Ail/zBAil/z )AI/Z " A1/2(A71/2BA71/2)log(A71/2BA71/2 )AI/Z |

2
which is the inequality (2.2.29). The inequalities (2.2.30) can be similarly shown by
the concavity of the function f(t) on ¢, for the case 0 <x < 1.
m
We note that both sides in the inequalities (2.2.29) and (2.2.30) converge to
S(A|B) in the limit p — 0. From the proof of Theorem 2.2.18, for strictly positive
operators A and B, we see

jSpt(AlB)dt=Tp(A|B).

Remark 2.2.19 ([Furuichi-Minculete, 79]). For the case 0 < p <1 we see
S(A|B)+S,(A|B)
2
from inequalities (2.2.29) since function x”logx 1s monotone, increasing on

x? +1

(2.2.32)  S(A|B)<S,,,(AIB)<T,(A|B)< <S,(A|B)

0<p<1 and logx <x”logx for x>1 and O< p<1. For the case —-1<p<0,

we also see

S(A|B)+S,(A|B)
2

from inequalities (2.2.30) since function x”logx 1s monotone, increasing on

(2.2.33) S,(A|B)< <T,(A|B)<S,,,(A|B)<S(A|B)

p
-1<p<0 and x +l

logx >x"logx for O<x<1and -1<p<0.

O
We will make some considerations about the generalized Kantorovich
constant K(h, p) given in relation (2.2.23), namely:

h-h (p-1h"-1)"
K(h,p)= ,
(. p) (p—l)(h—l)( o h"—h]

forall peR,p=0,1.

If we take a=h"-1 and b= Ll(hp - h), then we  have
p—
pa+ (1 - p)b = p(hp —1)— p(h" —h)= p(h —1), so we deduce the following relation:
pbl—p
K h’p = a—a
(h.) pa+(p-1)p

forall peR,p=#0,1.

Taking into account the above remark, we can estimate the generalized
Kantorovich constant using several inequalities related to Young’s inequality. By
exemple, using the inequality given by Kittaneh and Manasrah [116], in the
following form

Aa—Bf . e _(-rfa-Jbf
<1- <
pa+(1—p)b pa+(1—p)b pa+(1—p)b ’
where p e [0,1] and r= min{p,l — p}, we find
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(2.2.34)

r(\/(l—p)(h” —1)—\/p(h—h”))z <1- K p)< (1 —r)(\/(l—p)(h" -1)-+plh —h”))2
pll-p)h-1) B )= p(l-p)h-1) ’
where h>1, pe(0,1) and r =min{p,1 - p}.
In [Minculete, 151], we show another improvement of the Young inequality,
see relation (1.4.23), thus:

Cln

for the positive real numbers a, b and pe [0,1] and r= min{p,l - p}. This implies the

following estimate for the generalized Kantorovich constant

1 (pephehr 1) _ 1 (1 (prph+hr-1f)
p(l-p) 4lh-h*|n"-1) | ~ K(h,p) " | p0-p) 4lh-n"|r* -1) ]
so, we obtain
2255 [po—p) U ‘12} : K(h,p)s{pa-p) o o ‘12} |
(p+ph+h”—1) (p+ph+h"—1)
where p e (0,1) and r= min{p,l —p}.

Using inequality (1.4.24) which is given by Kantorovich constant, we have:
Kr( ' ) pa+(]— p)b SKl_r( !2)

pbl D
where a, b>0, p e [0,1], r= min{p,l —p}, K( ' ) %and h'= U . This inequality
a

1implies the following inequality

(2.2.36) K'(W,2)<K(h,p)<K"(W,2),
T oy (1)’ ,_ p h"-
where pe(0,1), r=min{p,1-p}, K(h',2)= v and h'= b 1hP 1
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Chapter 3
Inequalities in an inner product space

The aim of this sections is to show new results about the Cauchy - Schwarz
inequality in an inner product space and many other estimates of some classical
inequalities.

We show a refinement of the triangle inequality in a normed space using
integrals and the Tapia semi-product.

The theory of inequalities plays an important role in many areas of
Mathematics. Among the most used inequalities we find the triangle inequality. We
present several characterizations of it.

We also show another reverse inequality for the Cauchy-Schwarz inequality
and for triangle inequality in an inner product space.

We find an improvement of Buzano’s inequality and Richard’s inequality,
which are extensions of the Cauchy - Schwarz inequality.

Starting from a geometrical inequality, we present several inequalities
concerning the Cauchy - Schwarz inequality and a characterization of an inner
product space.

3.1 On the Cauchy - Schwarz inequality in an inner product
space

In a beautiful presentation, Niculescu [167] makes a radiography of the inequalities
that have played an important role in the Theory of Inequalities. The Cauchy
Inequality is one of them.

In 1821, Cauchy [31] showed the following identity:

(3.1.1) (Zlcﬂ](zlzﬂj = (Zaibif + (@b —ab, .

1<i<j<n

In fact this is Lagrange's identity, because, in 1773, Lagrange proved the

identity
2
[iaf](ibf} = (iaibij + Z(aibj —ab, )2 ,
=1 i=1 =1

1<i<j<3
used in the study of some problems about the triangular pyramids.
In fact, we have ||0L||2||b||2 =(a, b>2 + b||2, for all a,be R".

In a more compact vector notation, Lagrange's identity is expressed as:

n 2
(3.1.2) ||a||2||b||2 —<a,b>2 = [ZaibiJ + Z(aibj —a;b )2,
i=1

1<i<j<n
where a and b are n-dimensional vectors with components that are real numbers.
A direct consequence of Lagrange's identity is the Cauchy-Buniakovski-
Schwarz Inequality (CBS).

70



Habilitation thesis Nicusor Minculete

(3.1.3) [Zazl(zsz > (zaibiJZ'

This inequality was studied in many papers [8], [12], [17].
If X= (X<>) is an inner product space, then we have the Cauchy-Schwarz

inequality, given by the following:
(3.1.4) Jee] - o) =
For all x,ye Xand a,be R, we have that

(x5

laac + by||2 =(ax +by,ax + by) = a2||x||2 +2ab(x, y) + b2||y||2

1mplies
6.15) R L P 7 e e N )
In relation (3.1.5), for nonzero vectors x and y and a = ||x||71 and b= —||y| 71, we obtain
2
X y 2
e 2 = E (o (e 00)),
Wl Toll T P
it follows that
2
1 x Yy
(3.1.6) =lxl- V] = === =lx|-|¥]—(x, ).
5 151 T ol || = (2. )
2
1
Therefore, we have ||x|| . ||y|| > <x, y> , because §||x||||y|| ”z—” —”—ij” >0.

Remark 3.1.1. Another proof for equality (3.1.6) can be given using Lagrange’s
barycentric identity (see e.g. [167])

2

iZn:mk”z—xk”2 = z—izn:mkxk - D mmx, —xjuz.
M k=1 M k=1 M2 1<i<j<n
For 2z=0, n=2, x=m,x,, y =m,x,, we obtain
. b _ o mm, |2 o |
m, m, m +m, m +m,|m, m,

If we take m, = ||x|| and m, = ||y|| in relation (3.1.7), we deduce the equality
(3.1.6). A consequence of this equality is the following:
ool Bl
m,+m, m; m, m; +m, 4

2 2
||x+y” +m1+m2 x Yy

m, m,

(3.1.8)

Maligranda proved in [130] the following:
Theorem C. For nonzero vectors x and y in a normed space X = (X,||||) it is true that

x oy .
(3.1.9) ||x+y||£||x||+||y||— 2— M+M anQx , y||)
and

x Y
(3.1.10) ||x+y||2||x||+||y||— 2- H+M maxQx , y||)

If either ||x|| :||y||:1 or y=cx with ¢>0, then equality holds in both (3.1.9) and
(3.1.10).
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Theorem 3.1.2. If X=(X<>) is an inner product space over the field of real

numbers R and the norm |||| i1s generated by an inner product <-,->, then we have

+
R RIS i  ha y”{g Jmmq )< ]Iy~ (. 3) <
2 EME
e+ ol ||x+y||{2__+lwx )
2 BT

for nonzero vectors x and y in X .
Proof. In relation (3.1.5) for a =1 and b=1 we deduce

e+ 517 = (ol + 110" — 20l I = (. )

So, we deduce the equality, for nonzero vectors x and y in a normed space, given by

the following:
2 2
2] - 151~ (. ) = (el + oA = e + oA

2] o] - (x.5))
ol + ]+ e+ 5
Using this equality and inequalities of Maligranda, we find the following

mequality:
A bl-te) [, -
(3'1'12)( B M bbb f e ‘(2 J bbbl

which is equivalent to the inequality of the statement.

which means that

= [l + I = fpe + 51

Xy

el oA

O
Remark 3.1.3. From inequality (3.1.11) and using the triangle inequality, we have
2||x+ y|| < ||x||+||y||+||x + y|| > 2(“x||+||y||) Therefore, we obtain a refined of the Cauchy-

Schwarz inequality, given by:
(3.1.13)
X X

[2— Eay }nanmmmxn bi)s ||x||~||y||—<x,y>s{z— e }mxn imasfiehls)

Corollary 3.1.4. If X:(X,<-,->) 1s an inner product space over the field of real

numbers R and the norm |||| is generated by an inner product <-,->, then we have

x Y
M ]lell o <[l - I = (2. )

for nonzero vectors x and y in X .
Proof. We show that for vectors x and y in a normed space X = (

ol + o + < + oA )= -yl

2
We suppose that |lx[<|[y], so mlnq ) ||x|| Therefore, we have

(3.1.14) [2 -

/| it is true that

(3.1.15)

m mQ

||x||2+||x||||y||+||x||||x+ y||22||x||||y||, which 1implies , which 1is true.

Combining relations (3.1.11) and (3.1.15), we obtain the relation (3.1.14).
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In our paper [Minculete-Paltanea, 148], we obtain refined estimates of the
triangle inequality in a normed space using integrals and the Tapia semi-product.
The particular case of an inner product space is discussed in more detail.

The theory of inequalities plays an important role in many areas of
Mathematics. Among the most used inequalities we find the triangle inequality.
This inequality is the following:

e+ o1 < el + -
for any vectors x and y in the normed linear space X = (X ,

)over the real numbers

or complex numbers. Its continuous version is
b b
If(x)dx < I||f(x]|dx .

where f: [a, b] < R — X 1is a strongly measurable function on the compact interval

[a,b] with values in a Banach space X and If (M is the Lebesgue integrable on [a,b].

Diaz and Metcalf [49] proved a reverse of the triangle inequality in the particular
case of spaces with inner product. Several other reverses of the triangle inequality
were obtained by Dragomir in [50]. Also, in [51], there are given some inequalities
for the continuous version of the triangle inequality using the Bochner integrable
functions.

In [188], Raji¢ gives a characterization of the norm triangle equality in pre-
Hilbert C*-modules. In [130, 131], Maligranda proved a refinement of the triangle
inequality. In [112] Kato, Saito and Tamura proved the sharp triangle inequality
and reverse inequality in Banach space for nonzero elements x,,x,,..., x, € X, which

is in fact a generalization of Maligranda’s inequality. Another extension of
Maligranda’s inequality for n elements in a Banach space was obtained in Mitani
and Saito [154]. The problem of characterization of all intermediate values C

n
2%
k=1

Mineno, Nakamura and Ohwada [153], Dadipour et al. [46], Sano et al. [195] and
others. For other different results about the triangle inequality we mention only
[178].

The main aim of this paper is to provide an improvement of the inequality
due to Maligranda. Some other estimates which follow from the triangle inequality
are also presented. Moreover, we can rewrite them as estimates for the so-called
norm-angular distance or Clarkson distance (see e.g. [40]) between nonzero x and y

satisfying OSCSZ”xk”— , for x,,x,,..,x,in a Banach space is studied by
k=1

as alx,y]=

X Y
<l [

This distance was generalized to the p-angular distance in normed space in
[130]. In [64], Dragomir characterizes this distance obtaining new bounds for it. A
survey on the results for bounds for the angular distance, named Dunkl-Williams
type theorems (see [65]), is given by Moslehian et al. [162].

In our paper [Minculete-Paltanea, 148] we show several estimates of the
triangle inequality using integrals.

Let X = (X, ) be a real normed space.

Lemma 3.1.5. For any x,y € X, the function g(s)=|x+sy

,se R, is convex.
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Applying Hermite-Hadamard’s inequality and Hammer-Bullen’s inequality, we
found the following:
Theorem 3.1.6 ([Minculete-Paltanea, 148]). For any x,y € X, we have

(3.1.16)

1
(3.1.17) Joll+ I+ o+ > 4] 0 = 2+ A9l
0

Corollary 3.1.7 ([Minculete-Paltanea, 148]). For nonzero elements x, y from a space
with inner product X = (X,<,>) and a,be R, a<b, we have
lellllyll (x,)

2 - )
a1y — AP ey
b« Il 21 - 2 + ol ool 2ff- e i
0

Inequality (3.1.18) represents an improvement of the Cauchy-Schwarz
mequality.

Next, we will study estimates of the triangle inequality using the Tapia semi-
product. The Tapia semi-product on the normed space X (see [199]) is the function
(,)y : XxX — R, defined by

(0., = lim P&+ )= 0lx)

t—0
t>0 t

2
,xeX.

where ¢(x)= %”x

The above limit exists for any pair of elements x,ye X. The Tapia semi-
product is positive homogeneous in each argument and satisfies the inequality
(x, y)T| £||x||||y|| for all x,ye X . In the case when the norm |||| 1s generated by an

inner product (-), then (x,y), =(x,y), for all x,y e X.

The Maligranda inequality (see Theorem C) can be written as: for nonzero

r Y

||x|| ||y|| ]max(“x” ||y||)

If in inequality (3.1.19) we replace y by ty with £>0, then we obtain

(3.1.19) | 2|+ oo (minlfc] o) < o+ ] e + o] < [2 -

x oy . x oy
2 —|— + == |minl|x||,t )Sx+ty—x+ty S{2——+—jmax ),
oy * b b= b e sl 2 e
which 1s equivalent to
x Ly e + ] =] L x .y }1
2 —|l— + = |- minl||x||, ¢ )S V| ———— < 2— | — + | |- max ),
( 1 ol < Eaviinge

so, by passing to limit for ¢ — 0, >0, we deduce

x o y|) 1. | + 2] = |%] { J 1
2——+-= |lim=min||x||,¢ ) y|-lim————<| 2— lim=max )
( ® ||y||];:00t bl <ol ™= ol el

74



Habilitation thesis Nicusor Minculete

2 2
Since limW = Lm||x+ty|| —||x|| = (x, y)T and for t—0,6>0, we have
ot e (o R
min(]x t ): , SO %min(“x”,t” y||)= , we deduce the inequality

- N i+ljx o)< el = G, )
( b T A<l =)

This inequality can be written as
(3.1.21) el + e, ) <[]+ ] -

For nonzero elements x,y e X, if we replace x by and y by in inequality

(3.1.20), then we find the following inequality

(3.1.22) (i,lJ <|*

J
N + —_| —
<l ]

If X :(X,<-,->) 1s a space with inner product, then for nonzero elements x, y,

inequality (3.1.20) becomes
X Yy
(3.1.23) (2— ]IIXIIIIyII < Jeellofl = (. )

I + —_
<l 1A

This inequality represents an improvement of Cauchy Schwarz’s inequality.
y

(3.1.20) becomes:
Theorem. 3.1.8 ([Minculete-Paltanea, 148]). Let x,y € X be nonzero vectors. Then,

we have
(3.1.24) (. )r < el folee. 2) -2).
Theorem. 3.1.9 ([Minculete-Paltanea, 148]). Let x,ye X be nonzero vectors such

For nonzero elements x,ye X denote v(x y) Then inequality

that ||y|| S||x|| and x||y|| #* —y||x|| Then, we have

(3.1.25) ||+ [o] - + 5] = @~ ol o] - 1| 2 ,lj ]lell -1,

e+ 171 ),

@120 ol -l 3] ot e~ 1| ) l]T]mxn—nyn),

@1.27) |+ ~J+ i 2 @~ ol 3 bf - .- —y—] }mxnnyw

and

(3.1.28) ]+~ + o] < 2 ol o] - 1[ﬁ—j ]mxn—nyw.

It is easy to see that we can write ax,y]=uv(x,—y). Using inequalities (3.1.26)

and (3.1.27) we deduce the following double inequality:
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Corollary 3.1.10 ([Minculete-Paltanea, 148]). For nonzero vectors x and y, such that

, we have
P e o P SO I DY 7
min[x].|5]) Wl mas(el o))
where

- (), et vo 2 (EE ) et

In [Minculete-Paltanea, 148] to section 4 we derive many inequalities in an
mner product space from Theorem 3.1.9.

3.2 Reverse inequalities for the Cauchy-Schwarz inequality in
an inner product space

Let X be an inner product space over the field of real numbers R . The inner product
<> induces an associated norm, given by ||x|| =J<x,x>,forall xeX ,thus Xis a

normed vector space.
For nonzero vectors x and y in X we define the angular distance a[x, y]

between x and y by
ey -2
Il I
(see [40]).
Therefore, using relation (3.1.6), we prove that
1
(3.2.1) Sllel-Iol - el D = [ -l = (e, )-

Theorem 3.2.1. If X:(X,<-,->) is an inner product space over the field of real

<~,.>, then we have

y< 2l - ol

(3.2.2) o -] = (. ) < z
el ]
for nonzero vectors x and y in X .

Proof. Massera-Schéffer proved in [134] the following inequality: for nonzero vectors
x and y in X there is the inequality

(3.2.3) alx, y]- max(“x”” y||) <2x -y
Combining relations (3.2.1) and (3.2.3) we deduce the inequality of the statement,

which is in fact a reverse inequality of Cauchy-Schwarz inequality.
Remark 3.2.2. Dunkl and Wiliams showed, in [65], the inequality

4
(3.2.4) afx, y]< ]

]+
Using this inequality, we obtain another reverse inequality of Cauchy-Schwarz
inequality.

Lemma 2.2.3 ([Stoica-Minculete-Barbu, 197]). In an inner product space X over the
field of real numbers R, we have
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(3.2.5) ||y|| > \/||x||2||y||2 - <x, y>2 ,for all x,ye X.

Proof. For y=0 we obtain the equality in relation (3.2.5). For alln x,ye X,y =0,

x+ly
2

2 2 2
we have ||x|| ||y|| —2<x, y> =|lx — <x,32/> y|| , which means that
| |
\/ 2 12 2 <x;y>
ol oA = )™ = [olfoe ===
|
Therefore, the 1inequality of the statement 1s equivalently with
Hx + 1 Y[ =[x — <x,321> y|l, which is equivalent to
2 A
= f
Hx+%y 2 |lx — ’32} v o,
o1

which implies
(%) (x.)

+ )
T

1
ol + o, )+ 1o = el -2

(. )

2

2
so, 1t follows that { +%||x||] >0, forall x,yeX,y=0.

|
Remark 3.2.4. It is easy to see that
1
(3.2.6) Il -5 > \/||x||2||y||2 —(x, y>2 ,forall x,ye X.

Theorem 3.2.5 ([Stoica-Minculete-Barbu, 197]). In an inner product space X over
the field of real numbers R, we have

(3.2.7) el + [+l =5 = 298y o ~(x.5)° .
for all x,ye X.

Proof. From the parallelogram law, for every x,ye X, we deduce the following
equality:
2 2 2 2
2+ oI + o )= 2 + o7+

which is equivalent to
2

1
e+ off e J-lof* = e+ 5 >
SO
1ol ol
(3.2.8) x4y = : P

Therefore, combining the relations (3.2.5) and (3.2.8), we obtain the following
2 2 2 1 [ q 2 2) 2] 3 2
ol I e+ A7 = 5 2+ 5 + o=l ]+ 5 1

1> s 1
“ges T 2ot > 2Bl + Lol > 2B el - (m)
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Replacing y by —y in above inequality, we prove the inequality of the statement.

Corollary 3.2.6. In an inner product space X over the field of real numbers R, we
have

(3.2.9) el =017 el 9

forall x,ye X.

Proof. It is easy to see that \/||x||2||y||2 —(x, y>2 > || |v| = (x,») and using inequality
(3.2.7), we have the inequality of the statement.

Corollary 3.2.7 ([Stoica-Minculete-Barbu, 197]). In an inner product space X over
the field of real numbers R, we have

1
(3.2.10) e =53 2 el - [l = (x.9).
for all x,ye X.
Proof. From Lemma 3.2.3, we have ||y|| x —éy > \/||x||2||y||2 - <x,y>2 , SO

x——y

2 ol ol = .} 2 el ol - ).

Remark 3.2.8. From Corollary 3.2.7, it is easy to see that
(3.2.11) mm{”x” } > ||x|| . ||y|| - <x, y>, forall x,ye X.

|1

I
2 2
This inequality represents another reverse inequality for the Cauchy-Schwarz
inequality in an inner product space.
Several applications are given below:

1. In triangle ABC the inequality
— 2

> 4+/3A
is true, where A is the area of the triangle ABC.

Proof Let Esz be the Euclidean punctual space. If we take the vectors
a= BC b= AC c—AB in inequality (3.2.7), then using the Lagrange identity,

Jel el ~{a.b)” =

, we obtain the following inequality:

— 2 —_ _

> 2J3[BCx AC| = 4434
which is in fact the Ionescu-Weitzenbéck inequality.
2. Using inequality (3.2.2) and the relation for a[x, y], we deduce de following
inequality for the angular distance a[x, y]: for nonzero vectors x and y in X, we have
a lower bound for the angular distance a[x,y] given by

i

||x|| i
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3. For the space(R",(-,-)) , where x=(x,%,,...%,), ¥=(,¥5 y,), we have

(x,5) = 2,3, +%,), +... +2,, and |x]| = JxZ +x2+...+x2 . We use inequality (3.2.10),

el I = e, 30 < o . thus:

or ($ B ) Lo (£ [Be 30

b

4. For the space ( 0([a,b]),<-,->) , where f,geC°([a,b]), we have (f,g) =Jf(x)g(x)dx

b
and ||f|| = /jf2(x)dx . We use inequality (3.2.10), thus:

o ([ ohin Jiwne - rtontons < e 1) )

2

x—ly
2

a

5. From inequality (3.2.9), we have Lsmx”z +||y||2 +||x—y||2)2||x||-||y||—<x,y>, and

243

replacing y by —y in this inequality implies

Sl ot e o J2 el o - ().

3.3 Considerations about the several inequalities in an inner
product space

The objective of this section is to show new results concerning the Cauchy - Schwarz
inequality in an inner product space. We find an improvement of Buzano’s
inequality and Richard’s inequality, which are extensions of the Cauchy - Schwarz
inequality [Minculete, 141].

From Lagrange's identity, given above, we found the following inequality

which states: if a = (ay, ..., an) and b = (b, ..., by) are two n-tuples of real numbers,
then
(3.3.1) Ja? +.. +a?Jp? +... +b2) > b, +...+a,b,|,

with equality holding if and only if a=A4 b. This result is called the Cauchy-Schwarz-
Buniakowski inequality or simply the Cauchy inequality.

Many refinements for Cauchy-Schwarz-Buniakowski inequality can be found
in literature (see [8], [12], [17] and [154]). In particular, we mention one of them:
Ostrowski [171], in 1952, proved the following: if x = (x1, ..., Xn), Y = (V1, ..., ¥n) and z
= (z1, ..., zn) are n-tuples of real numbers such that x and y are not proportional and

Zykzk =0, andekzk =1, then
= =

2
(3.3.2) D/ Dz <D XY v —(ZxkykJ :
k=1 k=1 k=1 k=1

k=1
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For all x,ye X in an inner product space X =(X,<-,->) over the field of

complex numbers C or real numbers R, then we have the Cauchy-Schwarz
inequality, given by the following:
[, )] < ] o1
The Cauchy-Schwarz inequality can be written, as in Aldaz [8] and Niculescu
[167], in terms of the angular distance between two vectors, thus

2
; ]

©.33) <x,y>||x||||y||{1—§
Buzano [28] showed an extension of the Cauchy-Schwarz inequality, given by
the following:

(334 ) < 5 ol () + - )

for any x,a,be X.

It is easy to see that for a = b, the inequality (3.3.4) becomes the Cauchy-
Schwarz inequality.

Another inequality which is included the Buzano inequality is mentioned by
Precupanu [185] and Dragomir [62]:

1 1
(3.8.5) ol (. 8)| =l i) = o). )] < 5 o (. + -
for any x,a,be X. In [95], Gavrea showed an extention of Buzano’s inequality in

inner product space.
For real inner spaces, Richard [192] found the following stronger inequality

1 1
(@ x)(.b) =l (@, b) < Sl e - o

x _J

- 1ol

for all nonzero vectors x,y e X.

(3.3.6)

)

for any x,a,be X.
In [183], Popa and Rasa showed that, for any x,a,b € X, the inequality

1 1
3.3 Re{{a.x)x.0)~ 3 " (0.8) | < Sl ol 1o~ (im{a )
holds.
Dragomir [61] presented the following refinement of the Richard inequality:
(3.3.8) (@ B)l]" — ), b)| < mawe{l, L afa] - |B] - |

for all vectors x,a,b in an inner product space X and a € C.
This inequality was found in another way by Khosravi et al. [114].
In [129], Lupu and Schwarz proved the following inequality:
(3.3.9) llal (& )|+ el ) + el u. 5)| < e el e + 2l )b, c)e. )]

for any vectors a,b,ce X .

These inequalities are applied to the theory of Hilbert C*- modules over non-
commutative C*- algebras, see Aldaz [8], Pecari¢ and Raji¢ [178] and Dragomir [61],
[62].

In the beginning, we prove two lemmas:
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Lemma 3.3.1 ([Minculete, 141]). In an inner product space X over the field of
complex numbers C, we have
2
X,
Kz >“F<y>

y
|1 I’

(3.3.10) e+ e =

forall x,ye X, y#0, and for every a € C.
Proof. By several calculations, we deduce the following:

bl =(oe s o=l + afw )+ ol + b -

IRCE) s etz
[”ﬂ |H|I MMJ nn “ |

oA
) b e el
oI H e

o1
O
Remark 3.3.2. Let x,ec X with [e|=1. If we take y=e and a=-1 in relation

because we have

(3.3.10), then we obtain ||x —ﬂe”z = ‘ﬂ - <x,e>‘2 +Hx — <x, e>eH2 . Consequently, we
deduce Hx — <x, e>e”2 =inf ||x — /1e||2 which is a result found in [129].
1eC

Lemma 3.3.3 ([Minculete, 141]). In an inner product space X over the field of
complex numbers C, we have

(3.3.11)

1
(@x)ye Ll

forall x,ae X.
Proof. For x =0 the equality is true. For x # 0 inequality (3.3.11) becomes

. (a, x2>x
[~
calculations, we deduce the following:
2 2
Jen] | fas) fad | (e |
e W Tl e

Consequently, inequality (3.3.11) is true.

=|la|. If we take in equality (3.3.10) a = -2,y = <|r ) x , then by simple
x

O
Remark 3.3.4. A simple proof of Richard’s inequality can be given by combining the
Cauchy-Schwarz inequality and relation (3.3.11), thus:

1 1 1
(ax)(x,b) = |1l (. b) = <<a: e K b> < =Sl el

Theorem 3.3.5 ([Minculete, 141]). In an inner product space X over the field of

complex numbers C, we have
L
(3.3.12) o el + el o =9 2 2 Relad(x, 3)(3.2) (. 20l ).

forall x,y,z e X, and for every a cC.

1
(@52
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Corollary 3.3.6 ([Min_JMI]). In an inner product space X over the field of real
numbers R, we have

3.3.19) bi [“’ )2) <x,z>] < ol - (290"

o ol

forall x,y,zeX,y#0,z+#0.
Proof I. If y#0,z#0, then we apply Theorem 3.3.5 for « € R, and we have

2
oI L&l o — e 3)(3.2) — (e 2ol ) [l 7~ ) 20
for all x,y,z e X, and for every o € R. Since ||y||2||z||2 >0, then the discriminant is
negative, i.e., A= ((x,3)(y.2)~(x.2)s|' | —||y||2||2||20|x||2||y||2 -

prove the statement.
Proof II. For a = <x, y><y,z> - <x,z>||y||2 in relation (3.3.12), we have

2
"ol =1 ) > (2 ALl ](x, yNy.2) = (=2l
For x =0, inequality (3.3.13) is true. In the situation x # 0,y # 0, if we replace in

the above relation x and y by ”x_” and ”l
X y

<x, y>‘2 )S 0. Therefore, we

2

, then we deduce the statement.

O
Remark 3.3.7. If we take (x,z) =1and (y,z) =0, in inequality (3.3.13), then we find

the inequality of Ostrowski for inner product spaces over the field of real numbers,
(3.3.14) 5 A = N C O

forall x,y,ze X,y#0,z=0.

It is easy to see that for x,y,z € X = R" we obtain inequality (3.3.2).

Theorem 3.3.8 ([Minculete, 141]). In an inner product space X over the field real or
complex numbers, for any nonzero vectors x,a,b e X, we have

1, 2 1, 2
(3.3.15) 5 Il - 6] - (@ %), 6) = 5 [ “{a. )

> ZL >0,
[l - e

where
2

A=K llof 1 - o)) St el )

Remark 3.3.9. a) For real or complex inner spaces, inequality (3.3.15) represents
an improvement of Richard’s inequality, given thus:

1 1 A
(@ x)(,b) = [l (. 0) < S [l e - [ef -

ol el - o

)

where
2| 1 2 )\
A=t e -Gt )
b) Also, using above inequality, and from the continuity property of the modulus,
Le., |a —ﬂ| > Ha| —|,B”, a, B € C, we deduce the inequality

(3.3.16)

82



Habilitation thesis Nicusor Minculete

Sl () -l [+ T ” T w.5) < Sl () + ol o)

which is in fact a refinement of Buzano’s inequality.
In [120], we found the following result of Kouba:
Lemma 3.3.10. Let X be a real vector space equipped with an inner product <,>

- || |- el

and its corresponding norm |||| For any x,y,z,u,ve X, with ||u|| = ||v|| =1,we have

(3.3.17) (u, z>2 +(v, z>2 (1+‘ (u,v) )|z ?

(3.3.18) ol (3,2)" + 11 (. 2)" < [elloflel” %))
Using AG inequality, we deduce ||x|| <y, > +||y|| <x z>

)

<x,z><z, y>‘ and
from inequality (i1) we obtain
1
e, 2)z. 3] < Sl Gl + (..

for any x,y,ze X.

This inequality has been studied at this section as Buzano’s inequality [28].
We remark an improvement of the Buzano inequality given by:

<x,z><z,y>‘ < ||x|| <y22”x]""j|’|” <xz> S%”ZHQQ N <x,y>‘)

(3.3.19)

for any x,y,ze X.

3.4 Several inequalities and a characterization of an inner
product space

The aim of this section is to present several inequalities concerning the Cauchy -
Schwarz inequality and a characterization of an inner product space.

We start from a geometrical interpretation in a triangle. In what follows, we
will use the notations: a, b, ¢ — the lengths of the sides; h, - the length of the

altitude of A; w,- the length of the bisector of the angle A; and R is the

circumradius.
In [18], we found the result of Ballieu (1949) given thus: in a triangle ABC,
for every t e (0,1], the following inequality:

t

i1 . A a
(3.4.1) 2" sin 5 < o
1s true.
For ¢t =1, the inequality of Ballieu becomes
(3.4.2) smé < 2

2 b+c
This 1s equivalent to the inequality

h, <w,.
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2S 2abc be 2bc
—= = nd

=— a wa:
a 4aR 2R b+c

It i1s known that A, = cos%. By simple calculations,

we have

bec  2bc A 1 2 A a 2a
h, <w,< —=< c0s— <& — < <
2R b+c 2 2R b+ec 2 2R b+c 2

. A
4Rszn—cos§ 9 A - é
2

M
x/11x]1 x

In the above figure, we have AB=x, AC=y, AM=-", m:ﬁ ’
J

[
NM = ﬁ - ”l, and CB=x — y . Therefore the inequality of Ballieu becomes:
x|y
2l — o
(3.4.3) x _ Y <
ol oAl el + 1

This inequality is in fact the inequality of Kirk and Smiley [115], for a real inner
product space.
Using the inequality of Ballieu, for ¢ € (0,1], we deduce

t t
9y —
(3.4.4) =y Ao
el 10 el + ]
If we apply the cosine law for the angle A, then we have
2AM* - MN* AB*? + AC* - BC”
(3.4.5) cos A = =

2AM* 2AB-AC ’
which is equivalent to the identity
2

el o e - oA
el -]

x )

el A

which implies the following relation:

92—

)

2
P N

ER. o] -
Next, we study the behavior of this equality in a real inner product space.

(3.4.6)
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Theorem 3.4.1. If X:(X,<-,->) is an inner product space over the field of real

numbers R and the norm ||| i1s generated by an inner product <-,->, then we have

(3.4.7) (- alall” ~Hlof* )= able — o — e — bof
for vectors x and y in X and a,beR.
Proof. For all x,y e Xand a,be R, we have that
laax — by||2 =(ax —by,ax —by) =a” ||x||2 —2ab(x, y) + b2||y||2.
It follows that
(6=l ~ b )+ Jaos— byl = abli]” ~2(x,3)-+ o] )= abe "

Therefore, we obtain the statement.
O

Corollary 3.4.2. If X:(X,<-,->) 1s an inner product space over the field of real

numbers R and the norm |||| is generated by an inner product <~,->, then we have

x Y

<l 1]

for nonzero vectors x and y in X .
1

(3.4.8)

Proof. For a = ”— and b = ”1—” , in inequality (3.4.7), we deduce equality (3.4.8).
X y

In 1964, Kirk and Smiley [115] showed that if the inequality

2l -]

o]+ 1]

holds for all nonzero elements x and y of a normed linear space X , then X is an
inner product space. In the same work, they also showed that the equality holds in
(3.4.9) if and only if ||x|| = ||y|| or ||y||x + ||x||y =0.

(349) a[x’ y] <

Theorem 3.4.3. If X is a normed linear space over the field of real numbers R and
we have the equality
2
ER ] B

EN. R
for nonzero vectors x and y in X | then X is an inner product space.

(3.4.10) * _J

Proof. If X 1s an inner product space, from Corollary 3.4.2, we deduce the equality.
If X is a normed linear space and we have equality (3.4.10), then we show that

x v 2x-d

P A P it
el A el + )

for all nonzero elements x and y.
We have [ie— ] <l +]y] so =] < (x| +[»])". Multiplying by (][]

we obtain (] — [y e = 31" < (e =21 e + 1) -
It follows that

(b0 =37 = (o = I ]+ I < 4yl = v
Therefore, dividing by 4||x|||| y||((“x|| + || y||))2, we deduce the inequality
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ool el AP _ eoff
Jee] - | (e + 1)
2 2
ERN IO Lt
el Il (e + )

Consequently, we have * _JYl< il
el A el + ]

deduce that X is an inner product space.

which is equivalent to

. So, from Kirk and Smiley inequality, we

Maligranda’s inequality, given above, can be written as the following:
N B
min(x].|3]) max(x], )

(3.4.11)

[l A

If we replace y by —y in Maligranda’s inequality, we obtain the following

Xy )
P ||x||+||y||—[z— Lo }mmmxn, bi

S

which implies

x = y| < x| + |y — 2minix]|, y)+ 2 min(x), y)
el <l -2l )+ 5 2 i Lo
But 2min0x , y|)=||x||+||y||—‘||x”_”y » SO

x|, y|)

x oyl .
Joe = o =l = o] < bl minf
Similarly, since 2maxQ|x||,||y||): o] + ] +H|x|| —||y|” we deduce

x )y

e =+ [l -l = Wl max(fx, )

Remark 3.4.4. It is easy to see that in an inner product space X, the inequality of
Maligranda,

ol -l

o)

=l =fll =1
minc], |5
is very simple because

x )

1o

b,

X

s

max(]

x| \/le 4 el o

Bl DAV minfel b masd o]

and a <+ab <b, so afx,y] is the geometric mean of a and b.

(3.4.12)

2 2

Theorem 3.4.5. If X=(X,<-,.>) is an inner product space over the field of real

numbers R and the norm |||| is generated by an inner product <~,~>, then we have

(3.4.13)
ax\|x||, |y inl|x|, [y
2”;“ 7 y'f (=5 =l =1 < eIl = (. 5) < ﬂﬂ o y')| e+ -l

Proof. Using relation (3.1.6) in the following form:
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2

x_y
1o

and the inequality of Maligranda, we deduce the inequality
Joe = =l - A

gnxn-nyn-[ bl ]<||x||-||y||—<x,y><§nxn-nyn-[

which 1s equivalent to the inequality of the statement.

= el - I = . )

el o

2
e = o+ [l - IIyIHJ

max(c, )

X

s

m
Remark 3.4.7. Inequality (3.4.13) shows a refinement of Cauchy-Schwarz’s
inequality and a reverse inequality for Cauchy-Schwarz’s inequality.
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(B-ii) The evolution and development plans for career
development

4 Future directions for research

The purpose of this chapter is to present some of the lines that describe the present
and future projects in scientific research and the teaching career.

I shall continue my research in the field of theory of inequalities related to
inequalities for functionals, inequalities for invertible positive operators and
inequalities in an inner product space. At the same time, I shall focus on certain
types of inequalities and their applications in generalized entropies.

I shall continue to elaborate new scientific papers in all fields quated above,
or other areas of mathematics, especially related to real and complex analysis.

I intend to write a scientific monograph related to my contributions in the
theory of inequalities related to inequalities for functionals, inequalities for
invertible positive operators and inequalities in an inner product space.

I would like to publish a book for students in computer science, mathematics,
economics and finance. Several of my future research projects are described in the
following.

4.1 Future directions for research related to Hermite-
Hadamard’s inequality and Hammer-Bullen’s inequality

In this section, we intend to give two reverse inequalities of Bullen’s
inequality which represent the generalizations of results from [Minculete-Ratiu-
Pecari¢, 143]. We also present several applications about Stolarsky’s mean, the
logarithmic mean and the identric mean. The results obtained below are part of
recent research.

In the monographs [166, 176] we find, for a convex function f : [a,b]—)R,
Bullen’s inequality, namely:

4.1.1) %j.f(x)dx < f(a);f(b)”(a—zkb).

For a particularization of function f, Dragomir and Pearce in [51] obtained a
refinement of Hammer-Bullen’s inequality, given by the following:
Theorem B. Let f: [a,b]—)R be a twice differentiable function for which there

exists real constant m and M such that: m<f"(x)< M, for all x e [a, b]. Then

ary  mehs f(a)+f(b)+f(a+bj_b?aif(x)dx SV

24 2 2 24

In [Minculete-Ratiu-Pecari¢, 143] there were obtained two reverse inequalities of
Bullen’s inequality
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(4.1.3)

f(a);f(b)+f(a+bj_ 2aif(x)d b-a)r (6)- f'(a))

(4.1.4) %f(a)”(b)u(“*b)_ 2aif(x)dx_(b—a)(f’gzl)—f'(oz))§S(M—né)ib—a)2

and Acu and Gonska, in [5], extendend Bullen’s inequality for continuous functions
using the second order modulus of smoothness.

Inspired by the above work, I started a new joint project with F. C. Mitroi-
Symeonidis and M. Niezgoda related to Hermite-Hadamard inequality. We would
like to propose a new inequalities for Stolarsky’s mean, logarithmic mean, and
identric mean.

Lemma 4.1.1 ([Minculete-Niezgoda-Mitroi, 142]). Let f: [a,b]—)R be a twice
differentiable function. Then we have the following:

(4.1.5) i(x—c)qc(x)f”(x)dx=(b—a)f(c)+(c—a)f() (b—c)f(b)- I flakde,

where a <c<b and

Proof. We make the calculations:

(x —c)g, (x)f" (x)dx = j.(x —c)a—x)f"(x)dx + j.(x —c)b—x)f"(x)dx =

a

Q Sy O~

c b

= I[Zx —(a+ c)]f’ (x )dox + I[2x —(b+ c)]f’ (o )dx =

a c

(b - a)f(c)+ (c — a)f(a)+ (b — c)f(b)— 2]1 f(x)dx .

Remark 4.1.2. a) It is easy to see that for x [a, b], we have (x —c)g,(x)>0 and, by

some elementary computations we obtain:

(4.1.6) I(x ck, (x)dx— (a +b% +3c® +ab—3bc - 3ac)

Therefore, for x €|a, b] we can write:

(4.1.7) mlx —clg.(x) < (v - cla. (x)f" (x) < Mlx - clq.(x) .

Integrating from a to b and using Lemma 4.1.1, we find the relation:

@(GQ +b% +3c? +ab—8bc—8ac)£

(4.1.8) (b-a)f(c)+(c-a)fa)+(b-c)f(b)- I(x)dx<

M(b-a) (02 +b* +3c® +ab—3bc— 3aC)
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Theorem 4.1.3 ([Minculete-Niezgoda-Mitroi, 142]). Let f:|a,b] >R be a twice

differentiable and convex function. Then we have the following inequality that holds:
(4.1.9)

0<(b-a)f(c)+(c-a)f(a)+(B-c)f(b)- zi £l )dx < imax{(a — e}, (-l [ ®)-£(a),

where a<c<b.
Proof. Since f is a convex function, it follows that f”(x)>0, for every x ela,b].

Because we have0<(x—clg, (x)< imax{(a —c),(b—c) }, then we deduce the

following inequality: 0<(x—c)g,(x)f"(x)< 4max{(a M —C)Z} "(x) , for every

X € [a, b]. Therefore, by integrating, the last inequality from a to b, we obtain:

< [(x-c)g, ()" (x xg%max{(a_C)Z,(b_c)2}[fr(b)_fr(a)].

Q'—,@

Using equality (4.1.5) in the previous inequality, we find the inequality from the
statement.

Theorem 4.1.4 ([Minculete-Niezgoda-Mitroi, 142]). Let f : [a,b]—)R be a twice

differentiable function for which there exists real constant m and M such that
m<f"(x)< M, for all x €|a,b]. Then

(4.1.10)

(b a)f(e) + e~ a)a) + (b-c)f(e) -2 Flelas ~L{a® +b? 430" +ab-sbeac) 0T (b)-1'(a)

b-a
" maxa-cf,(b-cf}

M-m
<
16

where a<c<b.

Proof. Taking into account that 0<(x-c)g,(x)< imax{(a —c),(b-cf } and

m< f”(x)ﬁ M, for all x e [a,b], and applying the inequality of Griss (see e. g. [51,
166]), then we obtain the following inequality:

%aj.(x—c)q( )" x)dx— j‘x ), ( x)dx

a

I £ (o )dx| <
<Mom  aefa—e) b)),

16
By simple calculations, we deduce the inequality of the statement.

Remark 4.1.5. a) If we choose c=Aa+(1-A)b, with 1€(0,1) then inequalities
(4.1.9) and (4.1.10) become:

(4.111)  0<(b-a)f(2a+Q10—-21p)+{B-a)1-2)f(a)+ ()]~ 2} £ (o )ox
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_( _4 af max{(l A) /12}[}" f'(a)l

(4.1.12)
6-a)flia+ - 2)+ (- a1 - 2)(a)+ 276
o epe - 0= 2o-ar )1 e)

_b-af(1-m)
16

b) For A :% in inequalities (4.1.11) and (4.1.12), we deduce the inequalities (4.1.3)

max{(l AP 2 };

and (4.1.4).
Some applications can be identified, thus:

a) If we consider f(x) =x”, with p>1, then inequality (4.1.11) becomes:
(4.1.13)

(la+@-2p)" +(1-2)a” + 46" p(b—a)(b*" —a’" )max{(l— g AZ}S

2 8
[Lp+1 (a’b)]p < (la+@-2p) _; (1-2)a” +Ab” ’
1
P _pHP |p1
where L, (a,b)= {u}p 1 is Stolarsky’s mean.
pla-b)
b) We consider f(x)= l, with x>0, in inequality (4.1.11), then we obtain:
X
(4.1.14)
2 2
< L(a,b)< ,
1 1-4 4 1 1-24 42 (b-a)(a+b) 2 9
+ - B 1-4)°,4
Aa+(1-2)p b /1a+(1—ﬂ,)bJr a b 4a’b* max{( \ }
b-a . . .
where L(a,b)=———— is the logarithmic mean.
Inb—Ina

c) If we consider f(x)z —Ilnx, with x >0, then inequality (4.1.11) becomes:

Mmax AR
(4115) (ﬂ/a+(1_ﬂ/)b)a1—ibl < Iz(a,b)S(EaJr(l—)t)b)al‘ﬂbﬂe dab {(1 A A },
1

1(b° Yoo . .
— 1s the 1identric mean.

a

where I(a,b)=
e

I would like to start a new joint project with Shigeru Furuichi related to
Hermite-Hadamard’s inequality. We would like to propose a new improvements for
Young’s inequality.

91



Habilitation thesis Nicusor Minculete

We establish several inequalities using Hermite-Hadamard’s inequality (if

f: [a,b] — R is convex function, then ! (a);r ! (b) > 5 ! I f(x)dx > f(aTerj) for the
-a

function f,.

&nwﬂgby@—ﬂ%Wﬁhye[&%}&ﬁmﬂby

fy(x):(l—,u)+,ux+(1 2x*

— )+
is convex function, for all x>1, ue {O,%}, we use Hermite-Hadamard’s inequality

on the interval [1,a], with @ >1. Thus, we obtain the inequalities:

a+1 a+1 a+1 a+1)
2 =

2 2 (-pala+l)+2u 2~
and
1§ a+l 1 1 2a* 1)
— =1- - In(a(1 - - .
a_llfu(x)dx R S Ty n(a(l - u)+ 1) Sy ey

From Hermite-Hadamard’s inequality, we deduce

1 a
= 1—y+ya+——2a”j2
2( (- pa+u
0L+1+ 1 Y7,
2 1o G-
a+1 a+1 (@+1)"
+ J—
2 (-pfa+1)+2u 2~7

zn<a<1-ﬂ>+u>—@2(%);;}})z

1-pu+u

)

1-—pu+u
1
where e {05} and a >1.

In this inequality, if we take a = L] , so x>y, we will find an inequality of
Y

type Young. In the same way, we use Bullen inequality or Hammer-Bullen
inequality, which states that:

fla)+16), fese). 2 [

2 2

a

AOEIACON

So,
2

f#(a ;1j S 2 : J‘ f, (x)dx , which implies another inequality of type
a p—
1

Young.
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Now, we take the function £, :[01] —» R with ,JEBJ} defined by

fﬂﬂZ@—ﬂ%vm+0 2"

— )+ p
1s convex function, for all 0<x <1, ue {% ,1} .

We use Hermite-Hadamard’s inequality on the interval [0,1]. Thus, we obtain
the inequalities:
£,0)+£,0) ¢ 1
- 2 - Z}[fy(x)def# 3.

Butf,(0)=1-u, £,1)=0, f,le)=1-p+pua+i—5—

fy(ljzl—ﬁ-l-L—Ql_”

a
2a”,

2 2 u+1

and

| ey

f,lx)dx =1-=+ + nly)-——.

'!). ok 2 1-u ([Q-py (u+1)

From Hermite-Hadamard’s inequality, we deduce
() P T AI UY_ Sy Y  SE SS JY_SE S
2 2

(,u+1) 2 u+1

where u e [é ,1}

In the same way, we use Hammer-Bullen inequality and we will obtain another
inequality of type Young.

Below, we propose another research idea related to the function gamma of

Euler.
The function gamma is defined via a convergent improper integral as

0

r(t)= J‘xHe*xdx ,forall t>0,
0
it 1s known as Euler integral of the second kind. The following infinite product
definition for the gamma function is due to Weierstrass,

O=-2"TI[1+4] &
re)="—JJ|1+>]| e,
)
where y =0.577216.. is the Euler-Mascheroni constant. This relation can be
written as

(4.1.24) logF(t): —;/t—logt—i(i—log(1+%n,
n

n=1

where the base of the logarithm is e, thus we obtain

logT(t +1)+yt = —y —log(t +1)—i(ﬂ—log(1 +ED .
n

n=1 n
We consider the function f :[0,00)— R defined by f(t)=logT(t +1)+ .
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It easy to see that

=— L (L 1
f(t)_ t+1+z[ t+n+1j

n
and

AN = 1 B = 1
e Y A 0

= (t +n+ 1) 0
We remark that f”(t)z(), which implies that f is convex and f’ is increasing, so
f'(t)= f'(0)= 0. Therefore, f is increasing, so we have f(t)> f(0)=0
We intend to study the properties of the functional Jensen and the functional
Chebyshev for the function f(t):logl"(t+1)+yt. For this function, we will apply

Hermite-Hadamard’s inequality or Hammer-Bullen’s inequality. We will also
study the functional Jensen and the functional Chebyshev for the functions log-
convex ((A,G)- convex) or, more generally, for (M, N)- convex, where M and N are

means.
Connected with the functional Jensen, in the future, we would like to study

other properties of generalized entropies as the following:

a) the Tsallis entropy [201] defined by:

Hq(pl,pZ,...,pn quln— q>0q¢1)

where {pl, Do senes pn}is a probability dlstrlbutlon Wlth p; >0 forall j= 1,n and the

q-logarithmic function for x >0;
b) the Rényi entropy [191] defined by

R, (pl,p2,..., pn =

[ j J
]

T 3Ty penes )——logv/ [anpjl//(ij}
= p;

d) the Rényi relative entropy [3] defined by

DY (py, yseess D,

7'1,7"2, i n)

R (ppr: “ pn|

log(Zp, e J

e) the Tsallis relative entropy defined by

Ty Ty senes n) Zp] (ln p; —lIn, rj): —ipj In, ;—’,

f) the Tsallis quasilinear entropy (g-quasilinear entr(]):pl)y) definejd by

4~ 1
Jj=1 pj

where {p1, p2, . . ., pa} 1s a probability distribution with p; > 0 for all j = Ln,

D,(py, Pysess D,

g) the Tsallis quasilinear relative entropy defined by

n r.
R e wl[zp,.w[p_]n.
j=1 j
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4.2 Future directions for research related to Young’s
inequality and Hardy’s inequality

Inspired by the method used like Elliott in proving Hardy’s inequality, I started
new work related to Young’s inequality and its applications.
We consider the function f(t)=¢"", pe(0,1]. It is easy to check that f(t) is

convex on [1, ). Taking into account that

jﬁ*dz:xp‘l
1 p

and using the right side of Hermite-Hadamard inequality, we deduce

x? -1

p

-1
xP7 +1
<x-1.

< (x—l)

In the above inequality, we replace x by %, with a >b, we obtain Young’s

inequality, which, in general form, says that, if a,b>0 and p e [0,1], then
a’b'? <pa+(1-ph.
This inequality 1is equivalent to the following inequality, for

u

1 =
p=—,a=x"“,b=x"1:

u
X + 84 =Xy,
u v
.11
for all x,y>0 and w,v>1 with —+==1.
u v
1 . 1 1 .
For u=a+1, v= ar , with —+==1, x—>x“", y—>y*, and using Young’s
a u v
inequality we deduce the following relation:
(4.2.1) oyt > (@ + 1)y,

which 1s used by Elliott [67] in proving Hardy’s inequality [173]: If ¢ >1 and
a, 20, then

© q q o
4.2.2) Z(al+a2+...+anj S(ﬁj ZGZ
- n=1

n=1 n

unless all the ai are zero. The constant is the best possible.
In 1926, Copson [41] generalized Hardy inequality by replacing the arithmetic
mean of a sequence by a weighted arithmetic mean, thus:

Ifq>1,4, >0,a, >0,n=1.2,..., Z/’tnaz converge, then
n=1

~ Aa, +A,a, +...+ 4 a, ! g V'L
(4.2.3) > 4, <|—=1]> 4al.

— A+A,++ A, qg-1) =
unless all the a; are zero. The constant is the best possible.

95




Habilitation thesis Nicusor Minculete

Inspired by the above work, I would like to start a new project related to
Hardy inequality. We would like to propose a new refinement of Young’s
inequality which can be use in the proof of Hardy’s inequality and Carleman’s
inequality.

Young’s inequality was refined by Kittaneh and Manasrah in [116] or given
as a particular case of Kober’s inequality [119], thus:

(4.2.4) min{p,l—p}(\/a —\/5)2 < pa+ (1—p)b—a”b1‘p < max{p,l—p}(\/a — \/5)2,

where a,b are nonnegative real numbers and p e[0,1].

1 . .
For p=—1, we have 1—p=L1, and for, a=x"", b=y“, we use inequality

o+ a+
(4.2.4), we deduce the following relation:
a+l a2 ai a2
(4.2.5) [x : —yQ] <x oy (o + 1)y Sa[x 2 —y2J :

forall «>1, and x,y>0.
a, +a,+...+a

Lemma 4.2.1.If ¢ >1, a, >0,n=12,...N and M,k = ~  then
n
N 1 N (1-q)
/2 1/2
(4.2.6) ZMq <[q 1) Zaﬁ——q_l(z n-1)M? - MY )) (Zqu :

Proof. Using the same method as Elliott [67] in proving Hardy’s inequality, we

a, +a,+..+a

note M, = ~ and we make the following calculations:

n

M —LlM,‘f’lan =M; —%MZ’I(nMn ~(n-1)M,,)
q- q-

_pef1--9n ), 90D oy
n q _1 q _ 1 n n-1
By convention, we take M, =1.

If we apply inequality (4.2.5) for x = M y=M, and ¢ =q—1, we deduce

n-1"

@27 (ML, +(g-1)M2)- (M2 - MOV > qMiM,
> (M2, +(g-1)M2)-n(Me? - M>f

Therefore, we obtain

M1 qn q —1)M¢ _n_l Mq/Z_M(qfl)/Z 2_Mq_LMq71
e e IR A R = a

> MY an Mq _1 q _n—l Vi —M(qfl)/z 2

) [ q—lj q- 1( +la-1)m;) q i J

which 1s equivalent to

L((n—l)Mq _an)_ (Mq/z M(q—l)/Q)z > M? —LM‘Ha
-1 n- q—

n

> Ltz ) gy ey,
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Next, we pass the sum from I to NN, thus:
q N N
(4.2.8) _NMN 1 1)(Mq/2 q 1/2) ZMq qle,‘f_lan
q n=1 4=

-1 q_lnl
N
2_]\UW?\,_ 1 Zn(n—l ng12_Mr(Lq—1)/2)2’
q_]- q_lnzl

Which 1implies,

ZM‘?< q ZM‘” a, - llin 1Mo - M)
n=1 q-

n=1

But, using Hoélder’s inequality with indices g >1 and Ll , we have
q p—

N 1 N Ve, y (g-1)/q
Soura oS (2]

which 1mplies

(¢-1)/q 1 &
ZMq< [ j (Zqu > (g - MR

n=1 q 4=l
N (1 q)/q
so, multiplying by {ZM ] , we deduce the inequality

N /q N 1/q N (1-q)/q
(;M;’] SL_I[ZQZJ ——Zn M2 - M 1>/2)2(;M3J :

q n=1
It follows that, by raising to the power ¢, the following inequality

N g a N 1 N (1-q)
>z < 2] ZaZ——[Zn e - m )J [ZM‘IJ .
n=1 q_l n=1 q_l n=1

a, +a,+...+a,

Theorem 4.2.2. If ¢ >1, a, 20,n=1,2,... and M, = , then
n
. q 4 o 1 o (1-q)
M?<| —— 74— n—-1\M??2 - q”z M .
(4.2.9) le , (q_lj 2. q—l(;( Yprz/ )J (Z j

Proof. Using Lemma 4.2.1 and passing to limit for IN —>o, we obtain the
statement.

O
Remark 3.2.3. a) Inequality (4.2.9) represents an improvement of Hardy’s
inequality.

b) If the numerical series Zan converges, then Zlvzm NM7F, =0.

n=1
Therefore, inequality (4.2.8) becomes
(4.2.10)
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Z n-— 1)<Mq/2 M£Q—1)/2)2 gqiMZ—l q 1 qu <Z nln— 1>(Mq/2 q 1 /2) '
n=1

n=1

c) Copson’s inequality (see inequality (4.2.3)), wh1ch 1s a generahzatlon of Hardy’s
inequality, can be refined by the same method. Thus, we identify a new research
direction.

Another important result is Carleman’s inequality [29], given by the following:

Let a,,a,,a,,... be a sequence of non-negative real numbers, then

o0

(4.2.11) i(al%...an )< eZan ,
n=1

n=1

where the series Zan 1s convergent. The constant e in the inequality is optimal,

n=1
that is, the inequality does not always hold if e is replaced by a smaller number.
The inequality is strict if some elements in the sequence is non-zero.

Carleman discovered this inequality during his important work on quasi-
analytical functions. This problem can be solved by using the Lagrange multiplier
method.

But, below, we present a solution using the inequality from Lemma 4.2.1, thus: if
a, +a, +...+a,

q>1,a,20,n=12,.N and M, = , then
n
q a N 1 N ) (1-q)
M < al ——— (n—l M,’l’_/2 _1/2 j( qu .
; (q 1) Z‘ q—l[; 1 2
If we replace a,, by a;’? in the above inequality, then we find the following
inequality
n q
N Za}le/q q q9 N
k=1 < _
(4.2.12) Z:, S _(—q_J Z;a A,
where

q
q/2 q-1/2\> (1-q)

1/q 1/q 1/q
ey B 2 &/ Z"
1 1

n =1

In inequality (4.2.12) passing to limit for ¢ — o and using the fundamental limit

Sar

lim| *= =(a,a,...a,)"’" , we obtain the inequality
qo® n
N y N
(4.2.13) Z(al%...an) SeZan —-Aln
n=1 n=1
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where

N 9/ N (1-9)
A( lzm—(z n-— 1)(a1a2 )1/2(n1)_(a1a2man)1/2n)2j [Z(aﬂz---an)l/nj .

- q n=1 n=l

a, +a,+...+a,

Theorem 4.2.4.If ¢ >1, a, 20,n=1,2,... and M, = , then
n
00 1 0 (17‘1)
(4.2.14) ZM“( j Za:——l[Zn M- M qm)J [ZM‘]J
o = q_ n=1

Another proof is given by Redheffer [190] using the inequality:

(4.2.15) NGy +Z (b, -1)a, <Zan .

which holds for all n=1.2,.. and all positive sequences {bn} and where

G, =(a,a,..a,)"’" is the geometric mean.
In particular case, for: a) b, =1, for all n=1,2,..., we have

N
1/ N 1
Gy =(aay..ay)’" <=>a, =A, ,

n=1

1.e., we obtain the AG-inequality;
b) b, =1 +l, for all n=1,2,..., we have
n

N W (1Y
N(a1a2...aN)1/N+Z(ala2...an)1/ s;(1+;j a, .

n=1
which implies when n — o, the Carleman inequality.
Next, we give another improvement of Young’s integral inequality:
Theorem 4.2.5. Suppose the conditions of Theorem 1.4.1 hold and more a < f! (b)

and f is convex or a > ' (b) and f is concave. Then

(4.2.16) ab<ab+ (b—f(a))(;‘l(b) _[f x)dx+jf (x)dx =Y(f;a,b).

Proof. The inequality (3.2.16) has a geometric interpretation involving the areas of
the two functions, the rectangular area and the area of a triangle.

Minguzzi, in [140], proved a reverse Young’s inequality in the following
way:

p q
(4.2.17) ()ga_er__abS(b_ap—l bq_l—a),
p q
o 11
for all @,b>0 and p,g>1 with —+—=1.
p q

u

This inequality is equivalent to the following inequality, for p=—,a=x",b=x*":
u

If a,b>0 and p e(O,l), we change p and l, a by a” and b by b'?, then
p

inequality (3.2.17) becomes:
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(4.2.18) 0<pa+(1-ph-a”b'™® < (blf” —a'? Xbp —a"),

But, this is true a,b>0 and p[01].
In [Minculete, 151] we present another improvement of Young’s inequality
and a reverse inequality as follows

2r 2(1-r)
a’b? (a_erJ < pa+(1-ph<arb (G_erj 1
2-/ab 2+/ab

for the positive real numbers a, b and p e [0,1] and r = min{p,l — p}.

The first inequality can be found and in [121, Zuo] given by the Kantorovich’s ratio
defined by

2
k)= s
4h

and the second inequality is studied by Liao in [124], thus:
K’[%)a"bl” <pa+({1-ph< K“(%}a”blp,

where 0 <b<a and p €[0,1] and r = min{p,1- p}.
This implies, the inequality

2r 2(1-r)
b a+b
4.2.19) a’b"? ij ~1|<pa+(1-ph-a®db"? <a’b"” [ j -1,
( ! [(2vab pa+{-pP 2ab

where 0 <b<a and p €[0,1] and r = min{p,1 - p}.

But, since
P _
logt < <t*logt,t >1,pel0,1],
we have
2r
a+b a+b
2rlog < -1
5 )7)
and

2(1_r)apb1p[ a+b er log( a+b J . [ a+b T(H) ~
2Jab 2Jab )\ 2Jab

So, we have
(4.2.20)

1-2r
b a+b a+b
2ra’b'? log( ar j <pa+(1l-ph-a’b"? <21-r)a’b"? (—j log(—j.
N A S by B b

This inequality can be used to determine new inequalities for positive operators.
Another idea to refine Young’s inequality is the following: for x >1, p #0, we have

x? -1

p

- Jtp‘ldt =jtf’(logt)dt —x”logx —pjtp_l logtdt =
1 1 1

x” log x —pj-tp logt(logt)dt = x* log x — px* log® x +pJ.t”*1 (plogt +1)logtdt
1 1

which implies the inequality
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xP -1

(4.2.21) x” logx — px” log® x < <x”logx,

forall x>1,p>0.

x? -1

(4.2.22) x” logx < <x”logx— px® log*® x,

forall x>1,p<0.

Inspired by the above work, I would like to start a new joint project with
Shigeru Furuichi related to other inequalities of Young type. The results below have
been developed together with Shigeru Furuichi in private communications:

a® -1 .
is

Lemma 4.2.6. If a >0 , then the function h: R* — R defined by h(x) =

increasing.

Proof. We consider a >0 and the function 4 :R* — R defined by A(x)= a -1

X

.. 1
Taking into account that u—1 > [lnu for any u >0, we deduceix -1-in—2>0,s0
a a
_a"(lna)x—a* +1

2
X

>0, 1.e., the

a*(Ina)x —a* +12> 0. Therefore, we have A’(x)

function A is increasing.
Proposition 4.2.7. For a>b and p,q,se€ R with q< p<s, the following inequality

(4.2.23) E [sa +(1-sp- asbl‘s] < 1 [pa +(1-php- apbl"’] < 1 [qa +(1-qp- aqbl‘q],
S D q
holds.
Proof. For g =0 or p=0 or s=0 , the inequality is true.
We apply Lemma 4.2.6 for £ >1 and p,q,s € R* with ¢ < p <s, and then we have
t’"-1 _t" -1 t°-1

the inequality < < , which is equivalent to
)2 S
g _ p_ i |
ol o<t o<t o,
q D S
If we take ¢t = % >1 in above inequality and multiplying by b, then we deduce

the statement.

For p= 1 and g < 1 < sin inequality (4.2.23), we deduce
2 2
(4.2.24) E [sa +(1-sh-ad"* ] < (\/5 - \/Z)Z < 1 [qa +(1-gh-a'b" ],
S q
so, for ¢ < % <1-gqin inequality (4.2.24), we deduce

(4.2.25) é[(l —qla +qb—a17"bq]ﬁ (\/5 - \/5)2 < 3[qa+(1 —qp-a'b ],

which, in fact, proved the Kittaneh-Manasrah inequality.
xP —
D

1 , we have the following double integral:

X
Since Itp‘ldt =
1
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-1

t x
—1_”3/” 2dyalx— —(t-1), for t,x >1.
11
Lemma 4.2.8. For the real numbers y>1andp e [O,%} , the following inequality

1
p——

(4.2.26) p(l —p)y 2 < %max{p,l -p},
and for the real numbers y>landp € {% ,1}, the following inequality
1

(4.2.27) %min{ pl-pi<pll-ply’ 2.

Theorem 4.2.9. For the real numbers t >1and p € [0,1], the following inequalities
(4 2.28)

j jy { max{p,1-p} - p(l p)yp_ﬂdydx —t? - pt— (- p)+ max{p1- p){i -1J

and
(4.2.29)

Hy-{p(l_p)yp‘z _%min{p,l—p}j|dydx =pt+(1-p)-t* —min{p]l —p}(ﬁ —1)2

Proof. Forp e {0,1}, the equalities (4.2.28) and (4.2.29) are true. Forp e (0,1), we
have the following calculations:

= p(p —1) jy’“_2dydx +max{pl— p}(\/z —1)2 =
1 ple-1)+ mastpi- pi{E 1],

which 1s equivalent to inequality (4.2.28).
In an analogous way, we deduce the inequality (4.2.29).
Corollary 4.2.10. For the real numbers t >1and p e [0,1], the following inequalities

(4.2.30)

t x 3

IIE

11

1

2 Emax{p,l - p} —p(l —p)yw5 dydx <t? — pt —(1 —p)+ max{p,l —p}(\/z —1)2

and
(4.2.31)

t x 7§
IEN
11
Proof. Using the inequality Kittaneh and Manasrah in the form
min{p,1 —p}(\/z —1)2 < pt+ (1 —p) t? <max{p,l- p}( )2
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b
< ﬂ f(x)dx , we deduce the statement.

a

j).f(x)dx

a

and from

Theorem 4.2.11. For the real numbers a>bandp e {O,%} , the following inequality:

(4.2.32)

a/b 3

bp(1-p) I ]C.yz {1 - yp% }dydx <a’b'? —pa—(1-php+max{p]l- p}(x/a - \/5)2

and for the real numbers a>band p e {% ,1}, the following inequality:

(4.2.33)

a/bx 3

1
%min{p,l—p} j J.y_{yp_2 —I}dydx Spa+(1—p)b—a”b1"’ —min{p,l—p}(\/a—\/g)z.
1 1

2ab
a+b

Proof. If H(a,b)= is the harmonic mean, then we

2ab

have min{a, b} <H (a, b) = 5 < max{a,b}, which 1implies
a+

1 1 1
Smin{pl-p}< EH(p,l ~-p)=p(l-p)< S max{pl-p}

But %max{p,l —-pt-pll —p)yp 2> p(1 —p{l —yp 2] and using Theorem 4.2.9, we

obtain
a/b

bp(1-p) | jy

o | o

1
{1 - ypi5 }dydx <a’b"? — pa—(1-p)+max{p,l- p}<\/5 - \/5)2

1
p—=

1
and since p(l — p)y 2 —%min{p,l —-p}= %min{p,l —p}[yp 2 —1] and from Theorem

4.2.9 we deduce the statement.

4.3. Future directions for research related to inequalities in an
inner product space

Maligranda [130] proved the following:
Theorem C. For nonzero vectors x and y in a normed space X = (X,

) it is true that

x oy .
(4.3.1) e+ 3] < || + |~ [2 I Jmm(ﬂx”’ [])
and

Xy
(4.3.2) e+ 1= e + 1] - [2 R ET Jmaqu o).
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Remark 4.3.1. If either |x|=|y|=1 or y =cx with ¢>0, then equality holds in both
(4.3.1) and (4.3.2).
We have that |ax + by||2 = (ax +by,ax +by) = a’ ||x||2 +2ab(x,y) + b ||y||2, )

implies

@39 o+ = e+ B — bl - (. ).
In relation (4.3.3) for a =1 and b=1 we obtain

3.4 b of? = i+ i) - 2]l ()

So, we deduce the equality, for nonzero vectors x and y in a normed space,
given by the following:

(4.3.5) 2] - [ - (. ) = (1] + 1)
which means that q )
2 X\ - [V —\%,Y
4.36) A= 0) e+,

ol + I+ e + 51
This equality shows the equivalence between Cauchy-Schwarz's inequality
and Minkowski's inequality.

Theorem 4.3.2. For nonzero vectors x and y in a normed space X :(

that
min < 2Q|x|| [y - (=, y>) <| 2—|= + | |max
(4.3.7) (2 ” ” J Q )— o] + [}/ + [} + ] —£2 ||x|| o] J q )

Remark. If either ||x|| = ||y|| =1 or y=cx with ¢ >0, then equality holds in (4.3,7).
From (4.3.6), for x,y,z< X, we have

2]y +2] - (x5 +2))
[l + [y + 2 + e + 3+ ]

s ) it is true

J

(4.3.8)

= [l + v+ 2| =l + 3+

We can reason and inversely: we find inferior and superior margin for
Cauchy's inequality (see Radon’s inequality [Ratiu-Minculete, 189]) and return to
Minkowski's inequality written in norms.

In relation (4.3.3) for a =1 and b =-1 we obtain

(4.3.9) Ix = I = (o = MY+ 20 [y - (% v)-
In relation (4.3.3) for a = ||9c||_1 and b= ||y||_1 we obtain

2
x Yy

E x )
miar R (G RCEN 2[1 ||x||-||y||]

In relation (4.3.3) for a = ||x|| and b= —||y||_1 we obtain

2
x Y
x Yy T bt
it follows that
2
(4.3.10) ||x|| o] = B ”y” ~ oIy~ (. ).
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For nonzero vectors x and y in X we define the angular distance a'[x, y] between x

and y by
oley)=| =2
<l 1o
(see [40])
Therefore, we prove that
1
(4.3.11) el I - (e, 5] = o - ol = (. ).

Using the Massera-Schaffer inequality, proved in 1958 (see [134]): for nonzero
vectors x and y in X there is the inequality

(4.3.12) a[x, y] . maxQ|x||,||y||) < 2||x — y||
Combining relations (4.3.10) and (4.3.12) we deduce the inequality:

gy < 2l - oA*

a1

)]2 -2 ||x - y||2 JS <x, y>[maxQx

(4.3.13) e A = (.

which is equivalent with

Jal || rmaa

Relation (4.3.10) can be Written as

e ol = oA =Tl ol = ).

I8

2||x|| |
Therefore, we obtain

1 2 1
1510 bl o <l ol .5} €
el b1 | il

ﬂwwwﬁww?

We apply these inequalities in an inner product space:
a) (R”,<>) , where for x = (xl,xz,..., xn), y= (yl,yz,..., yn) we have

:\/xf +x .

<x,y> =%,y +%,¥5 +... +x,y, and ||x|
But, we find
nminlly]-x; [ 3. f <[lof-x [l 5f = Z:,Qlyll'xi =l f < nmaa(]-x; <[ - .

Combining this inequality with inequality (4.3.15), we deduce

w515 z’ﬁlﬁﬂlyll x; =[xl 3. f el Do (e y>£2'?9360|y|| x; =[xl 3. f

2 [man(jd) |5/ 2 [min(fd) )

forall x,ye R".

b) (CO [a, b],<>) , where for f,g e C°[a,b] we have

f g If x)dx and ||f|| I (x)dx

If we replace in inequality (4.3.10), then we deduce
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[ I g2(xc)dex - f(xx)— /j}”(x)dx g(x)} dx =

\/Jf (o )dxc - jg (o )dxc — _[f 2 (x )dx.

Inspired by the above work, I would like to start a new joint project with
Radu Paltanea related to inequalities in an inner product space. We would like to
propose the extending of the notions of variance and covariance to vectors.

Vector projection 1s an 1important operation in the Gram-Schmidt
orthonormalization of vector space bases.

2\/]7./?2 (o )dlac - Ig (o )dx

The projection of a vector x onto a vector y is given by proj,x = <|T’”Z ) y.
It in (R",(.))) , we denote by u, the vector u = (11,..,1), then '
proj.x - <”’:”Z> ‘- sz %ij
In (R",(-")), we define the variance ofa vector x by
var(x) = ”2 I - proj, |
and the covariance of a vectors x and y by
cov(x,y) = ”:”2 (x — proj,x,y — proj,y) .
(C°[a,b)(-)) , where for f,g e C°[a,b] we have
(f.8) f f(x)g(x)dx and |f]= I £ () .
The projection of a vector f onto a vector g is given by proj,f = <”'; F> g

If in (Co[a, b],()) , we take g(x) =1, we have

<”f ) ﬁif(x)dx

Thus, in (Co[a, b],<>), we define the variance of a function f by

ar(f)=—=_|f - proj ||
ol

and the covariance of a vectors f and g by

ou(f,g)= <f proj.f,g - proj,g).

proj,f =
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Another future direction for research in inequalities between the elements of
an inner product space is related to Cauchy-Schwarz’s inequality in an inner
product space and its applications.

Next, we develop these inequalities for linear combinations of vectors.

Let {e,e,,..e,} be an orthonormal system of vectors in unitary space

X= (X ,<-,->) over the field of real numbers.

For x € X, we put

n

sz—i“(x,ek)ek and S, (x,y)=(x,5)— > (x,e,)e,,y),

) k=1
where x,ye X.
In [63], Dragomir proved the following inequality

(4.3.16) [Sn(x, y)]2 < Sn(x,x)Sn( , y)
where x,y e X . This inequality can be found in [113].
In relation (4.3.16) the equality holds if and only if {x, Y,€1,€05ens en}is linearly

dependent. For n =1, we apply inequality (4.3.16) on L, (a,b) for

1 1 1
e = ,X = ,y=——g, where f,geL,(a,b), and we obtain an
o o T ) e feLa)

inequality in terms of the Chebyshev functional, as follows:

(4.3.17) [T(f.8)f <T(f.f)T(g.8),
where f,geL (a b) and

(f g)= —_[f x)dx——jf x)dx—jg x)dx

This inequality proved the Gruss 1nequa11ty, which for f and g two bounded
functions defined on [a,b] with 7, < f(x)<T, and y, < g(x)<T,, where

1 .
71,75, T, are four constants, we have T(f,f)< Z(Fl —7, ), so we obtain

1
T(f,g)SZ(rl _71)(F2 _72)'
In terms of h-covariance inequality (2.4.15) becomes
[covh (f, g)]2 <var, (f)varh (g)

b
where A : [a,b] > [0,20) is a Riemann- integrable function with Ih(x)dx >0.

a

From [113] we found the following identity.

(£.3)=(x.9) - D {x.e,)ew ) = S, (5.9).

k=1

But, we remark that <a_c, 5/> = <3_c, y> = <x,5/> , so we deduce

' = (e.2) = ()= (5.5) =, fex) =l - Do fw )

It is easy to see that ax + By = ax + By for every real numbers «, 3.
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Inequality (2.4.14) is in fact the Cauchy-Schwarz inequality for vectors x,y,

e (23) <l

Proposition 4.3.3. With above notations, we have

5,00 S8, 0.2) g (¥ :
@1 05 202 SEBLE g o) <5 108, 00)- 5.

forall x,y,ze X, {y, €,,€y,e0s €, } {2, e,,€y,..., e, }are linearly independent.

Proof. Using Corollary 2.3.6, we have

(6369 o ey o
LB ) <R -y

for all x,y,ze X, {y, €,,€y,ems en}, {z, €,,€5,mmes en}are linearly independent. By

substitution we deduce the statement.

This inequality represents an improvement of inequality (4.3.16).
Similarly to the ones mentioned above for n =1, we apply inequality (4.3.16)

onLQ(a,b)for {elz ! ,X = ! f,y= ! g,z2= ! h},where
Nvb—a vb—a Nb—a Nb—a

f.geL, (a,b), and we obtain an inequality in terms of the Chebyshev functional, as

follows:
4.3.19)  0< %2 fl))(T(f ﬁ )Tgh ) —T(f,h)jz <T(f.f)T(g.8)-[T(f. &),
where f,g,h e L,(a,b), T(g,g),T(h,h)>0, and

T(f,g): biajlf( ) x)dx——J-f x)dx—Jg x)dx

This inequality is an improvement of inequality (4.3.17).
Let X = (X ,<-,->) be a inner product space over the field of real numbers.

For n =1 in inequality (4.3.16) and the vector e € X with ||e|| =1, we have
@320 [es) (ke <ol ~(e) Il ~(.e)*)

Next, we obtain a refinement of inequality (4.3.20), thus:
Corollary 4.3.4. For all e,x,y,z € X with ||e|| = land{ ,e}, {z,e}are linearly

independent, we have

321)  0<As(d ~(x.e)* [y~ (r.e)*)-[ix. )~ (xefe )]

4 e () - (efe N2 - (meez)
e A (e b - () ) ehe)

Proof. Using Proposition 4.3.3 for n =1 , we obtain the statement.

2

Theorem 4.3.5. For all e,x,y,z e X with ||e|| =1, we have
(4.3.22)

e, 3) el ~ (2.0 )+ (2 €. 2) ) + (3. 2) )~ (. 2) ,2) [ e )
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<ol (el ~(z.€)" )~ (z.2) - (x.e)zne)F ol (el -~ (z2€)* )~ (3.2) - (3. €)(ze0) |

Proof. We consider the vectors e,x,y,z € X with |¢| =1, we take w=z—-(z,e)e, {z,e}

are linearly independent. It follows that ||w||2 = ||2||2 —<2,e>2 and <e,w> =0. For

u=—:, we have |¢|=[u| =1,(e,u) =0, so, applying inequality (4.3.16), we obtain

S, (x,3) = (x,5) ~(x.e)e. )~ (x.u){u,5) = (x.5) - (x.e)(e.)
L ((x.2) - (z.e)e.2)(3:2) - (3.€)e.2))

o]
L_((z.e)((x. 2)(y.e)+ (3. 2)(x.)~ (2,23, 2) " (. e)fe. ).

~Ey

Therefore, we have
S, (x,y)=(x, )+

It follows that

||J||2 (2. e)(z o)+ {320, )~ (x.2)(3.2) [l (m.e)fe. )

Sy(w.x)= ” P Ll ) o)z 0) - (0.2) [l (w0) ).
But, using the Cauchy-Schwarz 1nequality, <z,e>2 <

S, (e, x)< ol + 2 - L))z o) (x.2)" ~(z.e) (xe)’)
bl - L ((x.2)~(x.e)(z.e))

Consequently, we obtain the inequality

S2(x x) ”x” (<x,z>—<x,e><z,e>) _

2
, we deduce

[o]" ~(z.¢)"
2
Similarly, we deduce S, (y,y)< ||3’||2 - (<y ?”; <y< e><>22 e>) .
z| = (z,e

According with inequality (4.3.16), we find [S,(x,y)] <S,(x,x)S,(y,y) and
combining with above inequalities, we obtain the statement.

O
We intend to study other applications of inequality (4.3.16) and we will investigate
another improvement of this inequality.
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Conclusions

In the present work we have described results related to mathematical inequalities
and its applications. We obtained a series of inequalities related to inequalities for
functionals, inequalities for invertible positive operators and inequalities in an
inner product space. We presents several applications to the inequalities found to
probability and statistics.

This habilitation thesis contains a number of new and basic inequalities
related to Hermite-Hadamard’s inequality, Griss’s inequality, Hammer- Bullen’s
inequality and Cauchy-Schwarz’s inequality (in an inner product space)
investigated in order to achieve a diversity of desired goals.

We conclude with a list of items that are part of our current and future
directions research. The domain of mathematical inequalities is quite lively, but it
can always generate novelty elements and interesting applications.

We summarize the list of our current and future directions research as
follows:

- A first direction of research refers to the reconsideration of Hermite-
Hadamard’s inequality and with a new approach we can find an
improvement and new applications of it. We would like to propose a new
inequalities for Stolarsky’s mean, logarithmic mean, identric mean, etc.

- Connected with the functional Jensen, in the future, we would like to
study other properties of generalized entropies as the following: the
Tsallis entropy, the Rényi entropy, the quasilinear relative entropy, the
Rényi relative entropy, the Tsallis relative entropy, the Tsallis quasilinear
entropy (g-quasilinear entropy), the Tsallis quasilinear relative entropy.

- Inspired by the above work and the recent results, I would like to start a
new project related to Hardy inequality. We would like to propose a new
refinement of Young’s inequality which can be use in the proof of Hardy’s
inequality and Carleman’s inequality.

- Another future direction for research in inequalities between the elements
of an inner product space is related to Cauchy-Schwarz’s inequality in an
inner product space and its applications. As the main starting point, we

refer to the inequality, [S,(x,y)f <S,(x,x)S,(y,v), given by Dragomir in
[63].
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