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Notations

At =
(
α1,...,αt

K

)
the algebra obtained by the Cayley-Dickson process of dimension 2t

H real quaternion division algebra

O real octonion division algebra

H (α, β) generalized quaternion algebra

O (α, β, γ) generalized octonion algebra

(V, b) a symmetric bilinear space

N the set of natural numbers

Z the ring of integers

Q the field of rational numbers

R the field of real numbers

C the field of complex numbers

V1 ⊥ V2 the orthogonal sum of the vector spaces V1 and V2

< α1, ...αn > a symmetric bilinear space with diagonal matrix (α1, ...αn)

A⊗B the tensor product of the matrix A and B

< 1,−1 > the hyperbolic plane

ϕ a n−dimensional quadratic irreducible form

K(ϕ) the function field of ϕ

≪ a1, a2, ..., an ≫ a Pfister form

iW (V ) the Witt index of (V, b)

s(K) the level of the field K

s(A) the level of the algebra A

s(A) the sublevel of the algebra A

[x, y] the commutator of the elements x, y from the algebra A

wH (x) the Hamming weight

dH (x, y) the Hamming distance between two codewords

Fpn a finite field

7
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Rezumat

Aceasta teza prezinta, intr-o maniera succinta, rezultatele originale ale

autorului in studiul algebrelor obtinute prin procedeul Cayley-Dickson.

Lucrarea este organizata in 4 capitole, are trei anexe si o bibliografie care

cuprinde 135 de titluri. Ultima parte este dedicata prezentarii unor directii de

dezvoltare personala si stiintifica.

Capitolul 1 prezinta pe scurt rezultate si proprietati cunoscute ale alge-

brelor obtinute prin procedeul Cayley-Dickson.

Capitolul 2 este dedicat prezentarii unor noi rezultate in cee ce priveste

nivelul si subnivelul algebrelor de cuaternioni si octonioni generalizand aceste

doua notiuni si pentru orice algebra obtinuta prin procedeul Cayley-Dickson.

Un rezultat foarte important in acest studiu, demonstrat de catre autor, este

faptul ca pentru orice numar natural n putem gasi o astfel de algebra care sa

aiba nivelul n. Acest rezultat generalizeaza doua rezultate foarte tari datorate

lui Pfister si T.Y. Lam si anume:

Orice corp este fie de nivel infinit, fie de nivel finit de forma 2m si pentru

orice numar de forma 2m putem gasi un corp K de nivel 2m, respectiv

Pentru orice numar natural n, exista un domeniu de integritate R astfel

incat nivelul sau sa fie n.

Capitolul 3 prezinta noi rezultate importante ale algebrelor obtinute prin

procedeul Cayley-Dickson. Este cunoscut faptul ca aceste algebre sunt sarace

in proprietati. Cuaternnionii nu sunt algebre comutative iar Octonionii au

pierdut si comutativitatea si asociativitatea. In schimb, sunt algebre alterna-

tive, asociative in puteri si flexibile. Incepand cu Sedenionii, raman valabile

doar ultimele doua proprietati, pierzandu-se si alternativitatea. Identitatea lui

Hall pentru cuaternioni si octonioni a fost generalizata pentru orice algebra

obtinuta prin procedeul Cayley-Dickson. Folosindu-se o idee data de Bales

in [Ba; 09], au fost gasite anumite proprietati ale elementelor unei baze intr-o

astfel de algebra, permitandu-ne sa dam astfel un exemplu de functie olomorfa

definita pe o algebra obtinuta prin procedeul Cayley-Dickson. In plus, s-au

rezolvat anumite ecuatii si, folosindu-se cuaternionii de tip Fibonacci-Lucas

peste Q, s-a definit o structura de algebra peste aceste elemente.
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Capitolul 4 este dedicat recentelor aplicatii ale algebrelor obtinute prin

procedeul Cayley-Dickson in teoria codurilor. Pentru orice numar prim p, s-a

identificat o submultime V in At cu ajutorul caruia am gasit un izomorfism

intre corpul claselor de resturi modulo un prim π din V si Zp, cu p numar

prim astfel incat n (π) = p. In acest fel, s-a putut obtine un algoritm mult

mai flexibil (pastrand proportiile, ca algoritmul lui Lenstra pe curbe eliptice

comparat cu algoritmul p − 1 al lui Pollard) care ne permite sa construim

coduri corectoare de erori peste Zp pentru aproape orice numar prim p.

Ultima parte este dedicata abordarii unor noi directii de cercetare care

au ca punct de plecare rezultatele prezentate in aceasta lucrare: cum poate fi

abordat studiul nivelului si subnivelului unei algebre obtinute prin procedeul

Cayley-Dickson pentru a putea obtine noi rezultate, gasirea de noi identitati si

proprietati ale acestor algebre si dezvoltarea aplicatiilor lor in teoria codurilor.

In plus, au fost prezentate si alte noi directii care au ca baza noile conexiuni

ale altor algebre in teoria codurilor, cum ar fi unele tipuri de algebre logice

(BCK-algebras, BCI-algebras, etc). De asemenea, sunt prezentate si unele

directii de dezvoltare ale activitatii didactice.
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(B) Scientific and professional achievements and
the evolution and development
plans for career development

(B-i) Scientific and professional achievements

Chapter 1

Introduction

1. Preliminaries

Let K be a field, and let A be a vector space over the field K with a binary

operation

” · ”A×A→ A, (1.1.)

called the product of the element x and y. We call A an algebra over the field

K if we have the following identities, for all elements x, y, z ∈ A and for all

scalars a, b ∈ K:

(x+ y) · z = x · z + yz;

x · (y + z) = x · y + x · z;

(ax) · (by) = (ab)(x · y).

We remark that the binary operation (1.1) is bilinear and is called the

multiplication in A. In general, the multiplication of elements of an algebra

is not necessarily associative and, due to this situation, we will consider two

distinct cases: associative algebras and nonassociative algebras. Sometime,
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some authors use the notion of an algebra when they refer to an associative

algebra.

An algebra A is called unital or unitary if this algebra contains an identity

element with respect to the multiplication (1.1).

In the following, in all this study, we suppose that K is a commutative

field with charK 6= 2 and A is an algebra over the field K. The center C

of an algebra A is the set of all elements c ∈ A which commute and associate

with all elements x ∈ A.An algebra A is central if its center is equal with the

ground field, C = K.

An algebra A is a simple algebra if A is not a zero algebra and {0}
and A are the only ideals of A. The algebra A is called central simple if the

algebra AF = F ⊗K A is simple for every extension F of K. A central simple

algebra is a simple algebra. An algebra A is called alternative if x2y = x (xy)

and xy2 = (xy) y, for all x, y ∈ A, flexible if x (yx) = (xy)x = xyx, for all

x, y ∈ A and power associative if the subalgebra < x > of A generated by any

element x ∈ A is associative. Each alternative algebra is a flexible algebra

and a power associative algebra.

An element x in a ring R is called nilpotent if we can find a positive integer

n such that xn = 0.A power-associative algebra A is called a nil algebra if and

only if each element of the algebra is nilpotent.

Artin’s Theorem. [Sc; 66] The subalgebra generated by two arbitrary

elements x, y of an alternative algebra A is associative.

In each alternative algebra A, the following identities

a(x(ay)) = (axa)y,

((xa)y)a = x(aya),

(ax)(ya) = a(xy)a

hold, for all a, x, y ∈ A. These identities are called the Moufang identities.

A unitary algebra A 6= K such that we have x2 + αxx + βx = 0 for each

x ∈ A, with αx, βx ∈ K, is called a quadratic algebra.

It is known that a finite-dimensional algebra A is a division algebra if and

only if A does not contain zero divisors. (See [Sc;66])



Habilitation thesis 13

An algebra A is semisimple if it is a direct sum of simple algebras. An

associative K-algebra A is said to be separable if for every field extension

K ⊂ L the algebra A⊗K L is semisimple.

Wedderburn’s Theorem. [Sch; 85] Let A be a simple algebra over K.

Then A ≃Mn(D), where D is a division algebra over K.

In the following, we will briefly present two important and very known al-

gebras: the quaternion algebras,which are associative algebras, and octonions

algebras, which are nonassociative algebras.

In October 1843, William Rowan Hamilton discovered the quaternions,

which is a 4-dimensional algebra over R. This algebra is an associative and

a noncommutative algebra. In December 1843, John Graves discovered the

octonions, an 8-dimensional algebra over R which is a nonassociative and a

noncommutative algebra. In 1845, these algebras were rediscovered by Arthur

Cayley. They are also known as the Cayley numbers. This process, of passing

from R to C, from C to H and from H to O was generalized to algebras over

arbitrary fields and rings. It is called the Cayley-Dickson doubling process or

the Cayley–Dickson process. Clifford algebras were discovered, in 1878, by

W. K. Clifford. These algebras were defined to have generators e1, e2, ..., en

which anti-commute and satisfy e2i = ai ∈ R, for all i ∈ {1, 2, ..., n}. These

algebras generalize the real numbers, complex numbers and quaternions( see

[Lew; 06 ])

1.1. Quaternion algebras

Let H be the real quaternion algebra with basis {1, i, j, k}, where

i2 = j2 = k2 = −1, ij = −ji, ik = −ki, jk = −kj (1.2.)

and each element from H has the form q = a+ bi+ cj + dk, a, b, c, d ∈ R.
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We remark that H is a vector space of dimension 4 over R with the addition

and scalar multiplication.

Also H has a ring structure with multiplication given by (1.2) and the usual

distributivity law.

In the following, we will consider the quaternion algebra over an arbitrary

field K with charK 6= 2.We consider two elements α, β ∈ K and we define

a generalized quaternion algebra, denoted by H(α, β) =
(
α,β
K

)
, with basis

{1, f1, f2, f3} and multiplication given in the following table:

· 1 f1 f2 f3

1 1 f1 f2 f3

f1 f1 α f3 αf2

f2 f2 −f3 β −βf1
f3 f3 -αf2 βf1 −αβ

If a ∈ H(α, β), a = a0 + a1f1 + a2f2 + a3f3, then

ā = a0 − a1f1 − a2f2 − a3f3

is called the conjugate of the element a. For a ∈ H(α, β), we consider the

following elements:

t (a) = a+ a ∈ K
and

n (a) = aa = a20 − αa21 − βa22 + αβa23 ∈ K,
called the trace, respectively, the norm of the element a ∈ H(α, β). It follows that

(a+ a) a = a2 + aa = a2 + n (a) · 1

and

a2 − t (a) a+ n (a) = 0, ∀a ∈ H(α, β),

therefore the generalized quaternion algebra is a quadratic algebra.

The subset

H(α, β)0 = {x ∈ H(α, β) | t (x) = 0}
of H(α, β) is a subspace of the algebra H(α, β). It is obvious that

H(α, β) = K · 1⊕H(α, β)0,
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therefore each element x ∈ H(α, β) has the form x = x0 · 1 + −→x ,with x0 ∈
K and −→x ∈ H(α, β)0. For K = R, we call x0 the scalar part and −→x the vector

part for the quaternion x.

If, for x ∈ H(α, β), the relation n (x) = 0 implies x = 0, then the algebra

H(α, β) is a division algebra. A quaternion non-division algebra is called a

split algebra.

Using the above notations, we remark that H (−1,−1) =
(−1,−1

R

)
is a

division algebra.

Proposition 1. ([La; 04],Proposition 1.1)

1)The quaternion algebra H (β1, β2) is isomorphic with the quaternion al-

gebra H
(
x2β1, y

2β2
)
, where x, y ∈ K∗.

2) H (−1, 1) ≃M2 (K) .�

From the above proposition, we have that a Quaternion algebra is a division

or a split algebra.

1.2. Octonion algebras

The real octonion division algebra is a non-associative and non-commutative

extension of the algebra of quaternions, H (−1,−1) =
(−1,−1

R

)
. Among all

real division algebras, octonion algebra forms the largest normed division al-

gebra.([Sc; 54])

A generalized octonion algebra over an arbitrary field K, with charK 6= 2,

is an algebra of dimension 8, denoted O(α, β, γ), with basis {1, f1, ..., f7} and

multiplication given in the following table:

· 1 f1 f2 f3 f4 f5 f6 f7

1 1 f1 f2 f3 f4 f5 f6 f7

f1 f1 α f3 αf2 f5 αf4 − f7 −αf6

f2 f2 −f3 β −βf1 f6 f7 βf4 βf5

f3 f3 -αf2 βf1 −αβ f7 αf6 −βf5 −αβf4

f4 f4 −f5 − f6 − f7 γ − γf1 −γf2 − γf3

f5 f5 -αf4 − f7 -αf6 γf1 -αγ γf3 αγf2

f6 f6 f7 −βf4 βf5 γf2 −γf3 -βγ −βγf1

f7 f7 αf6 −βf5 αβf4 γf3 −αγf2 βγf1 αβγ
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The algebra O(α, β, γ) is a non-commutative and a non-associative algebra,

but it is alternative, flexible and power-associative.

If a ∈ O(α, β, γ), a = a0 + a1f1 + a2f2 + a3f3 + a4f4 + a5f5 + a6f6 + a7f7,

then ā = a0 − a1f1 − a2f2 − a3f3 − a4f4 − a5f5 − a6f6 − a7f7 is called the

conjugate of the element a. For a ∈ O(α, β, γ), we define the elements:

t (a) = a+ a ∈ K

and

n (a) = aa = a20 − αa21 − βa22 + αβa23 − γa24 + αγa25 + βγa26 − αβγa27 ∈ K.

These elements are called the trace, respectively, the norm of the element

a ∈ O(α, β, γ). It follows that

(a+ a) a = a2 + aa = a2 + n (a) · 1

and

a2 − t (a) a+ n (a) = 0, ∀a ∈ a ∈ O(α, β, γ),

therefore the generalized octonion algebra is a quadratic algebra.

The subset

O(α, β, γ)0 = {x ∈ O(α, β, γ) | t (x) = 0}

of O(α, β, γ) is a subspace of the algebra O(α, β, γ). It is obvious that

O(α, β, γ) = K · 1⊕O(α, β, γ)0,

therefore each element x ∈ O(α, β, γ) has the form x = x0 · 1 + −→x ,with

x0 ∈ K and −→x ∈ O(α, β, γ)0. For K = R, we call x0 the scalar part and −→x
the vector part for the octonion x.

If, for x ∈ O(α, β, γ), the relation n (x) = 0 implies x = 0, then the algebra

O(α, β, γ) is a division algebra.( see [Sc; 54] and [Sc; 66])

A composition algebra A over the field K is an algebra, not necessarily

associative, with a nondegenerate quadratic form N which satisfies the relation

N(xy) = N(x)N(y), ∀x, y ∈ A.
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A unital composition algebras are called Hurwitz algebras.

Hurwitz’s Theorem.[Ba; 01] R, C, H and O are the only real alternative

division algebras.

Theorem ([Theorem 2.14, McC,80]) A is a composition algebra if and only

if A is an alternative quadratic algebra.

1.3. Algebras obtained by the Cayley-Dickson process

As we remarked above, the Octonion algebra extends the Quaternion alge-

bra and the dimension of the Octonion algebra is double that the dimension

of Quaternion algebra. This procedure of doubling dimension of an alge-

bra is called the Cayley-Dickson process. In the following, we briefly present

the Cayley-Dickson process and the properties of the algebras obtained. (see

[Sc; 66] and [Sc; 54]).

We consider A, a finite dimensional unitary algebra over a field K, with a

scalar involution

: A→ A, a→ a,

i.e. it is a linear map with the following properties

ab = ba, a = a,

and

a+ a, aa ∈ K · 1 for all a, b ∈ A.

An element a is called the conjugate of the element a, the linear form

t : A→ K , t (a) = a+ a

and the quadratic form

n : A→ K, n (a) = aa
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are called the trace and the norm of the element a, respectively. Hence an

algebra A with a scalar involution is quadratic.

We consider γ ∈ K a fixed non-zero element. We define the following

algebra multiplication on the vector space

A⊕A : (a1, a2) (b1, b2) =
(
a1b1 + γb2a2, a2b1 + b2a1

)
. (1.3.)

The obtained algebra structure over A ⊕ A, denoted by (A, γ) is called the

algebra obtained from A by the Cayley-Dickson process. We have dim (A, γ) =

2 dimA.

Let x ∈ (A, γ), x = (a1, a2). The map

: (A, γ)→ (A, γ) , x→ x̄ = (a1, -a2) ,

is a scalar involution of the algebra (A, γ), extending the involution of the

algebra A. Let

t (x) = t(a1)

and

n (x) = n (a1)− γn(a2)

be the trace and the norm of the element x ∈ (A, γ) , respectively.

If we consider A = K and we apply this process t times, t ≥ 1, we obtain

an algebra over K,

At =
(α1, ..., αt

K

)
. (1.4.)

Using induction in this algebra, the set {1, f2, ..., fn}, n = 2t, generates a

basis with the properties:

f2i = γi1, i ∈ K, γi 6= 0, i = 2, ..., n (1.5.)

and

fifj = −fjfi = βijfk, βij ∈ K, βij 6= 0, i 6= j, i, j = 2, ...n, (1.6.)

βij and fk being uniquely determined by fi and fj .
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From [Sc; 54], Lemma 4, it results that in any algebra At with the basis

{1, f2, ..., fn} satisfying relations (1.5) and (1.6) , we have:

fi (fix) = γix = (xfi)fi, (1.7.)

for all i ∈ {1, 2, ..., n} and for every x ∈ A
For t = 2, we obtain the generalized quaternion algebras and for t = 3,we

obtain the generalized octonion algebras.

We remark that the field K is the center of the algebra At,for t ≥ 2.(See

[Sc; 54]). Algebras At of dimension 2t obtained by the Cayley-Dickson process,

described above, are central-simple, flexible and power associative for all t ≥ 1

and, in general, are not division algebras for all t ≥ 1. But there exist fields on

which, if we apply the Cayley-Dickson process, the obtained algebras At are

division algebras for all t ≥ 1,as we can see in the next chapter (See [Br; 67],

[Fl; 12] ).

In 1878, W. K. Clifford discovered Clifford algebras. These algebras gen-

eralize the real numbers, complex numbers and quaternions( see [Le; 06 ]).

The theory of Clifford algebras is intimately connected with the theory

of quadratic forms. In the following, we will consider K to be a field of

characteristic not two. Let (V, q) be a quadratic K−vector space, equipped

with a nondegenerate quadratic form over the field K. A Clifford algebra for

(V, q) is a K−algebra C with a linear map i : V → C satisfying the property

i (x)
2

= q (x) · 1C , ∀x ∈ V,

such that for any K−algebra A and any K linear map γ : V → A with γ2 (x) =

q (x) · 1A, ∀x ∈ V, there exists a unique K-algebra morphism γ′ : C → A with

γ = γ′ ◦ i.
Such an algebra can be constructed using the tensor algebra associated to

a vector space V . Let T (V ) = K ⊕ V ⊕ (V ⊗ V ) ⊕ ... be the tensor algebra

associated to the vector space V and let J be the two-sided ideal of T (V )

generated by all elements of the form x ⊗ x − q (x) · 1, for all x ∈ V. The

associated Clifford algebra is the factor algebra C(V, q) = T (V ) /J . ([Kn;

88], [La; 04])
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Theorem Poincaré-Birkhoff-Witt. ([Kn; 88], p. 44)If {e1, e2, ..., en}
is a basis of V , then the set {1, ej1ej2 ...ejs , 1 ≤ s ≤ n, 1 ≤ j1 < j2 < ... <

js ≤ n} is a basis in C(V, q).

We remark that eiej = −ejei and e2i = q2 (x) . If V has dimension n,

therefore the associated Clifford algebra has dimension 2n. The most impor-

tant Clifford algebras are those defined over real and complex vector spaces

equipped with nondegenerate quadratic forms. Every nondegenerate quadratic

form over a real vector space is equivalent with the following standard diagonal

form:

q(x) = x21 + ...+ x2r − x2r+1 − ...− x2s,

where n = r + s is the dimension of the vector space. The pair of integers

(r, s) is called the signature of the quadratic form. The real vector space with

this quadratic form is usually denoted Rr,s and the Clifford algebra on Rr,s

is denoted Clr,s (R). For other details about Clifford algebras, the reader is

referred to [Ki, Ou; 99], [Ko; 10], [Om; 62] and [Sm; 91].

Example 3.4.1.

i) For p = q = 0 we have Cl0,0 (K) ≃ K;

ii) For p = 0, q = 1, it results that Cl0,1 (K) is a two-dimensional algebra

generated by a single vector e1 such that e21 = −1 and therefore Cl0,1 (K) ≃
K (e1). For K = R it follows that Cl0,1(R) ≃ C.

iii) For p = 0, q = 2, the algebra Cl0,2 (K) is a four-dimensional alge-

bra spanned by the set {1, e1, e2, e1e2}. Since e21 = e22 = (e1e2)2 = −1 and

e1e2 = −e2e1, we obtain that this algebra is isomorphic to the division quater-

nions algebra H. We remark that the construction is similar with Cayley-

Dickson process: Cl0,1 (R) ≃ C, Cl0,2 (R) ≃ H, but Cl0,3 (R) ≃M2 (C) is not

isomorphic with O, the octonions, since it is associative, Cl1,3 (R) ≃M2 (H) .

iv) For p = 1, q = 1 or p = 2, q = 0, we obtain the algebra Cl1,1 (K) ≃
Cl2,0 (K) which is isomorphic with a split quaternion algebra.([Gi, Mu; 91])
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1.4. Nonassociative quaternion algebras

Let A be a quadratic separable algebra over the field K with a scalar

involution : A → A, a → a. Let γ ∈ A − K. Using relation (1.3) , the

vector space A ⊕ A becomes a quaternion nonassociative algebra over K.

Nonassociative quaternion algebras are not power-associative algebras and are

not quadratic algebras. If A is a separable quadratic field extension of the field

K, therefore a nonassociative quaternion algebra is a division algebra.(see [Wa;

87], [Pu, As; 06])

Quaternions, octonions and algebras obtained by the Cayley-Dickson pro-

cess have at present many applications, as for example in physics, coding

theory, computer vision, etc. For these reasons, these algebras are intense

studied, see for example [Pu; 13], [Pu, St; 15], etc. and some of these appli-

cations will be presented in the next chapters. For other details about these

algebras, the reader is referred to [St; 09] and [Vo; 14].
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Chapter 2

Levels and sublevels of algebras obtained by the Cayley-Dickson
process

As we can seen, the theory of quaternion algebras, octonion algebras and

algebras obtained by the Cayley-Dickson process is closely related to the al-

gebraic theory of quadratic forms.

In the following, we will present the generalization of the concepts of level

and sublevel of a composition algebra to algebras obtained by the Cayley-

Dickson process and we will show that, in the case of level for algebras obtained

by the Cayley-Dickson process, the situation is similar as for the integral

domains. For this purpose, we will prove that for any positive integer n, we

can find an algebra A obtained by the Cayley-Dickson process which has the

norm form anisotropic over a suitable field and has the level n ∈ N−{0}.These

results were obtained in the papers [Fl; 11] and [Fl; 13]

2.1. Quadratic forms

For the general notions of quadratic and symmetric bilinear spaces, we

used [La; 04], [La, Ma; 01], [Om; 62], [Sch; 85].

Definition 2.1.1. [Sch;85] A symmetric bilinear space (V, b) over a field

K is a vector space V with a symmetric bilinear form b : V × V → K. From

now on, we will understand by a bilinear space a symmetric bilinear space.

Two symmetric bilinear spaces (V1, b1) and (V2, b2) are isomorphic (or iso-

metric) if there is a bijective map τ : V1 → V2 such that b2 (τ (x) , τ (y)) =

b1 (x, y) . We denote this with V1 ∼= V2. The map τ is called an isometry.
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A symmetric bilinear space (V, b) is called regular(nonsingular or nonde-

generate) if for each element x 6= 0, x ∈ V, there is an element y ∈ V such that

b (x, y) 6= 0.

A quadratic space (V, q) over a field K is a vector space V with a quadratic

form q : V → K.

Since

bq =
1

2
(q (x+ y)− q (x)− q (y))

is the associated bilinear form of q, in the following, we will consider symmetric

bilinear spaces and quadratic spaces as the similar objects and sometimes we

will use the notation q,with q the quadratic form on V .

Let (V1, b1) and (V2, b2) be two bilinear spaces. Let V = V1⊕V2(V = V1×V2
and V1 ∩ V2 = {0}, V1, V2 considered as subspaces of V ), the direct sum, with

the bilinear form

b : V1 ⊕ V2 → K, b ((x′1, x
′
2) , (x′′1 , x

′′
2)) = b1 (x′1, x

′′
1) + b2 (x′2, x

′′
2) .

V is called the orthogonal sum of (V1, b1) and (V2, b2) , denoted by V1 ⊥ V2.
If b1 and b2 are symmetric, it results that b is symmetric. Let q1, q2, q be the

associated quadratic forms. We write sometimes q = q1 ⊥ q2 instead of

V = V1 ⊥ V2.

We will denote m× q = q ⊥ ... ⊥ q︸ ︷︷ ︸
m−times

,where m ∈ N.

A quadratic form represents the scalar α ∈ K if there is an element x ∈
V, x 6= 0, such that q (x) = α. The space (V, q) is called universal if q represent

all nonzero scalars.

We call a quadratic form q : V → K anisotropic if q (x) = 0 implies x =

0,for all x ∈ V, otherwise q is called isotropic. A bilinear form b : V × V → K

is called anisotropic if b(x, x) = 0 implies x = 0,for all x ∈ V, otherwise b is

called isotropic. A bilinear space (V, b) is called isotropic if its bilinear form

is isotropic. A subspace V ′ of V is called totally isotropic if b (x, y) = 0, for

all x, y ∈ V ′.An isotropic bilinear space is universal.

Let (V, b) be a symmetric bilinear space of dimension n, with a basis B =

{e1, e2, ..., en}. The matrix A associated to bilinear form b with respect to basis
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B is a symmetric matrix. Every symmetric matrix is congruent to a diagonal

matrix 


α1 0 ... 0 0

0 α2 ... 0 0

0 0 ... 0 0

0 0 ... αn−1 0

0 0 ... 0 αn



,

therefore we will denote the vector space (V, b) with < α1, ...αn > .

Proposition 2.1.2. ([Sch; 85], Lemma 3.7.) If σ ∈ Sn is a permutation

of degree n, therefore we have:

1) < α1, ...αn >≃< ασ(1), ...ασ(n) >;

2) For arbitrary non-zero elements bi ∈ K∗, we have

< α1, ...αn >≃< b21α1, ...b
2
nαn > .�

Definition. 2.1.3. [La; 04] A regular bilinear space (V, b) of dimension

two isomorphic to < 1,−1 > is called hyperbolic plane.

Proposition 2.1.4. ([Sch; 85], Theorem 4.5.) Let (V, b) be a regular

bilinear space of dimension 2n. The following conditions are equivalent:

i) V contains a totally isotropic subspace W of dimension n.

ii) (V, b) ∼=< 1, ..., 1,−1, ...,−1 >≃< 1,−1, ..., 1,−1 > .�

A space which satisfies one of the equivalent conditions of the above propo-

sition is called a hyperbolic space.

Proposition 2.1.5. ([Sch; 85], Corollary 4.6.) Let (V, b) be a regular

bilinear space of dimension 2. The following conditions are equivalent:

i) (V, b) is isotropic;

ii) (V, b) ≃< 1,−1 > .�

Definition 2.1.6. [La; 04] Let A = (aij) ∈Mn (K) , B = (bij) ∈Mm(K)

be two square matrices. The matrix A⊗B ∈Mmn (K) , defined as follows

A⊗B =




a11B a12B a13B ... a1nB

... ... ... ... ...

am1B am1B am1B ... amnB




is called the tensor product of the matrix A and B.
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Let ϕ be a n−dimensional quadratic irreducible form over the field K,

n ∈ N,n > 1, which is not isometric to the hyperbolic plane,< 1,−1 > . We

can consider ϕ as a homogeneous polynomial of degree 2,

ϕ (X) = ϕ (X1, ...Xn) =
∑

aijXiXj , aij ∈ K∗.

We define the function field of ϕ, denoted by K(ϕ), as the quotient field of

the integral domain

K[X1, ..., Xn] / (ϕ (X1, ..., Xn)) .

Since (X1, ..., Xn) is a non-trivial zero, ϕ is isotropic over K(ϕ).

Example 2.1.7. In the polynomial ring K[X1, X2], we consider the ideal

generated by the irreducible polynomial ϕ (X1, X2) = X2
1 +X2

2 . Therefore, the

function field of ϕ is the field K (X1)
(√
−X2

1

)
.

Considering n ∈ N − {0}, we define a n−fold Pfister form over K a

quadratic form of the type

< 1, a1 > ⊗...⊗ < 1, an >, a1, ..., an ∈ K∗.

A Pfister form is denoted by ≪ a1, a2, ..., an ≫ . For n ∈ N,n > 1, a Pfister

form ϕ can be written as

< 1, a1 > ⊗...⊗ < 1, an >=< 1, a1, a2, ..., an, a1a2, ..., a1a2a3, ..., a1a2...an > .

If ϕ =< 1 >⊥ ϕ′, then ϕ′ is called the pure subform ofϕ. It is known that a

Pfister form is hyperbolic if and only if is isotropic. Therefore a Pfister form

is isotropic if and only if its pure subform is isotropic.( See [Sch; 85] )

For a field L, we define

L∞ = L ∪ {∞},

where x+∞ = x, for x ∈ L, x∞ =∞ for x ∈ L∗,∞∞ =∞, 1
∞ = 0, 10 =∞.

An L−place of the field K is a map λ : K → L∞ with the properties:

λ (x+ y) = λ (x) + λ (y) , λ (xy) = λ (x)λ (y) ,

whenever the right sides are defined.
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Theorem 2.1.8. ([Kn; 76], Theorem 3.3. ) Let F be a field of character-

istic 6= 2, ϕ be a quadratic form over F and K an extension of the field F.

If ϕK is isotropic, then there exist an F−place from F (ϕ) to K.

A subset P of K is called an ordering of K∗ if

P + P ⊂ P, PP ⊂ P, P ∪ −P = K∗.

A field K with an ordering is called an ordered field, the elements from

P are called positive and from −P are called negative. For x, y ∈ K, K an

ordered field, we define x > y if (x− y) ∈ P.
A field K is called a formally real field if −1 is not a sum of squares in

K. Since each element from a finite field is a sum of squares (see Proposition

3.7. from [Sch, 85]), it results that a finite field is not a formally real field.

Therefore, a formally real field has characteristic equal with 0.

A quadratic semi-ordering (or a q-ordering) of a field K is a subset P of

K with the following properties:

P + P ⊂ P,K2P ⊂ P, 1 ∈ P, P ∪ −P = K,P ∩ −P = {0}.

We define x ≥ y if (x− y) ∈ P. We remark that if the field K contains a

q-ordering, therefore K is a formally real field.

Obviously, every ordering is a q-ordering ([La; 04],[Sch; 85]). A q-preordering

is a subset P0 of K such that

P0 + P0 ⊂ P0,K
2P0 ⊂ P0, P0 ∩ −P0 = {0}.

Then there is a q-ordering P such that P0 ⊂ P or −P0 ⊂ P. (Lemma 7.3,

[Sch; 85], p.133)

If ϕ ≃< a1, ..., an > is a quadratic form over a formally real field K and

P is an ordering on K, the signature of ϕ at P is

sgn (ϕ) = |{i | ai >P 0}| − |{i | ai <P 0}| .

The quadratic form q is indefinite at ordering P if dimϕ > |sgn(ϕ)| .

Proposition 2.1.9. ([Sch;85], p. 17, [La; 04], p.12)
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i) Let (V1, b1) and (V2, b2) be two isomorphic bilinear spaces with orthogonal

decompositions V1 = V ′
1 ⊥ V ′′

1 , V2 = V ′
2 ⊥ V ′′

2 , such that V ′
1 and V ′

2 are regular

subspaces and V ′
1 ≃ V ′

2 . Therefore V
′′
1 ≃ V ′′

2 .( The Witt Cancellation Law)

ii) For a bilinear subspace (V, b), all its maximal totally isotropic subspaces

have the same dimension. �

Definition 2.1.10. For a regular bilinear space (V, b) , the dimension of

maximal totally isotropic subspaces is called the Witt index of (V, b) and will

denote it by iW (V ).

Proposition 2.1.11. ([Sch;85], Corollary 5.1, [La; 04] Corollary 4.4.) If a

bilinear space (V, b) has iW (V ) = m, therefore V has the following orthogonal

decomposition

V = H1 ⊥ H2 ⊥ ... ⊥ Hm ⊥ V ′,

where V ′ is anisotropic, unique determined up an isomorphism, and H1, H2, ..., Hm

are hyperbolic planes.�

A quadratic form ψ is a subform of the form ϕ if ϕ ≃ ψ ⊥ φ, for some

quadratic form φ. We denote ψ < ϕ.

From the above proposition, the Witt index of a quadratic form ϕ, denoted

by iW (ϕ) , is the dimension of a maximal totally isotropic subform of ϕ.

Indeed, if

ϕ ≃ ϕan⊥ϕh,
with ϕan anisotropic and ϕh hyperbolic, the Witt index of ϕ is 1

2 dimϕh. The

first Witt index of a quadratic form ϕ is the Witt index of ϕ over its function

field and is denoted by i1 (ϕ) . The essential dimension of ϕ is

dimes (ϕ) = dim (ϕ)− i1 (ϕ) + 1.

(see [Sch; 85])
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2.2. Brown’s construction of division algebras

Generally, algebras At of dimension 2t obtained by the Cayley-Dickson

process are not division algebras for all t ≥ 1. But we can find fields on

which, if we apply the Cayley-Dickson process, the resulting algebras At are

division algebras for all t ≥ 1. For example, we can consider the power-series

field K{X1, X2, ..., Xt} or the rational function field K(X1, X2, ..., Xt), where

X1, X2, ..., Xt are t algebraically independent indeterminates over the field K.

In 1967, R. B. Brown constructed, for each t, a division algebra At of

dimension 2t over the power-series field K{X1, X2, ..., Xt}. We will present

this construction, using polynomial rings over K and their field of fractions

(the rational function field) instead of power-series fields over K (as it was

used by R.B. Brown, see [Br; 67]).

For each t, we will construct a division algebra At over a field Ft, as follows.

Let X1, X2, ..., Xt be t algebraically independent indeterminates over the field

K and

Ft = K (X1, X2, ..., Xt)

be the rational function field. For i = 1, ..., t, we building the algebra Ai

over the rational function field K (X1, X2, ..., Xi) by setting αj = Xj for j =

1, 2, ..., i. Let A0 = K. Using induction over i, supposing that Ai−1 is a divi-

sion algebra over the field Fi−1 = K (X1, X2, ..., Xi−1), we can prove that the algebra Ai

is a division algebra over the field Fi = K (X1, X2, ..., Xi).

Let

Ai−1
Fi

= Fi ⊗Fi−1
Ai−1.

For αi = Xi we apply the Cayley-Dickson process to the algebra Ai−1
Fi

. The

resulting algebra, denoted by Ai, is an algebra over the field Fi with the

dimension 2i.

Let

x = a+ bvi, y = c+ dvi,

be nonzero elements in Ai such that xy = 0, where v2i = αi. Since

xy = ac+Xid̄b+ (bc̄+ da) vi = 0,
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we obtain

ac+Xid̄b = 0 (2.2.1.)

and

bc̄+ da = 0. (2.2.2.)

The elements a, b, c, d ∈ Ai−1
Fi

are non zero elements. Indeed, we have:

i) If a = 0 and b 6= 0, then c = d = 0⇒ y = 0, false;

ii) If b = 0 and a 6= 0, then d = c = 0⇒ y = 0, false;

iii) If c = 0 and d 6= 0, then a = b = 0⇒ x = 0, false;

iv) If d = 0 and c 6= 0, then a = b = 0 ⇒ x = 0, false.

It results that b 6= 0, a 6= 0, d 6= 0, c 6= 0. If {1, f2, ..., f2i−1} is a ba-

sis in Ai−1, then a =
2i−1∑
j=1

gj(1 ⊗ fj) =
2i−1∑
j=1

gjfj , gj ∈ Fi, gj =
g′j
g′′
j

, g′j , g
′′
j ∈

K[X1, ..., Xi], g
′′
j 6= 0, j = 1, 2, ...2i−1, where K[X1, ..., Xt] is the polynomial

ring. Let a2 be the less common multiple of g′′1 , ....g
′′
2i−1 , then we can write

a =
a1

a2
, where a1 ∈ Ai−1

Fi
, a1 6= 0. Analogously, b =

b1

b2
, c =

c1

c2
, d =

d1

d2
, b1, c1, d1 ∈ Ai−1

Fi
− {0} and a2, b2, c2, d2 ∈ K[X1, ..., Xt]− {0}.

If we replace in relations (2.2.1.) and (2.2.2.) , we obtain

a1c1d2b2 +Xid̄1b1a2c2 = 0 (2.2.3.)

and

b1c̄1d2a2 + d1a1b2c2 = 0. (2.2.4.)

If we denote

a3 = a1b2, b3 = b1a2, c3 = c1d2, d3 = d1c2,

a3, b3, c3, d3 ∈ Ai−1
Fi
− {0}, relations (2.2.3.) and (2.2.4.) become

a3c3 +Xid̄3b3 = 0 (2.2.5.)

and

b3c̄3 + d3a3 = 0. (2.2.6.)
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Since the algebra Ai−1
Fi

= Fi ⊗Fi−1
Ai−1 is an algebra over Fi−1 with basis

Xi ⊗ fj , i ∈ N and j = 1, 2, ...2i−1, we can write a3, b3, c3, d3 as

a3 =
∑

j≥m
xjX

j
i , b3 =

∑

j≥n
yjX

j
i , c3 =

∑

j≥p
zjX

j
i , d3 =

∑

j≥r
wjX

j
i ,

where xj , yj , zj , wj ∈ Ai−1, xm, yn, zp, wr 6= 0. Since Ai−1 is a division algebra,

it follows that xmzp 6= 0, wryn 6= 0, ynzp 6= 0, wrxm 6= 0. Using relations

(2.2.5.) and (2.2.6.) , we obtain that

2m+ p+ r = 2n+ p+ r + 1,

which is false. Therefore, the algebra Ai is a division algebra over the field

Fi = K (X1, X2, ..., Xi) of dimension 2i.

2.3. Levels and sublevels of algebras obtained by the Cayley-

Dickson process

In the following, we assume that all quadratic forms are nondegenerate.

Definition 2.3.1. We consider K a field. The level of the field K, denoted

by s(K), is the smallest natural number n such that −1 is a sum of n squares

of K. If −1 is not a sum of squares of K, then s(K) =∞.The definition is the

same for the commutative rings.

The level of the algebra A, denoted by s (A) , is the least integer n such

that −1 is a sum of n squares in A.

The sublevel of the algebra A, denoted by s(A) , is the least integer n such

that 0 is a sum of n+ 1 nonzero squares of elements in A.

If these numbers do not exist, then the level and sublevel are infinite.

Obviously, s(A) ≤ s (A).

A. Pfister, in [Pf; 65], proved that if a field has a finite level then this level

is a power of 2 and any power of 2 can be realised as the level of a field.

The level of division algebras is defined in the same manner as for the fields
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and was intensively studied in several papers, as for example: [Le; 90], [Lew;

89], [Lew; 06] . In [Lew; 87], D. W. Lewis constructed quaternion division

algebras of level 2k and 2k + 1 for all k ∈ N − {0} and he asked if there

exist quaternion division algebras whose levels are not of this form. Using

function field techniques, these values were recovered for the quaternions by

Laghribi and Mammone in [La,Ma; 01]. Using the same technique, in [Pu;

05], Susanne Pumplün constructed octonion division algebras of level 2k and

2k + 1 for all k ∈ N − {0}. In [Hoff; 08], D. W. Hoffman proved that there

are many other values, other than 2k or 2k + 1, which can be realised as a

level of quaternion division algebras. In fact, he showed that for each k ∈ N,

k ≥ 2, there exist quaternion division algebras D with level s (D) bounded

by the values 2k + 2 and 2k+1 − 1 (i.e. 2k + 2 ≤ s (D) ≤ 2k+1 − 1 ). In [Kr,

Wa; 91], M. Kűskemper and A. Wadsworth constructed the first example of

a quaternion algebra of sublevel 3. Starting from this construction, in [O’ Sh;

07(1)], J. O’ Shea proved the existence of an octonion algebra of sublevel 3 and

constructed an octonion algebra of sublevel 5. The existence of a quaternion

algebra of sublevel 5 is still an open question. In [O’ Sh; 10], Theorem 3.6.,

O’Shea proved the existence of an octonion division algebras of level 6 and 7.

These values, 6 and 7, are still the only known exact values for the level of

octonion division algebras, other than 2k or 2k + 1, k ∈ N − {0}. It is still

not known which exact numbers could be realised as levels and sublevels of

quaternion and octonion division algebras but, for the integral domains, this

problem was solved in [Da, La, Pe; 80], when Z.D. Dai, T. Y. Lam and C.

K. Peng proved that any positive integer n can be realised as the level of an

integral domain, namely the ring

Rn = R[X1, X2, ..., Xn]/
(
1 +X2

1 +X2
2 + ...+X2

n

)

has the level n.

Cassels-Pfister Theorem. Let ϕ,ψ =< 1 > ⊥ψ′

be two quadratic forms

over a field K with charK 6= 2. If ϕ is anisotropic over K and ϕK(ψ)

is hyperbolic, then αψ < ϕ for any scalar represented by ϕ. In particular,

dimϕ ≥ dimψ.(La, Ma;01, p.1823, Theorem 1.3.)

Springer’s Theorem. Let ϕ1, ϕ2 be two quadratic forms over a field K

and K(X) be the rational function field over K. Then, the quadratic form
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ϕ1 ⊥ Xϕ2 is isotropic over K(X) if and only if ϕ1 or ϕ2 is isotropic over

K.(La, Ma;01, p.1823, Theorem 1.1.)

Let At be an algebra obtained by the Cayley-Dickson process, with the

set {1, f2, ..., fq}, q = 2t as a basis with the properties:

f2i = αi1, αi ∈ K,αi 6= 0, i = 2, ..., q

and

fifj = −fjfi = βijfk, βij ∈ K, βij 6= 0, i 6= j, i, j = 2, ...q,

βij and fk being uniquely determined by fi and fj .

If

x ∈ At, x = x11 +

q∑

i=2

xifi,

then

x̄ = x11−
q∑

i=2

xifi

and

t(x) = 2x1,n (x) = x21 −
q∑

i=2

αix
2
i .

In the above decomposition of x, we call x1 the scalar part of x and x′′ =
q∑
i=2

xifi the pure part of x. If we compute

x2 = x21 + x′′2 + 2x1x
′′ =

= x21 + α1x
2
2 + α2x

2
3 − α1α2x

2
4 + α3x

2
5 − ...− (−1)

t
(
t∏

i=1

αi)x
2
q + 2x1x

′′,

the scalar part of x2 is represented by the quadratic form

TC =< 1, α1, α2,−α1α2, α3, ..., (−1)
t
(

t∏

i=1

αi) >=< 1, β2, ..., βq > (2.3.1.)

and, since

x′′2 = α1x
2
2 + α2x

2
3 − α1α2x

2
4 + α3x

2
5 − ...− (−1)

t
(

t∏

i=1

αi)x
2
q ∈ K,
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is represented by the quadratic form TP = TC |A0
: A0 → K,

TP =< α1, α2,−α1α2, α3, ..., (−1)
t
(

t∏

i=1

αi) >=< β2, ..., βq > . (2.3.2.)

The quadratic form TC is called the trace form, and TP the pure trace form of

the algebra At. We remark that TC =< 1 >⊥ TP , and the norm

n = nC =< 1 >⊥ −TP , resulting that

nC =< 1,−α1,−α2, α1α2, α3, ..., (−1)
t+1

(
t∏

i=1

αi) >=< 1,−β2, ...,−βq > .

The norm form nC has the form

nC =< 1,−α1 > ⊗...⊗ < 1,−αt >

and it is a Pfister form.

Since the scalar part of any element y ∈ At is 1
2t (y) , it follows that

TC (x) =
t
(
x2
)

2
.

Proposition 2.3.2.( [Fl; 11] For an algebra A obtained by the Cayley-

Dickson process and with the above notations, we have:

i) If s (A) ≤ n then −1 is represented by the quadratic form n× TC .
ii) −1 is a sum of n squares of pure elements in A if and only if the

quadratic form n× TP represents −1.

iii) For n ∈ N − {0}, if the quadratic form < 1 >⊥ n × TP is isotropic

over K, then s(A) ≤ n.

Proof. i) Let y ∈ A, y = x1 + x2f2 + ... + xqfq, xi ∈ K, for all i ∈
{1, 2, ..., q}. Using the notations given above, we get

y2 = x21 + β2x
2
2 + ...+ βqx

2
q + 2x1y

′′,

where

y′′ = x2f2 + ...+ xqfq.
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If −1 is a sum of n squares in A, then

−1 = y21 + ...+ y2n =

=
(
x211+β2x

2
12+...+βqx

2
1q+2x11y

′′
1

)
+...

+
(
x2n1+β2x

2
n2+...+βqx

2
nq+2xn1y

′′
n

)
.

Then we have

−1 =

n∑

i=1

x2i1 + β2

n∑

i=1

x2i2 + ...+ βq

n∑

i=1

x2iq

and

n∑

i=1

xi1xi2 =

n∑

i=1

xi1xi3 = ... =

n∑

i=1

xi1xin = 0,

then n× TC represents −1.

ii) With the same notations, if −1 is a sum of n squares of pure elements

in A, then

−1 = y21 + ...+ y2n =

=
(
β2x

2
12+...+βqx

2
1q + 2x11y

′′
1

)
+...

+
(
β2x

2
n2+...+βqx

2
nq + 2xn1y

′′
n

)
.

We have

−1 = β2

n∑

i=1

x2i2 + ...+ βq

n∑

i=1

x2iq.

Therefore n × TP represents −1. Reciprocally, if n × TP represents −1,

then

−1 = β2

n∑

i=1

x2i2 + ...+ βq

n∑

i=1

x2iq.

Let

ui = x2i2f2+...+x2iqfq.

It results t (ui) = 0 and

u2i = −n (ui) = β2x
2
i2 + ...+ βqx

2
iq,
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for all i ∈ {1, 2, ..., n}. We obtain

−1 = u21 + ...+ u2n.

iii) Case 1. If −1 ∈ K∗2, then s (A) = 1.

Case 2. −1 /∈ K∗2. Since the quadratic form < 1 >⊥ n× TP is isotropic

then it is universal. It results that < 1 >⊥ n × TP represent −1. Then, we

have the elements α ∈ K and pi ∈ A0, i = 1, ..., n, such that

−1 = α2 + β2

n∑

i=1

p2i2 + ...+ βq

n∑

i=1

p2iq,

and not all of them are zero.

i) If α = 0, then

−1 = β2

n∑

i=1

p2i2 + ...+ βq

n∑

i=1

p2iq.

It results

−1 =
(
β2p

2
12 + ...+ βqp

2
1q

)
+ ...

+
(
β2p

2
n2 + ...+ βqp

2
nq

)
.

Denoting

ui = pi2f2 + ...+ piqfq,

we have that t (ui) = 0 and

u2i = −n (ui) = β2p
2
i2 + ...+ βqp

2
iq,

for all i ∈ {1, 2, ..., n}. We obtain −1 = u21 + ...+ u2n.

ii) If α 6= 0, then 1 + α2 6= 0 and

0 = 1 + α2 + β2

n∑

i=1

p2i2 + ...+ βq

n∑

i=1

p2iq.

Multiplying this relation with 1 + α2 , it follows that

0 = (1 + α2)2 + β2

n∑

i=1

r2i2 + ...+ βq

n∑

i=1

r2iq.
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Therefore

−1 = β2

n∑

i=1

r′2i2 + ...+ βq

n∑

i=1

r′2iq,

where

r′ij = rij(1 + α)−1, j ∈ {2, 3, ..., q}

and we apply case i). Therefore s(A) ≤ n.�

Proposition 2.3.3.( [Fl; 11] For the algebra A, obtained by the Cayley-

Dickson process, the following statements are true:

a) If n ∈ N− {0}, such that n = 2k − 1, for k > 1, then s(A) ≤ n if and

only if < 1 >⊥ n× TP is isotropic.

b) If −1 is a square in K, then s(A) = s (A) = 1.

c) If−1 /∈ K∗2, then s (A) = 1 if and only if TC is isotropic.

Proof. a) From Proposition 2.3.2, supposing that s(A) ≤ n, we have

−1 =

n∑

i=1

p2i1 + β2

n∑

i=1

p2i2 + ...+ βq

n∑

i=1

p2iq

such that
n∑

i=1

pi1pi2 =
n∑

i=1

pi1pi3 = ... =
n∑

i=1

pi1piq = 0.

For the level reasons, it results that

1 +
n∑

i=1

p2i1 6= 0.

Putting p2k1 = 1 and p2k2 = p2k3 = ... p2kq = 0, we have

0 =
n+1∑

i=1

p2i1 + β2

n+1∑

i=1

p2i2 + ...+ βq

n+1∑

i=1

p2iq (2.3.3.)

and
n+1∑

i=1

pi1pi2 =

n+1∑

i=1

pi1pi3 = ... =

n+1∑

i=1

pi1piq = 0.
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Multiplying (2.3.3) by
n+1∑
i=1

p2i1, since

(
n+1∑
i=1

p2i1

)2

is a square and using Lemma

from [Sch; 85], p.151, for the products

n+1∑

i=1

p2i2

n+1∑

i=1

p2i1, ...,

n+1∑

i=1

p2iq

n+1∑

i=1

p2i1,

we obtain

0 =

(
n+1∑

i=1

p2i1

)2

+ β2

n+1∑

i=1

r2i2 + ...+ βq

n+1∑

i=1

r2iq, (2.3.4.)

where

ri2, ...riq ∈ K,n+ 1 = 2k ,

r12 =

n+1∑

i=1

pi1pi2 = 0, r13 =

n+1∑

i=1

pi1pi3 = 0, ..., r1q =

n+1∑

i=1

pi1piq = 0.

Therefore, in the sums
n+1∑
i=1

r2i2, ...,
n+1∑
i=1

r2iq we have n factors. From (2.3.4) , we

get that < 1 >⊥ n× TP is isotropic.

b) If −1 = a2 ∈ K ⊂ A, then s(A) = s (A) = 1.

c) If −1 /∈ K∗2 and s (A) = 1, then, there is an element y ∈ A\K such

that −1 = y2. Hence y ∈ A0, so y = −y. It results that

(1 + y)
2

= 1 + 2y + y2 = 2y

and

TC (1 + y) =
1

2
t
(

(1 + y)
2
)

=
1

2

(
2y + 2y

)
= y − y = 0.

Therefore TC is isotropic.

Conversely, if TC = < 1 >⊥ TP is isotropic, from Proposition 2.3.2., iii),

we have then s (A) = 1.�

Proposition 2.3.4.([Fl; 11]) The quadratic form 2k × TC is isotropic if

and only if < 1 >⊥ 2k × TP is isotropic.

Proof. Since the form < 1 >⊥ 2k × TP is a subform of the form 2k × TC ,

if the form < 1 >⊥ 2k × TP is isotropic, we have that 2k × TC is isotropic.
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For the converse, supposing that 2k × TC is isotropic, then we get

2k∑

i=1

p2i + β2

2k∑

i=1

p2i2 + ...+ βq

2k∑

i=1

p2iq = 0, (2.3.5.)

where pi, pij ∈ K, i = 1, ..., 2k, j ∈ 2, ..., q and some of the elements pi and pij

are nonzero.

If pi = 0, ∀i = 1, ..., 2k, then 2k×TP is isotropic, therefore < 1 >⊥ 2k×TP
is isotropic.

If
2k∑

i=1

p2i 6= 0,

then, multiplying relation (2.3.5) with
2k∑
i=1

p2i and using Lemma from [Sch; 85]

p.151, for the products

2k∑

i=1

p2i2

2k∑

i=1

p2i , ...,

2k∑

i=1

p2iq

2k∑

i=1

p2i ,

we obtain

(
2k∑

i=1

p2i )
2 + β2

2k∑

i=1

r2i2 + ...+ βq

2k∑

i=1

r2iq = 0,

then < 1 >⊥ 2k × TP is isotropic.

For the level reason, the relation
2k∑
i=1

p2i = 0, for some pi 6= 0, does not

work. Indeed, supposing that p1 6= 0, we obtain

−1 =

2k∑

i=2

(pip
−1
1 )2,

false.�

Remark 2.3.5. i) If the algebra A, obtained by the Cayley-Dickson pro-

cess, is a division algebra, then its norm form, nAC , is anisotropic. However

there are algebras A obtained by the Cayley-Dickson process with the norm
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form nAC anisotropic which are not division algebras. For example, if K = R

and t = 4, the real sedenion algebra
(−1,−1,−1,−1

R

)

with the basis {1, f1, ....., f15} has the norm form anisotropic and is not a

division algebra. For example, (f3 + f10) (f6 − f15) = 0.

ii) Using Proposition 2.3.3, if the algebra A is an algebra obtained by the

Cayley-Dickson process of dimension greater than 2 and if nAC is isotropic,

then s (A) = s (A) = 1. Indeed, if −1 is a square in K, the statement follows

from the above. If −1 /∈ K∗2, since nC =< 1 >⊥ −TP and nC is a Pfister

form, we obtain that −TP is isotropic, therefore TC is isotropic and, from the

above proposition, it results that s (A) = s (A) = 1.

In the following, we consider A, an algebra obtained by the Cayley-Dickson

process over a field K, having dimension q = 2t. For the algebra A,let TC ,

TP , nC be its trace, pure trace and norm forms, respectively.

Theorem 2.3.6.([Fl; 13]) We consider A an algebra of dimension 2t ob-

tained by the Cayley-Dickson process, of finite level, over a field K. Therefore

s (A) ≤ s (A) ≤ s (A) + 1.

Proof. Denoting n =s(A) , we find the nonzero elements

ui = xi1+xi2f2 + ...+ xiqfq ∈ A,

with

u′′i = xi2f2 + ...+ xiqfq ∈ A
the pure part of ui, where xij ∈ K, i ∈ {1, 2, ..., n+ 1}, j ∈ {1, 2, ..., q}, q = 2t,

such that 0 = u21 + ...+ u2n+1. We obtain

n+1∑

i=1

(x2i1 + (u′′i )2 + 2xi1u
′′
i ) = 0,

therefore
n+1∑

i=1

x2i1 +

n+1∑

i=1

(u′′i )2 = 0
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and
n+1∑

i=1

xi1u
′′
i = 0.

Case 1. If xi1 = 0, ∀ i ∈ {1, 2, ..., n+ 1}. It results that

n+1∑

i=1

(u′′i )2 = 0,

hence, it follows that (n+ 1)×TP is isotropic, therefore it contains < 1,−1 >

as a subform. We obtain that −1 is represented by the form (n + 1) ×
TP . Therefore, −1 is a sum of square of (n + 1) pure elements from A,

hence s (A) ≤ n+ 1.

Case 2. There are at least two elements xi1 6= 0 such that

n+1∑

i=1

x2i1 = 0.

Since the elements (u′′i )2 ∈ K for all i ∈ {1, 2, ..., n + 1}, it results that

s (A) ≤ s (K) . But s(K) = s (K) ≤ n, hence s (A) ≤ n.
Case 3. If

n+1∑

i=1

x2i1 6= 0,

we denote di =
xi1

D
∈ K, where

D =

n+1∑

i=1

x2i1.

It follows that
n+1∑

i=1

diui =
1

D

n+1∑

i=1

(x2i1 + xi1u
′′
i ) = 1,

since
n+1∑
i=1

xi1u
′′
i = 0. We obtain

n+1∑

i=1

((
D−1 + 1

2

)
ui − di

)2

=
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=

(
D−1 + 1

2

)2 n+1∑

i=1

ui
2 −

(
D−1 + 1

) n+1∑

i=1

uidi +

n+1∑

i=1

d2i =

= −
(
D−1 + 1

)
+D−1 = −1,

therefore s (A) ≤ n+ 1.�

If A is a division algebra of dimension ≤ 8, the above result is a conse-

quence of the main Theorem from [Hoff; 10].

Theorem 2.3.7.([Fl; 13]) Let K be a field , X be an algebraically indepen-

dent indeterminate over K, A be a finite-dimensional K−algebra with finite

level s (A) and the scalar involution . Let k (A) be the least number such

that the form k × nAC is isotropic over K, where nAC is the norm form of the

algebra A, let A1 = K (X)⊗K A and B = (A1, X). Then:

i) If A is a division algebra, then B is a division algebra.

ii) s (B) = min{s (A) , k (A)}.
iii) If k (A) > 1, s(B) = min{s (A) , k (A)− 1}.

Proof. i) It results by straightforward calculations, using the same argu-

ments as in Brown’s construction at step i, described above.

ii) We have s (B) ≤ s (A). Let k = k (A) . If k×nAC is isotropic, it results

that k × nA1

C is isotropic and therefore universal and it represents −X−1.

Hence, there are elements z1, ..., zk ∈ A1 such that

k∑

i=1

nA1

C (zi) = −X−1.

Let wi ∈ B, wi = ziu, u ∈ B, u2 = X. Since t(wi) = 0, it follows that

w2
i = −nBC (wi) = XnA1

C (zi)

and
k∑

i=1

w2
i =

k∑

i=1

XnA1

C (zi) = −1.

It results that s (B) ≤ k, therefore s (B) ≤ min{s (A) , k (A)}.
Conversely, assuming that s (B) = n, we have −1 = y21 + ... + y2n, where

yi ∈ B, yi = ai1 + ai2u, u
2 = X, ai1, ai2 ∈ A1 and we obtain

y2i = a2i1 +Xai2ai2 + (ai2ai1 + ai2ai1)u,
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for i ∈ {1, 2, ...n− 1}. It follows that

−1 =
n∑

i=1

a2i1 +X
n∑

i=1

ai2ai2,

where ψ = 1⊗ is involution in A1, ψ (x) = x̄.We remark that ai2ai2 ∈ K (X) ,

i ∈ {1, ..., n}. Let {1, f2, ..., fq}, q = 2t, be a basis in A, therefore

ai1 =

m∑

j=1

pji1 (X)

qji1 (X)
(1⊗ fj),

with
pji1 (X)

qji1 (X)
∈ K(X), and

ai2 =

m∑

j=1

rji2 (X)

wji2 (X)
(1⊗ fj),

with

rji2 (X)

wji2 (X)
∈ K(X), i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m}. It results that

-1=

n∑

i=1

(

m∑

j=1

pji1 (X)

qji1 (X)
(1⊗fj))2+X

n∑

i=1

(

m∑

j=1

rji2 (X)

wji2 (X)
(1⊗fj))((

m∑

j=1

rji2 (X)

wji2 (X)
(1⊗fj)).

After clearing denominators, we obtain

-v2 (X) =

n∑

i=1

(

m∑

j=1

p′ji1 (X) (1⊗fj))2+X

n∑

i=1

(

m∑

j=1

r′ji2 (X) (1⊗fj))((
m∑

j=1

r′ji2(1⊗fj)),

(2.3.6.)

where

v (X) = lcm{qji1 (X) , wji2 (X)}, i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m}

and

p′ji1 (X) =v (X) pji1 (X) , r′ji2 (X) =v (X) rji2 (X) , i ∈ {1,..., n}, j ∈ {1, 2,...,m}.
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Case 1. If p′ji1 (X) are not divisible by X, for some i and j, taking residues

modulo X in (2.3.6) , denoted with two-sided arrow, we obtain

←−−−−→
−v2 (X) =

n∑

i=1

←−−−−−−−−−−−−−−−→
(
m∑

j=1

p′ji1 (X) (1⊗ fj))2.

In this relation, if v (X) is not divisible by X, it results that s (A) ≤ n. If

v (X) is divisible by X, we have s (A) ≤ n − 1 and, from Theorem 2.3.6, we

obtain s (A) ≤ n.
Case 2. If p′ji1 (X) are divisible by X, for all i and j, it results that v (X)

is divisible by X, then dividing relation (2.3.6) by X and taking residues

modulo X, we obtain

←→
0 =

n∑

i=1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(

m∑

j=1

r′ji2 (X) (1⊗ fj))((
m∑

j=1

r′ji2(1⊗ fj)).

It follows that the form n× nAC is isotropic, therefore k (A) ≤ n.
It results that s (B) = min{s (A) , k (A)}.
iii) Since s(B) ≤ s(B) ≤ s (A) , then s(B) ≤ s (A) . Let k = k (A) . We

have that k × nAC is isotropic, therefore k × nA1

C is isotropic. Hence, there

are the elements z1, ..., zk ∈ A1 such that
k∑
i=1

nA1

C (zi) = 0. Let wi ∈ B, wi =

ziu, u ∈ B, u2 = X. Since t(wi)=0, we obtain w2
i=−nBC (wi)=XnA1

C (zi) and
k∑
i=1

w2
i=

k∑
i=1

XnA1

C (zi)=0. It results that s(B) ≤ k − 1, therefore

s (B) ≤ min{s (A) , k (A)− 1}.

Conversely, assuming that s(B) = n, there are y1, ..., yn+1 ∈ B, non zero

elements, such that 0 = y21 + ...+y2n+1, yi = ai1 +ai2u, u
2 = X, ai1, ai2 ∈ A1.

Using the same notations as in ii), after straightforward calculations, we obtain

n+1∑

i=1

(
m∑

j=1

p′ji1 (X) (1⊗ fj))2+X
n+1∑

i=1

(
m∑

j=1

r′ji2 (X) (1⊗ fj))((
m∑

j=1

r′ji2(1⊗ fj))=0.

(2.3.7.)

Case 1. If p′ji1 (X) are not divisible by X, for some i and j, taking residues
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modulo X in relation (2.3.7) , we obtain

←→
0 =

n+1∑

i=1

←−−−−−−−−−−−−−−−→
(
m∑

j=1

p′ji1 (X) (1⊗ fj))2,

therefore s (A) ≤ n.
Case 2. If p′ji1 (X) are divisible by X, for all i and j, then dividing

relation (2.3.7) by X and taking residues modulo X, we obtain

←→
0 =

n+1∑

i=1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(
m∑

j=1

r′ji2 (X) (1⊗ fj))((
m∑

j=1

r′ji2(1⊗ fj)),

therefore k (A) ≤ n+ 1. It results that s(B) = min{s (A) , k (A)− 1}.�

Since s(B) ≤ s(B) ≤ s (A) , in the above Theorem, we remark that if

k (A) = 1 then s(B) = s(B) = s (A) = 1. Results analogous to those in

Theorem 2.3.7 are obtained for composition algebras in [Ti, Va; 87] and [O’

Sh; 11].

Let At be a division algebra over the field K = K0(X1, ..., Xt), obtained

by the Cayley-Dickson process and Brown’s construction of dimension q = 2t,

where K0 is a formally real field, X1, ..., Xt are algebraically independent

indeterminates over the field K0, TC and TP are its trace and pure trace

forms. Let

ϕn =< 1 > ⊥n× TP , ψm =< 1 > ⊥m× TC , n ≥ 1,

At (n) = At ⊗K K (< 1 > ⊥n× TP ) , n ∈ N− {0}. (2.3.8.)

We denote Kn = K (< 1 > ⊥n× TP ) = K (ϕn) , and let nAt

C be the norm

form of the algebra At.

Proposition 2.3.8.([Fl; 13])

i) The norm form n
At(n)
C is anisotropic over Kn.

ii) With the above notations, for t ≥ 2, if n = 2k + 1 then 2k × n
At(n)
C is

anisotropic over K0 (X1, X2, ..., Xt) (ϕ2k+1) .

Proof. i) First, we consider n > 1. Since n
At(n)
C is a Pfister form and a

Pfister form is isotropic if and only if it is hyperbolic, if n
At(n)
C is isotropic over
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Kn, then it is hyperbolic. Since At is a division algebra, it follows that nAt

C is

anisotropic. From Cassels-Pfister Theorem, for some α ∈ K∗, we obtain that

αϕn is a subform of the norm form n
At(n)
C . Since dimϕn = 1 + n(2t − 1) and

dim n
At(n)
C = 2t, therefore dimϕn > dim n

At(n)
C , false.

If n = 1, using the Cassels-Pfister Theorem, for some α ∈ K∗, it results

that αϕ1 is a subform of the norm form n
At(1)
C . Since dimϕ1 = dim n

At(1)
C = 2t

and the forms ϕ1 and n
At(1)
C are not similar, we obtain a contradiction.

ii) We denote

αk = (2k + 1)× < 1,−X1 > .

It results that X2αk is a subform of ϕ2k+1, then

K0 (X1, X2, ..., Xt) (αk) ≃ K0 (X1, X2, ..., Xt) (X2αk) .

If 2k × nC is isotropic over K0 (X1, X2, ..., Xt) (ϕ2k+1) there is a map

K0 (X1, X2,...,Xt) -place: K0 (X1, X2,...,Xt) (ϕ2k+1)→ K0 (X1, X2,...,Xt) (αk) ,

and 2k × nC is isotropic over K0 (X1, X2, ..., Xt) (αk) from [Kn; 76, Theo-

rem 3.3.]. By repeatedly applying of Springer’s Theorem, it results that the

quadratic form 2k× < 1,−X1 > is isotropic over K0 (X1) (αk) , in contradic-

tion with Proposition 2.2. from [La,Ma; 01]. �

Remark. 2.3.9. i) The algebra At (n) has dimension 2t and is not

necessarily a division algebra, but, using Remark 2.3.5, this algebra is of level

greater than 1.

ii) From Proposition 2.3.2 i) and iii), if ψm is anisotropic and ϕn is isotropic

over Kn, then s (At (n)) ∈ [m+ 1, n].

Example 2.3.10. Using the same notations as those in Theorem 2.3.7,

let F be a field of level 2k. If A = A0 = F, K = F,A1 = K(X1)⊗K A0, since

k (A) ≥ 2k + 1, we obtain the division K(X1)−algebra B of dimension 2 and

level and sublevel 2k. Using the same Theorem, we can continue the induction

steps. Assuming that A = At−1 is a division algebra of dimension 2t−1 and

level 2k over the field K = F (X1, ..., Xt−1), then, from Springer’s Theorem, it

results that k (At−1) ≥ 2k+1. If A = At−1, A1 = K(Xt)⊗KAt−1 and B is the

K (Xt)−algebra obtained by application of the Cayley-Dickson process with
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α = Xt to the K (Xt)−algebra A1, then B is a division algebra of dimension

2t and level and sublevel 2k. This is an example of a division algebra of level

and sublevel 2k and dimension 2t, t, k ∈ N− {0}.

Proposition 2.3.11. ([Fl; 13]) i1 (< 1 > ⊥n× TP ) = 1 for all n ∈
N− {0}, where TP is the pure trace form for the algebra At, t ≥ 2.

Proof. Let P be an arbitrary ordering over K such that β2, ..., βq <P 0.

We remark that such an ordering always exists. Indeed, since ϕn is anisotropic

over K (from Springer’s Theorem), it follows that P0 = {a | a = 0 or a is

represented by ϕn } is a q−preordering, therefore there is a q−ordering P

containing P0 or −P0. We have

|sgnϕn|= |sgn (< 1 > ⊥n× TP )|=
(
2t − 1

)
n− 1 < (2t − 1)n+ 1= dimϕn.

It results that ϕn is indefinite at P over K, then P extends to Kn, from [Hoff;

08], Lemma 2.5. Since ϕn is isotropic over Kn, we obtain that

dim((ϕn)Kn
)an ≤

(
2t − 1

)
n− 1.

Since

dim((ϕn)Kn
)an ≥ |sgnϕn| =

(
2t − 1

)
n− 1,

then

dim((ϕn)Kn
)an =

(
2t − 1

)
n− 1 = dimϕn − 2

and therefore i1 (ϕn) = 1
22 = 1. �

Theorem 2.3.12. ([Fl; 13])With the above notations, we have

s (At (n)) ∈ [n− [
n

2t
], n],

for t ≥ 2.

Proof. From Proposition 2.3.11, we have that

dimϕn − i1 (ϕn) = (2t − 1)n+ 1− i1 (ϕn) = (2t − 1)n.

For the quadratic form ψm, the relation

dimψm − i1 (ψm) = 2tn+ 1− i1 (ψm)
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holds. The forms ϕn and ψm are anisotropic over K = K0(X1, ..., Xt), by

Springer’s Theorem. From [Ka, Me; 03], Theorem 4.1, if

dimψm − i1 (ψm) < dimϕn − i1 (ϕn) (2.3.9.)

it results that ψm is anisotropic over Kn. From Proposition 2.3.11, we have

i1 (ϕn) = 1 for all n ∈ N − {0}, therefore, since i1 (ψm) ≥ 1, if dimψm <

dimϕn, we obtain relation (2.3.9). By straightforward calculations in relation

(2.3.9), we obtain

2tm+ 1− i1 (ψm) < (2t − 1)n

and we remark that n − [ n2t ] − 1 is the highest value of m ∈ N such that

the relation dimψm < dimϕn holds. Hence, ψm is anisotropic over Kn for

m = n− [ n2t ]− 1. From Remark 2.3.9, it results s (At (n)) ≥ n− [ n2t ].�

Theorem 2.3.13. ([Fl; 13]) With the above notations, we have

s (At (n)) ∈ [n− [
n+ 2t − 1

2t
], n],

where n ∈ N− {0}, t ≥ 2.

Proof. Using Proposition 2.3.2 i), if the quadratic form φm = (m +

1) × TC is anisotropic, then s(At (n)) ≥ m + 1 and if ϕn is isotropic, then

s(At (n)) ≤ n. Using the same arguments as in the proof of Theorem 2.3.12, if

2t (m+ 1)− i1 (φm) < (2t − 1)n, (2.3.10.)

we have φm is anisotropic over Kn, therefore

s (At (n)) ∈ [m+ 1, n].

Since i1 (φm) ≥ 1, the highest value of m such that relation (2.3.10) holds

is n− [n+2t−1
2t ]− 1. Indeed, relation (2.3.10) implies

2t (m+ 1)− 1 < (2t − 1)n,

therefore

m < n
2t − 1

2t
+

1

2t
− 1 = n− n+ 2t − 1

2t



48 Cristina FLAUT

and we obtain

m ≤ n− [
n+ 2t − 1

2t
]− 1.

�

Theorem 2.3.12 and Theorem 2.3.13 generalize Theorem 3.8. from [O’ Sh;

10].

Theorem 2.3.14. ([Fl; 13]) With the above notation, for each n ∈ N−{0}
there is an algebra At (n) such that s (At (n)) = n and s(At (n)) ∈ {n− 1, n}.

Proof. Let n ∈ N−{0} and m be the least positive integer such that n ≤
2m. For n = 2m, there are quaternion (A2 (n)) and octonion (A3 (n)) division

algebras of level n = 2m, (see [La,Ma; 01] and [Pu; 05]). We assume that

n < 2m. With the above notations, for t = m, let At (n) be the algebra of

dimension q = 2t. From Theorem 2.3.12, this algebra is of level

s (At (n)) ∈ [n− [
n

2t
], n]

and sublevel

s (At (n)) ∈ [n− [
n+ 2t − 1

2t
], n], n ∈ N− {0}.

Since n < 2t, it results that [ n2t ] = 0 and [n+2t−1
2t ] = 1, therefore s (At (n)) = n

and s(At (n)) ∈ {n− 1, n}.�

Remark. 2.3.15. Theorem 2.3.14 gives a positive partial answer to the

question if any number n ∈ N− {0} can be realised as a level of composition

algebras. The answer becomes positive if we replace ”composition algebras”

with ”algebras obtained by the Cayley-Dickson process”. Therefore, we can

say that any number n ∈ N − {0} can be realised as a level of an algebra

obtained by the Cayley-Dickson process with the norm form anisotropic over

a suitable field.

Example 2.3.16. If n ∈ {6, 7}, for t ≥ 3, from Theorem 2.3.12 and The-

orem 2.3.13, it follows that the algebra At (n) has level 6 and 7, respectively.

This remark generalizes the results obtained by O’Shea in [O’ Sh; 10] for the

octonion division algebras.



Habilitation thesis 49

Theorem 2.3.17. With the above notations, we have that s (At (n)) = n,

for n = 2k + 1.

Proof. First, we prove that the form

κn = n× < 1 > ⊥(n− 1)× TAt

P

is anisotropic over Kn. If the form κn is isotropic over Kn, since the form

ϕ′
n =< 1 > ⊥n× TAt−1

P

is a subform of the form ϕn and the norm ϕ′
n is isotropic over its function field

K (ϕ′
n) , then ϕn is isotropic over K (ϕ′

n) . From [Kn; 76, Theorem 3.3.], we

have that there is a K−place from Kn to K (ϕ′
n) . Let

κ′
n = n× < 1 > ⊥(n− 1)× TAt−1

P .

Then, over K, we can write

κn = κ′
n⊥Xt(n− 1)n

At−1

C .

If κn is isotropic over Kn, then κn is isotropic over K (ϕ′
n) . We obtain that κ′

n

or (n− 1)n
At−1

C are isotropic over K (ϕ′
n) . Using the induction steps and the

same arguments as in [La; Ma, 01], Proposition 2.2, for At−1 = A2, we have

that κ′
n is anisotropic over K (ϕ′

n) and from Proposition 2.3.8, ii), we obtain

that (n−1)n
At−1

C is anisotropic over K (ϕ′
n) . Therefore κn is anisotropic over

Kn.

Now, from Remark 2.3.9 ii), we have s (At (n)) ≤ n. If s (At (n)) < n, then

the form κn is isotropic over Kn, false.�

The above result generalizes Theorem 3.1. from [Pu; 05].
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Chapter 3

Properties of algebras obtained by the Cayley-Dickson process
and some of their applications

3.1.Preliminaries

As we remarked in the previous chapters, quaternions, octonions and al-

gebras obtained by the Cayley-Dickson process have at present many appli-

cations, as for example in physics, coding theory, computer vision, etc. For

this reasons these algebras are intense studied. Since the algebras obtained

by the Cayley-Dickson process are poor in properties when their dimension

increase, losing commutativity, associativity and alternativity, the study of

all kind of identities on these algebras is one of the direction of the study.

In [Ra; 88], the author proved that in a generalized Octonion algebra over a

field of characteristic different from 2, 3, 5 any polynomial identity of degree

less than 5 is not satisfied and he found the type of polynomial identities of

degree 5. In [Is; 84], the author considered generalized Octonion algebras C

over finite fields and found a finite basis for the ideal I of all identities in C.

In [He; 97], the authors studied identities on generalized Octonion algebras

and found all homogeneous multilinear polynomials of degree ≤ 6 which are

identities for all generalized Octonion algebras. It is very interesting to extend

this study to all algebras obtained by the Cayley-Dickson process, since this

kind of relation can be helpful to replace the missing commutativity, associa-

tivity and alternativity. For example, in [Ha; 43], Hall proved that the identity

(xy − yx)
2
z = z (xy − yx)

2
holds for all elements x, y, z in a quaternion al-

gebra. This identity is called Hall identity. Moreover, he also proved the
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converse: if the Hall identity is true in a skew-field F, then F is a quaternion

division algebra. In [Smi; 50], Smiley proved that the Hall identity is true for

the octonions and he also proved the converse: if the Hall identity is true in

an alternative division algebra A, then A is an octonion division algebra.

In [Fl, Sh; 13(1)], authors proved that the Hall identity is true in all al-

gebras obtained by the Cayley-Dickson process and, in some conditions, the

converse is true for split quaternion algebras and split octonion algebras. As

we remarked, these algebras are poor in properties, therefore any supplemen-

tary relation, identity or property can be very useful for the study of these

algebras. For example, we are looking for a similar relation as Hall identity,

to characterize some type N of nonassociative algebras, N ={alternative al-

gebras, quadratic algebras, quaternion algebras, octonions algebras, algebras

obtained by the Cayley-Dickson process, etc.}: The property P is true on the

algebra A if and only if A ∈ N . Such kind of results are Proposition 2.9. and

Theorem 2.10, from [Fl, Sh; 13(1)], presented here in Proposition 3.2.9 and

Theorem 3.2.10.

In the paper [Ba; 09], the author, by using exclusive or operation and a

twist map, described an easy way to multiply the elements from a basis in

algebras obtained by the Cayley-Dickson process. Using this algorithm, we

found some very interesting relations and properties of the elements from a

basis in such algebras, relations which are used to provide an example of a left

hyperholomorphic function in generalized Cayley-Dickson algebras (Theorem

2.12). Moreover, in the Theorem 2.10, we proved that for the study of left At-

holomorphic functions in generalized Cayley-Dickson algebras At =
(
γ1,...,γt

R

)

with γ1 < 0, . . . , γt < 0. it is suffices to consider left At-holomorphic functions

only in the algebras
(−1,...,−1

R

)
.

From Fundamental Theorem of Algebra, we know that each polynomial

of degree n with coefficients in a field K has at most n roots in K. If we

consider the coefficients in H (the division real quaternion algebra), the above

result is not true. For the division real quaternion algebra, there is a kind of

a fundamental theorem of algebra: If a given polynomial has only one term of

the greatest degree in H then it has at least one root in H. (see [Ei, Ni; 44],

[Ni; 41], [Sm; 04] ).

The similar results was obtained for octonions in [Sm; 04]. From this
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reason, some type of equations, with one or more than one greatest term, over

algebras obtained by the Cayley-Dickson process were studied. In this process,

as a good examples, appeared the notions of Fibonacci elements, Fibonacci-

Narayana, Fibonacci-Lucas elements on Quaternion and Octonion algebras.

(see [Fl, Sh; 13], [Po, Ke; 15], [Fl, Sh; 15(3)], [Ram; 15], [Ta, Yi, Sa; 16])

These elements are very useful, since they provide sets of invertible elements,

when the Quaternion and Octonion algebras are split.

(https://groups.google.com/forum/#!topic/sci.physics/T2zSvt AjSQ).

3.2. Hall identity in algebras obtained by the Cayley-Dickson

process

Let A be an algebra obtained by the Cayley-Dickson process with the

basis {e0 = 1, e1, ..., en} such that, emer = −erem, r 6= m, e2m = γm ∈ K,m ∈
{1, 2, ..., n}. For elements a =

n∑
m=0

amem, b =
n∑

m=0
bmem we define an element

in K, denoted by T (a, b) , T (a, b) =
n∑

m=0
e2mambm. We denote by

−→
A the set

of the elements {−→a | −→a =
n∑

m=1
amem, am ∈ K}. It results that the conjugate

of the element a can be written as a = a0 − −→a . Obviously,
−−−→
( −→a ) = −→a and

−→em = em.

Lemma 3.2.1. ([Fl, Sh; 13(1)]) We consider A an algebra obtained by

the Cayley-Dickson process. The following equalities are fulfilled:

1) T (a, b) = T (b, a) , for all a, b ∈ A.
2) T (λa, b) = λT (a, b) , for all λ ∈ K, a, b ∈ A.
3) T (a, b+ c) = T (a, b) + T (a, c) , for all a, b, c ∈ A.
4) T (a, a) = aa = n (a) , for all a ∈ A
5)

−→a −→b = 2T
(−→a ,−→b

)
−−→b −→a , (3.2.1.)

ab = ba− 2
−→
b −→a + 2T

(−→a ,−→b
)
, (3.2.2.)
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−−→−→a −→b = −T
(−→a ,−→b

)
+−→a −→b . (3.2.3.)

(−→a )2 ∈ K, (3.2.4.)

for all a, b ∈ A.

Proof. 5) For −→a =
n∑

m=1
amem,

−→
b =

n∑
m=1

bmem we obtain

−→a −→b =
n∑

m=1

amem ·
n∑

m=1

bmem=
n∑

m=1

e2mambm+α=T
(−→a ,−→b

)
+α, α ∈ −→A.

(3.2.2.)

Computing
−→
b −→a , it follows that

−→
b −→a = T

(−→a ,−→b
)
− α, α ∈ −→A. (3.2.6.)

If we add relations (3.2.5) and (3.2.6), it results −→a −→b +
−→
b −→a = 2T

(−→a ,−→b
)
,

therefore relation (3.2.1) is obtained.

For a = a0 +−→a and b = b0 +
−→
b , we compute

ab = (a0 +−→a )
(
b0 +

−→
b
)

= a0b0 + a0
−→
b + b0

−→a +−→a −→b

and

ba =
(
b0 +

−→
b
)

(a0 +−→a ) = b0a0 + b0
−→a + a0

−→
b +
−→
b −→a .

Subtracting the last two relations and using relation (3.2.1), we obtain

ab− ba = −→a −→b −−→b −→a = 2T
(−→a ,−→b

)
− 2
−→
b −→a , then relation (3.2.2) is proved.

Relation (3.2.3) is obvious. For −→a =
n∑

m=1
amem, it results that (−→a )2 =

n∑
m=1

(am)2 ∈ K.�
For quaternion algebras, the above result was proved in [Sz; 09].

Proposition 3.2.2. We consider A an algebra obtained by the Cayley-

Dickson process such that e2m = −1, for all m ∈ {1, 2, ...n}. If n−1 ∈ K−{0},
then, for all x ∈ A, we have

x =
1

1− n
n∑

m=0

emxem.
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Proof. Let x =
n∑

m=0
emxm. From Lemma 3.2.1, we obtain

n∑
m=0

emxem = x+
n∑

m=1
emxem =

= x+
n∑

m=1
em (emx− 2em

−→x + 2T (em,
−→x )) =

= x+
n∑

m=1
e2mx− 2

n∑
m=1

e2m
−→x + 2

n∑
m=1

e2memxm =

= x− nx+ 2n−→x − 2
n∑

m=1
emxm =

= (1− n)x− 2 (1− n)−→x = (1− n) (x− 2−→x ) =

= (1− n)x.�

Theorem 3.2.3. We consider A an algebra obtained by the Cayley-

Dickson process. Then for all x, y, z ∈ A, it results that

(xy − yx)
2
z = z (xy − yx)

2
. (3.2.7.)

Proof.

We will compute both members of the equality (xy − yx)
2
z=z (xy − yx)

2
.

Using relation (3.2.2.) from Lemma 3.2.1 and since T (−→x ,−→y ) ∈ K, we obtain

(−2−→y −→x + 2T (−→x ,−→y ))
2
z = z (−2−→y −→x + 2T (−→x ,−→y ))

2 ⇒
⇒
[
4 (−→y −→x )

2
+ 4T 2 (−→x ,−→y )− 8 (−→y −→x )T (−→x ,−→y )

]
z =

= z
[
4 (−→y −→x )

2
+ 4T 2 (−→x ,−→y )− 8 (−→y −→x )T (−→x ,−→y )

]
⇒

⇒ 4 (−→y −→x )
2
z + 4T 2 (−→x ,−→y ) z − 8T (−→x ,−→y ) (−→y −→x ) z =

= 4z (−→y −→x )
2

+ 4T 2 (−→x ,−→y ) z − 8T (−→x ,−→y ) z (−→y −→x ) .

Dividing this last relation by 4 and after reducing the terms, it results

(−→y −→x )
2
z − 2T (−→x ,−→y ) (−→y −→x ) z = z (−→y −→x )

2 − 2T (−→x ,−→y ) z (−→y −→x ) .

We denote

E =
[
(−→y −→x )

2
z − z (−→y −→x )

2
]
−

− [2T (−→x ,−→y ) (−→y −→x ) z − 2T (−→x ,−→y ) z (−→y −→x )]

and we will prove that E = 0.

We denote

E1 = (−→y −→x )
2
z − 2T (−→x ,−→y ) (−→y −→x ) z

and

E2 = z (−→y −→x )
2 − 2T (−→x ,−→y ) z (−→y −→x ) .
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First, we compute E1. We obtain

E1 = [(−→y −→x )
2 − 2T (−→x ,−→y ) (−→y −→x )]z.

From Lemma 3.2.1., relation (3.2.3) , we have −→y −→x= T (−→y ,−→x ) +
−−→−→y −→x .

Then (−→y −→x )
2

= T 2 (−→y ,−→x ) +
(−−→−→y −→x

)2
+ 2T (−→y ,−→x )

−−→−→y −→x .
Therefore

E1=[T 2 (−→y ,−→x )+
(−−→−→y −→x

)2
+

+2T (−→y ,−→x )
−−→−→y −→x -2T (−→x ,−→y ) (−→y −→x )]z=

= [T 2 (−→y ,−→x )+
(−−→−→y −→x

)2
+

+2T (−→y ,−→x ) (
−−→−→y −→x −−→y −→x )]z.

Since
−−→−→y −→x −−→y −→x = −T (−→y ,−→x ) , it results that

[(−→y −→x )
2 − 2T (−→x ,−→y ) (−→y −→x )]=

=[
(−−→−→y −→x

)2
− T 2 (−→y ,−→x )]=α ∈ K,

from Lemma 3.2.1, relation (3.2.4) . Hence E1 = αz.

Now, we compute E2. We obtain

E2 = z[(−→y −→x )
2 − 2T (−→x ,−→y ) (−→y −→x )] =

= zα = αz since α ∈ K.
It follows that E = E1 − E2 = 0, therefore relation (3.2.7.) is proved. �

Remark 3.2.4. 1) Identity (3.2.7) is called the Hall identity. From the

above theorem, we remark that Hall identity is true for all algebras obtained

by the Cayley-Dickson process.

2) Relation (3.2.7) can be written: [x, y]
2
z = z [x, y]

2
or
[
[x, y]

2
, z
]

= 0,

where [x, y] = xy− yx is the commutator of two elements. If A = H, then the

identity (3.2.7.) is proved by Hall in [Ha; 43].

Proposition 3.2.5. For an arbitrary algebra A over the field K such that

the relation (3.2.7.) holds for all x, y, z ∈ A, we have the following relations:

[[x, y] [u, y] , z] +[[x, y][x, v], z]+[[u, y][x, y], z] + [[x, v][x, y], z]=0, (3.2.8.)

[[x, v][u, y], z] + [[u, y][x, v], z] + [[x, y][u, v], z] + [[u, v][x, y], z] =0, (3.2.9.)

[[u, y][u, v], z]+[[x, v][u, v], z]+[[u, v][u, y], z]+[[u, v][x, v], z]=0 (3.2.10.)

for all x, y, z, u, v ∈ A.
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Proof. We linearize relation (3.2.7.) . Let x, y, z ∈ A be three arbitrary

elements such that (xy − yx)
2
z = z (xy − yx)

2
.

For x+ λu, y + λv, z we obtain

[(x+ λu) (y + λv)− (y + λv) (x+ λu)]2z =

= z[(x+ λu) (y + λv)− (y + λv) (x+ λu)]2.

It results

[xy − yx+λ(uy + xv − yu− vx)+λ2 (uv − vu)]2z =

= z
[
xy − yx+λ(uy + xv − yu− vx)+λ2 (uv − vu)

]2
.

We obtain

(xy − yx)
2
z+λ2[(uy − yu)+(xv − vx)]2z+

+λ4 (uv − vu)
2
z+

+λ[(xy − yx) ((uy − yu) + (xv − vx))]z+

+λ[((uy − yu) + (xv − vx)) (xy − yx)]z+

+λ2[(uv − vu) (xy − yx)]z+

+λ2[(xy − yx) (uv − vu)]z+

+λ3[[(uy − yu)+(xv − vx)] (uv − vu)]z+

+λ3[(uv − vu) [(uy − yu)+(xv − vx)]]z =

z (xy − yx)
2
+λ2z[(uy − yu)+(xv − vx)]2+

+λ4z (uv − vu)
2

+

+λz[(xy − yx) ((uy − yu) + (xv − vx))]+

+λz[((uy − yu) + (xv − vx)) (xy − yx)]+

+λ2z[(uv − vu) (xy − yx)]+

+λ2z[(xy − yx) (uv − vu)]+

+λ3z[[(uy − yu)+(xv − vx)] (uv − vu)]+

+λ3z[(uv − vu) [(uy − yu)+(xv − vx)]], for all x, y, z, u, v ∈ A.
Since the coefficients of λ are equal in both members of the equality, we obtain:

[(xy − yx) ((uy − yu) + (xv − vx))]z+

+[((uy − yu) + (xv − vx)) (xy − yx)]z =

= z[(xy − yx) ((uy − yu) + (xv − vx))]+

+z[((uy − yu) + (xv − vx)) (xy − yx)].

We can write this last relation under the form:

{[x, y] [u, y]}z+{[x, y] [x, v]}z+

+{[u, y] [x, y]}z + {[x, v] [x, y]}z =

= z{[x, y] [u, y]}+ z{[x, y] [x, v]}+
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+z{[u, y] [x, y]}+ z{[x, v] [x, y]}.
It results

[[x, y] [u, y] , z]+[[x, y][x, v], z]+[[u, y][x, y], z]+[[x, v][x, y], z]=0

and we obtain relation (3.2.8.) .

Since the coefficients of λ2 are equal in both members of the equality, we

obtain:

[(uy − yu) + (xv − vx)]2z+

+[(uv − vu) (xy − yx)]z+

+[(xy − yx) (uv − vu)]z =

= z[(uy − yu) + (xv − vx)]2+

+z[(uv − vu) (xy − yx)]+

+z[(xy − yx) (uv − vu)].

It results that

[(uy − yu) (xv − vx)]z+[(xv − vx) (uy − yu)]z+

+[(uv − vu) (xy − yx)]z+[(xy − yx) (uv − vu)]z =

z[(uy − yu) (xv − vx)]+z[(xv − vx) (uy − yu)]+

+z[(uv − vu) (xy − yx)]+z[(xy − yx) (uv − vu)].

We can write this last relation under the form:

[[x, v] [u, y] , z]+[[u, y] [x, v] , z]+[[x, y] [u, v] , z]+[[u, v] [x, y] , z]=0

and we obtain relation (3.2.9.) .

Since the coefficients of λ3 are equal in both members of the equality, we

obtain:

[[(uy − yu) + (xv − vx)] (uv − vu)]z+

+[(uv − vu) [(uy − yu) + (xv − vx)]]z =

= z[[(uy − yu) + (xv − vx)] (uv − vu)]+

+z[(uv − vu) [(uy − yu) + (xv − vx)]].

We can write this last relation under the form:

[[u, y][u, v], z]+[[x, v][u, v], z]+[[u, v][u, y], z]+[[u, v][x, v], z]=0

and we obtain relation (3.2.10.) . �

Remark 3.2.6.

1) In [Ti; 99] and [Fl; 01] some equations over division quaternion algebra

and octonion algebra are solved. Let A be such an algebra. For example,

equation

ax = xb, a, b, x ∈ A, (3.2.11.)
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for a 6= b has general solution under the form x = −→a p + p
−→
b , for arbitrary

p ∈ A.
2) In [Fl, Şt; 09], authors studied equation x2a = bx2 + c, a, b, c ∈ A, where

A is a generalized quaternion division algebra or an generalized octonion

division algebra. If A is an arbitrary algebra obtained by the Cayley-Dickson

process and a, b, c ∈ A with a = b and c = 0, then, from Theorem 3.2.3, it

results that this equation has infinity of solutions of the form x = vw − wv,
where v, w ∈ A.

Proposition 3.2.7. Let A be a quaternion algebra or an octonion algebra.

Then for all x, y ∈ A, there are the elements z, w such that (xy − yx)2 =
−→z w + w−→z .

Proof. Let z be an arbitrary element in A − K. From Theorem 3.2.3,

we have that (xy − yx)
2
z = z (xy − yx)

2
, for all x, y, z ∈ A. Since z 6= z and

(xy − yx)
2

is a solution for the equation (3.2.11) , from Remark 3.2.6, it results

that there is an element w ∈ A such that (xy − yx)2 = −→z w + w−→z .�

Proposition 3.2.8. Let A be a finite dimensional unitary algebra with a

scalar involution

: A→ A, a→ a,

such that for all x, y ∈ A, the following equality holds:

(xy + yx)2 = 4 (xx) (yy) . (3.2.12.)

Then the algebra A has dimension 1.

Proof. We remark that xy + yx = xy + xy ∈ K. First, we prove that

[xy + yx]2 = 4 (xx) (yy) , ∀x, y ∈ A, if and only if x = ry, r ∈ K. If x = ry,

then relation (3.2.12.) is proved. Conversely, assuming that relation (3.2.12.)

is true and supposing that there is not an element r ∈ K such that x = ry,

then for each two non zero elements a, b ∈ K, we have ax+ by 6= 0. Indeed, if

ax+ by = 0, it results x = − b
ay, false. We obtain that

(ax+ by) (ax+ by) 6= 0. (3.2.13.)
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Computing relation (3.2.13) , it follows

a2 (xx) + abxy + bayx+ b2yy 6= 0. (3.2.14.)

If we put a = yy in relation (3.2.14) and then simplify by a, it results

(yy) (xx) + bxy + byx+ b2 6= 0. (3.2.15.)

Let b = − 1
2 (xy + yx) ∈ K, b 6= 0. If we replace this value in relation (3.2.15) ,

we obtain 4 (xx) (yy) − (xy + yx)2 6= 0, which it is false. Therefore, there is

an element r ∈ K such that x = ry.

Assuming that the algebra A has dimension greater or equal with 2, it

results that there are two linearly independent vectors, v and w, respectively.

Since relation (3.2.12) is satisfies for v and w, we obtain that there is an

element s ∈ K such that v = sw, which it is false. Hence dimA = 1.�

Proposition 3.2.9. Let A be an alternative division algebra over the field

K whose center is K. If (xy − yx)
2
z = z (xy − yx)

2
for all x, y, z ∈ A and

(xy − yx)
2
associate with all elements from A, then A is a quadratic algebra.

Proof. Let x, y ∈ A−{0} such that xy 6= yx. If we denote z = xy− yx, it

follows that z2 commutes and associate with all elements from A, then z2 is

in the center of A. We obtain z2 = α ∈ K∗. For t = x2y− yx2, it results that

t2 = (x2y − yx2)2 ∈ K and t = (xy − yx)x+ x (xy − yx) = zx+ xz. We have

zt = z (zx+ xz) = z2x+ zxz = αx+ zxz and tz = (zx+ xz) z = zxz+ xz2 =

αx + zxz. Therefore tz = zt. For z + t =
(
x2 + x

)
y − y

(
x2 + x

)
, we have

that (z + t)
2

= β ∈ K, then z2 + t2 + 2tz = β, hence tz = γ ∈ K. Since

each alternative algebra is a flexible algebra, we have zx = x(yx) − (yx)x.

From here, it follows that (zx)2 = δ ∈ K. If we multiply relation (zx) (zx) = δ

with z in the left side, we obtain z ((zx) (zx)) = δz. Using alternativity and

then flexibility, it results
(
z2x
)

(zx) = δz, therefore α (xzx) = δz, hence

xzx = θz, where θ = α−1δ. It follows that z (xzx) = θz2 = θα ∈ K. Since

z (xzx) = (zxz)x, from Moufang identities, we have that (zxz)x = θα ∈ K.
It results that γx = (tz)x = (αx+ zxz)x = αx2 + (zxz)x = αx2 + θα,

hence x2 = ax+ b, where a = α−1γ, b = −θ. We obtain that A is a quadratic

algebra.�
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When A is a division associative algebra, this proposition was proved by

Hall in [Ha; 43].

Theorem 3.2.10. Let A be an alternative simple algebra such that the

center of A is K, (xy − yx)
2
z = z (xy − yx)

2
, for all x, y, z ∈ A and

(xy − yx)
2
associate with all elements from A.

1) If A is a division algebra, then A = K or A = At, t ∈ {1, 2, 3}, where
At is a division algebra obtained by the Cayley-Dickson process.

2) If A is not a division algebra, dimA = 4, and if there are two ele-

ments y, z ∈ A such that y2, z2 ∈ K, yz = −zy, then A is a generalized split

quaternion algebra.

Proof. 1) From Proposition 3.2.9., it results that A is a quadratic algebra,

therefore, from [Al; 49], Theorem 1, we have dimA ∈ { 1, 2, 4, 8}. If dimA = 1,

then A = K. If dimA = 2, since the center is K, then we can find an element

x ∈ A − K such that x2 ∈ K. It results that the set {1, x} is a basis in A,

therefore A = K (x) is a quadratic field extension of the field K. If dimA = 4,

from [Al; 39], p. 145, we have that there are two elements x, y ∈ A such that

x2 = x + a with 4a + 1 6= 0, xy = y (1− x) , y2 = b, a, b ∈ K. Denoting

z = x− 1
2 , we obtain that z2 =

(
x− 1

2

)2
= a− 1

4 ∈ K. and zy = −yz. Since

zy =
(
x− 1

2

)
y = xy− y

2 = y− yx− y
2 = y

2 − yx and yz = y
(
x− 1

2

)
= yx− 1

2 ,

we have yz = −zy then (yz)
2 ∈ K. It follows that in the algebra A we can

find the elements y, z such that y2, z2, (yz)
2 ∈ K and yz = −zy. Therefore,

from [Al; 49], Lemma 4, it results that A is a generalized division quaternion

algebra.

2) From the above, it results that A = Q = K + yK + zK + yzK is a

generalized quaternion algebra, which is split from hypothesis.�

3.3. Multiplication table in algebras obtained by the Cayley-

Dickson process

In this section, for a generalized Cayley-Dickson algebra At, writing the

elements of the basis in a convenient way, we can obtain multiplication tables
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for certain elements of the basis. Using these results, in the next section, we

provide an example of a left hyperholomorphic function in generalized Cayley-

Dickson algebras.The results presented below, were obtained especially in the

paper [Fl, Sh; 15(1)].

The current trend in hypercomplex analysis is a systematic search for all

possible function theories associated to Dirac operator in various algebras.

In this paper we investigated such as holomorphic functions for real Cayley–

Dickson algebras. We generalized the notion of left At−holomorphic functions

from quaternions to all algebras obtained by the Cayley-Dickson process and

we provided an algorithm to find examples of left At−hyperholomorphic func-

tions, using the shuffling procedure given by Bales.

The theory of the right At−holomorphic functions and the theory of the

right At−hyperholomorphic functions are similarly to the corresponding the-

ories for the left functions and can be easy treated, using the above ideas and

procedures.

Remark 3.3.1. For γ1 = ... = γt = −1 and K = R, in [Ba; 09], the author

described how we can multiply the basis vectors in the algebra At, dimAt =

2t = n. He used the binary decomposition for the subscript indices.

Let ep, eq be two vectors in the basis B with p, q representing the binary

decomposition for the indices of the vectors, that means p, q are in Zn2 . We

have that epeq = γn (p, q) ep⊗q, where:

i) p ⊗ q are the sum of p and q in the group Zn2 or, more precisely, the

”exclusive or” for the binary numbers p and q;

ii) γn is a function γn : Zn2 × Zn2 → {−1, 1}.
The map γn is called the twist map.

The elements of the group Zn2 can be considered as integers from 0 to 2n−1

with multiplication ”exclusive or” of the binary representations. Obviously,

this operation is equivalent with the addition in Zn2 .

From now on, in this section, we will consider K = R. Using the same

notations as in the Bales’s paper, we consider the following matrices:

A0 = A =

(
1 1

1 −1

)
, B =

(
1 −1

1 1

)
, C =

(
1 −1

−1 −1

)
. (3.3.1.)

In the same paper, [Ba;09], the author find the properties of the twist map
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γn and put the signs of this map in a table. He partitioned the twist table for

Zn2 into 2× 2 matrices and obtained the following result:

Theorem 3.3.2. ([Ba;09], Theorem 2.2., p. 88-91) For n > 0, the Cayley-

Dickson twist table γn can be partitioned in quadratic matrices of dimension 2

of the form A,B,C,−B,−C, defined in the relation (3.3.1). Relations between

them can be found in the below twist trees :

Fig. 1: Twist trees([1], Table 9)

�

Definition 3.3.3. Let x = x0, x1, x2, .... and y = y0, y1, y2, ..... be two

sequences of real numbers. The ordered pair

(x, y) = x0, y0, x1, y1, x2, y2, ....

is a sequence obtained by shuffling the sequences x and y.

In [Ba;09], is provided the below algorithm for find γn (s, r) , where s, r ∈
Zn2 :

i) We find the shuffling sequence (s, r) .

ii) Starting with the root A0, we can find γn (s, r) using the twist tree.

We remark that ”00”= unchanged, ”01” =left →right, ”10”=right→ left,

”11”=right → right.

The multiplication table in H(− 1,−1), the quaternion division algebra, is

given below.
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(
A0 A

B −B

)

Quaternion twist table using above notations

Example 3.3.4. Let A4 be the real sedenion algebra. That means

dimA4 = 16 with {1, e1, ..., e15} a basis in this algebra. Let compute e7e13 =

γ4(72, 132)e7⊗13. We have the following binary decompositions:

72 = 0111, since 7 = 22 + 2 + 1 and

132 = 1101, since 13 = 23 + 22 + 1.

Since 0111⊗ 1101 = 1010(= 23 + 2 = 10), it results that 7⊗ 13 = 10.

Now, we compute γ4 (e7, e13) . First, we shuffle the sequences 0111 and

1101. We obtain 01 11 10 11. Starting with A0, it results: A0
01→ A

11→ −C 10→
C

11→ −C, then γ4 (e7, e13) = −1 and e7e13 = −e10.

Remark 3.3.5. i) In the generalized quaternion algebra, H (γ1, γ2) , the

basis can be written as

{1 = e0, e1, e2, e1e2}.

For the generalized octonion algebra, O(γ1, γ2, γ3), the basis can be written

{1 = e0, e1, e2, e1e2, e4, e1e4, e2e4, (e1e2) e4}.

Therefore e3 = e1e2, e7 = e3e4 = (e1e2) e4, e2e4 = e6 and, when compute

them, in these products do not appear any of the elements γ1, γ2, γ3, or prod-

ucts of some of them at the end.

We remark that in the algebra At =
(
γ1,...,γt

R

)
in the products of the form

e1e2, (e1e2) e4, ..., ((e2re2r+1) . . . e2k)e2i ,

when compute them, do not appear any of the elements γ1, γ2, ..., γt or prod-

ucts of some of them at the end.

ii) Let {1 = e0, e1, e2, . . . , e2t−1} be a basis in the algebra At. Using above

remarks, the basis in the algebra At =
(
γ1,...,γt

R

)
can be written under the form

{1 = e0, e1, e2, . . . , e2t−1−1, e2t−1 , e1e2t−1 , e2e2t−1 , e3e2t−1 , . . . , e2t−1−1e2t−1}
(3.3.2.)
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with

eie2t−1 = −e2t−1ei = e2t−1ei, i ∈ {1, 2, . . . , 2t−1 − 1}. (3.3.3.)

Proposition 3.3.6. ([Fl, Sh; 15(1)]) Let At =
(
γ1,...,γt

R

)
be an algebra

obtained by the Cayley-Dickson process and {e0 = 1, e1, ..., en−1}, n = 2t be a

basis. Let r ≥ 1, r < k ≤ i < t. Therefore

((e2re2r+1) . . . e2k)e2i = (−1)
k−r+2

eT , (3.3.4.)

((e1e2r )e2r+1) . . . e2k)e2i = (−1)
k−r+3

eT+1, (3.3.5.)

where T = 2r + 2r+1 + . . .+ 2k + 2i and

e1e2i = e2i+1. (3.3.6.)

.

Proof. From Remark 3.3.5, it results that we can use Theorem 3.3.2 for

γ1, γ2, . . . , γt arbitrary. For T = 2r + 2r+1 + . . .+ 2k + 2i, we have the binary

decomposition

T2 = 100 . . . 0︸ ︷︷ ︸
i−k−1

111 . . . 1︸ ︷︷ ︸
k−r+1

0 . . . 0︸ ︷︷ ︸
r

.

Using the same remark, we obtain e2re2r+1 = γn


01...0︸ ︷︷ ︸

r+2

, 10 . . . 0︸ ︷︷ ︸
r+2


 e2r+2r+1 .

We ”shuffling” 01 . . . 0︸ ︷︷ ︸
r+2

and 10 . . . 0︸ ︷︷ ︸
r+2

and we obtain 01 10 00 00 . . . 00 00︸ ︷︷ ︸
r pairs

. Start-

ing with A0, it results

A0
01→ A

10→ C,

then γn


01 . . . 0︸ ︷︷ ︸

r+2

, 10 . . . 0︸ ︷︷ ︸
r+2


 = 1 and e2re2r+1 = e2r+2r+1 .

We compute (e2re2r+1)e2r+2 . We obtain

(e2re2r+1)e2r+2 = e2r+2r+1e2r+2 = γn


011...0︸ ︷︷ ︸

r+3

, 10...0︸ ︷︷ ︸
r+3


 e2r+2r+1+2r+2 .
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Shuffling 011...0︸ ︷︷ ︸
r+3

and 10...0︸ ︷︷ ︸
r+3

, we get 01 10 1000 00...00 00︸ ︷︷ ︸
r pairs

. Starting with A0, it

results: A0
01→ A

10→ C
10→ −C, then

γn


011...0︸ ︷︷ ︸

r+3

, 10...0︸ ︷︷ ︸
r+3


 = −1,

therefore e2r+2r+1e2r+2 = −e2r+2r+1+2r+2 . Continuing this procedure, we re-

mark that the number of ”1” in the ”shuffling” obtained influences the sign.

Since T = 2r + 2r+1 + ...+ 2k + 2i has binary decomposition

T2 = 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

,

in which we have k − r + 2 elements equal with 1, we obtain relation (3.3.4).

In the same way it results relations (3.3.5) and (3.3.6). �

Proposition 3.3.7. ([Fl, Sh; 15(1)]) With the same notations as in Propo-

sition 3.3.6, for the algebra At =
(−1,...,−1

R

)
, we have:

· eT eT+1

eT1
(−1)

k−r+1
e2i − (−1)

k−r+1
e2i+1

eT1+1 − (−1)
k−r+1

e2i+1 − (−1)
k−r+1

e2i

(3.3.7.)

for r < k, where T = 2r + 2r+1 + ...+ 2k + 2i, T1 = 2r + 2r+1 + ...+ 2k and

· eT eT+1

e2k eM −eM+1

e2k+1 −eM+1 −eM
, (3.3.8.()

where M = 2k + 2i.

Proof. Case 1 : r < k. We compute eT1
eT . We have eT1

eT = γ (s, q) eM ,

where s, q are the binary decomposition of T1 and T. The binary decomposition

of M is M2 = T1 ⊗ T. It results M = 2i,

s = 00...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

, q = 100...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

.
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By ”shuffling” s⊗ q, we obtain

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

11 11 11 ...11︸ ︷︷ ︸
(k−r+1) pairs

00 00 ...00 00︸ ︷︷ ︸
r pairs

.

Starting with A0, we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
11→ −C 11→ C

11→ −C 11→ C
11→ ...

11→ (−1)
k−r+1

C︸ ︷︷ ︸
k−r+1

00→ ...
00→ (−1)

k−r+1
C︸ ︷︷ ︸

r

.

Therefore γ (s, q) = (−1)
k−r+1

.

Now, we compute eT1
eT+1. For this, we will ”shuffling” 00...0︸ ︷︷ ︸

i−k

111...1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

with 100...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

. It results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

11 11 11...11︸ ︷︷ ︸
(k−r+1) pairs

00 00...00 01︸ ︷︷ ︸
r pairs

.

Starting with A0, we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
11→ −C 11→ C

11→ −C 11→ C
11→ ...

11→ (−1)
k−r+1

C︸ ︷︷ ︸
k−r+1

00→ ...
01→ − (−1)

k−r+1
C︸ ︷︷ ︸

r

.

For eT1+1eT , ”shuffling” 00...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

with 100...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

, it results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

11 01 01...01︸ ︷︷ ︸
(k−r+1) pairs

00 00...00 10︸ ︷︷ ︸
r pairs

.

Starting with A0,we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
11→ −C 11→ C

11→ −C 11→ C → ...
11→ (−1)

k−r+1
C︸ ︷︷ ︸

k−r+1

00→ ...
10→ − (−1)

k−r+1
C︸ ︷︷ ︸

r

.

For eT1+1eT+1, we compute first (T1 + 1)⊗ (T + 1) . We obtain:

(
2r + 2r+1 + ...+ 2k + 1

)
⊗
(
2r + 2r+1 + ...+ 2k + 2i + 1

)
=



Habilitation thesis 67

=


00...0︸ ︷︷ ︸

i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r


⊗


100...0︸ ︷︷ ︸

i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r


 =

= 10...0︸ ︷︷ ︸
i−k

000...0︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

= 2i.

Now, ”shuffling” 00...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

with 100...0︸ ︷︷ ︸
i−k

111...1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

, it results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

11 01 01...01︸ ︷︷ ︸
(k−r+1) pairs

00 00...00 11︸ ︷︷ ︸
r pairs

.

Starting with A0, we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
11→ −C 11→ C

11→ −C 11→ C
11→ ...

11→ (−1)
k−r+1

C︸ ︷︷ ︸
k−r+1

00→ ...
11→ − (−1)

k−r+1
C︸ ︷︷ ︸

r

.

Case 2 : r = k. We have M = 2k ⊗ T = 2i + 2k. For e2keT , ”shuffling”

00...0︸ ︷︷ ︸
i−k

10...0︸ ︷︷ ︸
k+1

with 100...0︸ ︷︷ ︸
i−k

0...0︸︷︷︸
k+1

, it results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

10 00 00 ...00︸ ︷︷ ︸
(k+1) pairs

.

Starting with A0, we get:

A0
01→ A

00→ .....
00→︸ ︷︷ ︸

i−k

A
10→ C

00→ C
00→ ...

00→ C︸ ︷︷ ︸
k+1

.

For e2keT+1, ”shuffling” 00...0︸ ︷︷ ︸
i−k

10...0︸ ︷︷ ︸
k+1

with 100...0︸ ︷︷ ︸
i−k

0...1︸︷︷︸
k+1

, it results

01 00 00...00︸ ︷︷ ︸
(i−k) pairs

10 00 00 ...01︸ ︷︷ ︸
(k+1) pairs

.

Starting with A0, we get:

A0
01→ A

00→︸ ︷︷ ︸ ...
00→

i−k

A
10→ C

00→ C
00→ ...

01→ −C︸ ︷︷ ︸
k+1

.
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etc.�

Proposition 3.3.8. ([Fl, Sh; 15(1)]) Let At =
(
γ1,...,γt

R

)
be an algebra

obtained by the Cayley-Dickson process. For any x1, x2, ..., xt ∈ R − {0}, we
have that (γ1, ..., γt

R

)
≃
(
γ1x

2
1, ..., γtx

2
t

R

)
.

Proof. Let At =
(
γ1,...,γt

R

)
with the basis {e0 = 1, e1, ..., en−1}, n = 2t

and let A′
t =

(
γ1x

2
1,...,γtx

2
t

R

)
with the basis {e′0 = 1, e′1, ..., e

′
n−1} such that

(e′i)
2 = γix

2
i , i ∈ {1, 2, ..., n−1}. We remark that (xiei)

2 = x2i γi and from here,

it results that the map τ : A′
t → At, τ (e′i) = eixi is an algebra isomorphism.

�

The above proposition generalized Proposition 1.1, p. 52 from [La; 04].

Remark 3.3.9. From the above proposition, it results that for each n = 2t

there are only n non-isomorphic algebras At. These algebras are of the form

At =
(
γ1,...,γt

R

)
, with γ1, ..., γt ∈ {−1, 1}.

Proposition 3.3.10 ([Fl; 14]) Let At =
(−1,...,−1

R

)
be an algebra obtained

by the Cayley-Dickson process with {e0 = 1, e1, ..., en−1}, n = 2t a basis in

At. Let r ≥ 1, r < k ≤ i < t. We have

· eT eT+1

e2k−r+1 (−1)
r+2

eM − (−1)
r+2

eM+1

e2k−r+1+1 − (−1)
r+2

eM+1 − (−1)
r+2

eM

, (3.3.9.)

where the binary decomposition of M is M2 = 2k ⊗ T, with T = 2r + 2r+1 +

...+ 2k + 2i.

Proof. We compute e2k−r+1eT . We have e2k−r+1eT = γ (s, q) eM , where

the binary decomposition of M is M2 = 2k−r+1 ⊗ T and s is the binary

decomposition for 2k−r+1 and q is the binary decomposition for T,

s = 00...0︸ ︷︷ ︸
i−k+r−1

100...0︸ ︷︷ ︸
k−r+2

, q = 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

.

By ”shuffling” s⊗ q, it results

01 00 00...00︸ ︷︷ ︸
i−k

01 01 01 ...01︸ ︷︷ ︸
k−2r−1

11 01 01 ...01︸ ︷︷ ︸
r+2

00 00 ...00 00︸ ︷︷ ︸
r

.
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Starting with A0,we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
01→ A

01→ ...
01→︸ ︷︷ ︸

k−2r−1

A
11→ −C 01→ C

01→ −C 01→ C...
01→ (−1)

r+2
C︸ ︷︷ ︸

r+2

00→ ...
00→ (−1)

r+2
C︸ ︷︷ ︸

r

.

Therefore γ (s, q) = (−1)
k−r+1

.

Now, we compute e2k−r+1eT+1. For this, we will ”shuffling” 00...0︸ ︷︷ ︸
i−k+r−1

100...0︸ ︷︷ ︸
k−r+2

with 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

. It results

01 00 00...00︸ ︷︷ ︸
i−k

01 01 01 ...01︸ ︷︷ ︸
k−2r−1

11 01 01 ...01︸ ︷︷ ︸
r+2

00 00 ...00 01︸ ︷︷ ︸
r

.

Starting with A0,we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
01→ A

01→ ...
01→︸ ︷︷ ︸

k−2r−1

A
11→ −C 01→ C

01→ −C 01→ C...
01→ (−1)

r+2
C︸ ︷︷ ︸

r+2

00→ ...
01→ (−1)

r+3
C︸ ︷︷ ︸

r

.

For e2k−r+1+1eT , ”shuffling” 00...0︸ ︷︷ ︸
i−k+r−1

100...1︸ ︷︷ ︸
k−r+2

with 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...0︸︷︷︸
r

, it re-

sults

01 00 00...00︸ ︷︷ ︸
i−k

01 01 01 ...01︸ ︷︷ ︸
k−2r−1

11 01 01 ...01︸ ︷︷ ︸
r+2

00 00 ...00 10︸ ︷︷ ︸
r

.

Starting with A0,we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
01→ A

01→ ...
01→︸ ︷︷ ︸

k−2r−1

A
11→ −C 01→ C

01→ −C 01→ C...
01→ (−1)

r+2
C︸ ︷︷ ︸

r+2

00→ ...
10→ (−1)

r+3
C︸ ︷︷ ︸

r

.

For e2k−r+1+1eT+1, we compute first
(
2k−r+1 + 1

)
⊗ (T + 1) . We obtain:

(
2k−r+1 + 1

)
⊗ (T + 1) =

=


 00...0︸ ︷︷ ︸
i−k+r−1

100...1︸ ︷︷ ︸
k−r+2


⊗


100...0︸ ︷︷ ︸

i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r


 =

= 10...0︸ ︷︷ ︸
i−k

11..1︸︷︷︸
r−1

0 1...1︸︷︷︸
k−2r+1

0...0︸︷︷︸
r

= 2k−r+1 ⊗ T = M.
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Now, ”shuffling” 00...0︸ ︷︷ ︸
i−k+r−1

100...1︸ ︷︷ ︸
k−r+2

with 100...0︸ ︷︷ ︸
i−k−1

111..1︸ ︷︷ ︸
k−r+1

0...1︸︷︷︸
r

, it results

01 00 00...00︸ ︷︷ ︸
i−k

01 01 01 ...01︸ ︷︷ ︸
k−2r−1

11 01 01 ...01︸ ︷︷ ︸
r+2

00 00 ...00 11︸ ︷︷ ︸
r

Starting with A0,we get:

A0
01→ A

00→ ...
00→︸ ︷︷ ︸

i−k

A
01→ A

01→ ...
01→︸ ︷︷ ︸

k−2r−1

A
11→ −C 01→ C

01→ −C 01→ C...
01→ (−1)

r+2
C︸ ︷︷ ︸

r+2

00→ ...
11→ (−1)

r+3
C︸ ︷︷ ︸

r

.

3.4. An example of At−holomorphic functions

Let C be the complex field and let S be a subset of C.A complex number

w is called a limit point of S if and only if for any δ > 0, there is an element

z ∈ S such that 0 < |z − w| < δ .

We consider the map f : S → C a function with S a subset of C. Let w be

a limit point of S. A complex number l is said to be the limit of the function

f when z tends to w in S if for an arbitrary real number ε such that ε > 0,

there is a real number δ, δ > 0 such that |f(z)− l| < ε, for all elements z ∈ S
such that 0 < |z − w| < δ. We write this

lim
z→w

f (z) = l.

With the above notations, the function f is said to be continuous in w if

for an arbitrary real number ε such that ε > 0, there is a real number δ, δ > 0

such that |f(z)− f (w) | < ε for all elements z ∈ S such that |z − w| < δ.
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Let w be a complex number and let r be a non-negative real number. We

define the set

B (w, r) = {z ∈ C / |z − w| < r}

called the open disk of radius r about w. A subset W of the complex plane is

called an open subset if and only if for any element w ∈W there is δ > 0 such

that B(w, r) ⊂ V .( [Wi; 08])

Let S be an open subset of C. The function f is differentiable in a point

z0 ∈ S if the limit

f ′ (z0) = lim
z→z0

f (z)− f (z0)

z − z0
exist. This limit is called the derivative of f in z0. If f is differentiable in all

points of D, then f is called holomorphic in S.

Let f : S → C be a complex function f (x+ iy) = u (x, y) + iv (x, y) , with

u (x, y) , v (x, y) a real functions. If f is differentiable in z0 = x0 + iy0, then

we have
∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x

in (x0, y0) . The above relation are called the Cauchy–Riemann equations.

Denoting with
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
,
∂f

∂y
=
∂u

∂y
+ i

∂v

∂y
,

we obtain ∂f
∂y = −i∂f∂x , therefore ∂f

∂x + i∂f∂y = 0. We call the operator D =
∂
∂x +i ∂∂y the Dirac operator. If u and v satisfy the Cauchy–Riemann equations

and have continuous first partial derivatives, then f is holomorphic. Therefore

if

Df = 0 (3.4.1,)

and u and v have continuous first partial derivatives, then f is holomorphic.

In an Euclidean space the Dirac operator has the form

D =

n∑

k=1

ek
∂

∂xk

where e1, e2, ..., en is an orthonormal basis in Rn and Rn is considered to be

embedded in a Clifford algebra.
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How we can generalize the definition of holomorphic functions to all al-

gebras obtained by the Cayley-Dickson process? The real vector space R3

can be included in the generalized quaternion algebra H (α, β) if we identify

(x, y, z) ∈ R3 with a pure quaternion z = xi+ yj + zk, with z2 = −n (z) ∈ K.
Therefore, to a domain Ω ⊂ R3 we will associate the domain Ωζ := {ζ =

x1e1 + x2e2 + x3e3 / (x1, x2, x3) ∈ Ω} included in H (α, β) . Consider a func-

tion Φ : Ωζ → H (α, β) of the form

Φ(ζ) =

3∑

k=1

Φk(x1, x2, x3)ek, (3.4.2.)

where (x1, x2, x3) ∈ Ω and Φk : Ω→ R.

We say that this function is hyperholomorphic in a domain Ωζ if the first

partial derivatives ∂Φk/∂xk exist in Ω and the following equality is fulfilled in

every point of Ωζ

D[Φ](ζ) =
3∑

k=1

ek
∂Φ

∂xk
= 0.

Definition 3.4.2. Let {e0 = 1, e1, ..., en−1} be a basis in At =
(
γ1,...,γt

R

)
,

n = 2t. To domain Ω ⊂ R2t−1, we will associate the domain Ωζ = {ζ =

x1e1 + . . .+ xn−1en−1/(x1, x2, . . . , xn−1) ∈ Ω} included in At.

Consider a function Φ : Ωζ → At of the form

Φ(ζ) =

n−1∑

k=1

Φk(x1, x2, . . . , xn−1)ek, (3.4.3.)

where (x1, x2, . . . , xn−1) ∈ Ω and Φk : Ω → R. The domain Ωζ is called

congruent with the domain Ω.

We say that a function of the form (3.4.3) is left At−holomorphic in a

domain Ωζ if the first partial derivatives ∂Φk/∂xk exist in Ω and the following

equality is fulfilled in every point of Ωζ

D[Φ](ζ) =

2t−1∑

k=1

ek
∂Φ

∂xk
= 0.

The operator D is called Dirac operator.

Remark 3.4.3. Let H (γ1, γ2) be the generalized quaternion algebra with

the basis {1, e1, e2, e3}, γ1 < 0, γ2 < 0 and H(−1,−1) be the usual quaternion
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division algebra with the basis {1, i, j, k}. Let Ω be a domain in R3, and let

Ωζ := {ζ = xi + yj + zk : (x, y, z) ∈ Ω} be a corresponding domain in

H(− 1,−1). The function Φ : Ωζ → H(− 1,−1) of the form

Φ(ζ) = u1 (x, y, z) + u2 (x, y, z) i+ u3 (x, y, z) j + u4 (x, y, z) k.

is hyperholomorphic in the domain Ω if

D[Φ](ζ) = i
∂Φ

∂x
+ j

∂Φ

∂y
+ k

∂Φ

∂z
= 0

and the first partial derivatives ∂uk/∂xk exist in Ω.

For another domain ∆ ⊂ R3, we associate the domain ∆ζ̃ := {ζ̃ = x̃e1 +

ỹe2 + z̃e3 : (x̃, ỹ, z̃) ∈ ∆} in the algebra H (γ1, γ2). The Dirac operator in

H (γ1, γ2) , denoted by D̃, is

D̃ = e1
∂

∂x̃
+ e2

∂

∂ỹ
+ e3

∂

∂z̃
.

The elements of bases in H (−1,−1) and H (γ1, γ2) satisfy the following

equalities:

e1 = i
√−γ1, e2 = j

√−γ2, e3 = k
√
γ1γ2. (3.4.4.)

Now we establish a connection between hyperholomorphic functions in the

algebras H (−1,−1) and H (γ1, γ2), where γ1 < 0, γ2 < 0. For this, we denote

x =
1√−γ1

x̃, y =
1√−γ2

ỹ, z =
1√
γ1γ2

z̃.

These relations give us the operator equalities:

∂

∂x̃
=

1√−γ1
∂

∂x
,

∂

∂ỹ
=

1√−γ2
∂

∂y
,

∂

∂z̃
=

1√
γ1γ2

∂

∂z
. (3.4.5.)

Now, using relations (3.4.4) and (3.4.5), we obtain

D̃[Φ](ζ̃ ) = e1
∂Φ

∂x̃
+ e2

∂Φ

∂ỹ
+ e3

∂Φ

∂z̃
=

= i
∂Φ

∂x

1√−γ1
√−γ1 + j

∂Φ

∂y

1√−γ2
√−γ2 + k

∂Φ

∂z

1√
γ1γ2

√
γ1γ2 =

= i
∂Φ

∂x
+ j

∂Φ

∂y
+ k

∂Φ

∂z
= D[Φ](ζ) = 0.
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Using the above notations, we obtain the following theorem:

Theorem 3.4.4. Let Ω be an arbitrary domain in R3 and ∆ be a domain

in R3 such that the coordinates of the corresponding points ζ = xi+ yj+ zk ∈
Ωζ and ζ̃ = x̃e1 + ỹe2 + z̃e3 ∈ ∆ζ̃ satisfy the following relations:

x =
1√−γ1

x̃, y =
1√−γ2

ỹ, z =
1√
γ1γ2

z̃.

Then if the function Φ : Ωζ → H(−1,−1) is hyperholomorphic in the domain

Ωζ , then the same function Φ, of ζ̃, is hyperholomorphic in the domain ∆ζ̃ ∈
H(γ1, γ2) with γ1 < 0, γ2 < 0. The converse is also true.

Proof. It results directly from Remark 3.4.3.�

Remark 3.4.5. (i) The above Theorem tell us that for studying hyperholo-

morphic functions in generalized quaternion algebras H(γ1, γ2) with γ1 < 0,

γ2 < 0 it is suffices to consider hyperholomorphic functions only in the usual

quaternion algebra H(−1,−1).

(ii) The result similar to the previous remark was established in the pa-

per [Pl, Sh; 11], Theorem 5, in a three-dimensional commutative associative

algebra.

Theorem 3.4.6. Let At =
(
γ1,...,γt

R

)
be a generalized Cayley-Dickson

algebra with γ1 < 0, . . . , γt < 0. Let Ω be an arbitrary domain in R2t−1 and

∆ be a domain in R2t−1 such that the coordinates of the corresponding points

ζ = x1e1 + . . .+x2t−1e2t−1 ∈ Ωζ and ζ̃ = x̃1 ẽ1 + x̃2 ẽ2 + . . .+ x̃2t−1 ẽ2t−1 ∈ ∆ζ̃

satisfy the following relations

x1 =
1√−γ1

x̃1, x2 =
1√−γ2

x̃2, . . . , xn =
1√

(−1)tγ1 . . . γt
x̃n.

If the function Φ : Ωζ →
(−1,...,−1

R

)
is left At-holomorphic in the domain Ωζ ,

then the same function Φ, but depending of ζ̃ is left At-holomorphic in the

domain ∆ζ̃ ∈ At. The converse is also true.

Proof. Let {1, e1, ..., en−1} be a basis in
(−1,...,−1

R

)
and {1, ẽ1, ..., ẽn−1} be

a basis in At =
(
γ1,...,γt

R

)
.

Since

ẽ1 = e1
√−γ1, ẽ2 = e2

√−γ2, . . . ,
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. . . , ẽn−1 = en−1

√
(−1)tγ1 . . . γt ,

the result is obtained from a simple computation as in Remark 3.4.3.�

Remark 3.4.7. Using above Theorem, it is obvious that, for studying

left At-holomorphic functions in generalized Cayley-Dickson algebras At =(
γ1,...,γt

R

)
with γ1 < 0, . . . , γt < 0. it is suffices to consider left At-holomorphic

functions only in the algebras
(−1,...,−1

R

)
.

Now we consider another class of differentiable functions. LetAt =
(
γ1,...,γt

R

)
,

with γ1 = ... = γt = −1, and the domain Ω ⊂ R2t . We denote with Ωζ :=

{ζ = x0 + x1e1 + . . . + xn−1en−1 : (x0, x1, . . . , xn−1) ∈ Ω} a domain in At.

This domain is congruent with the domain Ω.

We consider a function Φ : Ωζ → At of the form

Φ(ζ) =

n−1∑

k=0

Φk(x0, x1, . . . , xn−1)ek, (3.4.6.)

where (x0, x1, . . . , xn−1) ∈ Ω and Φk : Ω→ R.

We say that a function of the form (3.4.6) is left At−hyperholomorphic in a

domain Ωζ if the first partial derivatives ∂Φk/∂xk exist in Ω and the following

equality is fulfilled in every point of Ωζ

2t−1∑

k=0

ek
∂Φ

∂xk
= 0.

In the following, we will provide an algorithm to constructing a leftAt−hyperholomorphic

function. Using the above notations, let v (x, y) be a rational function defined

in a domain G ⊂ R2. In the following, using some ideas given in Theorem 3

from [Xi, Zh, Li; 05], we will give an example of left At−hyperholomorphic

function, for all t ≥ 1, t ∈ N. For this, we consider the following functions:

φ1 = x0 + e1x1, φ2 =
1

e1
(x0 + e1x1),

ρ2s−1 = x2s − e1x2s+1, ρ2s = − 1

e1
(x2s − e1x2s+1), s ∈ {1, 2, ..., 2t−1 − 1},

Ft (ζ) = v (φ1, φ2) + v (ρ1, ρ2) e2 + v (ρ3, ρ4) e4 + [v (ρ5, ρ6) e2] e4+

+v (ρ7, ρ8) e8+(v (ρ9, ρ10) e2) e8+(v (ρ11, ρ12) e4) e8+[(v (ρ13, ρ14) e2) e4] e8+...
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...+
t−1∑

i=4

(
i∑

k=1

k−1

(
∑

r=1

v (ρMrki−1, ρMrki
) e2r )e2r+1 ...)e2k)e2i)+

t−1∑

i=1

(v (ρ2i−1, ρ2i) e2i) ,

where Mrki = 2r + 2r+1 + ...+ 2k + 2i.

It results

Ft (ζ) = v (φ1, φ2) +

+
t−1∑

i=1

(
i∑

k=1

k−1

(
∑

r=1

v (ρMrki−1, ρMrki
) e2r )e2r+1 ...)e2k)e2i) +

t−1∑

i=1

(v (ρ2i−1, ρ2i) e2i) ,

or

Ft (ζ) = Ft−1 (ζ) +

+(
t−2∑

k=1

k−1

(
∑

r=1

v
(
ρMrk(t−1)−1, ρMrk(t−1)

)
e2r )e2r+1 ...)e2k)e2t−1)+v (ρ2t−1−1, ρ2t−1) e2t−1 .

We denote with C2s the ”complex” planes {x2s+e1x2s+1 / x2s, x2s+1 ∈ R}
and with D2s = {(x2s, x2s+1) / x2s + e1x2s+1 ∈ C2s}, s ∈ {0, 1, 2, ..., 2t−1 −
1} the Euclidian planes. Let G2s be domains in C2s and let G̃2s be the

corresponded domains in D2s. We have the following theorem

Theorem 3.4.8. With the above notations, we consider the functions

v (φ1, φ2) and v (ρ2s−1, ρ2s) defined in the corresponding domains G0 ⊂ C0

and G2s ⊂ C2s, s ∈ {1, 2, ..., 2t−1 − 1}. Then the map Ft (ζ) is a left

At−hyperholomorphic function in the domain Θ ⊂ At which is congruent

with the domain G̃0 × G̃2 × G̃4 × ...× G̃2t−1−1 ⊂ R2t , for t ≥ 1..

Proof. For t = 1, we have F1 (ζ) = v (φ1, φ2) , which is an holomorphic

function in D0 ⊂ C0, as we can see in [Xi, Zh, Li; 05], Theorem 3.

For t = 2, we obtain F2 (ζ) = v (φ1, φ2) + v (ρ1, ρ2) e2 and for t = 3,

we get F3 (ζ) = v (φ1, φ2) + v (ρ1, ρ2) e2 + v (ρ3, ρ4) e4. F2 (ζ) and F3 (ζ) are

hyperholomorphic, respectively octonionic hyperholomorphic function, from

Remark 2.1 and Theorem 3 from [Xi, Zh, Li; 05].

For t ≥ 4, using induction steps, supposing that Ft−1 (ζ) is a left At−1-

hyperholomorphic function, we will prove that Ft (ζ) is At-hyperholomorphic.
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That means D[Ft] = 0. We have that

D[Ft] =

2t−1∑

k=0

ek
∂Ft
∂xk

=

2t−1−1∑

k=0

ek
∂Ft
∂xk

+

2t−1∑

k=2t−1

ek
∂Ft
∂xk

=

= D[Ft−1] + e2t−1

2t−1−1∑

k=0

ek
∂Ft

∂xk+2t−1

.

From induction steps, we obtainD[Ft−1] = 0.We will prove that
2t−1−1∑
k=0

ek
∂Ft

∂x2t−1+k

=

0. This sum has 2t−1 terms. First two terms are:

(
∂Ft
∂x2t−1

− e1
∂Ft

∂x2t−1+1

) =

=
∂v

∂ρ2t−1−1

∂ρ2t−1−1

∂x2t−1

+
∂v

∂ρ2t−1

∂ρ2t−1

∂x2t−1

−e1
(

∂v

∂ρ2t−1−1

∂ρ2t−1−1

∂x2t−1+1

+
∂v

∂ρ2t−1

∂ρ2t−1

∂x2t−1+1

)
=

=
∂v

∂ρ2t−1−1

+
∂v

∂ρ2t−1

(−1

e1

)
− e1

(
∂v

∂ρ2t−1−1

(−e1) +
∂v

∂ρ2t−1

)
=

=
∂v

∂ρ2t−1−1

+
∂v

∂ρ2t−1

e1 −
∂v

∂ρ2t−1−1

− e1
∂v

∂ρ2t−1

= 0.

Since e21 = γ1, γ
2
1 = 1, ∂v

∂ρ2t−1
−1

and ∂v
∂ρ2t−1

can be written as a2t−1−1 (ζ) +

b2t−1−1 (ζ) e1, respectively a2t−1 (ζ)+b2t−1 (ζ) e1 where a2t−1−1 (ζ) , b2t−1−1 (ζ) ,

a2t−1 (ζ), b2t−1 (ζ) are real valued functions.

Case 1 : r < k. In the general case, we denote T = 2r+2r+1+ ...+2k+2t−1

and T1 = 2r + 2r+1 + ...+ 2k, for r < k. We will compute the terms

−eT1

∂Ft
∂xT

− eT1+1
∂Ft
∂xT+1

.

We compute first ∂Ft

∂xT
. It results

∂Ft
∂xT

= (...

(
∂v

∂ρT−1

∂ρT−1

∂xT
+

∂v

∂ρT

∂ρT
∂xT

)
e2r )e2r+1)...e2k)e2t−1 =
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= (...

(
∂v

∂ρT−1
+

∂v

∂ρT

−1

e1

)
e2r )e2r+1)...e2k)e2t−1 =

= (...

(
∂v

∂ρT−1
+

∂v

∂ρT
e1

)
e2r )e2r+1)...e2k)e2t−1 .

Since we can write ∂v
∂ρT−1

under the form aT−1 (ζ)+bT−1 (ζ) e1 and ∂v
∂ρT

under

the form aT (ζ)+bT (ζ) e1, where aT−1, bT−1, aT , bT are real valued functions,

using Proposition 3.3.6, we obtain:

∂Ft
∂xT

= (...

(
∂v

∂ρT−1
+

∂v

∂ρT
e1

)
e2r )e2r+1)...e2k)e2t−1 =

= (...(aT−1(ζ)e2r )e2r+1)...e2k)e2t−1 + (...(bT−1(ζ)e1)e2r )e2r+1)...e2k)e2t−1+

+(...(aT (ζ)e1)e2r )e2r+1)...e2k)e2t−1 + (...(bT (ζ)e1)e1)e2r )e2r+1)...e2k)e2t−1 =

= aT−1(ζ)(−1)k−r+2eT + bT−1(ζ)(−1)k−r+3eT+1+

+aT (ζ)(−1)k−r+3eT+1 − bT (ζ)(−1)k−r+2eT .

Using Proposition 3.3.7, we compute −eT1

∂Ft

∂xT
.

−eT1

∂Ft
∂xT

= −eT1
(aT−1(ζ)(−1)k−r+2eT + bT−1(ζ)(−1)k−r+3eT+1+

+aT (ζ)(−1)k−r+3eT+1 − bT (ζ)(−1)k−r+2eT ) =

= −
(
aT−1(ζ)(−1)k−r+2(−1)k−r+1e2i − bT−1(ζ)(−1)k−r+3(−1)k−r+1e2i+1

)
−

−
(
− aT (ζ)(−1)k−r+3(−1)k−r+1e2i+1 − bT (ζ)(−1)k−r+2(−1)k−r+1e2i

)
=
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= −
(
aT−1(ζ)(−1)2k−2r+3e2i − bT−1(ζ)(−1)2k−2r+4e2i+1

)
−

−
(
− aT (ζ)(−1)2k−2r+4e2i+1 − bT (ζ)(−1)2k−2r+3e2i

)
.

Now, we compute ∂Ft

∂xT+1
. We obtain

∂Ft
∂xT+1

=

(
...

(
∂v

∂ρT−1

∂ρT−1

∂xT+1
+

∂v

∂ρT

∂ρT
∂xT+1

)
e2r )e2r+1)...e2k)e2t−1 =

=

(
...

(
− ∂v

∂ρT−1
e1 +

∂v

∂ρT

)
e2r )e2r+1)...e2k)e2t−1 .

Since we can write ∂v
∂ρT−1

under the form aT−1 (ζ)+bT−1 (ζ) e1 and ∂v
∂ρT

under

the form aT (ζ)+bT (ζ) e1, where aT−1, bT−1, aT , bT are real valued functions,

using Proposition 3.3.6, we obtain:

∂Ft
∂xT+1

=

(
...

(
− ∂v

∂ρT−1
e1 +

∂v

∂ρT

)
e2r )e2r+1)...e2k)e2t−1 =

= (...(−aT−1(ζ)e1)e2r )e2r+1)...e2k)e2t−1−(...(bT−1(ζ)e1e1)e2r )e2r+1)...e2k)e2t−1+

+(...(aT (ζ))e2r )e2r+1)...e2k)e2t−1 + (...(bT (ζ)e1))e2r )e2r+1)...e2k)e2t−1 =

= −aT−1(ζ)(−1)k−r+3eT+1 + bT−1(ζ)(−1)k−r+2eT+

+aT (ζ)(−1)k−r+2eT + bT (ζ)(−1)k−r+3eT+1.

Using Proposition 3.3.7, we compute −eT1+1
∂Ft

∂xT+1
.

−eT1+1
∂Ft
∂xT+1

= −eT1+1

(
− aT−1(ζ)(−1)k−r+3eT+1 + bT−1(ζ)(−1)k−r+2eT+
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+aT (ζ)(−1)k−r+2eT + bT (ζ)(−1)k−r+3eT+1

)
=

= −
(
aT−1(ζ)(−1)k−r+3(−1)

k−r+1

e2i − bT−1(ζ)(−1)k−r+2(−1)
k−r+1

e2i+1

)
−

−
(
− aT (ζ)(−1)k−r+2(−1)

k−r+1

e2i+1 − bT (ζ)(−1)k−r+3(−1)
k−r+1

e2i

)
=

= −
(
aT−1(ζ)(−1)2k−2r+4e2i − bT−1(ζ)(−1)2k−2r+3e2i+1

)
−

−
(
− aT (ζ)(−1)2k−2r+3e2i+1 − bT (ζ)(−1)2k−2r+4e2i

)
.

Now, we can compute −eT1

∂Ft

∂xT
− eT1+1

∂Ft

∂xT+1
. It results

−eT1

∂Ft
∂xT

− eT1+1
∂Ft
∂xT+1

=

= −
(
aT−1(ζ)(−1)2k−2r+3e2i − bT−1(ζ)(−1)2k−2r+4e2i+1

)
−

−
(
− aT (ζ)(−1)2k−2r+4e2i+1 − bT (ζ)(−1)2k−2r+3e2i

)
−

−
(
aT−1(ζ)(−1)2k−2r+4e2i − bT−1(ζ)(−1)2k−2r+3e2i+1

)
−

−
(
− aT (ζ)(−1)2k−2r+3e2i+1 − bT (ζ)(−1)2k−2r+4e2i

)
= 0.

Case 2 : r = k, we use Proposition 3.3.6 and Proposition 3.3.7 and it easy

to show that

−e2k
∂Ft
∂xT

− e2k+1

∂Ft
∂xT+1

= 0.

�
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Remark 3.4.9. The above proposition generalizes Theorem 3 from [Xi,

Zh, Li; 05].

The Algorithm

1) Input t.

2) Input functions v, φ1, φ2.

3) For i ∈ {1, ..., t − 1}, k ∈ {1, ..., i}, r ∈ {1, ..., k − 1}, compute Mrki =

2r + ...+ 2k + 2i, v (ρMrki−1, ρMrki
) = αMrki

+ βMrki
e1.

4) For i ∈ {1, ..., t− 1}, k ∈ {1, ..., i}, r ∈ {1, ..., k − 1},

-if r < k, we compute

(... (αMrki
+ βMrki

e1) e2r )e2r+1 ...)e2k)e2i) =

= (−1)
k−r+2

(αMrki
eMrki

− βMrki
eMrki−1)

-if r = k , we compute

v (ρ2i−1, ρ2i) e2i = (α2i−1 + β2i−1e1)e2i =

= α2i−1e2i + β2i−1e2i+1.

5) Output function

Ft (ζ) = v (φ1, φ2)+

t−1∑

i=4

(

i∑

k=1

k−1

(
∑

r=1

(−1)
k−r+2

(αMrki
(ζ) eMrki

− βMrki
(ζ) eMrki−1)))+

+

t−1∑

i=1

(α2i−1 (ζ) e2i + β2i−1 (ζ) e2i+1) .
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3.5. Some equations in algebras obtained by the Cayley-Dickson

process

In the following, we reduced the study of an algebraic equation in an arbi-

trary algebra H (γ1, γ2) with γ1, γ2 ∈ R\{0} to the study of the corresponding

algebraic equation in one of the following two algebras: division quaternion

algebra or split quaternion algebra. Moreover, De Moivre’s formula and Eu-

ler’s formula in generalized quaternion algebras, founded in [Ma, Ja; 13], was

proved using this new method, for γ1, γ2 < 0. With this technique, the above

mentioned results were also obtained for the octonions.The results presented

below, were obtained especially in the paper [Fl, Sh; 15(2)].

We denote with γ′1 = sign(γ1)γ1, γ
′
2 = sign(γ2)γ2. An isomorphism be-

tween the algebras H(γ1, γ2) and H(−1,−1) or between the algebras H(γ1, γ2)

and H(1,−1) is given by the operator A and its inverse A−1, where

A : e1 7→ i
√
γ′1, e2 7→ j

√
γ′2, e3 7→ k

√
γ′1γ

′
2. (3.5.1.)

Depending on the sign of γ1 and γ2, we obtain four distinct operators. It

is easy to prove the following properties for the operator A :

1) A (λx) = λA (x) , ∀ λ ∈ R, ∀ x ∈ H (γ1, γ2) ;

2) A (x+ y) = A (x) +A (y) , ∀ x, y ∈ H (γ1, γ2) ;

3) A (xy) = A (x)A (y) , ∀ x, y ∈ H (γ1, γ2) .

From here, it results that the operators A and A−1 are additive and mul-

tiplicative.

Proposition 3.5.1. The operators A and A−1 are continuous and their

norms are equal with 1.

Proof. We denote by ‖ ‖H(γ1,γ2) the Euclidian norm in H (γ1, γ2). Since

the spaces H (γ1, γ2) and H(−1,−1) are normed spaces, then the continuity

of A is equivalent with the boundedness of A, i.e. there is a real constant c

such that for all x ∈ H (γ1, γ2) , we have
‖A(x)‖

H(−1,−1)

‖x‖
H(γ1,γ2)

≤ c. Supposing that γ1,
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γ2 < 0, it results that
‖x0+x1i

√−γ1+x2j
√−γ2+x3k

√
γ1γ2‖

‖x0+x1e1+x2e2+x3e3‖ =

=

√
x2
0−x2

1γ1−x2
2γ2+x

2
3γ3√

x2
0−x2

1γ1−x2
2γ2+x

2
3γ3

= 1.

�

Since each algebra H(γ1, γ2) is isomorphic with division algebra of quater-

nions or with algebra of split quaternions, it results that the above operators

provide us a simple way to generalize known results in these two algebras to

generalized quaternion algebra.

Let x = x0 + x1e1 + x2e3 + x3e3 ∈ H(γ1, γ2) and let f : H(γ1, γ2) →
H(γ1, γ2) be a continuous function of the form f(x) = f0(x0, x1, x2, x3) +

f1(x0, x1, x2, x3)e1 + f2(x0, x1, x2, x3)e2 + f3(x0, x1, x2, x3)e3. Let F be the

one of the operators given by the relation (3.5.1), depending on the signs of γ1

and γ2. We define the operator F which for any continuous function f, taking

values in H(γ1, γ2), maps it in the continuous function Ff, taking values in

H(−1,−1) or H(1,−1) by the rule:

Ff := f0 + f1 F (e1) + f2 F (e2) + f3 F (e3).

Theorem 3.5.2. Let x0 ∈ H(γ1, γ2) be a root of the equation f(x) = 0 in

H(γ1, γ2). Then F (x0) is a root of the equation Ff(F (x)) = 0 in H(−1,−1)

or H(1,−1), depending on the signs of γ1 and γ2. The converse is also true.

Proof. Let γ1, γ2 > 0. Applying operator A to the equality f(x0) = 0 and

using the continuity of A, we obtain

A(f(x0)) = Af(A(x0)) = A(0) = 0.

To prove the converse statement we apply the operator A−1 to the equality

f(x0) = 0. The remaining cases can be proved similarly.�

Therefore, all results from division algebra of quaternions or algebra of

split quaternions can be generalized in H(γ1, γ2).

It is known that each polynomial of degree n with coefficients in a field K

has at most n roots in K. If we consider the coefficients in H(−1,−1), the

situation is not the same. For the real division quaternion algebra over the real
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field, there is a kind of a fundamental theorem of algebra: If a polynomial has

only one term of the greatest degree, then it has at least one root in H(−1,−1).

([Sm; 04], Theorem 65; [Ei, Ni; 44], Theorem 1).

We consider the polynomial of degree n of the form

f(x) = a0xa1x . . . an−1xan + ϕ(x), (3.5.2.)

where x, a0, a1, . . . , an−1, an ∈ H(−1,−1), with aℓ 6= 0 for ℓ ∈ {0, 1, . . . , n}
and ϕ(x) is a sum of a finite number of monomials of the form b0xb1x . . . bt−1xbt

where t < n. From the above, it results that the equation f(x) = 0 has at

least one root. Applying operator A−1 to this last equality, the equation

(A−1f)(A−1(x)) = 0, with x = x0 + x1e1 + x2e2 + x3e3, has at least one root

in H(γ1, γ2). Therefore, we proved the following result:

Theorem 3.5.3. In the generalized quaternion algebra H(γ1, γ2) , any

polynomial of the form (3.5.2) has at least one root.�

In the following, we will use some ideas and notations from [Ch; 98]. Let

q = q0 + q1e1 + q2e2 + q3e3 ∈ H(γ1, γ2), γ1, γ2 > 0, q0, q1, q2, q3 ∈ R and

|n(q)| =
√
q20 + γ1q21 + γ2q22 + γ1γ2q23 .Consider the sets

S3G = {q ∈ H(γ1, γ2), γ1, γ2 < 0 : n(q) = 1},

S2G = {q ∈ H (γ1, γ2) , γ1, γ2 < 0 : q0 = 0,n(q) = 1}.

Any q ∈ S3G can be expressed as q = cos θ + ε sin θ, where

cos θ = q0, ε =
q1e1 + q2e2 + q3e3√
γ1q21 + γ2q22 + γ1γ2q23

.

Using Proposition 2 from [Ch; 98] and applying the operator A−1 we will

find De Moivre’s formula for H (γ1, γ2) , γ1, γ2 < 0.

Theorem 3.5.4. Let q = cos θ + ε sin θ ∈S3G, θ ∈ R. Then qn = cosnθ +

ε sinnθ, for every integer n.

Theorem 3.5.4 is the same with Theorem 7 from the paper [Ma, Ja; 13],

obtained with another proof.�

Using Corollary 3 from [Ch; 98] and Theorem 3.5.2, we obtain the next

statement.
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Proposition 3.5.5. i) In H(γ1, γ2), γ1, γ2 < 0 the equation xn = 1 whit

n integer and n ≥ 3 has infinity of roots, namely

q = cos
2π

n
+ ε sin

2π

n
∈ S3G, ε ∈ S2G.

ii) In H(γ1, γ2), γ1, γ2 < 0 the equation xn = a, n ∈ N, a ∈ R has infinity

of roots, namely n
√
a q, where q = cos 2π

n + ε sin 2π
n ∈ S3G, with ε ∈S2G. If n is

even it is necessary that a > 0.�

In the following, we will generalize in a natural way De Moivre formula and

Euler’s formula for the division octonion algebra O (−1,−1,−1) . For this, we

will use some ideas and notations from [Ch; 98]. We consider the sets

S3 = {a ∈ O(−1,−1,−1) : n(a) = 1},

S3G = {a ∈ O(α, β, γ) : n(a) = 1},

S2 = {a ∈ O(−1,−1,−1) : t(a) = 0,n (a) = 1}.

S2G = {a ∈ O(−1,−1,−1) : t(a) = 0,n (a) = 1}.

We remark that for all elements a ∈ S2, we have a2 = −1. Let a ∈ S3, a =

a0+a1f1+a2f2+a3f3+a4f4+a5f5+a6f6+a7f7. This element can be written

under the form

a = cosλ+ w sinλ,

where cosλ = a0 and

w =
a1f1 + a2f2 + a3f3 + a4f4 + a5f5 + a6f6 + a7f7√

a21 + a22 + a23 + a24 + a25 + a26 + a27
=

=
a1f1 + a2f2 + a3f3 + a4f4 + a5f5 + a6f6 + a7f7√

1− a20
.

Since w2 = −1, we obtain the following Euler’s formula:

eλw =

∞∑

i=1

(λw)
n

n!
=

∞∑

i=1

(−1)
n
λ2n

(2n)!
+ w

∞∑

i=1

(−1)
n−1

λ2n−1

(2n− 1)!
=

= cosλ+ w sinλ.
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Proposition 3.5.3. The cosinus function is constant for all elements in

S2.

Proof. Indeed, cosw =
∞∑
i=1

(−1)nw2n

(2n)! = cos i.�

Proposition 3.5.4. For w ∈ S2, we have (cosλ1 + w sinλ1)(cosλ2 +

w sinλ2) = cos(λ1 + λ2) + w sin(λ1 + λ2).

Proof. By straightforward calculations �

Proposition 3.5.5. (De Moivre formula for octonions) With the above

notations, we have that

an = enλw = (cosλ+ w sinλ)
n

= cosnλ+ w sinnλ,

where a ∈ S3, n ∈ Z and λ ∈ R.

Proof. For n > 0, by induction. We obtain

an+1 = (cosλ+ w sinλ)
n+1

=

= (cosλ+ w sinλ)
n

(cosλ+ w sinλ) =

= (cosnλ+ w sinnλ) (cosλ+ w sinλ) =

= cos(n+ 1)λ+ w sin(n+ 1)λ.

Since a−1 = cosλ − w sinλ = cos(−λ) + w sin(−λ), it results the asked

formula for all n ∈ Z.�

Remark 3.5.6. We know that any polynomial of degree n with coefficients

in a field K has at most n roots in K. If we consider the coefficients in

O (−1,−1,−1) , there is a kind of a fundamental theorem of algebra: If a

polynomial has only one term of the higher degree, then it has at least one

root in O (−1,−1,−1) (see [Ch; 98], Theorem 65).

Theorem 3.5.7. Equation xn = a, where a ∈ O (−1,−1,−1) \ R, has n
roots.

Proof. The octonion a can be written under the form a =
√
n (a) a√

n(a)
.

The octonion b = a√
n(a)

is in S3, then we can find the elements w ∈ S2 and

λ ∈ R such that b = cosλ + w sinλ. From Proposition 3.5.5, we have that
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the solutions of the above equation are xr = n
√
Q
(
cos λ+2rπ

n + w sin λ+2rπ
n

)
,

where Q =
√
n (a) and r ∈ {0, 1, ..., n− 1}.�

Corollary 3.5.8. If a ∈ R, therefore the equation xn = a has an infinity

of roots.

Proof. Indeed, if a ∈ R, we can write a = a · 1 = a (cos 2π + w sin 2π) ,

where w ∈ S2 is an arbitrary element. �

In the following, we will consider the generalized real octonion algebra

O(α, β, γ) and the algebras O(−1,−1,−1) and O(1, 1,−1). Let {1, f1, . . . , f7}
be a basis in O(α, β, γ), and {1, f̃1, . . . , f̃7} be the canonical basis in O(−1,−1,−1)

and {1, f̂1, . . . , f̂7} be the canonical basis in O(1, 1,−1).

We prove that the algebra O(α, β, γ) with α, β, γ ∈ R \ {0} is isomorphic

with algebra O(−1,−1,−1) or O(1, 1,−1) and indicate the formulae to pass

from one basis to another basis. Thus, if α, β, γ < 0 then the real octonion

algebra O(α, β, γ) is isomorphic with algebra O(signα, signβ, signγ) and this

isomorphism is given by the relations:

Ak : f1 7→ f̃1
√

(signα)α, f2 7→ f̃2
√

(signβ)β, f3 7→ f̃3
√
αβ,

f4 7→ f̃4
√

(signγ)γ, f5 7→ f̃5
√
αγ, f6 7→ f̃6

√
βγ, f7 7→ f̃7

√
Mαβγ ,

where M = (signα)(signβ)(signγ).

We obtain 8 operators. It is easy to prove that the operators Ak, k = 1, 8 is

additive and multiplicative. The following statement can be proved completely

analogous as Proposition 3.5.1.

Proposition 3.5.9. The operators Ak, k = 1, 8 are continuous and have

norm 1.�

Let x = x0 +
7∑
k=1

xkfk ∈ O(α, β, γ) and let g : O(α, β, γ)→ O(α, β, γ) be a

continuous function of the form g(x) = g0(x0, . . . , x7) +
7∑
k=1

gk(x0, . . . , x7)fk.

Let L be one of the operators Ak, k = 1, 8, depending on the signs of α, β and

γ. We define the operator L by the rule:

Lg := f0 +

7∑

k=1

gk L(fk).
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The operator L for any continuous function g, taking values in O(α, β, γ),

maps it in the continuous function Lg, taking values in O(−1,−1,−1) or

O(1, 1,−1),

The following statement can be analogously proved as in Theorem 3.5.2.

Theorem 3.5.10. Let x0 ∈ O(α, β, γ), be a root of the equation g(x) =

0 in O(α, β, γ). Then L(x0) is a root of the equation Lg
(
L(x)

)
= 0 in

O(−1,−1,−1) or O(1, 1,−1), depending on the signs of α, β, and γ. The

converse is also true. �

Thus, the study of algebraic equations in an arbitrary algebra O(α, β, γ)

with α, β, γ ∈ R\{0} was reduced to study of the corresponding algebraic equa-

tion in one of the following two algebras: division octonion algebra O(−1,−1,−1)

or algebra O(1, 1,−1).

Using the above notations, we can prove the following theorem.

Theorem 3.5.11. Equation xn = a, where a ∈ O(α, β, γ) \R, α, β, γ < 0,

has n roots.

Proof. The octonion b = a√
n(a)

is in S3G, then there are w ∈ S2G, w =

A−1
1 (w̃) , w̃ ∈ S2 and λ ∈ R such that b = cosλ + w̃ sinλ. From Proposition

3.5.2, we have that the solutions of the above equation are xr = A−1
1 (x̃r) =

2n
√

n (a)
(
cos λ+2rπ

n + w̃ sin λ+2rπ
n

)
, where r ∈ {0, 1, . . . , n − 1} and x̃r is a

solution of the equation x̃n = ã in O(−1,−1,−1).�

Remark 3.5.12. Using the operator A−1
1 , the rotation of the octonion

x ∈ O(α, β, γ) on the angle λ around the unit vector w ∈ S2G is defined by the

formula

xr = uxu,

where u ∈ S3G, w ∈ S2G, u = cos λ2 + w sin λ
2 and u = cos λ2 − w sin λ

2 .

By straightforward calculations, it results that the rotation does not trans-

form the octonion-scalar part, but the octonion-vector part −→x is rotated on

the angle λ around w.

Example 3.5.13. 1) Let a ∈ S3,
a =

√
2
2 + 1√

14
f̃1 + 1√

14
f̃2 + 1√

14
f̃3 + 1√

14
f̃4 + 1√

14
f̃5 + 1√

14
f̃6 + 1√

14
f̃7, we

have cosλ =
√
2
2 , sinλ =

√
2
2 . It results that a = cos π4 + v sin π

4 , where v =
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1√
7
(f̃1 + f̃2 + f̃3 + f̃4 + f̃5 + f̃6 + f̃7). The vector a corresponds to the rotation

of the space R8on the angle π
2 around the vector v =

(
1√
7
, 1√

7
, . . . , 1√

7

)
∈ R7

written in the canonical basis.

2) In the algebra O(2, 4, 7), for the above element a ∈ S3, we have

b=A−1 (a)=
√
2
2 + 1

2
√
7
f1+ 1

2
√
14
f2+ 1

7
√
2
f3+ 1

4
√
7
f4+ 1

14f5+ 1
14

√
2
f6+ 1

28f7 ∈ S3G and

corresponds to the rotation of the space R8on the angle π
2 around the vector

v =
(

1
2
√
7
, 1
2
√
14
, 1
7
√
2
, 1
4
√
7
, 1
14 ,

1
14

√
2
, 1
28

)
∈ R7written in the basis {f1, . . . , f7}.

In this case when α = β = 1, γ = −1, the octonion algebra O(1, 1,−1)

is not a division algebra (it is a split algebra). The norm of an octonion

a ∈ O(1, 1,−1), a = a0 + a1f1 + a2f2 + a3f3 + a4f4 + a5f5 + a6f6 + a7f7,

in this situation, can be positive, zero or negative. In the following, we used

definitions and propositions obtained for the split quaternions as in [Oz; 09]

to generalized them to similar results for the split octonions. A split octonion

is called spacelike, timelike or lightlike if n (a) < 0, n (a) > 0 or n (a) = 0. If

n (a) = 1, then a is called the unit split octonion.

Spacelike octonions

Let a ∈ O(1, 1,−1) such that n (a) = −1, be a so called spacelike octonion.

For the octonion w = a1f1+a2f2+a3f3+a4f4+a5f5+a6f6+a7f7√
1+a20

, we have n (w) =

−1 and t (w) = 0, therefore w2 = 1. Denoting sinhλ = a0 and coshλ =√
1 + a20, λ ∈ R, it results:

a = eλw = sinhλ+ w coshλ.

If a ∈ O(1, 1,−1) with n (a) < 0, we have a =
√
|n (a)|(sinhλ+w coshλ).

Proposition 3.5.14. We have that an = (
√
|n (a)|)n(sinhλ + w coshλ)

for n odd and an = (
√
|n (a)|)n(coshλ+ w sinhλ) for n even. �

Timelike octonions

Let a ∈ O(1, 1,−1) such that n (a) = 1, be a so called timelike octonion.

If 1 − a20 > 0, for the octonion w = a1f1+a2f2+a3f3+a4f4+a5f5+a6f6+a7f7√
1−a20

, we

have n (w) = 1 and t (w) = 0, therefore w2 = −1 Denoting cosλ = a0 and

sinλ =
√

1− a20, λ ∈ R, it results:

Proposition 3.5.15. With the above notations, we have the Euler’s for-

mula:

a = eλw = cosλ+ w sinλ.



90 Cristina FLAUT

Proof. Indeed, eλw =
∞∑
i=1

(λw)n

n! =
∞∑
i=1

(−1)nλ2n

(2n)! + w
∞∑
i=1

(−1)n−1λ2n−1

(2n−1)! =cosλ +

w sinλ.�

If a ∈ O(1, 1,−1) with n (a) > 0, it results a =
√
n (a) (cosλ+ w sinλ) .�

Proposition 3.5.16. We have that an = (
√

n (a))n(cosnλ+ w sinnλ).�

Proposition 3.5.17.

1)If a ∈ O(1, 1,−1), it results an = (
√

n (a))n(cosnλ+ w sinnλ).

2) The equation xn = a has n roots: 2n
√
|n (a)|

(
cosh λ

n + w sinh λ
n

)
.�

If 1 − a20 < 0, we have w = a1f1+a2f2+a3f3+a4f4+a5f5+a6f6+a7f7√
a20−1

, with

n (w) = −1 and t (w) = 0, therefore w2 = 1. Denoting coshλ = a0 and

sinhλ =
√
a20 − 1, λ ∈ R, we have the following result:

Proposition 3.5.18. With the above notations, we have Euler’s formula:

a = eλw = coshλ+ w sinhλ.

Proof. Indeed, eλw =
∞∑
n=0

(λw)n

n! =
∞∑
n=0

λ2n

(2n)!+w
∞∑
n=0

λ2n+1

(2n+1)!=coshλ+w sinhλ.�

If a ∈ a ∈ O(1, 1,−1) with n (a) < 0, it results a =
√
|n (a)|(coshλ +

w sinhλ).�

Proposition 3.5.19.

1) If a ∈ O(1, 1,−1), then an = (
√
|n (a)|)n(coshnλ+ w sinhnλ).

2) The equation xn = a has only one root: 2n
√
|n (a)|

(
cosh λ

n + w sinh λ
n

)
.�

Remark 3.5.20. Using the above technique, De Moivre’s formula and

Euler’s formula can be easy proved for the octonion algebra O(α, β, γ), with

α, β, γ ∈ R \ {0} such that O(α, β, γ) is split. Thus, the study of algebraic

equations in an arbitrary algebra O(α, β, γ) with α, β, γ ∈ R\{0} was reduced

to study of the corresponding algebraic equation in one of the following two

algebras: division octonion algebra O(−1,−1,−1) or algebra O(1, 1,−1).

3.6. Fibonacci elements in Quaternion and Octonion algebras
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The results presented in this section were obtained especially in the papers

[Fl, Sh; 13] and [Fl, Sa; 15]. The Fibonacci numbers was introduced by

Leonardo of Pisa (1170-1240) in his book Liber abbaci, book published in

1202 AD (see [Kos; 01], p. 1, 3). These numbers was used as a model for

investigate the growth of rabbit populations (see [Dr, Gi, Gr, Wa; 03]). The

nth term of these numbers is given by the formula:

fn = fn−1 + fn−2, n ≥ 2,

where f0 = 0, f1 = 1.

The following sequence

l0 = 2; f1 = 1; ln = ln−1 + ln−2, n ≥ 2

is called the Lucas number. Some properties of these numbers are known.

Proposition 3.6.1. Let (fn)n≥0 be the Fibonacci sequence and let (ln)n≥0

be the Lucas sequence. Therefore the following properties hold:

i) f2n + f2n+1 = f2n+1, ∀ n ∈ N;

ii) f2n+1 − f2n−1 = f2n, ∀ n ∈ N∗;

ix) fmlm+p = f2m+p + (−1)
m+1

fp, ∀ m, p ∈ N;

x) fm+plm = f2m+p + (−1)
m
fp, ∀ m, p ∈ N;

xi) fmfm+p = 1
5

(
l2m+p + (−1)

m+1
lp

)
, ∀ m, p ∈ N;

xii) lmlp + 5fmfp = 2lm+p, ∀ m, p ∈ N.�

Let H (β1, β2) be the generalized real quaternion algebra.

We denote by t (a) and n (a) the trace and the norm of a real quaternion

a.

In [Ho; 61], the author generalized Fibonacci numbers and gave many

properties of them: hn = hn−1 + hn−2, n ≥ 2, where h0 = p, h1 = q,

with p, q being arbitrary integers. In the same paper [Ho; 61], relation (7),

the following relation between Fibonacci numbers and generalized Fibonacci

numbers was obtained:

hn+1 = pfn + qfn+1. (3.6.1.)

The same author, in [Ho; 63], defined and studied Fibonacci quaternions and

generalized Fibonacci quaternions in the real division quaternion algebra and

found a lot of properties of them. For the generalized real quaternion algebra,
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the Fibonacci quaternions and generalized Fibonacci quaternions are defined

in the same way:

Fn = fn1 + fn+1e2 + fn+2e3 + fn+3e4,

for the nth Fibonacci quaternions, and

Hn = hn1 + hn+1e2 + hn+2e3 + hn+3e4,

for the nth generalized Fibonacci quaternions.

In the same paper, we find the norm formula for the nth Fibonacci

quaternions:

n (Fn) = FnFn = 3f2n+3, (1.2)

where Fn = fn · 1 − fn+1e2 − fn+2e3 − fn+3e4 is the conjugate of the Fn

in the algebra H. After that, many authors studied Fibonacci and generalized

Fibonacci quaternions in the real division quaternion algebra giving more and

surprising new properties (for example, see [Sw; 73], [Sa-Mu; 82] and [Ha; 12]).

M. N. S. Swamy, in [Sw; 73], formula (17), obtained the norm formula for

the nth generalized Fibonacci quaternions:

n (Hn) = HnHn =

= 3(2pq − p2)f2n+2 + (p2 + q2)f2n+3,

where Hn = hn · 1− hn+1e2 − hn+2e3 − hn+3e4 is the conjugate of the Hn in

the algebra H.

Similar to A. F. Horadam, we define the Fibonacci-Narayana quaternions

as

Un = un1 + un+1e2 + un+2e3 + un+3e4,

where un are the nth Fibonacci-Narayana number.

As in the case of Fibonacci numbers, numerous results between

Fibonacci generalized numbers can be deduced. In the following, we will study

some properties of the generalized Fibonacci quaternions in the generalized

real quaternion algebra H (β1, β2). Let Fn = fn1 + fn+1e2 + fn+2e3 + fn+3e4

be the nth Fibonacci quaternion and Hn = hn1 +hn+1e2 +hn+2e3 +hn+3e4

be the nth generalized Fibonacci quaternion. A first question which can arise
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is what algebraic structure have these elements? The answer will be found in

the below theorem, denoting first a nth generalized Fibonacci number and a

nth generalized Fibonacci element with hp,qn , respectively Hp,q
n . In this way,

we emphasis the starting integers p and q.

Theorem 3.6.2. The set Hn = {Hp,q
n / p, q ∈ Z} ∪ {0} is a Z−module.

Proof. Indeed, aHp,q
n + bHp′,q′

n = Hap+bp′,aq+bq′

n ∈ Hn, where

a, b, p, q, p′, q′ ∈ Z.�

Proposition 3.6.3. i) For the Fibonacci quaternion elements, we have
n∑

m=1
(−1)

m+1
Fm = (−1)

n+1
Fn−1 + 1 + e3 + e4.

ii) For the generalized Fibonacci quaternion elements, the following relation

is true
n∑

m=1
(−1)

m+1
Hp,q
m =(−1)

n+1
Hp,q
n−1 − p+q+pe2+qe3+pe4+qe4.�

From the above proposition, we can remark that all identities valid for

the Fibonacci quaternions can be easy adapted in an approximative similar

expression for the generalized Fibonacci quaternions.

In the following, we will compute the norm of a Fibonacci quaternion and

of a generalized Fibonacci quaternion in the algebra H (β1, β2) .

Let Fn = fn1+fn+1e2 +fn+2e3 +fn+3e4 be the nth Fibonacci quaternion,

then its norm is

n (Fn) = f2n − β1f2n+1 − β2f2n+2 + β1β2f
2
n+3.

Using recurrence of Fibonacci numbers, we have

Proposition 3.6.4. The norm of the nth Fibonacci quaternion Fn in a

generalized quaternion algebra is

n (Fn) =h1−2β2,−3β2

2n+2 +(-β1-1)h1−2β2,−β2

2n+3 -2(−β1-1) (1-β2) fnfn+1. (3.6.2.)

�

Let Hn = hn1+hn+1e2+hn+2e3+hn+3e4 be the nth generalized Fibonacci

quaternion. The norm is given in the following
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Proposition 3.6.5. The norm of the nth generalized Fibonacci quaternion

Hp,q
n in a generalized quaternion algebra is

n (Hp,q
n ) =p2h1−2β2,−3β2

2n +p2(−β1-1)h1−2β2,−β2

2n+1 +q2h1−2β2,−3β2

2n+2 +q2(−β1-1)h1−2β2,−β2

2n+3 -

−2p (−β1 − 1) (−pβ2 + p+ q) fn−1fn − 2q2(−β1 − 1) (1-β2) fnfn+1 +

+h−2pqβ1,2pqβ1β2

2n+1 + 2pqβ1β2(f2n + f2n+3)− 2pqβ2 (1 + β1) fn+1fn+2. (3.6.3.)

�

It is known that the expression for the nth term of a Fibonacci element is

fn =
1√
5

[αn − βn] =
αn√

5
[1− βn

αn
], (3.6.4.)

where α = 1+
√
5

2 and β = 1−
√
5

2 .

From the above, we can compute the following

lim
n→∞

n (Fn) = lim
n→∞

(f2n − β1f2n+1 − β2f2n+2 + β1β2f
2
n+3) =

= lim
n→∞

(
α2n

5
-β1

α2n+2

5
-β2

α2n+4

5
+β1β2

α2n+6

5
) =

n→∞

= sgnE(β1, β2) · ∞

where

E(β1, β2) = ( 1
5 −

β1

5 α
2 − β2

5 α
4 + β1β2

5 α6) =

= 1
5 (1− β1 (α+ 1)− β2 (3α+ 2) + β1β2 (8α+ 5)) =

= 1
5 [1− β1 − 2β2 + 5β1β2 + α (−β1 − 3β2 + 8β1β2)], since α2 = α+ 1.

If E(β1, β2) > 0, there exist a number n1 ∈ N such that for all

n ≥ n1 we have

h1−2β2,−3β2

2n+2 + (−β1 − 1)h1−2β2,−β2

2n+3 − 2(−β1 − 1) (1− β2) fnfn+1 > 0.

In the same way, if E(β1, β2) < 0, there exist a number n2 ∈ N such that for

all n ≥ n2 we have

h1−2β2,−3β2

2n+2 + (−β1 − 1)h1−2β2,−β2

2n+3 − 2(−β1 − 1) (1− β2) fnfn+1 < 0.
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Therefore for all β1, β2 ∈ R with E(β1, β2) 6= 0, in the algebra H (β1, β2) there

is a natural number n0 = max{n1, n2} such that n (Fn) 6= 0, hence Fn is an

invertible element for all n ≥ n0. Using the same arguments, we can compute

lim
n→∞

(n (Hp,q
n )) = lim

n→∞

(
h2n − β1h2n+1 − β2h2n+2 + β1β2h

2
n+3

)
=

= lim
n→∞

[(pfn−1+qfn)
2

-β1 (pfn+qfn+1)
2

-β2 (pfn+1+qfn+2)
2

+

+β1β2 (pfn+2+qfn+3)
2
] =

= sgnE′(β1, β2) · ∞

where

E′(β1, β2) = 1
5 [(p+ αq)

2 − β1
(
pα+ α2q

)2 − β2
(
pα2 + α3q

)2
+

+β1β2
(
pα3 + α4q

)2
] =

= 1
5 (p+ αq)

2
[1− β1α2 − β2α4 + β1β2α

6] =

= 1
5 (p+ αq)

2
E(β1, β2).

Therefore for all β1, β2 ∈ R with E′(β1, β2) 6= 0 in the algebra H (β1, β2)

there exist a natural number n′0 such that n (Hp,q
n ) 6= 0, hence Hp,q

n is an

invertible element for all n ≥ n′0.
Now, we proved

Proposition 3.6.6. For all β1, β2 ∈ R with E′(β1, β2) 6= 0, there ex-

ist a natural number n′ such that for all n ≥ n′ Fibonacci elements Fn

and generalized Fibonacci elements Hp,q
n are invertible elements in the algebra

H (β1, β2) .�

Remark 3.6.7. Algebra H (β1, β2) is not always a division algebra, and

sometimes can be difficult to find an example of invertible element. Above

Theorem provides us infinite sets of invertible elements in this algebra, namely

Fibonacci elements and generalized Fibonacci elements.

Let n be an arbitrary positive integer and p, q be two arbitrary integers.

The sequence gn (n ≥ 1), where

gn+1 = pfn + qln+1, n ≥ 0
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is called the generalized Fibonacci-Lucas numbers.

To emphasize the integer p and q, in the following, we will use the notation

gp,qn instead of gn.

Let HQ (α, β) be the generalized quaternion algebra over the rational field.

We define the n-th generalized Fibonacci-Lucas quaternion to be the element

of the form

Gp,qn = gp,qn 1 + gp,qn+1i+ gp,qn+2j + gp,qn+3k,

where i2 = α, j2 = β, k = ij = −ji.
In the following proposition, for α = −1 and β = p, we compute the norm

for the n-th generalized Fibonacci-Lucas quaternions.

Let A be a Noetherian integral domain with the field of the fractions K

and let HK (α, β) be the generalized quaternion algebra. We recall that O
is an order in HK (α, β) if O ⊆ HK (α, β) and it is a finitely generated A−
submodule of HK (α, β) which is also a subring of HK (α, β) (see [Vo; 14]).

In the following, we will built an order of a quaternion algebras using the

generalized Fibonacci-Lucas quaternions. Also we will prove that Fibonacci-

Lucas quaternions can have an algebra structure over Q. For this, we make

the following remarks.

Remark 3.6.8. [Fl, Sa; 15] Let n be an arbitrary positive integer and

p, q be two arbitrary integers. Let (gp,qn )n≥1 be the generalized Fibonacci-Lucas

numbers. Then

pfn+1 + qln = gp,qn + gp,0n+1, ∀ n ∈ N∗.

Proof.

pfn+1 + qln = pfn−1 + qln + pfn = gp,qn + pfn = gp,qn + gp,on+1.

�

Remark 3.6.9. [Fl, Sa; 15] Let n be an arbitrary positive integer and

p, q be two arbitrary integers. Let (gp,qn )n≥1 be the generalized Fibonacci-

Lucas numbers and (Gp,qn )n≥1 be the generalized Fibonacci-Lucas quaternion

elements. Then:

Gp,qn = 0 if and only if p = q = 0.
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Proof. ” ⇐” It is trivial.

” ⇒” If Gp,qn = 0, since {1, i, j, k} is a basis in HQ (α, β) , we obtain that

gp,qn = gp,qn+1 = gp,qn+2 = gp,qn+3 = 0. It results gp,qn−1 = gp,qn+1−gp,qn = 0, ..., gp,q2 = 0,

gp,q1 = 0. But gp,q1 = pf0 + ql1 = 2q, therefore q = 0. From gp,q2 = 0, we obtain

p = 0.�

Theorem 3.6.10. [Fl, Sa; 15] Let M be the set

M =

{
n∑

i=1

5Gpi,qini
|n ∈ N∗, pi, qi ∈ Z, (∀)i = 1, n

}
∪ {1} .

1) The set M has a ring structure with quaternions addition and multiplica-

tion.

2) The set M is an order of the quaternion algebra HQ (α, β) .

3) The set M ′ =

{
n∑
i=1

5G
p′i,q

′

i
ni |n ∈ N∗, p′i, q

′
i ∈ Q, (∀)i = 1, n

}
∪{1} is a Q−algebra.

Proof. 2) First, we remark that 0∈M .

Now we prove that M is a Z− submodule of HQ (α, β) .

Let n,m ∈ N∗, a, b, p, q, p
′

, q
′ ∈ Z. It is easy to prove that

agp,qn + bgp
′

,q
′

m = gap,aqn + gbp
′

,bq
′

m .

This implies that

aGp,qn + bGp
′

,q
′

m = Gap,aqn +Gbp
′

,bq
′

m .

From here, we get immediately that M is a Z− submodule of the quaternion

algebra HQ (α, β) . Since {1, i, j, k} is a basis for this submodule, it results that

M is a free Z− module of rank 4.

Now, we prove that M is a subring of HQ (α, β) . It is enough to show that

5Gp,qn · 5Gp
′

,q
′

m ∈M. For this, if m < n, we calculate

5gp,qn · 5gp
′

,q
′

m = 5 (pfn−1 + qln) · 5
(
p

′

fm−1 + q
′

lm

)
=

= 25pp
′

fn−1fm−1 + 25pq
′

fn−1lm + 25p
′

qfm−1ln + 25qq
′

lnlm (3.2).

Using some previous results and above equality, we obtain:

5gp,qn ·5gp
′

,q
′

m = 5pp
′

[lm+n−2 + (−1)
m · ln−m]+25pq

′

[fm+n−1 + (−1)
m · fn−m−1] +
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+25p
′

q [fm+n−1 + (−1)
m · fn−m+1] + 25qq

′

[lm+n + (−1)
m · ln−m] =

= 5
(
pp

′

lm+n−2 + 5p
′

qfm+n−1

)
+5
[
5p

′

q (−1)
m · fn−m+1 + pp

′

(−1)
m · ln−m

]
+

+25
(
pq

′

fm+n−1 + qq
′

lm+n

)
+25

[
pq

′ · (−1)
m · fn−m−1 + qq

′ · (−1)
m · ln−m

]
=

= 5g5p
′

q,pp
′

m+n−2 + 5g5p
′

q,0
m+n−1 + 5g

5p
′

q·(−1)m,pp
′ ·(−1)m

n−m + 5g
5p

′

q·(−1)m,0
n−m+1 +

+5g5pq
′

,5qq
′

m+n + 5g
5pq

′ ·(−1)m,5qq
′ ·(−1)m

n−m .

Therefore, it results that 5Gp,qn · 5Gp
′

,q
′

m ∈M.

From here, we get that M is an order of the quaternion algebra HQ (α, β) .

1) and 3) are obviously.�

Remark 3.6.11. For α = β = −1, we have that M is included in the set

of Hurwitz quaternions,

H = {q = a1 + a2i+ a3j + a4k ∈ HQ (−1,−1) , a1, a2, a3, a4 ∈ Z or Z +
1

2
},

which is a maximal order in HQ (−1,−1) .

3.7. Real matrix representations for the complex quaternions

The results presented in this section, were obtained especially in the paper

[Fl, Sh; 13(2)]. It is know that each finite dimensional associative algebra

A over an arbitrary field K is isomorphic with a subalgebra of the algebra

Mn (K), with n = dimK A. Therefore, we can find a faithful representation

of the algebra A in the algebraMn (K) . For example, the real quaternion divi-

sion algebra is algebraically isomorphic to a 4×4 real matrix algebra. Starting

from some results obtained by Y. Tian in [Ti; 00] and in [Ti; 00(1)], in the

we will show that the complex quaternion algebra is algebraically isomorphic

to a 8 × 8 real matrix algebra and will investigate the properties of the ob-

tained left and right real matrix representations for the complex quaternions.
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We also provide some examples in the special case of the complex Fibonacci

quaternions.

Let K be the field {
(
a −b
b a

)
| a, b ∈ R}. The map

ϕ : C→ K,ϕ (a+ bi) =

(
a −b
b a

)
,

where i2 = −1 is a fields morphism and ϕ (z) =

(
a −b
b a

)
is called the

matrix representation of the element z = a+ bi ∈ C.

Let H = H (−1,−1) be the real division quaternion algebra.

A complex quaternion is an element of the form Q = c0+c1e1+c2e2+c3e3,

where cn ∈ C, n ∈ {0, 1, 2, 3},

e2n = −1, n ∈ {1, 2, 3}

and

emen = −enem = βmnet, βmn ∈ {−1, 1},m 6= n,m, n ∈ {1, 2, 3},

βmn and et being uniquely determined by em and en. We denote by HC the

algebra of the complex quaternions, called the complex quaternion algebra.

This algebra is an algebra over the field C. Let {1, e1, e2, e3} be a basis in HC .

The map γ : R → C, γ (a) = a is the inclusion morphism between R-

algebras R and C. We denote by F the C-subalgebra of the algebra HC ,

F = {Q ∈ HC | Q = c0 + c1e1 + c2e2 + c3e3, cn ∈ R, n ∈ {0, 1, 2, 3}}.

By the scalar restriction, F became an algebra over R, with the multipli-

cation ” · ”
a ·Q = γ (a)Q = aQ, a ∈ R, Q ∈ F.

We denote this algebra by HR. The map

δ : H→ HR, δ (1) = 1, δ (i) = e1, δ (j) = e2, δ (k) = e3

and

δ (a0 + a1i+ a2j + a3k) = a0 + a1e1 + a2e2 + a3e3,
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where am ∈ R,m ∈ {0, 1, 2, 3} is an algebra isomorphism between the algebras

H and HR.The algebra HR has the same basis {1, e1, e2, e3} as the algebra HC .

From now one, we will identify the quaternion a0 + a1i + a2j + a3k with the

”complex” quaternion a0 + a1e1 + a2e2 + a3e3, am ∈ R,m ∈ {0, 1, 2, 3} and

instead of HR we will use H.

It results that the element Q ∈ HC , Q = c0 + c1e1 + c2e2 + c3e3, cm ∈
C,m ∈ {0, 1, 2, 3}, can be written as Q = (a0 + ib0) + (a1 + ib1)e1 + (a2 +

ib2)e2 + (a3 + ib3)e3, where am, bm ∈ R,m ∈ {0, 1, 2, 3} and i2 = −1.

Therefore, we can write a complex quaternion under the form

Q = a+ ib,

with a, b ∈ H, a = a0 + a1e1 + a2e2 + a3e3, b = b0 + b1e1 + b2e2 + b3e3.

The conjugate of the complex quaternion Q is the element Q = c0− c1e1−
c2e2 − c3e3. It results that

Q = a+ ib. (3.7.1.)

For the quaternion a = a0 + a1e1 + a2e2 + a3e3 ∈ H, we define the element

a∗ = a0 + a1e1 − a2e2 − a3e3. (3.7.2.)

We remark that

(a∗)∗ = a (3.7.3.)

and

(a+ b)
∗

= a∗ + b∗, (3.7.4.)

for all a, b ∈ H.

For the quaternion algebra H, in [Ti; 00], was defined the map

λ : H→M4 (R) , λ (a) =




a0 −a1 −a2 −a3
a1 a0 −a3 a2

a2 a3 a0 −a1
a3 −a2 a1 a0


 ,

where a = a0 + a1e1 + a2e2 + a3e3 ∈ H, is an isomorphism between H and

the algebra of the matrices:







a0 −a1 −a2 −a3
a1 a0 −a3 a2

a2 a3 a0 −a1
a3 −a2 a1 a0


 , a0, a1, a2, a3 ∈ R




.
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We remark that the matrix λ (a) ∈M4 (R) has as columns the coefficients

in R of the basis {1, e1, e2, e3} for the elements {a, ae1, ae2, ae3}.
The matrix λ (a) is called the left matrix representation of the element

a ∈ H.

Analogously with the left matrix representation, for the element a ∈ H ,

in [Ti; 00], was defined the right matrix representation:

ρ : H→M4 (R) , ρ (a) =




a0 −a1 −a2 −a3
a1 a0 a3 −a2
a2 −a3 a0 a1

a3 a2 −a1 a0


 ,

where a = a0 + a1e1 + a2e2 + a3e3 ∈ H.

We remark that the matrix ρ (a) ∈M4 (R) has as columns the coefficients

in R of the basis {1, e1, e2, e3} for the elements {a, e1a, e2a, e3a}.

Proposition 3.7.1. [Ti; 00] For x, y ∈ H and r ∈ K we have:

i) λ (x+ y) = λ (x) + λ (y) , λ (xy) = λ (x)λ (y) , λ (rx) = rλ (x) ,

λ (1) = I4, r ∈ K.
ii) ρ (x+ y) = ρ (x) + ρ (y) , ρ (xy) = ρ (y) ρ (x) , ρ (rx) = rρ (x) ,

ρ (1) = I4, r ∈ K.
iii) λ

(
x−1

)
= (λ (x))

−1
, ρ
(
x−1

)
= (ρ (x))

−1
, for x 6= 0.�

Proposition 3.7.2. [Ti; 00] For x ∈ H, let −→x = (a0, a1, a2, a3)
t ∈

M1×4 (K) , be the vector representation of the element x. Therefore for all

a, b, x ∈ H the following relations are fulfilled:

i) −→ax = λ (a)−→x .
ii)
−→
xb = ρ (b)−→x .

iii)
−→
axb = λ (a) ρ (b)−→x = ρ (b)λ (a)−→x .

iv)ρ (b)λ (a) = λ (a) ρ (b) .

v) det (λ (x)) = det (ρ (x)) = (n (x))
2
.�

For details about the matrix representations of the real quaternions, the

reader is referred to [Ti; 00].
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Let θ be the matrix θ =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


 = λ (e1) = λ (i) . The

matrix

Γ (Q) =

(
λ (a) −λ (b∗)

λ (b) λ (a∗)

)
,

where Q = a + ib is a complex quaternion, with a = a0 + a1e1 + a2e2 +

a3e3 ∈ H, b = b0 + b1e1 + b2e2 + b3e3 ∈ H and i2 = −1, is called the left real

matrix representation for the complex quaternion Q. The right real matrix

representation for the complex quaternion Q is the matrix:

Θ (Q) =

(
ρ (a) −ρ (b)

ρ (b∗) ρ (a∗)

)
.

We remark that Γ (Q) ,Θ (Q) ∈M8 (R) .

Now, let M be the matrix

M = (1,−e1,−e2,−e3)
t
.

Proposition 3.7.3. If a = a0 + a1e1 + a2e2 + a3e3 ∈ H, we have:

i) λ (a)M = Ma.

ii) θM = Me1.

iii) λ (ia) = θλ (a) and λ (ai) = λ (a) θ.

Proof. By straightforward calculations. �

Proposition 3.7.4. Let a, x ∈ H be two quaternions, then the following

relations are true:

i) a∗i = ia, where i2 = −1.

ii) ai = ia∗, where i2 = −1.

iii) −a∗ = iai, where i2 = −1.

iv) (xa)
∗

= x∗a∗.

v) For X,A ∈ HC , X = x+ iy, A = a+ ib, we have

XA = xa− y∗b+ i (x∗b+ ya) .
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Proof. Relations from i), ii), iii) are obviously.

iv) From ii), it results (xa)
∗

= −i (xa) i = −ixai = (ixi)(iai) = x∗a∗.

v) We obtain

XA = (x+ iy) (a+ ib) = xa+ xib+ iya+ iyib =

= xa− y∗b+ i (x∗b+ ya) .�

Proposition 3.7.5. For X,A ∈ HC , X = x + iy, A = a + ib, we have

Γ (XA) = Γ (X) Γ (A) .

Proof. It results that

Γ (X) Γ (A)=

(
λ (x) −λ (y∗)

λ (y) λ (x∗)

)(
λ (a) −λ (b∗)

λ (b) λ (a∗)

)
=

=

(
λ (x)λ (a)− λ (y∗)λ (b) -λ (x)λ (b∗) -λ (y∗)λ (a∗)

λ (y)λ (a) + λ (x∗)λ (b) -λ (y)λ (b∗) +λ (x∗)λ (a∗)

)
=

=

(
λ(xa− y∗b) −λ(xb∗ + y∗a∗)

λ(ya+ x∗b) λ(−yb∗ + x∗a∗)

)
.

Γ (XA)=

(
λ(xa− y∗b) −λ((x∗b+ ya)∗)

λ(x∗b+ ya) λ((xa− y∗b)∗)

)
=

=

(
λ(xa− y∗b) −λ(xb∗ + y∗a∗)

λ(ya+ x∗b) λ(x∗a∗ − yb∗)

)
. �

Definition 3.7.6. For X ∈ HC , X = x+ iy, we denote by

−→
X = (−→x ,−→y )t ∈M8×1 (R)

the vector representation of the element X, where

x=x0+x1e1+x2e2+x3e3 ∈ H, y=y0+y1e1+y2e2+y3e3 ∈ H and
−→x=(x0, x1, x2, x3)t ∈M4×1 (R) ,
−→y =(y0, y1, y2, y3)t ∈ M4×1 (R) are the vector representations for the quater-

nions x and y, as was defined above.

Proposition 3.7.7. Let X ∈ HC , X = x+ iy, x, y ∈ H, then:

i)
−→
X = Γ (X)

(
1

0

)
, where 1 = I4 ∈ M4 (R) is the identity matrix and

0 = O4 ∈M4 (R) is the zero matrix.
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ii)
−−→
AX = Γ (A)

−→
X.

iii) α
−→
y∗ = −→y , where α=




1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 -1


 ∈M4 (R) .

iv) α2 = I4.

Proof. i) Γ (X)

(
1

0

)
=

(
λ (x) -λ (y∗)

λ (y) λ (x∗)

)(
1

0

)
=

(
λ (x)

λ (y)

)
=

=

(
λ (1 · x)

λ (1 · y)

)
=

(
λ (1)−→x
λ (1)−→y

)
=

( −→x
−→y

)
.

ii) From i), we obtain that

−−→
AX=Γ (AX)

(
1

0

)
=Γ (A) Γ (X)

(
1

0

)
=Γ (A)

−→
X.

iii) α
−→
y∗=




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1







y0

y1

−y2
−y3


=




y0

y1

y2

y3


=−→y .�

Proposition 3.7.8. Let M8 be the matrix M8 =

(
θM

−M

)
, therefore we

have − 1
4M

t
8M8 = 1.

Proof. By straightforward calculations.�

Theorem 3.7.9. Let Q ∈ HC be a complex quaternion. With the above

notations, the following relations are fulfilled:

i) Γt (Q∗)M8 = M8Q, where Q = x+ iy,Q∗ = x∗ + iy, x, y ∈ H.

ii) Q = − 1
4M

t
8Γ (Q∗)M8.

Proof. i) Let Q be a complex quaternion. We obtain

Γt (Q∗)M8 =

(
λ (x∗) λ (y)

−λ (y∗) λ (x)

)(
θM

−M

)
=

=

(
λ (x∗) θM − λ (y)M

−λ (y∗) θM − λ (x)M

)
=

(
λ (x∗i− y)M

−λ (y∗i+ x)M

)
=
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=

(
λ (ix+ iiy)M

−λ (iy + x)M

)
=

(
λ(i (x+ iy))M

−M(x+ iy)

)
=

=

(
θλ(x+ iy)M

−M(x+ iy)

)
=

(
θM (x+ iy)

−M(x+ iy)

)(
θM

−M

)
(x+ iy)=M8Q.

ii) If we multiply the relation Γt (Q∗)M8=M8Q to the left side with

− 1
4M

t
8, we obtain Q=− 1

4M
t
8Γt (Q∗)M8.�

Proposition 3.7.10. For X,A ∈ HC , X=x+ iy, A=a+ ib, we have

Θ (XA) = Θ (A) Θ(X).

Proof. It results that

Θ (XA)=

(
ρ (xa-y∗b) -ρ (x∗b+ya)

ρ
(
(x∗b+ya)

∗)
ρ
(
(xa-y∗b)∗

)
)

=

=

(
ρ (xa-y∗b) -ρ (x∗b+ya)

ρ
(
(x∗b+ya)

∗)
ρ
(
(xa-y∗b)∗

)
)

=

=

(
ρ (xa-y∗b) -ρ (x∗b+ya)

ρ (xb∗+y∗a∗) ρ (x∗a∗-yb∗)

)
.

Θ (A) Θ (X)=

(
ρ (a) -ρ (b)

ρ (b∗) ρ (a∗)

)(
ρ (x) -ρ (y)

ρ (y∗) ρ (x∗)

)
=

=

(
ρ (a) ρ (x) -ρ (b) ρ (y∗) -ρ (a) ρ (y) -ρ (b) ρ (x∗)

ρ (b∗) ρ (x) +ρ (a∗) ρ (y∗) -ρ (b∗) ρ (y) +ρ (a∗) ρ (x∗)

)
=

=

(
ρ (xa− y∗b) −ρ (x∗b+ ya)

ρ (xb∗ + y∗a∗) ρ (x∗a∗ − yb∗)

)
.�

Proposition 3.7.11. Let X ∈ HC , X = x+ iy, x, y ∈ H, then:

i)
−→
X =

(
1 0

0 α

)
Θ (X)

(
1

0

)
, where 1 = I4 ∈ M4 (R) is the identity

matrix, 0 = O4 ∈M4 (R) is the zero matrix and α ∈M4 (R) as in Proposition

2.5 iii).
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ii)
−−→
XA =

(
1 0

0 α

)
Θ (A)

(
1 0

0 α

)
−→
X.

iii) Γ (A)

(
1 0

0 α

)
Θ (B)

(
1 0

0 α

)
=

=

(
1 0

0 α

)
Θ (B)

(
1 0

0 α

)
Γ (A) , for all A,B ∈ HC .

Proof. i) We have

(
1 0

0 α

)
Θ (X)

(
1

0

)
=

=

(
1 0

0 α

)(
ρ (x) −ρ (y)

ρ (y∗) ρ (x∗)

)(
1

0

)
=

=

(
1 0

0 α

)(
ρ (x)

ρ (y∗)

)
=

(
1 0

0 α

)( −→x
−→
y+

)
=

=

( −→x
α
−→
y+

)
=

( −→x
−→y

)
.

ii)
−−→
XA=

(
1 0

0 α

)
Θ (XA)

(
1

0

)
=

=

(
1 0

0 α

)
Θ (A) Θ (X)

(
1

0

)
=

=

(
1 0

0 α

)
Θ (A)

(
1 0

0 α

)(
1 0

0 α

)
Θ (X)

(
1

0

)
=

=

(
1 0

0 α

)
Θ (A)

(
1 0

0 α

)
−→
X.

iii) We obtain
−−−→
AXB=

−−−−−→
A(XB)=Γ (A)

−−→
XB=

=Γ (A)

(
1 0

0 α

)
Θ (B)

(
1 0

0 α

)
−→
X.

Since
−−−→
AXB =

−−−−−→
A(XB) =

−−−−−→
(AX)B, it results that

−−−−−→
(AX)B =

(
1 0

0 α

)
Θ (B)

(
1 0

0 α

)
−−→
AX=
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=

(
1 0

0 α

)
Θ (B)

(
1 0

0 α

)
Γ (A)

−→
X, therefore we obtain the asked relation.

�

Theorem 3.7.12. With the above notations, the following relation is true:

Γt (X) = M1Θ (X)M2,

where

M1=

(
−A1 0

0 A1

)
∈M8 (R) ,

M2=

(
−A2 0

0 A2

)
∈M8 (R) and

A1=




0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 ∈M4 (R) ,

A2=




0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


 ∈M4 (R) .

Proof. First, we remark that A1ρ (a)A2 = λt (a) .

We have

M1Θ
(
X
)
M2 =

=

(
−A1 0

0 A1

)(
ρ (x) −ρ (y)

ρ (y∗) ρ (x∗)

)(
−A2 0

0 A2

)
=

=

(
−A1ρ (x) A1ρ (y)

A1ρ (y∗) A1ρ (x∗)

)(
−A2 0

0 A2

)
=

=

(
A1ρ (x)A2 A1ρ (y)A2

−A1ρ (y∗)A2 A1ρ (x∗)A2

)
=

(
λ (x) λ (y)

−λ (y∗) λ (x∗)

)
=

=

(
λ (x) −λ (y∗)

λ (y) λ (x∗)

)t
= Γt (x) .�
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Remark 3.7.13. From the above results, it results that

Q = −1

4
N1Θt (X∗)N2,

where Q ∈ HC is a complex quaternion, N1 = M t
8M

t
2 and N2 = M t

1M8.

Proposition 3.7.14. For Q ∈ HC , Q = a+ ib, we have:

det Γ (Q) = det Θ (Q) =n (aa∗ + b∗b)2 =n (a∗a+ b∗b)2 .

Proof.

We obtain: det Γ (Q)=det

(
λ (a) −λ (b∗)

λ (b) λ (a∗)

)
=

=det (λ (a)λ (a∗) +λ (b∗)λ (b))=

=det (λ (aa∗+b∗b)) = n (aa∗+b∗b)2 .

For the second, we have: det Θ (Q)=det

(
ρ (a) −ρ (b)

ρ (b∗) ρ (a∗)

)
=

=det (ρ (a) ρ (a∗) +ρ (b) ρ (b∗))=

=det (ρ (a∗a+b∗b))=n (a∗a+b∗b)2 .
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Chapter 4

Some applications in Coding Theory

4.1. Preliminaries

Coding Theory is a mathematical domain with many applications in In-

formation Theory. Various type of codes and their parameters have been

intensively studied.(see [Li, Xi; 04]) As one of the important parameters of a

code, the distance associated (such as Hamming, Lee, Mannheim, etc.) was

also studied for many types of codes and formulae for the minimum values or

the maximum values for such distances were found (see [Ne, In, Fa, Pa; 01]).

Some of these codes, which have undergone significant development over the

last years, are Integer Codes. Integer Codes are codes defined over finite rings

of integers modulo m,m ∈ Z and have some advantages over the traditional

block codes. One of these advantages is that integer codes are capable of cor-

recting a limited number of error patterns which occur most frequently, while

the conventional codes intend to correct all possible error patterns, without

completely succeeding. Integer Codes have a low encoding and decoding com-

plexity and are suitable for application in real communication systems (see

[Ko, Mo, Ii, Ha, Ma; 10]). There are some other codes similar to the Integer

Codes, such as for example codes over Gaussian integers ([Hu; 94], [Gh, Fr;

10], [Ne, In, Fa, Pa; 01], [Ri; 95]), codes over Eisenstein–Jacobi integers, [Ne,

In, Fa, Pa; 01], a class of error correcting codes based on a generalized Lee

distance, [Ni, Hi; 08], codes over Hurwitz integers, [Gu; 13], etc, which have

been intensively studied in recent years.

QAM, that is quadrature amplitude modulation, is used in many digital

data radio communications and data communication applications. The most
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common errors which appear in many digital data radio communications and

data communication applications are those which change a point into its near-

est neighbor. The Hamming distance and the Lee distance are not able to

correct these errors in a QAM signal. To improve this situation, in [Hu; 94],

Huber constructed codes over Gaussian integers with a new distance, called

Mannheim distance. He proved that these codes can correct Mannheim error

of weight 1 and used this new distance to find the properties of these codes (see

[Mo, Ha, Ko; 04] for further details). Nevertheless, in [Ni, Hi; 08] the authors

introduced a new distance which generalized the Lee distance and constructed

codes capable of correcting errors of generalized Lee weight one or two.

In [Gu; 13], the author generalized some results from [Ne, In, Fa, Pa; 01]

constructing codes over Hurwitz integers.

The results presented below, were obtained, by the author, especially in

the papers [Fl; 15(1)], [Fl; 16].

In information theory and coding theory the error correction are consid-

ered a technique used for sending a message, in a redundant way, helping the

sender to control errors in data transmission over unreliable or noisy commu-

nication channels. In coding theory, a block code is an error-correcting code

which encode data in blocks. A block code acts on a block of k bits of input

data to produce n bits of output data. We denote this with (n, k). When a

very long data stream is transmitted using a block code, the stream is broken

into pieces of some fixed size. Each such piece is encoded into a codeword,

using the block codes, also called block, and it is transmitted to the receiver

for decoding them.

Let A 6= ∅ be a finite set called alphabet. A block code is an injective map

C : Ak → An,

where k, n ∈ N and Ak = A×A× ...×A︸ ︷︷ ︸
k−times

.The cardinal q of the set A is called

the size of the alphabet. When q = 2, the block code is called binary block
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code and we can identify the alphabet A with the field Z2. A message is an

element m ∈ Ak and k is called the length of the message and represents the

number of symbols from the message m.The number n represents the length

of the block and represents the number of symbols in a block. The rate of a

block code is

R =
k

n

and measures the transmission speed.

The Hamming distance between two code-words x = (x1...xn) ∈ C and

y = (y1...yn) ∈ C is the number of positions where x and y differ

dH (x, y) = |{i / xi 6= yi, i ∈ {1, 2, ..., n}}| .

The Hamming weight is

wH (x) = |{i / xi 6= 0, x ∈ C }| .

The minimum distance of a block code is

dmin = min{dH (x, y) , x 6= y, x, y ∈ C}.

Let x ∈ An and e ∈ N. We define the sphere S (x, e) of radius e and center

x to be the set

S (x, e) = {y ∈ An / dH (x, y) ≤ e }.

We have

|S (x, e)| =
e∑

i=0

∁in (q − 1)
i
,

see [Va; 75].

Definition 4.1.1, [Va; 75]. 1) A code C is called e-error-correcting code

if and only if for all x, y ∈ C, x 6= y, we have dH (x, y) ≥ 2e+ 1.From here, for

all x, y ∈ C, x 6= y, it results that S (x, e) ∩ S (y, e) 6= ∅.

2) If An = ∪
x∈C

S (x, e) then the code C is called perfect. It result that

for each y ∈ An, there is an element x ∈ C, unique determined, such that

dH (x, y) ≤ e.

Proposition 4.1.2. A code C with minimum Hamming distance d = dmin

can detected d− 1 errors and can correct [d−1
2 ] errors.
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Definition 4.1.3. Let Fpn be a finite field with p a prime number. Using

its vector space structure over Zp, let {a1, ....as} be a generating system for

Fpn . Therefore, each x ∈ Fpn has the form x =
s∑
i=1

xiai, xi ∈ Z. The s−Lee
weight of x is

wL (x) =

s∑

i=1

|xi|

and Lee distance between x, y ∈ Fpn is

dL (x, y) = wL (x− y) .

Definition 4.1.4. 1) A linear code of length n over the alphabet Zq is a

linear subspace of the vector space Znq . If k = dimZq
C and d is the minimum

Hamming distance, therefore the information rate of the code is R = k
n and C

is a code of the type [n, k, d]q .

2) Let C be a code of the type [n, k] . A matrix G whose lines are a basis

in C over Zq is called a generating matrix for the code C.
3) A parity check matrix, H, of a linear code C is a generator matrix of the

dual code, C⊥ = {y ∈ Znq / < y, x >= 0, x ∈ C}. Therefore, we have that

c ∈ C if and only if cHt = 0.

4) With the above notations, for each x ∈ Znq , the syndrome of the vector

x is s (x) = Hxt ∈ Zn−kq .

How we can use the syndrome in the decoding process? We define the

vector space modulo C, Znq /C. We remark that two vectors x, y ∈ Znq belong

to the same equivalence class c + C if and only if s (x) = s (y) . Indeed, if

x, y ∈ c + C, we have x − y ∈ C, therefore H (x− y)
t

= 0. It results that

Hxt = Hyt. Therefore, for decoding using the syndrome, we must follow the

below algorithm:

-We compute the syndrome of the received vector x, s (x) ;

-We search a representative e such that s (e) = s (x) ;

-We will decode x by c = x− e.

Definition 4.1.5. A code C ⊂ Znq is called a cyclic code if and only

if C is a linear code and if for each c ∈ C, c = (c0, ..., cn−1) , we have

(cn−1, c0, ..., cn−2) ∈ C.
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Remark 4.1.6. To each codeword c ∈ C, c = (c0, ..., cn−1) , we associate

the polynomial code c (x) = c0 + c1x+ ...+ cn−1x
n−1. We have

x
(
c0 + c1x+ ...+ cn−1x

n−1
)

= cn−1 (xn − 1) + cn−1 + c0x + ... + cn−2x
n−1.

It results that C is an ideal in the ring Zq[x] / (xn − 1) , therefore a principal

ideal since Zq[x] / (xn − 1) is a principal ring. This ideal is generated by the

unique monic element in C of minimum degree, called the generator polynomial

and denoted with g. The polynomial g is a divisor of the polynomial xn − 1.

4.2. Integer Codes

Integer Codes are codes defined over finite rings of integers modulo m,m ∈
Z. These codes have a low encoding and and decoding complexity and are suit-

able for application in communication systems. Thus they became increasingly

popular over the last years (see [Ko, Mo, Ii, Ha, Ma; 10]).

These codes were defined first in [Vi, Mo; 98]. Let Zp be a ring of integer

modulo p, where p is an arbitrary integer. Let H ∈ Mm,n (Zp) be a matrix.

An integer code of length n and parity check matrix H is the set

C (H, f) = {c ∈ Znp / cH
T = f mod p},

where f ∈ Zmp . The matrix H is called the parity check matrix for the code

C (H, f) (see [Ko, Mo, Ii, Ha, Ma;10]). Therefore, if c = (c1, ..., cn) ∈ C (H, f) ,

we have
n∑

i=1

cihji = fj , fj ∈ Zp, j ∈ {1, 2, ...,m} (4.2.1.)

When f = 0, the code are linear. In the following, we will consider only linear

codes. Supposing that a codeword c is sent through a noisy channel, we can

receive a vector under the form w = c + e, where e = (e1, ...en) is an error

vector. If t of the entries of e are nonzero, we say that t errors occurred in

c. Integer codes have many applications in various domains as for example

information theory, computer science, graph theory, etc. In coding theory

these codes are a useful tool in a single–error–correction codes. It results

that the integer codes over the block codes can correct errors of a given type.

Therefore, for a given channel we can choose the type of the most common
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errors and after that we construct integer code capable of correcting those

errors. ( see [Ko, Ma, Mo; 10])

Definition 4.2.1. [Ko, Ma, Mo; 10] The code C (H, f) is called t−multiple

(±e1, ...,±er) errors correctable if this code can correct up to t errors with

values in the set E = {±e1, ...,±er}, called the error set.

In [Ta; 08], the author described the construction of the linear perfect

Integer Codes. We shortly present this construction from the above mentioned

paper. Let p be a prime integer and Zp the residue group modulo p. Let

Z∗
p = (Zp − {0}, ·) the multiplicative cyclic group. We denote with H = {hj =

(hj1, ...hjn) , j ∈ {1, 2, ...,m}}, the integers modulo p defined in (4.2.1) . We

consider the errors set E = {±e1, ...,±er}, as was defined in Definition 4.2.1,

supposing that 1 ∈ E. We consider g a generator of Z∗
p, therefore g

p−1
2 = −1.

If we take Z∗
p/{−1, 1}, we have that ĝ is also a generator in Z∗

p/{−1, 1}. The

idea of this construction is to organize E as a subgroup isomorphic with a

subgroup G of Z∗
p/{−1, 1}. The group Z∗

p/{−1, 1} is generated by ĝ and G
must be generated by an element of the form ĝt, t / p−1

2 since the order of the

group G is a divisor of p−1
2 , the order of the group Z∗

p/{−1, 1}. Therefore, we

have that x ∈ G if and only if it is on the form

x = gjt, j ∈ {0, ..., p− 1

2t
}.

Algorithm for Perfect Integer Codes.(see [Ta; 08])

1. We find a generator g for the group Z∗
p/{−1, 1};

2. All elements ei ∈ E will be write on the form ei = ĝαi in Z∗
p/{−1, 1}.

3. We consider D the set of all divisors of p−1
2t . For all s ∈ D, let αi = sβi.

If the set {β0 mod t, ..., βt−1mod t} is equal with the set {0, 1, ..., t − 1},
therefore we obtain the subgroup G = {(ĝs)jt, j ∈ {0, ..., p−1

2t }}.
Let Z[i] = {z = a + bi / a, b ∈ Z}, p ∈ Z be a prime number of the

form 4k+ 1, such that p2 = a2 + b2 = ππ = n (π) , where π ∈ Z[i], π = a+ bi

and n (π) is the norm of the Gaussian integer π.The Gaussian integer π is

called a prime integer in Z[i]. We consider Z[i]π the residue class modulo

π.How we can obtain Z[i]π? The procedure is presented in [Hu; 94], Appendix

E and [Da,Sa,Va; 03], Proposition 2.1.2, which we briefly describe it in the

following.
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Let z ∈ C, z = a+bi. We define [z] = [a]+[b] i, where [a] is the integer part

of the real number a. Let u,w ∈ Z[i], w 6= 0. We can find α, β ∈ Z[i] such that

u = αw + β, where α =
[
uw
n(w)

]
, β = u − αw and n (β) < n (w) . Indeed, let

u
w = x+ iy, x, y ∈ R and let a, b ∈ Z such that n(x− a) ≤ 1

2 and n(y− b) ≤ 1
2 .

We take α = a + bi ∈ Z[i] and β = w [(x− a) + i (y − b)] . We remark that

β = u − αw with α =
[
uw
n(w)

]
. It results n( βw ) = (x − a)2 + (y − b)2 ≤ 1

2 ,

therefore n (β) < n (w) .

Now we can consider the modulo function f : Zp → Z[i]π,

f (u) = u modπ = u−
[
uπ

n (π)

]
π = β, (4.2.2.)

with n (β) < n (π) . We remark that the representation of Z[i]π as points in

the complex plane is called signal constellation. (see [Hu; 94])

Proposition 4.2.2 . ([Da,Sa,Va; 03], Proposition 2.1.4. ) For each

u,w ∈ Z[i], there is the greater common divisor (u,w) ∈ Z[i] and the following

relation holds

(u,w) = au+ bw, a, b ∈ Z[i].

Proof. The set I = {au+ bw / a, b ∈ Z[i]} is an ideal in Z[i]. We consider

the element θ = σu+ τv ∈ I such that it is not zero element and its norm is

minimum. From the above, we can find α and β such that u = cθ + r, with

n (r) < n (θ) , which is false. Therefore r = 0 and θ | u.�

We have that (π, π) = 1, therefore 1 = v1π + v2π. Using (4.2.2) and the

above proposition, we can find g : Z[i]π → Zp,

g (β) = f−1 (β) = β (v2π) + β (v1π) mod p

the inverse of the map f. Indeed, we have that f (g (β)) = f
(
β (v2π) + β (v1π)

)
=

β (v2π) + β (v1π) mod π =

= β (1− v1π) + β (v1π) = β.

Remark 4.2.3. From the above, it results that Z[i]π is isomorphic with

Zp, therefore the field Zp is isomorphic with the residue class of Z[i] modulo

π, where n (π) = p. The idea which arise from here is to try to find a subset

S of an algebra obtained by the Cayley-Dickson process and an equivalence
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relation ρ such that S/ρ is isomorphic with the field Zp. In papers [Fl; 15],

[Fl; 16], was found such a construction.

Over Z[i]π, in [Hu; 94], in the similar way as in [Vi, Mo; 98], were defined

binary block codes. A block codes over the Gaussian integer Z[i]π is a set of

codewords of length n of the form c = (c1, ..., cn) , where ci ∈ Z[i]π.

In the following, we briefly present the construction of such a codes with

the minimum Mannheim distance dM ≥ 3, as was designed in [Hu; 94]. This is

necessary to understand how these codes were generalized to Hurwitz Integers

in [Gu; 13] and more generally to subsets S of algebras obtained by the Cayley-

Dickson process with the property that S is isomorphic with Zp, p a prime

number. This isomorphism allows us a more flexibility since for a given p,

we can find different sets S being in different algebras At, obtained by the

Cayley-Dickson process.

For c1, c2 ∈ Z[i]π,and c = (c1− c2) mod π, we define the Mannheim weight

of c

wM (c) = |Rec|+ |Imc|
and the Mannheim distance between c1 and c2

dM (c1, c2) = wM (c) .

If v = (v0, ..., vn−1) ∈ (Z[i]π)n, we have wM (v) =
∑

i∈{0,...,n−1}
wM (vi) .

Let p = 4n + 1 be a prime number. We will define codes of length n

which can correct one Mannheim error of weight 1. Such errors of weight one

can take only values from the set {−1, 1 − i, i} and are situated in positions

j ∈ {0, 1, ..., n− 1}. For an element σ ∈ Z[i]π of order p− 1, a One Mannheim

Errors Correction code (OMEC) C is given by the parity-check matrix

H =
(
σ0, σ1, ..., σ

p−1
4 −1

)
. (4.2.3.)

We know that a codeword c belong to C if and only if Hct = 0. It is clear

that in this case the generating matrix is

G =




−σ1 1 0 ... 0

−σ2 0 1 ... 0

... ... ... ... ...

−σ p−1
4 −1 0 0 ... 1


 .
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Decoding is easy using the syndrome. We remark that σn, σ2n, σ3n.σ4n ∈
{−1, 1− i, i}. If we receive a vector r = c+ e, with e an error of wM (e) = 1

resulted at position q, computing the syndrome, we obtain the location q from

the relation s = σqmod n, with s the syndrome. If we reduce q modulo n, we

obtain t, the location of the error, and from here we obtain σq−t, the value of

the error.

The above codes can be generalized to codes of length n = pr−1
4 and the

parity check matrix

H =
(
σ0, σ1, ..., σ

pr−1
4 −1

)
, (4.2.4.)

with σ ∈ Z[i]πr an element of order pr − 1.In this way, in [Hu; 94], were

defined, OMEC block codes over Z[i]π of the form [n, k, dM ], determined by the

matrix H from (4.2.4) of length pr−1
4 , of dimension k and minimum Mannheim

distance dM .

To obtain Mannheim Errors Correction codes which can correct errors of

Mannheim weight greater than one, in the same paper, was considered a code

C defined by the parity check matrix

H =




σ0 σ1 σ2 ... σn−1

σ0 σ5 σ10 ... σ5(n−1)

... ... ... ... ...

σ0 σ4t+1 σ2(4t+1) ... σ(n−1)(4t+1)


 , (4.2.5.)

where σ ∈ Z[i]πr is an element of order 4n and σn = i. If c ∈ C, c =

(c0, ..., cn−1) is a codeword, if we write it as a polynomial c = c (x) =
n−1∑
i=0

cix
i

and since Hct = 0, we obtain c
(
σ4k+1

)
= 0, k ∈ {0, 1, ..., t}. If g (x) is the gen-

erator polynomial, we have that g / c and c/ (xn − i) . Such a code is called

icyclic. From here, it results that from c (x) ∈ C, with c = (c0, ..., cn−1) , we

obtain xc (x)− cn−1 (xn − i) = (icn−1, c0, ..., cn−2) ∈ C.
To design codes which can correct Mannheim errors of weight two, in the

same paper, was considered the case t = 2, therefore the parity check matrix

H =

(
σ0 σ1 σ2 ... σn−1

σ0 σ5 σ10 ... σ5(n−1)

)
.

For a received vector r = e+ c, we compute the syndrome s =

(
s1

s5

)
=
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Hrt. If in position q1, q2, we have errors of weight one, namely σL1−q1 , σL2−q2 ∈
{−1, 1,−i, i}, the error determinator polynomial can be computed

f (z) =
(
z − σL1

) (
z − σL2

)
= z2− s1z+P, P = σL1σL2 . This polynomial can

help us to find the errors, if we can determine the solutions.

Using these ideas, the above results were generalized to Hurwitz Integers,

in [Gu; 13], to Octonion integers and to some subsets of algebras obtained by

the Cayley-Dickson process in [Fl; 15] and [Fl; 16].

4.3. Codes constructed over Hurwitz Integers

In [Gu; 13], the author described codes over Hurwitz Integers. He played

with primes p of the form 6n + 1 and worked on the quaternion real di-

vision algebra H. He considered the set H (Z) = {q = a0 + a1i + a2j +

a3k / a0, a1, a2, a3 ∈ Z} and the set of Hurwitz integers H = H (Z)∪H
(
Z+ 1

2

)
.

For w = 1
2 (1 + i+ j + k) , he defined the set R = {a + bw / a, b ∈ Z}.

For π ∈ R, π a prime element, with n (π) = p, p a prime integer, q1, q2 ∈ R,
we have q1 ≡ q2 mod π if and only if there is an element α ∈ R such that

q1 − q2 = απ.Was obtained the set Rπ = {q mod π / q ∈ R}. We have that

Rπ and Zp are isomorphic. In this way, the field Zp is isomorphic with a set

which was built using a subset of quaternion, extended the construction of

Huber, in which Zp is isomorphic with a set which was built using a subset of

complex numbers.

Definition 4.3.1. Let π ∈ H (Z) a prime element and q1, q2 ∈ H such that

there is α ∈ H (Z) with property q1 − q2 = απ. We call q1, q2 right congruent

modulo π, denoted ≡r .

The quotient ring of the Hurwitz integers modulo the above equivalence

relation is denoted Hπ = {q mod π / q ∈ H}.

Definition 4.3.2. [Gu; 13] For α, β ∈ Hπ, let γ = α − β ≡r a0 + a1ê1 +

a2ê2 + a3ê3 mod π. The Hurwitz weight of γ is

wH (γ) = |a0|+ |a1|+ |a2|+ |a3| ,
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with |a0|+ |a1|+ |a2|+ |a3| minimum.

The Hurwitz distance between α, β is defined as

dH (α, β) = wH (γ) .

We have that dH (α, β) is a metric.

For a prime π ∈ R, was considered σ ∈ Rπ such that σ
p−1
6 = w or σ

p−1
6 =

−w. Was defined a code C given by the following parity check matrix

H =




σ0 σ1 σ2 ... σn−1

σ0 σ7 σ14 ... σ7(n−1)

... ... ... ... ...

σ0 σ6t+1 σ2(6t+1) ... σ(n−1)(6t+1)


 , t < n.

We have that c ∈ Rnπ is a codeword in C if and only if Hct = 0. For the

associated code polynomial c (x) =
∑

i∈{0,...,n−1}
cix

i, we have c
(
σ6k+1

)
= 0, k ∈

{0, ..., t} and therefore the code generator polynomial

g (x) = (x− σ)
(
x− σ7

)
...
(
x− σ6t+1

)
is a divisor for c (x) and for the poly-

nomial xn − w or xn + w. It results that C is a principal ideal of the ring

Rπ[x]/(xn − w) or Rπ[x]/(xn + w). In [Gu; 13], in Theorem 4, Theorem 5,

Theorem 6, Theorem 7, were proved the following results.

Proposition 4.3.3. 1) A code C defined by the parity check matrix

H =
(
σ0, σ1, ..., σn−1

)

can correct any errors of the form e (x) = eix
i, i ∈ {0, 1, ..., n − 1}, with

wH (ei) = 1 and any errors of the form e (x) = w2xi or e (x) = −w2xi, i ∈
{0, 1, ..., n−1}, with wH

(
−w2

)
= wH

(
w2
)

= 2. Therefore, C can correct error

vectors of Hurwitz weight 1 with one nonzero component which can take values

in the set {−1, 1, w,−w}. The code C can also correct some of error vectors

of Hurwitz weight 2 with one nonzero component which can take value in the

set {w2,−w2}.
2) A code C given by the parity check matrix

H =

(
σ0 σ1 σ2 ... σn−1

σ0 σ7 σ14 ... σ7(n−1)

)
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can correct any errors of the form e (x) = eix
i, i ∈ {0, 1, ..., n − 1}, with

1 ≤ wH (ei) ≤ dmax.

3) A code C given by the parity check matrix

H =




σ0 σ1 σ2 ... σn−1

σ0 σ7 σ14 ... σ7(n−1)

σ0 σ13 σ26 ... σ13(n−1)




can correct any errors of the form eix
i+ejx

j , with wH (ei) , wH (ej) ∈ {0, 1}, i.j ∈
{0, 1, ..., n− 1}.

4) A code C defined by the parity check matrix

H =




σ0 σ1 σ2 ... σn−1

σ0 σ7 σ14 ... σ7(n−1)

σ0 σ13 σ26 ... σ13(n−1)

σ0 σ19 σ38 ... σ19(n−1)




can correct any errors of the form eix
i+ejx

j , with wH (ei) , wH (ej) ∈ [0, dmax], i.j ∈
{0, 1, ..., n− 1}.

The above results were generalized for subsets of Octonion Integers, as we

can see in the following section.

4.4. Codes over a subset of Octonion Integers

Due to the structure of the real Octonion algebra, a nonassociative and

a noncommutative algebra, in the following, we generalize the above results

to a special subset of Octonion integers, comparing them with some results

obtained until now. We prove that, under certain circumstances, these codes

can correct up to two errors for a transmitted vector and the code rate of the

codes is greater than the code rate of the codes defined on the Quaternion

integers.

As we can see in the former chapters, the octonion division algebra over

R, denoted by O (R) , is a nonassociative unital algebra. This algebra is power-

associative and flexible The algebra O (R) has the basis {1, e2, e3, e4, e5, e6, e7, e8}
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and 1 is the unity in O (R) . The basis’s elements satisfy the following prop-

erties: e22 = e23 = e24 = e25 = e26 = e27 = e28 = −1 and eiej = −ejei = ek, i 6=
j, i, j ∈ {2, ..., 8}, where k = i ⊗ j, where ⊗ is ”x-or” for i, j written in the

decimal basis (see [Ba; 09]).

If x = x1 +x2e2 +x3e3 +x4e4 +x5e5 +x6e6 +x7e7 +x8e8 ∈ O (R) , then its

conjugate is the octonion x = x1−(x2e2+x3e3+x4e4+x5e5+x6e6+x7e7+x8e8)

and the norm of the octonion x is n (x) = xx = xx = x21+x22+x23+x24+x25+x26+

x27+x28. The octonionic norm n is multiplicative.. The real part of the octonion

x is x1 and its vector part is x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7 + x8e8 ∈
O (R) .

In [Co, Sm; 03] pp. 55, the authors described Hurwitz integers or Hurwitz

Integral Quaternions, denoted by H, as elements of the form q = x1 + x2e2 +

x3e3 +x4e4 where x1, x2, x3, x4 are in Z or in Z+ 1
2 . In the same book, pp. 99-

105, Octavian Integers or Octonion Integers were defined as the set of elements

spanned by i1587, i2457, i2685, i2378 over O (Z) , where

iabcd =
1

2
(ea + eb + ec + ed) .

We will denote this ring with O. O (Z) is also called the set of Gravesian

Octonion integers, the octonions with all coordinates in Z.

Let w = 1
2

(
1 +

8∑
i=2

ei

)
∈ O, be an octonion integer and let V = {a +

bw / a, b ∈ Z}. We note that n (w) = 2 and w2 − w + 2 = 0. Since octonion

algebra is a power associative algebra, it results that V is an associative and

a commutative ring and V ⊂ O.

Remark 4.4.1. For x ∈ V, the following properties are equivalent:

i) x is invertible in the algebra V.

ii) n (x) = 1.

iii) x ∈ {±1}.

Definition 4.4.2. The octonion x ∈ V is prime in V if x is not an invertible

element in V and if x = ab, then a or b is an invertible element in V.

Proposition 4.4.3. If x, y ∈ V, y 6= 0, then there are z, v ∈ V such that

x = zy + v, with n (v) < n (y) .
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Proof. In this proof, we will use some ideas given in [Da, Sa, Va; 03],

Proposition 2.1.2. Since y 6= 0 , we have that x
y = a + bw, a, b ∈ R. Let

m,n ∈ Z such that |a−m| ≤ 1
2 and |b− n| ≤ 1

2 . Let z = m+ nw ∈ V and

v = y [(a−m) + (b− n)w] . It results that x
y = z+ v

y , therefore x = zy+v and

v = x − zy. From here, we have that v ∈ V. If |a−m| = 1
2 and |b− n| = 1

2 ,

we have v = y 1
2 (1 + w) . Therefore x = (z + 1) y + v′, v′ = v − y and v′ =

y 1
2 (−1 + w) . We have n (v′) = 1

4n (y)
(
1
4 + 7 1

4

)
= 1

2n (y) < n (y) . It results

that x = (z + 1)y + v′. Then, we suppose that or |a−m| < 1
2 or |b− n| < 1

2

or both.We obtain that

n (y)
[[

(a−m) + 1
2 (b− n)

]2
+ 7

4 (b− n)
2
]
< 16

16n (y) = n (y) .�

Remark 4.4.3. Let x = a+ bw ∈ V. We have that

n (x) = xx = (a+ bw) (a+ bw) = a2 + ab+ 2b2 =
(
a+ b

2

)2
+ 7 b

2

4 = A2 + 7B2.

Proposition 4.4.5. ([Co; 89]) Let p ∈ N be a prime number. There are

integers a, b such that p = a2 + ab+ 2b2 if p = 7k + 1, k ∈ Z.�

Definition 4.4.6. With the above notations, let π = x + yw be a prime

integer in V and v1, v2 be two elements in V. If there is v ∈ V such that

v1 − v2 = vπ, then v1, v2 are called congruent modulo π and it is denoted

v1 ≡ v2 mod π.

Proposition 4.4.7.

i) The above relation is an equivalence relation on V. The set of equivalence

classes is denoted by Vπ and is called the residue classes field of V modulo π.

ii) Vπ is a field isomorphic to Z/pZ, p = n(π), p a prime number.

Proof. i) We will denote the elements from Vπ in bold. If v1 ≡ v2 mod

π and v2 ≡ v3 mod π then there are v, v′ ∈ V such that v1 − v2 = vπ and

v2 − v3 = v′π. It results that v1 − v3 = (v + v′)π, therefore the transitivity

holds.

ii) For v1,v2 ∈ Vπ, we define v1 + v2 = (v1 + v2)mod π and v1 · v2 =

(v1v2)mod π. These multiplications are well defined. Indeed, if v1 ≡ v′1 mod

π and v2 ≡ v′2 mod π, it results that v1 − v′1 = uπ, v2 − v′2 = u′π, u, u′ ∈ V,

therefore (v1 + v2)− (v′1 + v′2) = (u+ u′)π. From Proposition 4.4.3 and since

v1 = v′1 + uπ, v2 = v′2 + u′π, it results that v1v2 = v′1v
′
2 + Mπ, with Mπ a

multiple of π.
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Denoting in bold the equivalence classes from Zp, let f be the map

f : Zp → Vπ, f (m) = (m+ π) mod π, where m ∈m. (4.4.1.)

Map f is well defined, since if m ≡ m′ mod p we have (m+ π) − (m′ + π) =

m−m′ = pq = ππq, q ∈ Z, therefore (m+ π) ≡ (m′ + π) mod π.

Since 1 = v1π+v2π, (see [Da, Sa,Va; 03], Proposition 2.1.4 and Proposition

2.1.5.) if f (m) = v, v = (m+ π) mod π ∈ Vπ, we define f−1 (v) = m (v1π) +

m (v2π) and m (v1π) +m (v2π) = m (v1π) +m (1− v1π) = m.

Map f is a ring morphism. Indeed, f (m) + f (m′) = (m+ π)modπ +

(m′ + π)mod π = (m+m′ + π)mod π = f (m + m′) and

f (m) f (m′) = (m+ π) (m′ + π)modπ =

=
(
mm′ + (m+m′)π + π2

)
mod π = (mm′ + π)mod π. We obtain that Vπ is

isomorphic to Zp.�

Remark 4.4.8. The field Vπ has the property that if x, y ∈ Vπ, then

there are z, v ∈ Vπ such that x = zy + v, with n (v) < n (y) .

Remark 4.4.9.

1) O (Z)π has n (π)
4

elements (see [Ma,Be, Ga; 09], Theorem 25).

2) From Proposition 4.4.7 and from Remark 4.4.8, we have that for vi, vj ∈
Vπ, i, j ∈ {1, 2, ..., p − 1}, vi + vj = vk if and only if k = i + j mod p and

vi · vj = vk if and only if k = i · j mod p. From here, with the above notations,

we have the following labelling procedure:

i) Let π ∈ V be a prime, with n (π) = p, p a prime number, π = a+bw, a, b ∈
Z.

ii) Let s ∈ Z be the only solution to the equation a + bx = 0 modp, x ∈
{0, 1, 2, ..., p− 1}.

iii) For k ∈ Z, let k ∈ Zp be its equivalence class. The element k ∈ Zp is

the label of the element v = m+ nw ∈ Vp if m+ ns = k mod p and n (v) is

minimum.

The above Remark generalizes and adapts Theorem 1 and the Labeling

procedure from [Ne, In, Fa, Pa; 01] to octonions.

3) This labelling procedure is nothing else than the map α+βw 7−→ α− a
bβ

mod p which is immediately induced by the reduction map of the integer ring of
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Q
(√
−7
)

reduced modulo a prime ideal P = (a+ bw, p) (see [Ni, Hi; 08]). We

will use this algorithm in the next section to provide words having minimum

Cayley-Dickson weight.

Using the above labelling procedure, we will provide an algorithm to see

how we can find the representative of the class containing a given element of

V, therefore how we can find the elements the field Vπ.

The Algorithm.

1. Let π ∈ V be a prime, π = a + bw, a, b ∈ Z, with n (π) = p, p a prime

positive number.

2. Let s ∈ Z be the only solution to the equation a + bx = 0 mod p, x ∈
{0, 1, 2, ..., p− 1}.

3. Let q =
[
p−1
2

]
∈ N, where [] denotes the integer part.

4. Let k ∈ Z and k ∈Zp be its equivalence class modulo p.

5. For all integers α, β ∈ { − q − 1, ..., q}, let c = (α + sβ) mod p and

d = (α+ β
2 )2 + 7

4β
2. We will compute c and d.

6. If d < p and c = k, then we find the pairs (α, β) such that k is the label

of the element α+ βw ∈ Vπ, that means α+ βs = k mod p and n (α+ βw)

is minimum. If there are more than two pairs satisfying the last condition,

then we will choose that pair such that |α|+ |β| ≤ |a|+ |b| . If there are more

than two pairs satisfying the last inequality, then we will randomly choose one

of them.

Even though these calculation results do not depend on the chosen soft-

ware, we will use MAPLE to give an example for the above algorithm.

Example 4.4.10. Let p = 29 and π = −1 + 4w, with n (π) = 29, there-

fore a = −1, b = 4, q = 14. With MAPLE, we find first that s = 22.We provide

a representative system of Vπ, with the below small MAPLE procedure. For

k = 3, we get:

for i from -15 to 14 do

for j from -15 to 14 do

c := (22*j+i)mod 29; d :=(7/4)*j^2+(i+(1/2)*j)^2;

if d < 29 and c = 3 then print(i, j);fi;od;od;

-5, 3
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-4, -1

3, 0

In this case, we have three solutions: −4− w,−5 + 3w and 3. Since

n (−4− w) = 23,n (−5 + 3w) = 28 and n (3) = 9, we choose c = 3, with the

label k = 3. For k = 4, we get:

for a from -15 to 14 do

for b from -15 to 14 do

c := (22*b+a)mod 29; d := (7/4)*b^2+(a+(1/2)*b)^2;

if d < 29 and c = 4 then print(a, b);fi;od;od;

-4, 3

-3, -1

4, 0

Since n (−4 + 3w) = 22 and n (−3− w) = n (4) = 16, the last two solutions

are good. We will chose c = −3− w, with the label k = 4. For k = 6, we get:

for a from -15 to 14 do

for b from -15 to 14 do

c := (22*b+a)mod 29; d := (7/4)*b^2+(a+(1/2)*b)^2;

if d < 29 and c = 6 then print(a, b);fi;od;od;

-2, 3

-1, -1

We obtain c = −2 + 3w and c = −1 − w. Since n (−2 + 3w) = 16 and

n (−1− w) = 2, we will choose c = −1− w with the label k = 6.

It results:

Vπ = {0, 1, 2, 3,−3− w,−2− w,−1− w,−w, 1− w, 2− w,
3− w, 4− w,−2w − 2, 2w − 2,−2w,−2w + 1,−2w + 2,

2+2w,w−4, w−3, w−2, w−1, w, 1+w, 2+w, 3+w,−3,−2,−1}, with labels

{0,1,2, ...,27,28}, in this order.
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Codes over Vπ

Using ideas from the above definitions and generalizing the Hurwitz weight

from [Gu; 13], we define the Cayley-Dickson weight, denoted dC . Let π be a

prime in V, π =a+bw. Let x ∈ V, x = a0+b0w. The Cayley-Dickson weight of

x is defined as wC (x) = |a0|+ |b0| , where x = a0 + b0w mod π, with |a0|+ |b0|
minimum.

The Cayley-Dickson distance between x, y ∈ Vπ is defined as

dC (x, y) = wC (x− y) .

We will prove that dC is a metric. Indeed, for x, y, z ∈ Vπ, we have dC (x, y) =

wC (α1) = |a1|+ |b1| , where α1 = x− y = a1 + b1 mod π is an element in Vπ

and |a1|+ |b1| is minimum.

dC (y, z) = wC (α2) = |a2| + |b2| , where α2 = y − z = a2 + b2 mod π is an

element in Vπ and |a2|+ |b2| is minimum.

dC (x, z) = wC (α3) = |a3| + |b3| , where α3 = x − z = a3 + b3 mod π is an

element in Vπ and |a3|+ |b3| is minimum.

We have x− y = α2 +α3 mod π. It results that wC (α2 + α3) ≥ wC (α1) since

wC (α1) = |a1|+ |b1| is minimum.

Remark 4.4.11. The maximum Cayley-Dickson distance dCmax
has the

property that dCmax
≤ |a|+ |b| , with π = a+ bw.

Remark 4.4.12. i) Since the Octonion algebra is alternative, due to

Artin’s Theorem (see [Sc; 66] ), each two nonzero different elements generate

an associative algebra. From here, for x, y ∈ O (R) , we have that xm (xny) =

xm+ny, for all m,n ∈ Z.

ii) Hereafter, we assume that π is a prime in V and n (π) ≡ 1 mod 7 such

that there are α1, α2 two primitive elements (of order p − 1) in Vπ, with the

properties α
p−1
7

1 = w or α
p−1
7

2 = −w. Let α ∈ {α1, α2}. We will consider codes

of length n = p−1
7 .
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Let C be the code given by the parity-check matrix H,

H =




1 α α2 ... αn−1

1 α8 α16 ... α8(n−1)

... ... ... ... ...

1 α7k+1 α2(7k+1) ... α(7k+1)(n−1)


 , (4.4.2.)

with k < n. We know that c is a codeword in C if and only if Hct = 0.

From here, if we consider the associate code polynomial c (x) =
n−1∑
i=0

cix
i,

we have that c
(
α7l+1

)
= 0, l ∈ {0, 1, ..., k}. We consider the polynomial

g (x) = (x− α)
(
x− α8

)
...
(
x− α7k+1

)
. Since the elements α, α8, ..., α7k+1

are distinct, from [Li, Xi; 04], Lemma 8.1.6, we have that c (x) is divisible by

the generator polynomial g (x) . Since g (x) / ( xn±w), g (x) is the generator

polynomial of the code C, it results that C is a principal ideal in the ring Vπ /

(xn ± w).

Supposing that a codeword polynomial c (x) is sent over the channel and

the error e (x) occurs, it results that the received polynomial is r (x) = c (x) +

e (x) . The vector corresponding to the polynomial r (x) = c (x) + e (x) is

r = c + e and the syndrome of r is S = Hrt, where H is the above parity-

check matrix.

Theorem 4.4.13. We consider C a code defined on Vπ by the parity

check matrix

H =
(

1 α α2 ... αn−1
)
. (4.4.3.)

Code C is able to correct all errors of the form e (x) = etx
t, with 0 ≤ wC (et) ≤

1 and any errors of the form e (x) = etx
t, with wC (et) = 3, et = ±w2.

Proof. Let r (x) = c (x) + e (x) be the received polynomial, with c(x)

the codeword polynomial and e(x) = etx
t denoting the error polynomial with

0 ≤ wC (et) ≤ 1. Using Remark 4.4.12 ii), since αn = w, or αn = −w and

w2 = w − 2, wC
(
w2
)

= 3, it results that et = αnl. We have the syndrome

S = αt+nl = αL, with t, L ∈ Z, 0 ≤ t, L ≤ n− 1. If we reduce L modulo n, we

obtain t, the location of the error, and from here, l = L−t
n and αnl, the value

of the error. �

Example 4.4.14. With the above notation, let π = 7 + 2w, p = 71, n =
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10, w = α10 and the parity check matrix

H =
(

1 α α2 α3 α4 α5 α6 α7 α8 α9
)
.

Supposing that the received vector is r = (w, 1, w − 1, 1, 1, 0, 0, 0, 1, 1) , we

compute the syndrome. We easily find that s = 32 is the label for the element

w.

From the below MAPLE procedures and The Algorithm from the above,

we obtain the syndrome.

print(‘pi=7+2w‘);A:=(-7*2^(-1))mod 71;

for a to 71 do b :=a^10 mod 71; if b = 32 then print(a);fi;od;

(9^10+9+9^22+9^2+9^3+9^4+9^8+9^9)mod 71;9^14 mod 71;

pi=7+2w, 32 9 11 12 16 26 45 55 59 60 62 5 5

for a from -36 to 35 do for b from -36 to 35 do

c :=(32*b+a)mod 71; d := (7/4)*b^2+(a+(1/2)*b)^2;

if d < 71 and c = 5 then print(a, b);fi;od;fi;od;

-2 -2

5 0

We get α = −2−2w with the label 9. It results that S = Hrt = −2−2w =

α14 mod π. We get L = 14, therefore the location of the error is t = L mod

10 = 4 mod 10. The value is w = α14−4 = α10 mod π, therefore the corrected

vector is

c=r − (0, 0, 0, 0, w, 0, 0, 0, 0, 0)=(w, 1, w − 1, 1, 1− w, 0, 0, 0, 1, 1) mod π.

Theorem 4.4.15. We consider C a code given by the parity-check matrix

H =

(
1 α α2 ... αn−1

1 α8 α16 ... α8(n−1)

)
. (4.4.4.)

Then C can correct any errors of the form e (x) = eix
i, 0 ≤ i ≤ n − 1,

with ei ∈ Vπ.

Proof. Let r (x) = c (x) + e (x) be the received polynomial, with c(x)

the codeword polynomial and e(x) = eix
i denoting the error polynomial with

ei ∈ Vπ. Then, the corresponding vector of the polynomial r(x) is r = c + e
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and we will compute the syndrome S of r. We have ei = αq, 0 ≤ q ≤ 7n − 1.

Therefore the syndrome is

S=Hrt=

(
s1 = αi+q = αM1

s8 = α8i+q = αM2

)
.

We obtain ai+q−M1 = 1, with i+ q = M1 mod(p− 1) and α8i+q−M2 = 1, with

8i+ q = M2 mod(p− 1). We get 7i = (M2−M1) mod(p− 1), then the unique

solution of the system is i = M2−M1

7 mod n and q = (M1 − i) mod(p− 1). In

this way, we can find the location and the value of the error.�

Example 4.4.16. Let π = −1 + 4w, p = 29, n = 4, α = 1 − w,−w = α4

mod π, and the parity check matrix

H =

(
1 α α2 α3

1 α8 α16 α24

)
.

Supposing that the received vector is r =
(
α, α2, 1, α3

)
= (1− w,−1− w, 1,−3 + w)

and using MAPLE software, we compute the syndrome. It results that

S = Hrt =

(
s1 = α7

s8 = α7

)
.

The location of the error is i = 7−7
7 = 0 mod 4 and the value of the error is

α7−0 = α7 = 17 = (2 + 2w) mod π. Therefore the corrected vector is

c = r − (2 + 2w, 0, 0, 0) = (−1− 3w,−1− w, 1,−3 + w)mod π =

= (−2 + w,−1− w, 1,−3 + w) .

Theorem 4.4.17. We consider C a code defined by the parity-check

matrix

H =




1 α α2 ... αn−1

1 α8 α16 ... α8(n−1)

1 α15 α30 ... α15(n−1)


 . (4.4.5.)

Then C can find the location and can correct errors of the form e (x) = eix
i,

0 ≤ i ≤ n− 1, with ei ∈ Vπ, or can only correct errors of the above mentioned

form.
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Proof. Using notations from the above Theorem, we have ei = αq, 0 ≤
q ≤ 7n− 1. Therefore the syndrome is

S=Hrt=




s1 = αi+q = αM1

s8 = α8i+q = αM2

s15 = α15i+q = αM3


 .

Since the rank of the matrix (4.4.5) is 3, then this system always has a

solution. We obtain ai+q−M1 = 1, with i+ q = M1 mod(p− 1), α8i+q−M2 = 1,

with 8i+ q = M2 mod(p− 1), α15i+q−M3 = 1, with 15i+ q = M3 mod(p− 1).

We can find the location of the error if 7i = (M2 − M1) mod(p − 1) and

7i = (M3 −M2) mod(p − 1) or, equivalently, i = M2−M1

7 mod n = M3−M2

7

mod n and the value of the error ei if

(M1− i) mod(p−1) = (M2−8i) mod(p−1) = (M3−15i) mod(p−1)(= q). �

Example 4.4.18.

1) Let π = −1 + 4w, p = 29, n = 4, α = 1 − w,−w = α4 mod π, and the

parity check matrix

H =




1 α α2 α3

1 α8 α16 α24

1 α15 α30 α45


 .

We suppose that the received vector is r = (1− w,−1− w, 1,−3 + w) =

=
(
α, α2, 1, α3

)
. Using MAPLE software, we compute the syndrome. It

results that

S = Hrt =




s1 = α7 = αi+q

s8 = α7 = α8i+q

s15 = α27 = α15i+q


 .

The location of the error is i = 7−7
7 = 27−7

7 = 0 mod 4. We can not find the

value of the error since α7−0 = α7 = 17 = (2 + 2w) mod π is different from

α27−0 = α27 = 11 = (4− w) mod π.

2) In the same conditions, supposing that the received vector is

r =
(
1, α3, 1, α2

)
= (1,−3 + w, 1,−1− w) and using MAPLE, the syndrome

is

S = Hrt =




s1 = α21 = αi+q

s8 = α11 = α8i+q

s15 = α19 = α15i+q


 .
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We can’t find the location and the value of the error, since 2 = 11−21
7 mod

4 6= 19−11
7 mod 4 = 0.

3) If we suppose that the received vector is r = (5, 0, 0, 0) = (−2− w, 0, 0, 0) =(
α26, 0, 0, 0

)
, the syndrome is

S = Hrt =




s1 = α26

s8 = α26

s15 = α26


 .

The location of the error is 0 and the value of the error is 5. Therefore the

corrected vector is (0, 0, 0, 0) .

Theorem 4.4.19. We consider C a code defined by the parity-check

matrix

H =




1 α α2 ... αn−1

1 α8 α16 ... α8(n−1)

1 α15 α30 ... α15(n−1)

1 α22 α44 ... α22(n−1)


 . (4.4.6.)

Then C can correct errors of the form e (x) = eix
i + ejx

j , 0 ≤ i, j ≤ n − 1,

with ei, ej ∈ Vπ.

Proof. We will prove this in the general case, when we have two errors.

We have ei = αq 6= 0 and ej = αt 6= 0, q, t ∈ Z. We obtain the syndrome:

S=Hrt=




s1 = αi+q + αj+t

s8 = α8i+q + α8j+t

s15 = α15i+q + α15j+t

s22 = α22i+q + α22j+t


 .

Denoting αi+q = A and αj+t = B, it results that

S=Hrt=




s1 = A+B

s8 = α7iA+ α7jB

s15 = α14iA+ α14jB

s22 = α21iA+ α21jB


 . (4.4.7.)

If the system (4.4.7) admits only one solution, then the code C can correct

two errors. First, we will prove the following Lemma.
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Lemma. With the above notations, if we have two errors, we obtain

α7i 6= α7j , 0 ≤ i, j ≤ n− 1 and s1s15 6= s28.

Proof. If α7i = α7j , then α7(i−j) = 1 and 7n / 7(i − j), which is false.

Supposing that s1s15−s28 = 0, we have s1s15 = s28. For x = αi+q, it results that

α14is1x+α14js21 −α14js1x =
(
α7i − α7j

)2
x2 +α14js21 + 2α7j

(
α7i − α7j

)
s1x.

We get
(
α7i − α7j

)2
x2+2α7i+7js1x−α14is1x−α14js1x = 0. From here, x = 0

or x = −2α7i+7js1+α
14is1+α

14js1
(α7i−α7j)2

= s1. If we have x = αi+q = s1, this implies

αj+t = 0, which is false.

We now return to the proof of the Theorem and we are under conditions

α7i 6= α7j , 0 ≤ i, j ≤ n− 1 and s1s15 6= s28. For B = s1 −A, it results that

A
(
α7i − α7j

)
= s8 − s1α7j

A
(
α14i − α14j

)
= s15 − s1α14j

A
(
α21i − α21j

)
= s22 − s1α21j . We obtain

s15 − s1α14j =
(
s8 − s1α7j

) (
α7i + α7j

)

and

s22 − s1α21j =
(
s8 − s1α7j

) (
α14i + α7iα7j + α14j

)
.

Denoting α7i + α7j = s7 and α7iα7j = p7, we have

s15 − s8s7 + p7s1 = 0

and (
s8 − s1α7j

) (
s27 − p7

)
= s22 − s1α21j .

It results that

p7 =
s8s7 − s15

s1
and

s7(s1s15 − s28) = s1s22 − s8s15.
We obtain

s7 =
s1s22 − s8s15
s1s15 − s28

and for p7 we get

p7 =
s8s22 − s215
s1s15 − s28

.
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From here, by solving the equation x2−s7x+p7 = 0, we find the locations

and the values of the errors. �

Example 4.4.20.

1) Let π = −1 + 4w, p = 29, n = 4, α = 1 − w,−w = α4 mod π, and the

parity check matrix

H =




1 α α2 α3

1 α8 α16 α24

1 α15 α30 α45

1 α22 α44 α66


 .

Supposing that the received vector is

r =
(
1, α3, 1, α2

)
= (1,−3 + w, 1,−1− w) and using once again MAPLE, the

syndrome is

S=Hrt=




s1 = α21

s8 = α11

s15 = α19

s22 = α20


 .

We obtain

s7 =
s1s22 − s8s15
s1s15 − s28

= (2 + w) mod π

and

p7 =
s8s22 − s215
s1s15 − s28

= 1 mod π .

Equation x2 − (2 + w)x + 1 = 0 has no roots in Vπ, therefore we can not

find the locations and the values of the errors.

2) If the received vector is r = (5, 0, 1, 0) = (−2− w, 0, 1, 0) =
(
α26, 0, 1, 0

)
,

the syndrome is

S=Hrt=




s1 = α27 = 11

s8 = α14 = 28

s15 = α27 = 11

s22 = α14 = 28


 .
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We get s7 = 0 and p7 = −1 and α7i = 1, α7j = 28 mod π. It results that

αi = 1, αj = 4 = α10, then i = 0 and j = 10 mod 4 = 2. The errors are in

positions 0 and 2. The corrected vector is c = (4, 0− 3, 0) = (−3− w, 0,−3, 0) .

Remark 4.4.21. The above Theorems adapted and generalized Theorems

7,8,9,10,11,13,14,15 from [Ne, In, Fa, Pa; 01] and Theorems 4,5,6,7 from [Gu;

13] to octonions.

Remark 4.4.22. In this situation, when p = 7k + 1, k = 6l, l ∈ Z, and

when the considered alphabets have the same cardinality, we note that the code

rate of the codes defined on Vπ can be better than in the case of the codes

defined in [Gu; 13] on Rπ, but smaller than the codes defined on Hπ. Here H is

the set of all Hurwitz integers, R = {a+ bw : a, b ∈ Z}, w = 1
2 (1 + i+ j + k) ,

with {1, i, j, k} a basis in the Quaternion algebra and Rπ, Hπ are the quotient

rings modulo π, with π a prime quaternion. If C1 is a code over Rπ of length

n1 = p−1
6 , C2 a code over Vπ of length n2 = p−1

7 , with n (π) = p and if

C1, C2 have the same dimension k, we obtain that the rate RC2
of the code C2

is always greater than the rate RC1
of the code C1. Indeed, RC2

= 7k
p−1 and

RC1 = 6k
p−1 . This difference appears more clearly in the case of very long codes.

In this section we have defined block codes over subsets of the Octonion

integers and we have given decoding algorithms for these codes. Specifically,

the alphabets considered are quotients of the subset of Octonion integers. Once

the metric space has been stated, we present two code constructions: the first

for one error correcting block codes and the second for double error correcting

codes. Even if these constructions are standard, following the same techniques

as the ones presented in [Ne, In, Fa, Pa; 01], by comparing these codes with

some of the codes defined on Hurwitz integers as in [Gu; 13], we note that the

code rate in the Octonions case can be better than in the Hurwitz case.

The above observation can be a good motivation to use the Octonion in-

tegers instead of Hurwitz integers for constructing such error correcting codes

and can be considered as a first step in the study of codes over Octonions,

which will lead readers to a new field.

4.5. Codes over subsets of algebras obtained by the Cayley-
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Dickson process

In the following, we will extend the study of Integer Codes to codes over

subsets of real algebras obtained by the Cayley-Dickson process. The results

presented below, were obtained, by the author, in the paper [Fl; 16].This idea

comes in a natural way, starting from same ideas developed by Huber in [Hu;

94], in which he regarded a finite field as a residue field of the Gaussian integer

ring modulo a Gaussian prime, ideas extended to Hurwitz integers in [Gu; 13]

and to a subset of the Octonions integers in [Fl; 15]. In this way, we can

regard a finite field as a residue field modulo a prime element from V, where

V is a subset of an algebra At (R) , where At (R) is a real algebra obtained

by the Cayley-Dickson process and V has a commutative and associative ring

structure. We obtain an algorithm, called the Main Algorithm, which allows

us to find codes with a good rate. This algorithm offers more flexibility than

other methods known until now. Keeping the proportions, the Main Algorithm

is similar to the Lenstra’s algorithm on elliptic curves compared with p − 1

Pollard’s algorithm. It is well known that for a prime p, the Lenstra’s algorithm

replaces the group Z∗
p with the group of the rational points of an elliptic curve

C1 over Zp and, if this algorithm failed, the curve will be replaced with another

curve C2 over Zp and we can retake the algorithm (see [Si, Ta; 92]).

In the case of the Main Algorithm, the algebra At (R) and w offer this

kind of flexibility since, for the same prime p, these can be changed and the

algorithm can be retaken.

In the following, we will consider At =
(
α1,...,αt

K

)
the algebra obtained by

the Cayley-Dickson process and for γ1 = ... = γt = −1, we will denote it with

At (R) .

Let B = {1, e2, ..., e2t} be the a basis in At (R) , where 1 is the unit. If x =

x1 +
2t∑
i=2

xiei ∈ At (R) , then its conjugate is the element x = x1 −
2t∑
i=2

xiei and
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the norm of the element x is n (x) = xx = xx =
2t∑
i=1

x2i . The norm n, in general,

is not multiplicative, i.e. for x, y ∈ At (R) , we have n (xy) 6= n (x)n (y) . We

remark that the norm is multiplicative if and only if the algebra has dimension

less or equal to 8. (See [Sc; 66]). The real part of the element x is x1 and its

vector part is
2t∑
i=2

xiei ∈ At (R) .

For example, if t = 2 and γ1 = γ2 = −1, we obtain the Quaternion

division algebra, denoted by Q (R) , for t = 3 and γ1 = γ2 = γ3 = −1, we

obtain the Octonion division algebra, denoted by O (R) , and for t = 4 and

γ1 = γ2 = γ3 = γ4 = −1, we obtain the Sedenion algebra, denoted by S (R).

Due to the Hurwitz’s Theorem, for t ≥ 4, all obtained algebras are not division

algebras (i.e. we can find a, b ∈ At (R) , a 6= 0, b 6= 0, such that ab = 0).

Let w = α(1 +
2t∑
i=2

ei) ∈ At (R) , α ∈ R, and let V = {a + bw | a, b ∈ Z}
and V′= {a + bw | a, b ∈ R} . We note that t (x) = 2α, n (x) = 2tα2 and

w2 − 2αw+ 2tα2 = 0. Since the algebra At (R) is a power associative algebra,

it results that V and V′ are associative and commutative rings. (See [Sc; 66]).

Remark 4.5.1. For x ∈ V, we know that the following properties are

equivalent:

i) x is an invertible element in the algebra V.

ii) n (x) = 1.

iii) x ∈ {±1}.

An element x ∈ V is a prime element in V if x is not an invertible element

in V and if x = ab, it results that a or b is an invertible element in V.

Proposition 4.5.2. i) For x, y ∈ V′, we have n (xy) = n (x)n (y) .

ii) The ring V′ is a division ring.

Proof. i) Denoting with q = 2t − 1, let x = a + bw and y = c + dw. We

obtain

n (x)n (y) =
[
(a+ bα)

2
+ b2α2q

] [
(c+ dα)

2
+ d2α2q

]
=

=
(
2abα+ a2 + b2α2 + b2qα2

) (
2cdα+ c2 + d2α2 + d2qα2

)
= 2abc2α+2a2cdα+

4abcdα2+a2c2+2abd2α3+2b2cdα3+2abd2qα3+2b2cdqα3+a2d2α2+b2c2α2+

b2d2α4 + a2d2qα2 + b2c2qα2 + 2b2d2qα4 + b2d2q2α4.
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Computing n (xy) , we get

n (xy) =
[
ac+ (ad+ bc)α− α2bd (q + 1) + 2α2bd

]2
+qα2 [ad+ bc+ 2αbd]

2
=

2abc2α+2a2cdα+4abcdα2+a2c2+2abd2α3+2b2cdα3+2abd2qα3+2b2cdqα3+

a2d2α2 + b2c2α2 + b2d2α4 + a2d2qα2 + b2c2qα2 + 2b2d2qα4 + b2d2q2α4.

Therefore n (xy) = n (x)n (y) .

ii) It results from i).

Remark 4.5.3. The above result is also true for all elements from the

set V.

In the following, we will consider α = 1
2r , r ≥ t− 1, t ≥ 2.

Proposition 4.5.4. If x, y ∈ V, y 6= 0, with t ≥ 2, then there are

z, v ∈ V such that x = zy + v and n (v) < n (y) .

Proof. Since y 6= 0 , we have that y is an invertible element in At (R),

therefore x
y = a + bw, a, b ∈ R. Let m,n ∈ Z such that |a−m| ≤ 1

2 and

|b− n| ≤ 1
2 . For z = m + nw ∈ V and v = y [(a−m) + (b− n)w] , it results

that x
y = z+ v

y , therefore x = zy+ v and v = x− zy. From here, we have that

v ∈ V. Since 2t ≤ 2r+1, we have

n (v) = n (y)n ((a−m) + (b− n)w) =

= n (y)
[[

(a−m) + 1
2r (b− n)

]2
+ 2t−1

22r (b− n)
2
]
≤ ( (2r+1)2

22r+2 + 2r+1−1
22r+2 )n (y) =

= 22r+2r+2

22r+2 n (y) = 2r+22

2r+2 n (y) < n (y) .�

Definition 4.5.6. With the above notations, let π = x + yw be a prime

integer in V and v1, v2 be two elements in V. If there is v ∈ V such that

v1− v2 = vπ, then v1, v2 are called congruent modulo π and we denote this by

v1 ≡ v2 mod π.

Proposition 4.5.7. The above relation is an equivalence relation on V.

The set of equivalence classes mod π is denoted by Vπ and is called the residue

classes of V modulo π.

Proof. Denoting the elements from Vπ in bold, if v1 ≡ v2 mod π and

v2 ≡ v3 mod π, then there are v, v′ ∈ V such that v1−v2 = vπ and v2−v3 = v′π.

It results that v1 − v3 = (v + v′)π, therefore the transitivity holds. �

Proposition 4.5.8. For each x, y ∈ V, there is δ = (x, y) , the greatest

common divisor of x and y. We also have that there are γ and τ ∈ V, such

that δ = γx+ τy.(the Bézout’s Theorem).
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Proof. We denote by J = {γx + τy | γ, τ ∈ V}.We remark that if z =

γ′x + τ ′y ∈ J and w ∈ V, we have wz = (wγ′)x + (wτ ′)y ∈ J. We consider

δ1 = γ1x + τ1y ∈ J, such that δ1 has the norm n (δ1) minimum in J. We will

prove that δ = δ1.From Proposition 4.5.4, it results that x = q1δ1 + r1, with

n (r1) < n (δ1) , q1, r1 ∈ V and r1 = x − q1δ1 ∈ J. Since n (r1) < n (δ1) and

δ1 ∈ J has minimum norm in J, we get r1 = 0, therefore δ1 | x. In the

same way, we will prove that δ1 | y. Since δ1 = γ1x+ τ1y, it results that each

common divisor for x and y is a divisor for δ1, therefore δ | δ1 and finally

δ = δ1.�

The above proposition generalized to elements in V Proposition 2.1.4. from

[Da, Sa, Va;03], with a similar proof.

Proposition 4.5.9. Vπ is a field isomorphic to Z/pZ, p = n(π), where

p is a prime number.

Proof.

For v1,v2 ∈ Vπ, we define v1 + v2 = (v1 + v2)mod π and v1 · v2 =

(v1v2)mod π. These multiplications are well defined. Indeed, if v1 ≡ v′1 mod

π and v2 ≡ v′2 mod π, it results that v1 − v′1 = uπ, v2 − v′2 = u′π, u, u′ ∈
V, therefore (v1 + v2) − (v′1 + v′2) = (u+ u′)π. Since v1 = v′1 + uπ, v2 =

v′2 + u′π, we get v1v2 = v′1v
′
2 +Mπ, with Mπ a multiple of π.

Denoting in bold the equivalence classes from Zp, let f be the map

f : Zp → Vπ, f (m) = (m+ π) mod π, where m ∈m. (4.5.1.)

The map f is well defined. Indeed, if m ≡ m′ mod p we have (m+ π) −
(m′ + π) = m−m′ = pq = ππq, q ∈ Z, therefore (m+ π) ≡ (m′ + π) mod π.

If f (m) = v,v = (m+ π) mod π ∈ Vπ, we define f−1 (v) = m.

The map f−1 is well defined. Indeed, if v = v′,it results m ≡ m′ mod π,

we have m−m′ = πv3 and m−m′ = πv3, therefore π | m−m′ and π | m−m′.

We obtain p | m−m′ and m = m′.

The map f is a ring morphism. Indeed, f (m) + f (m′) = (m+ π)mod

π + (m′ + π)mod π = (m+m′ + π)mod π = f (m + m′) and

f (m) f (m′) = (m+ π) (m′ + π)modπ =
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=
(
mm′ + (m+m′)π + π2

)
mod π = (mm′ + π)mod π. We obtain that Vπ is

isomorphic to Zp.�

Let x = a + bw ∈ V, therefore we have n (x) = (a+ bα)
2

+ q(bα)2. For

q = 2t−1 and for certain values of t, we know the form of some prime numbers,

as we can see in the proposition below.

Proposition 4.5.10. ([Co; 89])

Let p ∈ N be a prime number.

1) There are integers a, b such that p = a2 + 3b2 if and only if p ≡ 1(mod

3) or p = 3.

2) There are integers a, b such that p = a2 + 7b2 if and only if p ≡
1, 2, 4(mod 7) or p = 7.

3) There are integers a, b such that p = a2 + 15b2 if and only if p ≡
1, 19, 31, 49(mod 60).�

The label Algorithm for At (R).

1. We will fix the elements t, α and therefore w.

2. We consider π ∈ V a prime element, π = a + bw, a, b ∈ Z, such that

n (π) = p = (a+ bα)
2

+ q(bα)2, with p a prime positive number.

3. Let s ∈ Z be the only solution to the equation a + bx = 0 mod p, x ∈
{0, 1, 2, ..., p− 1}.

4. Let r =
[
p−1
2

]
∈ N, where [ ] denotes the integer part.

5. Let k ∈ Z and k ∈Zp be its equivalence class modulo p.

6. For all integers σ, τ ∈ { − r − 1, ..., r}, let c = (sτ + σ) mod p and

d = (σ + τα)2 + q(τα)2.

6. If d < p and c = k, then we find the pairs (σ, τ) such that k is

the label of the element σ + τw ∈ Vπ. From here, we have that σ + τs =

k mod p and n (σ + τw) is minimum. If we find more than two pairs sat-

isfying the last condition, then we will choose that pair with the following

property |σ|+ |τ | ≤ |a|+ |b| . If there exist more than two pairs satisfying the

last inequality, then we will choose one of them randomly.

Codes over Vπ
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Using ideas from the above definitions and generalizing the Hurwitz weight

from [Gu; 13] and Cayley-Dickson weight for the octonions, from [Fl; 15], in

the same manner, we define the generalized Cayley-Dickson weight, for alge-

bras obtained by the Cayley-Dickson process, denoted dG. We will fix t, α, w

and we will consider the elements in the algebra At (R) . Let π be a prime in

V, π =a + bw and let x ∈ V, x = a0 + b0w. The generalized Cayley-Dickson

weight of x is defined as wG (x) = |a0|+ |b0| , where x = a0 + b0w mod π, with

|a0|+ |b0| minimum.

The generalized Cayley-Dickson distance between x, y ∈ Vπ is defined as

dG (x, y) = wG (x− y)

and we will prove that dG is a metric. Indeed, for x, y, z ∈ Vπ, we have

dG (x, y) = wG (α1) = |a1| + |b1| , where α1 = x− y = a1 + b1w mod π is an

element in Vπ and |a1|+ |b1| is minimum.

dG (y, z) = wG (α2) = |a2| + |b2| , where α2 = y − z = a2 + b2 wmod π is an

element in Vπ and |a2|+ |b2| is minimum.

dG (x, z) = wG (α3) = |a3| + |b3| , where α3 = x − z = a3 + b3w mod π is an

element in Vπ and |a3|+ |b3| is minimum.

We obtain x−z = α1 +α2 mod π and it results that wG (α1 + α2) ≥ wG (α3) ,

since wG (α3) = |a3| + |b3| is minimum, therefore dG (x, y) + dG (y, z) ≥
dG (x, z).

In the following, we assume that π is a prime in V with n (π) = p a prime

number of the form n (π) = Mn + 1, M, n ∈ Z, n ≥ 0, such that there are β

a primitive element (of order p − 1) in Vπ, with the properties β
p−1
M = w or

β
p−1
M = −w. We will consider codes of length n = p−1

M .

The definitions and the Theorems below have adapted and have generalized

to all algebras obtained by the Cayley-Dickson process some definitions from

[Gu; 13], [Ne, In, Fa, Pa; 01], [Fl; 15], the Theorems 7,8,9,10,11,13,14,15 from

[Ne, In, Fa, Pa; 01], the Theorems 4,5,6,7 from [Gu; 13] and the Theorems

2.3, 2.5, 2.7, 2.9 from [Fl; 15] with similar proofs.
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We consider C a code defined by the parity-check matrix H,

H =




1 β β2 ... βn−1

1 βM+1 β2(M+1) ... β(n−1)(M+1)

... ... ... ... ...

1 βMk+1 β2(Mk+1) ... β(n−1)(Mk+1)


 , (4.5.2.)

with k < n.We know that c is a codeword in C if and only ifHct = 0. If we con-

sider the associate code polynomial c (x) =
n−1∑
i=0

cix
i, we have that c

(
βMl+1

)
=

0, l ∈ {0, 1, ..., k}. For the polynomial g (x) = (x− β)
(
x− βM+1

)
...
(
x− β(Mk+1)

)
,

since the elements β, βM+1, ..., βMk+1 are distinct, from [Li, Xi; 04], Lemma

8.1.6, we obtain that c (x) is divisible by g (x) , where g(x) is the generator

polynomial of the code C. Since g (x) / ( xn±w), it results that C is a principal

ideal in the ring Vπ / (xn ± w).

If we suppose that a codeword polynomial c (x) is sent over a channel and

the error pattern e (x) occurs, it results that the received polynomial is r (x) =

c (x)+e (x) . The vector corresponding to the polynomial r (x) = c (x)+e (x) is

r = c+e and the syndrome of r is S = Hrt, where H is the above parity-check

matrix.

Theorem 4.5.11. We consider C a code defined on Vπ by the parity

check matrix

H =
(

1 β β2 ... βn−1
)
. (4.5.3.)

It results that, the code C is able to correct all errors of the form e (x) = eix
i,

with 0 ≤ wC (ei) ≤ 1.

Proof. We consider r (x) = c (x) + e (x) the received polynomial, with

c(x) the codeword polynomial and e(x) = eix
i the error polynomial such that

0 ≤ wC (ei) ≤ 1. Since βn = w or βn = −w, it results that ei = βnl. If we

compute the syndrome, we obtain S = βi+nl = βL, with i, L ∈ Z, 0 ≤ i, L ≤
n − 1. By reducing L modulo n, we obtain i, the location of the error, and

from here, l = L−i
n and βnl, the value of the error. �

Theorem 4.5.12. We consider C a code defined by the parity-check

matrix
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H =

(
1 β β2 ... βn−1

1 βM+1 β2(M+1) ... β(n−1)(M+1)

)
. (4.5.4.)

Then C can correct error patterns of the form e (x) = eix
i, with ei ∈ Vπ, 0 ≤

i ≤ n− 1.

Proof. We consider the received polynomial, r (x) = c (x)+e (x) with c(x)

the codeword polynomial and e(x) = eix
i the error polynomial with ei ∈ Vπ.

It results that the corresponding vector of the polynomial r(x) is r = c + e.

We will compute the syndrome S of r. We have ei = βj , 0 ≤ j ≤Mn− 1 and

the syndrome is

S=Hrt=

(
s1 = βi+j = βM1

sM+1 = β(M+1)i+j = βM2

)
.

We obtain βi+j−M1 = 1, with i+ j = M1 mod(p− 1) and β(M+1)i+j−M2 = 1,

with (M + 1)i+ j = M2 mod(p− 1). We get Mi = (M2 −M1) mod(p− 1), if

there is, then the solution to the system is i = M2−M1

M mod n and j = (M1− i)
mod(p− 1). From here, we can find the location and the value of the error.�

Theorem 4.5.13. We consider C a code defined by the parity-check

matrix

H =




1 β β2 ... βn−1

1 βM+1 β2(M+1) ... β(n−1)(M+1)

1 β2M+1 β2(2M+1) ... β(n−1)(2M+1)


 . (4.5.5.)

Then C can find the location and can correct errors of the form e (x) = eix
i,

0 ≤ i ≤ n− 1, with ei ∈ Vπ, or can only correct error patterns of this form.

Proof. From the above Theorem, we have ei = βj , 0 ≤ j ≤ Mn − 1 and

the syndrome is

S=Hrt=




s1 = βi+q = βM1

sM+1 = β(M+1)i+j = βM2

s2M+1 = β(2M+1)i+j = βM3


 .

Since the matrix




1 β β2

1 βM+1 β2(M+1)

1 β2M+1 β2(2M+1)


 has its determinant equal
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to β3βM
(
β2M − 1

)3 6= 0, it results that the rank of the matrix (4.5.5) is

3, then this system always has a solution. We obtain βi+j−M1 = 1, with

i+ q = M1 mod(p− 1), β(M+1)i+j−M2 = 1, with (M + 1) i+ j = M2 mod(p−
1), β(2M+1)i+j−M3 = 1, with (2M + 1) i + j = M3 mod(p − 1). We can find

the location of the error if Mi = (M2−M1) mod(p− 1) and Mi = (M3−M2)

mod(p−1) or, equivalently, i = M2−M1

M mod n = M3−M2

M mod n and the value

of the error ei if

(M1 − i) mod(p − 1) = (M2 − (M + 1) i) mod(p − 1) = (M3 − (2M + 1) i)

mod(p− 1)(= j). �

Theorem 4.5.14. Let C be a code defined by the following parity-check

matrix

H =




1 β β2 ... βn−1

1 βM+1 β2(M+1) ... β(n−1)(M+1)

1 β2M+1 β2(2M+1) ... β(n−1)(2M+1)

1 β3M+1 β2(3M+1) ... β(n−1)(3M+1)


 . (4.5.6.)

Then C can correct error patterns of the form e (x) = eix
i + ejx

j , 0 ≤ i, j ≤
n− 1, where ei, ej ∈ Vπ.

Proof. We will give a proof in the general case, when we have two errors.

We have ei = βq′ 6= 0 and ej = βt
′ 6= 0, q′, t′ ∈ Z. The syndrome is:

S=Hrt=




s1 = αi+q
′

+ αj+t′

sM+1 = α(M+1)i+q′ + α(M+1)j+t′

s2M+1 = α(2M+1)i+q′ + α(2M+1)j+t′

s3M+1 = α(3M+1)i+q′ + α(3M+1)j+t′


 .

We denote βi+q
′

= A and βj+t
′

= B and we get

S=Hrt=




s1 = A+B

sM+1 = βMiA+ βMjB

s2M+1 = β2MiA+ β2MjB

s3M+1 = β3MiA+ β3MjB


 . (4.5.7.)

In the case when the system (4.5.7) admits only one solution, the code C
can correct two errors. To obtain this result, we will prove first the following

Lemma.
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Lemma. Using the above notations, if we have two errors, we get βMi 6=
βMj , 0 ≤ i, j ≤ n− 1 and s1s2M+1 6= s2M+1.

Proof. In the case when βMi = βMj , then βM(i−j) = 1 and Mn / M(i−
j), which it is false. Supposing that s1s2M+1−s2M+1 = 0, it results s1s2M+1 =

s2M+1. If x = βi+q
′

, we obtain that β2Mis1x+β2Mjs21−β2Mjs1x =
(
βMi − βMj

)2
x2+

β2Mjs21 + 2βMj
(
βMi − βMj

)
s1x. We get (βMi − βMj)2x2 + 2βMi+Mjs1x −

β2Mis1x− β2Mjs1x = 0. It results x = 0 or x = −2βMi+Mjs1+β
2Mis1+β

2Mjs1
(βMi−βMj)2

=

s1. If we have x = βi+q
′

= s1, this implies βj+t
′

= 0, which it is false.

We go back now to the proof of the Theorem and we know that the following

conditions are fulfilled: βMi 6= βMj , 0 ≤ i, j ≤ n − 1 and s1s2M+1 6= s2M+1.

For B = s1 −A, it results that

A
(
βMi − βMj

)
= sM+1 − s1βMj

A
(
β2Mi − β2Mj

)
= s2M+1 − s1β2Mj

A
(
β3Mi − β3Mj

)
= s3M+1 − s1β3Mj .

We obtain s2M+1 − s1β
2Mj =

(
sM+1 − s1βMj

) (
βMi + βMj

)
and s3M+1 −

s1β
3Mj =

(
sM+1 − s1βMj

) (
β2Mi + βMiβMj + β2Mj

)
.

If we denote by sM = βMi + βMj and pM = βMiβMj , we have

s2M+1 − sM+1sM + pMs1 = 0

and (
sM+1 − s1βMj

) (
s2M − pM

)
= s3M+1 − s1β3Mj .

It results that

pM =
sM+1sM − s2M+1

s1

and

sM (s1s2M+1 − s2M+1) = s1s3M+1 − sM+1s2M+1.

Therefore, we obtain

sM =
s1s3M+1 − sM+1s2M+1

s1s2M+1 − s2M+1

pM =
sM+1s3M+1 − s22M+1

s1s2M+1 − s2M+1

.
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Using the above, by solving the equation x2 − sMx+ pM = 0, we find the

locations and the values of the errors. �

Main algorithm and some examples

The Main Algorithm

Let p be a prime number.

1. We find a, b, t ∈ N such that we can write p under the form

p = a2 +
(
2t − 1

)
b2. (4.5.8.)

We remark that the values for a, b, t, if there exist, are not unique. Let

{al, bl, tl}, l ∈ {1, 2, ..., u} all solutions to the equation (4.5.8) .

2. Let p = njMj + 1, with nj ,Mj not unique such that njMj = p− 1, j ∈
{1, 2, ..., v}.

3. For l ∈ {1, 2, ..., u} and for j ∈ {1, 2, ..., v}, we find the algebra

Atl (R) , the element w = 1
2rl−1 (1 +

2tl∑
i=2

ei) ∈ Atl (R) , rl ≥ tl − 1,V ⊂ Atl (R) ,

the element π ∈ V, such that n (π) = p, we find Vπ such that Vπ is isomorphic

to Zp and we find β ∈ Vπ such that βnj = w or βnj = −w.
If the elements {al, bl, tl} don’t exist, then the algorithm stops.

If we have at least a solution for the equation (4.5.8) but we don’t find for

j ∈ {1, 2, ..., v} the element β ∈ Vπ such that βnj = w or βnj = −w, then the

algorithm stops. If we have solutions in both cases, then we go to the Step 4.

4. For each solution {al, bl, tl}, l ∈ {1, 2, ..., u}, let J ⊆ {1, 2, ..., v}. For

each j ∈ J , we have nj such that βnj = w or βnj = −w. We can change w by

increasing the value of rl , if it is necessary, but working in the algebra Atl (R).

For each nj we compute Mj and the rate of the obtained code, Rj =
kj
nj
. Since

we can suppose that the obtained codes have the same dimension k = kj ,

we will chose the indices l ∈ {1, 2, ..., u}, j ∈ J , the pair {al, bl, tl} and the

number nj such that the rate Rj has the biggest value.
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In the following, we will denote by Algorithm 1, the method described in

[Gu; 13] and by Algorithm 2, the method described in [Fl; 15].

Remark 4.5.15. In the papers [Gu; 13] and [Fl; 15] were developed several

algorithms which have built binary block codes over subsets of integers in the

real quaternion division algebra and in the real octonion division algebra.

The above algorithm has generalized these two algorithms to real algebras

obtained by the Cayley-Dickson process. Moreover, the Main Algorithm can

be generalized to almost all prime numbers, which in general the Algorithm

1 and the Algorithm 2 don’t make it. That means, in general, for a prime

number p, we can get the algebra At (R) , the element w ∈ At (R) , the subset

V ⊂ Atl (R) , π ∈ V, such that n (π) = p, we can find Vπ with Vπ isomorphic

to Zp, such that the obtained binary block code can have the highest rate.

With the Main Algorithm, we have a higher flexibility, similar to the

Lenstra’s algorithm for elliptic curves compared with p− 1 Pollard algorithm.

It is well known that for a prime p, Lenstra’s algorithm replaces the group Z∗
p

with the group of the rational points of an elliptic curve C1 over Zp. If this

algorithm failed, the curve will be replaced with another curve C2 over Zp and

we can retake the algorithm (see [Si, Ta; 92]).

In the case of the Main Algorithm, the algebra At (R) and w offer this

kind of flexibility since, for the same prime p, these can be changed and the

algorithm can be retaken, with better chances of success.

We will explain this in the following examples.

Example 4.5.16. Let p = 29. We have a = 1, b = 2 and t = 3, therefore

p = 1 + 7 · 4 with unique decomposition. It results that we can use the real

Octonion algebra. If we apply Algorithm 2, we have w = 1
2

(
1 +

8∑
i=2

ei

)
,

π = −1 + 4w, p = 29, n = 4, s = 22, β = 1− w, β4 = −w mod π, therefore we

can define codes.

If we apply the Main Algorithm for w = 1
4

(
1 +

8∑
i=2

ei

)
, we have π =

−1 + 8w, n = 4, s = 11 which is the label for the element w ∈ Vπ. We remark

that we can’t find β ∈ Vπ such that β4 = w, as we can see from the MAPLE’s

procedures below.

for i from -15 to 14 do for j from -15 to 14 do
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c := (11*j+i)mod 29; d := ((7/4)*j)^2+(i+(1/4)*j)^2;

if d < 29 and c = 11 then print(i, j);fi;od;od;

0, 1

4, -2

A := 8^{-1} mod 29; for a to 29 do

b := a^4 mod 29; if b = 11 then print(a);fi;od;

11

But, if we increase α we still work on the octonions and we take w =

1
32

(
1 +

8∑
i=2

ei

)
, with the label s = 24. We obtain β = −1− w with the label

4 such that β4 = w. Therefore we can define codes. In this situation, both

algorithms can be applied with success.

Example 4.5.17. Let p = 71 = 64 + 7 · 1, with unique decomposition.

Therefore a = 8, b = 1, t = 3. Then we work on real Octonion algebra. If we

apply the Algorithm 2, we have w = 1
2

(
1 +

8∑
i=2

ei

)
, π = 7 + 2w, p = 71, n =

10, s = 32, β = 2− 2w, β10 = w mod π.(see [Fl; 15])

If we apply the Main Algorithm and if we take first time w = 1
4

(
1 +

8∑
i=2

ei

)
,

we have π = 7 + 4w, p = 71, n = 10, s = 16, which is the label for the element

w ∈ Vπ.We remark that we can’t find β ∈ Vπ such that β10 = w (even if we

increase the value of r, as in Example 4.5.16), as we can see in the procedure

below.

A := -7*4^{-1}mod71; for a from 1 to 71 do b := a^{10} mod 71;

if b = 16 then print(a);fi;od:

16

Therefore, the Algorithm 2 is better than the Main Algorithm.

Example 4.5.18. For p = 31 = 6 ·5+1, we have p = 4+3 ·9 = 16+15 ·1,
therefore t ∈ {4, 16} and we can use the real Quaternion algebra or the real
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Sedenion algebra. If we apply the Main Algorithm for sedenions, we have

w = 1
8

(
1 +

16∑
i=2

ei

)
. We get π = 3 + 8w, p = 31 and s = 19. We remark

that we can’t use the Main Algorithm for the sedenions since we can’t find

β ∈ Vπ such that β5 = w. Therefore, we will use the Main Algorithm only for

Quaternion algebra, which can be applied in this case.

Example 4.5.19. Let p = 61. We have that p = 4 · 3 · 5 + 1 = 1 + 60 =

1 + 15 · 4 = 49 + 3 · 4, therefore t ∈ {4, 16} and we can use the real Quaternion

algebra or the real Sedenion algebra.

If we take p under the form p = 61 = 72 + 3 · 22, we use the real

Quaternion algebra. For w = 1
2

(
1 +

4∑
i=2

ei

)
, we get π = 5 + 4w. The label for

w is s = 14, n = 10(p = 6 · 10 + 1) and we have β = −4 + w, β10 = w, as we

can see in the below procedures:

A := -5*4^{-1}mod 61; for a to 61 do

b := a^{10}mod 61; if b = 14 then print(a);fi;od;

14 10 17 26 29 30 30 31 32 35 44 51

for i from -31 to 30 do for j from -31 to 30 do

c :=(14*j+i) mod 61 d := (3/4)*j^2+(i+(1/2)*j)^2;

if d < 61 and c = 10 then print(i, j)fi;od;od;

-4, 1

1, 5

5, -4

In this case, the rate code is R1 = 6k
p−1 = k

10 , where k is the dimension

of the code, since we can’t find β such that β6 = w or βMj = w, for Mj |
p− 1, j ∈ {1, 2, ..., v}.

If we consider p under the form p = 1 + 15 · 4, we use the real Sedenion

algebra, we get n = 4 and for w = 1
8

(
1 +

16∑
i=2

ei

)
, we have π = −1 + 16w.

The label for w is s = 42 and β = 2 + 2w. In this case, the rate of the code

is R2 = 15k
p−1 = k

4 and it is greater than R1. We remark that we can use both
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algebras to define codes, but in the second case, we have chance to obtain a

better rate.(The dimension k is considered the same, in both situations).

A :=16^{-1}mod 61; for a to 61 do b :=a^{4}mod61;

if b = 42 then print(a);fi;od;

42 25 30 31 36

for i from -31 to 30 do for j from -31 to 30 do c :=42*j+i mod 61;

d := (15/64)*j^2+(i+(1/8)*j)^2; if d < 61 and c = 25 then print(i, j);

fi;do;do;

-6, 8

-5, -8

-2, 5

-1, -11

2, 2

3, -14

6, -1

Example 4.5.20. Let p = 151 = 4 + 3 · 49 = 16 + 15 · 9 = 6 · 25 + 1.

We have t ∈ {2, 4} and will use the real Quaternion algebra or real Sedenion

algebra. For w = 1
2

(
1 +

4∑
i=2

ei

)
, we have π = −3 + 14w, n = 25 and s = 140,

the label for w. In this case, we can’t find an element β, such that β25 = w,

β6 = w, β15 = w and so on, as we can see in the procedure below.

A:=-3*14^{-1} mod 151; for a to 151 do b:=a^25 mod 151;

if b = 140 then print(a);fi;od:

140

But, as we remarked, the number p can be written under the form p =

16 + 15 · 9 = 25 · 6 + 1, then if we take t = 4, we can use the real Sedenion

algebra. We consider w = 1
8

(
1 +

16∑
i=2

ei

)
. We obtain π = 1 + 24w, n = 6
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and s = 44, the label for w. We can find β, such that β6 = w mod π and

β = 3− 3w, with the label s = 22.

A:=-24^{-1}mod 151; for a to 151 do

b:=a^6 mod 151; if b = 44 then print(a);fi;do;

44 22 51 100 122 129

for i from -76 to 75 do for j from -76 to 75 do

c := 44*j+i mod 151; d:= (15/64)*j^2+(i+(1/8)*j)^2;

if d < 151 and c = 22 then print(i, j);fi;od;od;

-9, 11

-4, -20

-3, 4

3, -3

4, 21

9, -10

Example 4.5.21. Let p = 149 = 25+31 ·4 = 121+7 ·4. In this situation,

t ∈ {3, 5} and we can use the real Octonion algebra or a real Cayley-Dickson

algebra of dimension 32.

We can’t use the Algorithm 2 for octonions, since we can’t obtain the

element β and p is not under the form 7k+1. For w = 1
4

(
1 +

8∑
i=2

ei

)
, we have

π = 9 + 8w. We consider p = 1 + 4 · 37 and we can’t find an element β, even

if we take p = 2k + 1 or 4k + 1 or 37k + 1.

A := -9*8^{-1} mod 149; for a to 149 do

b := a^2 mod 149; if b = 92 then print(a);fi;od;

92

A := -9*8^{-1}mod 149; for a to 149 do

b := a^4 mod 149; if b = 92 then print(a);fi;od;

92

A := -9*8^{-1}mod 149; for a to 149 do
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b := a^37 mod 149 if b = 92 then print(a);fi;od;

92

But we can choose another α. For example, for w = 1
8

(
1 +

8∑
i=2

ei

)
, we have

π = 9 + 16w, and s1 = 46, the label for w. If we consider p = 74n+ 1, n = 2,

we get β = −2 + 4w, with label s2 = 33. In this case, the rate of the code is

R1 = 74k
p−1 = k

2 . For p = 37n + 1, n = 4, the label of β = 4w is s3 = 35. In

this case the rate of the code is R2 = 37k
p−1 = k

4 . We have R2 < R1. Therefore

the code in the first case is better, since the code can have a greater rate as

in the second case. For p = 2k + 1 or 4k + 1, we can’t find β.

A := -9*16^{-1} mod 149; for a to 149 do

b := a^2 mod 149; if b = 46 then print(a);fi;od;

46 33 116

for i from -75 to 74 do for j from -75 to 74 do

c := (46*j+i) mod 149); d := (31/64)*j^2+(i+(1/8)*j)^2;

if d < 149 and c = 33 then print(i, j);fi;do;do;

-4, 17

-2, 4

0, -9

9, 7

11, -6

A := -9*16^{-1} mod 149; for a to 149 do

b := a^4 mod 149; if b = 46 then print(a);fi;do;

46 35 50 99 114

for i from -75 to 74 do for j from -75 to 74 do

c :=(46*j+i) mod 149); d := (31/64)*j^2+(i+(1/8)*j)^2;

if d < 149 and c = 35 then print(i, j);fi;do;do;

-11, 1
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-2, 17

0, 4

2, -9

A := -9*16^{-1} mod 149; for a to 149 do

b := a^37 mod 149; if b = 46 then print(a);fi;od;

46

If we work on a real algebra of dimension 32, we consider w = 1
16

(
1 +

32∑
i=2

ei

)
.We

have π = 3 + 32w, s = 107, the label for w, β = 4, with the label s = 4, n =

4, p = 37 · 4 + 1, as we can see in the procedures below.

A := -3*32^{-1} mod 149; for a to 149 do

b := a^4 mod 149; if b = 107 then print(a);fi;od;

107 4 27 122 145

for i from -75 to 74 do for j from -75 to 74 do

c := (107*j+i) mod 149; d := (31/256)*j^2+(i+(1/16)*j)^2;

if d < 149 and c = 4 then print(i, j);fi;od;od;

-8, 21

-7, -18

-4, 14

-3, -25

0, 7

1, -32

4, 0

8, -7

12, -14

In this case, we can work on both algebras to obtain codes with good

rates.
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(B-ii) The evolution and development plans for career
development

Career development directions

I graduated Faculty of Mathematics of University of Bucharest in 1990.

From 1991 I have worked at ”Ovidius” University of Constanta. I taught var-

ious courses for Bachelor and Master degrees, as for example: Linear Algebra,

Algebra (fundamental structures), Graph Algorithms , Graphs and Combi-

natorics, Special chapters of algebra, some of these courses can be found on

http://cristinaflaut.wikispaces.com/. I participated at several national and

international conferences:

1) Invited speaker and member in International Committee at Fifth In-

ternational Eurasian Conference on Mathematical Sciences and Applications

(IECMSA)-2016 which will be held in Belgrade (Serbia) in August 16-19, 2016.

2) Organizer of Conference in the honor of Professor Ravi P Agarwal with

occasion of DHC ceremony, 10 July 2015.

3) Member in Scientific Committee of MITAV 2015, 18-19 Iunie 2015

(Mathematics, Information Technologies, and Applied Sciences (Vědy, in Czech))

4) MAOCOS 2014, International Conference on Mathematics and Com-

puter Science, June 26-28 2014, Braşov, Romania, in Organizing Committee,

5)Workshop on Algebraic and Analytic Number Theory and Their Appli-

cations, 23-24 mai 2013, Universitatea Ovidius Constanta-Co-organizer , PN-

II-ID-WE-2012-4-161.

6) Organizer of the conference A new approach in theoretical and applied

methods in algebra and analysis, 4-6 Aprilie 2013, Universitatea Ovidius, Con-

stanta, PN-II-ID-WE-2012-4-169, Constanta.

7) Mathematics and Computer in Business and Economics, the 9th WSEAS

International on Mathematics and Computer in Business and Economics (MCBE’

08), Bucuresti, 24-26 June 2008, with talks. (www.wseas.org.)
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8) 2007, 5-10 September- The XVIth National School of Algebra (Scoala

nationala de algebra, editia a- XVI-a) , Constanta, participant and organizer.

9) 2007-Workshop on Combinatorics and Commutative Algebra II, 26-31

August, Thessaloniki, Greece.

10) 2006-Ring and Category of Modules, 16-18 decembrie 2007, Bres-

sanone, Italia, with talk.

11) 2006, August- National School of Cryptography (Scoala Nationala de

Criptografie), Vatra-Dornei, with talk.

Between 2002-2009, 2012-2013 I was editor and from 2013, I am the Editor

in Chief of the ISI journal Analele Stiintifice ale Universitatii Ovidius din

Constanta, Seria Matematica, 2013IF=0.333.

I obtained some grants:

1) PN-II- RU-PRECISI-2014-8-6330 for the paper A Clifford algebra asso-

ciated to generalized Fibonacci quaternions, Adv. Differ. Equ.-NY, 2014:279,

p.1-7,Yellow zone.

2) PN-II-ID-WE-2012-4-169, Cristina FLAUT, “Ovidius” University, Con-

stanta: A new approach in theoretical and applied methods in algebra and

analysis

3) PN-II-RU-PRECISI-2013-7-4123, for Levels and sublevels of algebras

obtained by the Cayley–Dickson process, Ann. Mat. Pur. Appl., Red zone.

4) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-

sity, South Korea, 1 April 2012- 10 November 2012, April 2013-December

2013, January 2014-July 2014.

5) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-

sity, South Korea, 1 October 2011-20 January 2012.

6) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-

sity, South Korea, 1 September 2013- 31 March 2014.

7) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-

sity, South Korea, 1 April 2012- 10 November 2012.

8) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-

sity, South Korea, 1 October 2011-20 January 2012.

Other 4 PN-II-RU-PRECISI grants, 1 in red zone and 3 in yellow

zone, will be obtained until the end of 2015.

I was member in the grants:
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1) Proiect POSDRU/157/1.3/S/141587, Reţea de formare continuă a cadrelor

didactice pentru a utiliza multimedia, instrumentaţia virtuală şi web 2.0 ı̂n

aria curriculară Matematică şi ştiinţe ale naturii (ProWeb)”, valoare totala

5.845.359,05 RON, professor formator al disciplinei Fundamente psihopeda-

gogice ale utilizării TIC ı̂n formarea continuă a cadrelor didactice din aria

curriculară Matematică şi ştiin21be ale naturii.

2) Sistem pentru detecţie, localizare, urmărire şi identificare a factorilor

de risc la adresa obiectivelor de importanţă strategică din zone de litoral –

SSSNOC”,

Cod depunere PN-II-PT-PCCA 2013-4-0377, Domeniul 8 –Spaţiu şi securi-

tate, Instituţia coordonatoare: Centrul de Cercetare Ştiinţifică pentru Forţele

Navale. Parteneri: Oceanografica SRL; Unitatea Militară 02133; Eltex Echipa-

mente Electronice Industriale S.R.L.; General Conf Grup S.R.L.; Universitatea

“Ovidius”. Durata proiectului: 24 luni (1 iulie 2014-30 iunie 2016).

3) Workshop on Algebraic and Analytic Number Theory and Their Appli-

cations, CNCSIS-PN-II-ID-WE-2012-4-161, 20120 ron, 23-24 mai 2013, PN-

II-ID-WE-2012-4-161.

4) INTUITION Network of Excellence, co-funded by European Commis-

sion, contract number 507248, 1 September 2004- 31 October 2008.

Regarding my research activity, I published several papers in ISI and BDI

journals. In this moment, the total of impact factors (regarding CNATDCU

requirements) is I=7.4585 in ISI journals with IF≥ 0.5 and, until now, I have

32 citations in ISI journals with IF ≥ 0.5. I also write several books and

chapters in the books, all of these can be found in my attached list of research

activities. I was invited reviewer for many ISI journals.

My didactic activity is well appreciated by the students. I organized some

scientific seminaries for students:

1) Seminarul Studentesc de Structuri Matematice Fundamentale:

2) Seminarul Studentesc: Algebre ciclice cu diviziune si aplicatiile lor in teoria

codurilor

3) Seminarul Studentesc: Coduri.

In the future, I intend to improve my courses, for this it is necessary to at-

tend conferences and scientific seminaries. I will continue to guide my students
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in all common activities, I will continue to organize scientific seminaries for

students and I will continue my work at Anale, trying to increase its impact

factor.

Scientific development directions

The study of algebras obtained by the Cayley-Dickson process constitutes

an important topic in the study of nonassociative algebras.

The results presented in this work can contribute to the development of

this domain of research and we will try in the next papers to extend them.

Most of ideas presented below can be found at the end of almost papers

written by the author ( as single author or coauthor). These papers end with

conclusions and remarks which can constitute starting points of some further

research.

Levels and sublevels of algebras obtained by the Cayley-Dickson

process

The construction of quadratic division algebras arising over rational func-

tion fields by means of the Cayley-Dickson process, presented in Chapter 2, is

closely related to, but actually much more natural than, the ones presented by

Brown in [Br, 67] and, more recently, by Garibaldi and Petersson in [Ga, Pe; 11

]. The significance of this construction is enhanced still further by the profound

connection recently established between non-associative division algebras and

the theory of signal transmissions ([Ho; 08]), with important applications to

smart phones and other technical devices. One of the main theorems from

[Fl; 13]says that such algebras having any pre-assigned positive integer as
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their level always exist. This striking result constitutes great progress when

compared with what is presently known about the level of quaternion and

octonion algebras. The main result obtained in Theorem 2.3.14, where was

proved that for any positive integer n there is an algebra A, obtained by the

Cayley-Dickson process with the norm form anisotropic over a suitable field,

which has level n ∈ N − {0} allow us to obtain further development in this

area. Since it is still unknown what exact numbers can be realised as levels and

sublevels of quaternion and octonion division algebras, as further research,

can be very interesting to improve the bounds for the level and sublevel of

division quaternion and octonion algebras and to provide some new examples

of values for the level and sublevel of division quaternion algebras or of di-

vision octonion algebras. It remains unknown whether there exist quaternion

division algebras of sublevel 5, or quaternion division algebras of level 6. The

result obtained in Theorem 2.3.14 seems to indicate that one of the problems

in finding a given value for the level of division quaternion and octonion al-

gebras can be the dimension of these algebras and it is easier to work with

algebras obtained by the Cayley- Dickson process with higher dimension. This

remark allows us to consider this problem in the reverse sense: for any positive

integer n, how can the existence of an octonion division algebra of level n in-

fluence the existence of a quaternion division algebra of level n? For example,

if we have an Octonion division algebra of level 6, its quaternion division sub-

algebra has the same level 6? Or we can built a quaternion division algebra

of level 6 starting from an octonion algebra of level 6? Or, more generally,

for any positive integer n, how can the existence of an algebra obtained by

the Cayley-Dickson process, of dimension 2t, t ≥ 4 and level n, influence the

existence of a quaternion or an octonion division algebra of level n?

Properties of algebras obtained by the Cayley-Dickson process

and some of their applications

Since the algebras obtained by the Cayley-Dickson process are poor in

properties when their dimension increase, losing commutativity, associativity
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and alternativity, the study of all kind of identities on these algebras is one

of the direction of the study. Therefore any supplementary relation, identity

or property can be very useful for the study of these algebras. For exam-

ple, we are looking for other similar relation as Hall identity, to characterize

some type N of nonassociative algebras, N ={alternative algebras, quadratic

algebras, quaternion algebras, octonions algebras, algebras obtained by the

Cayley-Dickson process, etc.}: The property P is true on the algebra A if and

only if A ∈ N . To support this idea, we can use for example the papers

[Po, Ro; 10], [Fl; 14(1)]. Some identities in algebras obtained by the Cayley-

Dickson process can be an useful tool to find solutions for some equations in

these algebras or to solve them.

Using results obtained in the paper [Ba; 09] and obtained properties of the

multiplication of the basis’s elements as in [Fl, Sh; 15(1)], we can found some

new and very interesting relations and properties of the elements from such

an algebra. Starting from results given in [Ja, Op; 10], [Ja, Op; 13], [Mi; 11]

we can try to find zeros for some quaternionic and octonionic polynomials, or

we can solve some equations and systems in these algebras as in [Er, Oz; 13],

[Mi, Sz; 08], [Mi; 10], [Sh; 11].

The Fibonacci-Lucas quaternions over Q provide us an algebra structure.

We can extend the study of this type of elements over octonions trying to

obtain the similar results.

Some applications in Coding Theory

Codes over finite rings have been intensively studied in the last time, some

of the earliest results of them are in [Bl; 72], [Sp; 78]. Ones of the most

important finite rings in the coding theory are: the finite field Fq and the ring

Zq, where q = pr, for some prime number p and r ∈ N−{0}. The class of cyclic

codes is an important class of linear codes with a big interest in coding theory.

Described as ideals in certain polynomial rings, they have a good algebraic

structure and the cyclic codes over some special finite rings were recently

described (see [Ab, Si; 07], [Al, Ha; 10], [Gr; 97], [Qi, Zh, Zhu; 05], etc). Two
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classes of these main rings are: Galois rings and rings of the form Fq[u]/(ui)

or generalization of these, where q = pr for some prime number p and r ∈ N

−{0}. In paper [Fl; 13(1)], were investigated the structure of cyclic codes of

arbitrary length over the rings: Fq[u]/(ui),Fq[u1, ..., ui]/(u
2
1, u

2
2, ..., u

2
i , u1u2 −

u2u1, ..., ukuj − ujuk, ...),
Fq[u, v]/

(
ui, vj , uv − vu

)
, q = pr, where p is a prime number, r ∈ N − {0}

and Fq is a field with q elements. The ranks and minimum Hamming distance

of these codes were studied. Since the rings with Hamming weight cannot

produce always better codes, a more relevant weights on the above mentioned

rings can be studied. The remark above can constitute the starting point for

further research.

Regarding a finite field as a residue field modulo a prime element from V,

where V is a subset of a real algebra obtained by the Cayley-Dickson process

with a commutative ring structure, in [Fl; 16], we obtained an algorithm,

called the Main Algorithm, which allows us to find codes with a good rate.

This algorithm offers more flexibility than other methods known until now.

As a further research, we intend to improve this algorithm and to adapt it

to all prime numbers.

Many people claim that we live in the so-called information age. With the

Internet, the massive distribution of any kind of information became possible.

These new flows of information need new technologies to expedite them. There

are two problems that may occur: first is to provide secure transmission of

messages, in the sense that errors that appeared during the transmission can be

corrected and the second is that two or more persons can communicate safely,

in the sense that confidentiality is guaranteed, data integrity, authentication

and non-repudiation. Reliable high rate of transmission can be obtained using

Space-Time coding. Space–time block coding is a technique used in wireless

communications. With this technique, we can transmit multiple copies of a

data stream across a number of antennas. In the same time, we can improve

the reliability of data-transfer. For constructing Space-Time codes, division

algebras were chosen as a new tool. Their algebraic properties can be used to

improve the design of good codes and justify their intensive study.

One example is the Alamouti code, given in [Al; 98] which can be built

from a quaternions division algebra. This code construction is used for a
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wireless system with two transmit antennas. For this, we consider z1 and z2

two complex numbers which represent the information symbols which will be

send ( see [Be, Og; 13]). The code C is given as follows:

C = {
(
z1 −z2
z2 z1

)
/ z1, z2 ∈ C}. (1.)

This code has the following property

det (Z − Y ) = |z1 − y1|2 + |z2 − y2|2 ≥ 0

(fully diversity).

From relation (1) , we can remark that the code C can be done as the left

representation of H over C

λ : H→M2 (C) , λ (q) =

(
z1 −z2
z2 z1

)
,

where q = z1 +z2j. For Z =

(
z1 −z2
z2 z1

)
,We remark that detZ = n (q) and

n (q) = 0 implies q = 0. Therefore the fully diversity is equivalent with the

division property of the algebra H. (see [Be, Og; 13])

In [Be, Re; 03], this code was generalised over a division generalised quater-

nion algebra HK (α, β) over a number field K,namely

CHK(α,β) = {
(
a+ b

√
β α

(
c− d√β

)

c+ d
√
β a− b√β

)
/ a, b, c, d ∈ K}.

In [Pu, St; 15], the above code was generalized to quaternion nonassociative

algebras. For other details the reader is referred to [Ho; 08], : [Og, Be, Vi;

07], : [Og, Vi; 04], [Un, Ma; 10], [Pu, Un; 10].

Other directions

BCK-algebras were first introduced in mathematics in 1966 by Y. Imai and

K. Iseki, through the paper [Im, Is; 66], as a generalization of the concept of
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set-theoretic difference and propositional calculi. The class of BCK-algebras

is a proper subclass of the class of BCI-algebras and there exist several gen-

eralizations of BCK-algebras as for example generalized BCK-algebras [Ho,

Ju; 03]. These algebras form an important class of logical algebras and have

many applications to various domains of mathematics, such as: group theory,

functional analysis, fuzzy sets theory, probability theory, topology, etc. For

other details about BCK-algebras and about some new applications of them,

the reader is referred to [Ho, Ju; 03] .

One of the recent applications of BCK-algebras was given in the Coding

Theory. In Coding Theory, a block code is an error-correcting code which

encode data in blocks. In the paper [Ju, So; 11], the authors constructed a

finite binary block-codes associated to a finite BCK-algebra. At the end of

the paper, they put the question if the converse of this statement is also true.

The results presented below were found by the author in the papers [Fl;

15(2)] and [B,Fa, Fl, Ku; 15].

Definition 1.1. An algebra (X, ∗, θ) of type (2, 0) is called a BCI-algebra

if the following conditions are fulfilled:

1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = θ, for all x, y, z ∈ X;

2) (x ∗ (x ∗ y)) ∗ y = θ, for all x, y ∈ X;

3) x ∗ x = θ, for all x ∈ X;

4) For all x, y, z ∈ X such that x ∗ y = θ, y ∗ x = θ, it results x = y.

If a BCI-algebra X satisfies the following identity:

5) θ ∗ x = θ, for all x ∈ X, then X is called a BCK-algebra.

A BCK-algebra X is called commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x), for all

x, y ∈ X and implicative if x ∗ (y ∗ x) = x, for all x, y ∈ X.
The partial order relation on a BCK-algebra is defined such that x ≤ y if

and only if x ∗ y = θ.

If (X, ∗, θ) and (Y, ◦, θ) are two BCK-algebras, a map f : X → Y with the

property f (x ∗ y) = f (x) ◦ f (y) , for all x, y ∈ X, is called a BCK-algebras

morphism. If f is a bijective map, then f is an isomorphism of BCK-algebras.

In the following, we will use some notations and results given in the paper

[Ju, So; 11] .
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From now on, all considered BCK-algebras are finite.

Let A be a nonempty set and let X be a BCK-algebra.

Definition 1.2. A mapping f : A → X is called a BCK-function on A.

A cut function of f is a map fr : A→ {0, 1}, r ∈ X, such that

fr (x) = 1, if and only if r ∗ f (x) = θ, ∀x ∈ A.

A cut subset of A is the following subset of A

Ar = {x ∈ A : r ∗ f (x) = θ}.

Remark 1.3. Let f : A→ X be a BCK-function on A. We define on X

the following binary relation

∀r, s ∈ X, r ∼ s if and only if Ar = As.

This relation is an equivalence relation on X and we denote with r̃ the equiv-

alence class of the element r ∈ X.

Remark 1.4. ([Ju, So; 11] ) Let A be a set with n elements. We consider

A = {1, 2, ..., n} and let X be a BCK-algebra. For each BCK-function f : A→
X, we can define a binary block-code of length n. For this purpose, to each

equivalence class x̃, x ∈ X, will correspond the codeword wx = x1x2...xn with

xi = j, if and only if fx (i) = j, i ∈ A, j ∈ {0, 1}.We denote this code with VX .

Let V be a binary block-code and wx = x1x2...xn ∈ V, wy = y1y2...yn ∈ V
be two codewords. On V we can define the following partial order relation:

wx � wy if and only if yi ≤ xi, i ∈ {1, 2, ..., n}. (1.1.)

In the paper [Ju, So; 11], the authors constructed binary block-codes gen-

erated by BCK-functions. At the end of the paper they put the following

question: for each binary block-code V , there is a BCK-function which deter-

mines V ? The answer of this question is partial affirmative, as we can see in

Theorem 2.2 and Theorem 2.9.
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2. Main results

Let (X,≤) be a finite partial ordered set with the minimum element θ .

We define the following binary relation ” ∗ ” on X :





θ ∗ x = θ and x ∗ x = θ, ∀x ∈ X;

x ∗ y = θ, if x ≤ y, x, y ∈ X;

x ∗ y = x, otherwise.

(2.1.)

Proposition 2.1. With the above notations, the algebra (X, ∗, θ) is a

non-commutative and non-implicative BCK-algebra. �

If the above BCK-algebra has n elements, we will denote it with Cn.

Let V be a binary block-code with n codewords of length n. We consider

the matrix MV = (mi,j)i,j∈{1,2,...,n} ∈Mn({0, 1}) with the rows consisting of

the codewords of V. This matrix is called the matrix associated to the code V.

Theorem 2.2. With the above notations, if the codeword 11...1︸ ︷︷ ︸
n−time

is in V

and the matrix MV is upper triangular with mii = 1, for all i ∈ {1, 2, ..., n},
there are a set A with n elements, a BCK-algebra X and a BCK-function

f : A→ X such that f determines V.

Proof. We consider on V the lexicographic order, denoted by ≤lex. It

results that (V,≤lex) is a totally ordered set. Let V = {w1, w2, ..., wn}, with

w1 ≥lex w2 ≥lex ... ≥lex wn. From here, we obtain that w1 = 11...1︸ ︷︷ ︸
n−time

and

wn = 00...0︸ ︷︷ ︸ 1

(n−1)−time

. On V we define a partial order � as in Remark 1.4. Now,

(V,�) is a partial ordered set with w1 � wi, i ∈ {1, 2, ..., n}. We remark that

w1 = θ is the ”zero” in (V,�) and wn is a maximal element in (V,�) . We

define on (V,�) a binary relation ” ∗ ” as in Proposition 2.1. It results that

X = (V, ∗, w1) becomes a BCK-algebra and V is isomorphic to Cn as BCK-

algebras. We consider A = V and the identity map f : A→ V, f (w) = w as a

BCK-function. The decomposition of f provides a family of maps VCn
= {fr :

A → {0, 1} / fr (x) = 1, if and only if r ∗ f (x) = θ, ∀x ∈ A, r ∈ X}. This

family is the binary block-code V relative to the order relation � . Indeed,
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let wk ∈ V, 1 < k < n, wk = 00...0︸ ︷︷ ︸
k−1

xik ...xin , xik ...xin ∈ {0, 1}. If xij = 0, it

results that wk � wij and wk ∗ wij = θ. If xij = 1, we obtain that wij � wk

or wij and wk can’t be compared, therefore wk ∗ wij = wk.�

Remark 2.3. Using technique developed in [Ju, So; 11], we remark that a

BCK-algebra determines a unique binary block-code, but a binary block-code

as in Theorem 2.2 can be determined by two or more algebras(see Example

3.1). If two BCK-algebras, A1, A2 determine the same binary block-code, we

call them code-similar algebras, denoted by A1 ∼ A2. We denote by Cn the

set of the binary block-codes of the form given in the Theorem 2.2.

Remark 2.4. If we consider Bn, the set of all finite BCK-algebras with n

elements, then the relation code-similar is an equivalence relation on Bn. Let

Qn be the quotient set. For V ∈ Cn, an equivalent class in Qn is V̂ = {B ∈ Bn

/ B determines the binary block-code V }.

Proposition 2.5. The quotient set Qn has 2
(n−1)(n−2)

2 elements, the same

cardinal as the set Cn.

Proof. We will compute the cardinal of the set Cn. For V ∈ Cn, let MV

be its associated matrix. This matrix is upper triangular with mii = 1, for

all i ∈ {1, 2, ..., n}. We calculate in how many different ways the rows of such

a matrix can be written. The second row of the matrix MV has the form

(0, 1, a3, ..., an) , where a3, ..., an ∈ {0, 1}. Therefore, the number of different

rows of this type is 2n−2 and it is equal with the number of functions from

a set with n − 2 elements to the set {0, 1}. The third row of the matrix MV

has the form (0, 0, 1, a4, ..., an) , where a4, ..., an ∈ {0, 1}. In the same way, it

results that the number of different rows of this type is 2n−3. Finally, we get

that the cardinal of the set Cn is 2n−22n−3...2 = 2
(n−1)(n−2)

2 .�

Remark 2.6. If Nn is the number of all finite non-isomorphic BCK-

algebras with n elements, then Nn ≥ 2
(n−1)(n−2)

2 .

Remark 2.7. 1) Let V1, V2 ∈ Cn and MV1
,MV2

be the associated matrices.

We denote by rVi

j a row in the matrix MVi
, i ∈ {1, 2}, j ∈ {1, 2, ..., n}. On

Cn, we define the following totally order relation

V1 �lex V2 if there is i ∈ {2, 3, ..., n} such that rV1
1 = rV2

1 , ..., rV1
i−1 = rV2

i−1 and rV1
i ≥lex rV2

i ,
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where ≥lex is the lexicographic order.

2) Let V1, V2 ∈ Cn and MV1
,MV2

be the associated matrices. We define a

partially order on Cn

V1 ≪ V2 if there is i ∈ {2, 3, ..., n} such that rV1
1 = rV2

1 , ..., rV1
i−1 = rV2

i−1 and rV1
i � rV2

i ,

where � is the order relation given by the relation (1.1) .

3) Let Θ = (θij)i,j∈{1,2,...,n} ∈ M ({0, 1}) be a matrix such that θij = 1,

i ≤ j, for all i, j ∈ {1, 2, ..., n} and θij = 0 in the rest. It results that

the code Ω, such that MΩ = Θ, is the minimum element in the partial or-

dered set (Cn, ≪) , where elements in Cn are descending ordered relative

to �lex defined in 1). Using the multiplication ” ∗ ” given in relation (2.1)

and Proposition 2.1, we obtain that (Cn, ∗,Ω) is a non-commutative and non-

implicative BCK-algebra. Due to the above remarks and relation (2.1) , this

BCK-algebra determines a binary block-code VCn
of length 2

(n−1)(n−2)
2 . Obvi-

ously, V̂Cn
∈ C

2
(n−1)(n−2)

2
.

Proposition 2.8. Let A = (ai,j) i∈{1,2,...,n}
j∈{1,2,...,m}

∈Mn,m({0, 1}) be a matrix

with rows lexicographic ordered in the descending sense. Starting from this

matrix, we can find a matrix B = (bi,j)i,j∈{1,2,...,q} ∈Mq({0, 1}), q = n+m,

such that B is an upper triangular matrix, with bii = 1, ∀i ∈ {1, 2, ..., q} and
A becomes a submatrix of the matrix B.

Proof. We insert in the left side of the matrix A ( from the right to the left)

the following n new columns of the form 00...01︸ ︷︷ ︸
n

, 00...10︸ ︷︷ ︸
n

, ..., 10...00︸ ︷︷ ︸
n

. It results a

new matrix D with n rows and n+m columns. Now, we insert in the bottom

of the matrix D the following m rows: 00...0︸ ︷︷ ︸
n

10...00︸ ︷︷ ︸
m

, 00...0︸ ︷︷ ︸
n+1

01...00︸ ︷︷ ︸
m−1

, ..., 000︸︷︷︸
n+m−1

1.

We obtained the asked matrix B.�

Theorem 2.9. With the above notations, we consider V a binary block-

code with n codewords of length m,n 6= m, or a block-code with n codewords

of length n such that the codeword 11...1︸ ︷︷ ︸
n−time

is not in V, or a block-code with

n codewords of length n such that the matrix MV is not upper triangular .

There are a natural number q ≥ max{m,n}, a set A with m elements and a
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BCK-function f : A → Cq such that the obtained block-code VCn
contains the

block-code V as a subset.

Proof. Let V be a binary block-code, V = {w1,w2, ..., wn}, with codewords

of length m. We consider the codewords w1,w2, ..., wn lexicographic ordered,

w1 ≥lex w2 ≥lex ... ≥lex wn. Let M ∈ Mn,m({0, 1}) be the associated matrix

with the rows w1, ..., wn in this order. Using Proposition 2.8, we can extend

the matrix M to a square matrix M ′ ∈ Mq({0, 1}), q = m + n, such that

M ′ =
(
m′
i,j

)
i,j∈{1,2,...,q} is an upper triangular matrix with mii = 1, for all

i ∈ {1, 2, ..., q}. Since the first line of the matrix M ′ is not 11...1︸ ︷︷ ︸
q

, then we

insert the row 11...1︸ ︷︷ ︸
q+1

as a first row and the column 10...0︸︷︷︸
q

as a first column

. Applying Theorem 2.2 for the matrix M ′, we obtain a BCK-algebra Cq =

{x1, ..., xq},with x1 = θ the zero of the algebra Cq and a binary block-code

VCq
. Assuming that the initial columns of the matrix M have in the new matrix

M ′ positions ij1 , ij2 , ..., ijm ∈ {1, 2, ..., q}, let A = {xj1 , xj2 , ..., xjm} ⊆ Cq. The

BCK-function f : A → Cq, f (xji) = xji , i ∈ {1, 2, ...,m}, determines the

binary block-code VCq
such that V ⊆ VCq

.�

3. Examples

Example 3.1. Let V = {0110, 0010, 1111, 0001} be a binary block code.

Using the lexicographic order, the code V can be written

V = {1111, 0110, 0010, 0001} = {w1, w2, w3, w4}. From Theorem 2.2, defining

the partial order � on V, we remark that w1 � wi, i ∈ {2, 3, 4}, w2 � w3, w2

can’t be compared with w4 and w3 can’t be compared with w4. The operation

” ∗ ” on V is given in the following table:

∗ w1 w2 w3 w4

w1 w1 w1 w1 w1

w2 w2 w1 w1 w2

w3 w3 w3 w1 w3

w4 w4 w4 w4 w1

.
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Obviously, V with the operation ” ∗ ” is a BCK-algebra.

We remark that the same binary block code V can be obtained from the

BCK-algebra (A, ◦, θ)

◦ θ a b c

θ θ θ θ θ

a a θ θ a

b b a θ b

c c c c θ

with BCK-function, f : V → V, f(x) = x.(see [Ju, So; 11] , Example 4.2).

From the associated Cayley multiplication tables, it is obvious that the al-

gebras (A, ◦, θ) and (V, ∗, w1) are not isomorphic. From here, we obtain that

BCK-algebra associated to a binary block-code as in Theorem 2.2 is not unique

up to an isomorphism. We remark that the BCK-algebra (A, ◦, θ) is commu-

tative and non implicative and BCK-algebra (V, ∗, w1) is non commutative

and non implicative. Therefore, if we start from commutative BCK-algebra

(A, ◦, θ) to obtain the code V, as in [Ju, So; 11], and then we construct the

BCK-algebra (V, ∗, w1), as in Theorem 2.2, the last obtained algebra lost the

commutative property even that these two algebras are code-similar.

Example 3.2. Let X be a non empty set and F = {f : X → {0, 1} / f
function}. On F is defined the following multiplication

(f ◦ g) (x) = f (x)−min{f (x) , g (x)}, ∀x ∈ X.

(F, ◦,0), where 0 (x) = 0, ∀x ∈ X, is an implicative BCK-algebra([Sa, Az;

11], Theorem 3.3 and Example 1).

IfX is a set with three elements, we can consider F = {000, 001, 010, 011, 100, 101, 110, 111}
the set of binary block-codes of length 3. We have the following multiplication

table.
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◦ 000 001 010 011 100 101 110 111 The obtained binary code-words

000 000 000 000 000 000 000 000 000 11111111

001 001 000 001 000 001 000 001 000 01010101

010 010 010 000 000 010 010 000 000 00110011

011 011 010 001 000 011 010 001 000 00010001

100 100 100 100 100 000 000 000 000 00001111

101 101 100 101 100 001 000 001 000 00000101

110 110 110 100 100 010 010 000 000 00000011

111 111 110 101 100 011 010 001 000 00000001

.

We obtain the following binary block-code

V = {11111111, 01010101, 00110011, 00010001,

00001111, 00000101, 00000011, 00000001}, with the elements lexicographic or-

dered in the descending sense. From Theorem 2.2, defining the partial order

� on V and the multiplication ” ∗ ”, we have that (V, ∗, 11111111) is a non-

implicative BCK-algebra and the algebras (V, ∗, 11111111) and (F, ◦,0) are

code-similar.

Example 3.3. Let V = {11110, 10010, 10011, 00000} be a binary block

code. Using the lexicographic order, the code V can be written

V = {11110, 10011, 10010, 00000} = {w1, w2, w3, w4}. Let MV ∈ M4,5 ({0, 1})

be the associated matrix, MV =




1 1 1 1 0

1 0 0 1 1

1 0 0 1 0

0 0 0 0 0


 . Using Proposition

2.8, we construct an upper triangular matrix, starting from the matrix MV .

It results the following matrices:

D =




1 0 0 0 1 1 1 1 0

0 1 0 0 1 0 0 1 1

0 0 1 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0


 and
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B =




1 0 0 0 1 1 1 1 0

0 1 0 0 1 0 0 1 1

0 0 1 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




.

Since the first row is not 11...1︸ ︷︷ ︸
9

, using Theorem 2.8, we insert a new row

11...1︸ ︷︷ ︸
10

as a first row and a new column 10...0︸ ︷︷ ︸
10

as a first column. We obtain the

following matrix: B′ =




1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 1 1 1 1 0

0 0 1 0 0 1 0 0 1 1

0 0 0 1 0 1 0 0 1 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1




.

The binary block-code W = {w1, ..., w10}, whose codewords are the rows of the

matrixB′, determines a BCK-algebra (X, ∗, w1). LetA = {w6, w7, w8, w9, w10}
and f : A → X, f (wi) = wi, i ∈ {6, 7, 8, 9, 10} be a BCK-function which de-

termines the binary block-code

U = {11111, 11110, 10011, 10010, 00000, 10000, 01000, 00100, 00010, 00001}. The

code V is a subset of the code U.

In the results presented above, we proved that to each binary block-code V

we can associate a BCK-algebra X such that the binary block-code generated

by X,VX , contains the code V as a subset. In some particular case, we have

VX = V.

From Example 3.1 and 3.2, we remark that two code-similar BCK-algebras

can’t have the same properties. For example, some algebras from the same
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equivalence class can be commutative and other non-commutative or some

algebras from the same equivalence class can be implicative and other non-

implicative. As a further research, will be very interesting to study what

common properties can have two code-similar BCK-algebras.

Due to this connection of BCK-algebras with Coding Theory, we can con-

sider the above results as a starting point in the study of new applications of

these algebras in the Coding Theory.
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ANNEX 1

Lemma 7.3, [Sch; 85], p.133

Let P0 be a q−preordering, that is

P0 + P0 ⊂ P0,K
2P0 ⊂ P0, P0 ∩ −P0 = 0.

Then there exists a q−ordering P with P0 ⊂ P or −P0 ⊂ P . (It is not

necessary that 1 ∈ P0)

Theorem 3.7 from [O’ Sh; 10]

For n = m + 1 + [m3 ], s(Q(n)) ∈ [m + 1, n], where Q(n) =
(
x,y
F

)
⊗F

F (< 1 >⊥ n× TP ) , F a field of characteristic different from two.

Lemma from [Sch; 85], p.151

Let n = 2k and α1, α2, ..., αn, β1, β2, ..., βn ∈ K. Then there are γ2, ..., γn ∈
K such that

(
α2
1 + α2

2 + ...+ α2
n

) (
β2
1 + β2

2 + ...+ β2
n

)
= (α1β1 + ...+ αnβn)

2
+γ22 +...+γ2n.

Proposition 2.2. from [La,Ma; 01]

Let k ≥ 1 be an integer, F = F0 (x) be the rational function field in one

variable over the formally real field F0. Then the quadratic forms

(
2k + 1

)
× < 1 >⊥ 2k× < x > and 2k× < 1,−x >

stay anisotropic over F0 (x) (αk) , where αk = (2k + 1)× < 1,−x > .

Lemma 2.5, [Hoff; 08]

Let ϕ be a quadratic form over a formally real field F , dimϕ ≥ 2, and let

P be an ordering on F. Then P extends to F (ϕ) if and only if ϕ is indefinite

at P . In this situation, if 3c8 is another form over F, then dim(3c8F (ϕ))an ≥
|sgnP (3c8)|.

Theorem 4.1, [Ka, Me; 03]
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Let X and Y be anisotropic quadrics over a field F and suppose that Y is

isotropic over F (X). Then

i) dimes(X) ≤ dimes(Y );

ii) Moreover, the equality dimes(X) = dimes(Y ) holds if and only if X is

isotropic over F (Y ).

Theorem 3.8. from [O’ Sh; 10]

i) s (O (n)) ∈ [n− [n8 ], n], for all n.

ii) s(Q (n)) ∈ [n− [n+3
4 ], n], for all n.

iii) s(O (n)) ∈ [n−[n+7
8 ], n], for all n, where O(n) =

(
x,y,z
F

)
⊗FF (< 1 >⊥ n× TP ) .

Theorem 65, [Sm; 04]

Let n ≤ 3. Any univariate 2n−onic polynomial P (x) having a unique

monomial of highest degree n > 0, has at least one root.

Theorem 1, [Ei, Ni; 44]

Let f (x) = a0xa1x...xan + φ (x) be a polynomial with x, ai real quater-

nions, ai 6= 0, and φ (x) be a polynomial as a sum of a finite number of similar

monomials with degree < n. Therefore the equation f (x) = 0 has at least one

solution.



Habilitation thesis 173

ANNEX 2

Lenstra’s elliptic curves algorithm

The following presentation use ideas from the beautiful book Rational

Points on Elliptic Curves of Silverman and Tate, [Si, Ta; 92].

For a polynomial of the form f = a0 + b0x+ b1y+ c0x
2 + 2c1xy+ c2y

2 + ...,

plain algebraic curve is the set {(x, y) ∈ R2 / f (x, y) = 0}. This curve is

nonsingular or regular in a point (x0, y0) on f if at least one of the partial

derivatives of f in this point is non-zero, that means ∂f
∂x (x0, y0) 6= 0 or/and

∂f
∂y (x0, y0) 6= 0.

An elliptic curve is considered a plane algebraic curve defined by an equa-

tion of the form (Weierstrass normal form)

y2 = x3 + ax+ b

which is nonsingular. On such a curve, we consider a point O, the point at

infinity.

For an elliptic curve, if we consider the discriminant ∆ = −16
(
4a3 + 27b2

)
,

the curve is considered regular if and only if ∆ 6= 0.

We remark that an elliptic curve is symmetric about the axis x, therefore

for any given point P , we can take −P, the opposite point. We will consider

−O to be just O.

If P and Q are two points on the curve, we can uniquely find a third point,

P +Q, as follows. In this way, we define a law and a group structure:

- We draw the line between P and Q. This line will intersect the curves in

a third point, R. We consider P +Q to be −R, its opposite.

-When one of the points is O, we define P +O = P = O + P , therefore O

becomes the identity of the group.

We consider an elliptic curve C : y2 = x3 − px− q on the Q. The rational

points of C are these points on C whose all coordinates Q, including the point
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at infinity. We will denote this points with C(Q) and with the above law forms

we obtain a group structure.

Therefore, if P and Q are two points on C and R = P + Q = (xR,−yR) ,

we have

xR =
(yP − yQ)2

(xP − xQ)2
− xP − xQ,

yR = yP +
yP − yQ
xP − xQ

(xR − xP ) ,

for xP 6= xQ.

If xP = xQ, we have yP = −yQ and we include here the situation when

yP = yQ = 0.

If yP = yQ 6= 0, it results R = 2P = (xR,−yR) and we have

xR =
(3x2P − p)2

4y2P
− 2xP ,

yR = yP +
3x2P − p

2yP
(xR − xP ) .

Pollard’s p − 1 Algorithm. Let n ≥ 2 be a non prime integer. We want

find its prime factors.

Step 1. We choose a number k such that k = lcm[1, 2, 3, ...,K], K a fixed

integer, therefore k is a product of small prime numbers at small powers.

Step 2. We choose an arbitrary integer a such that 1 < a < n.

Step 3. We compute d = gcd(a, n). If d > 1, therefore d is a nontrivial factor

of the number n. Otherwise, we go to the Step 4.

Step 4. We compute d = gcd(ak − 1, n). If 1 < d < n, then d is a nontrivial

factor of n and the algorithm stops here. If d = 1, we go to the Step 1 and we

chose a big integer k by increasing the value of K. If d = n, we go to the Step

2 and we choose another number a.

Complexity: O(n1/2+ε).

The Pollard’s algorithm uses the fact that the nonzero elements from Zp

forms a group of p−1 order. Therefore, if (p−1) | k, then ak = 1 in this group.

Lenstra had the idea to replace the group Zp with the rational points on an

elliptic curve, C(Zp), and to replace the integer a with a point P ∈ C(Zp). As

in the Pollard’s algorithm, we choose an integer k such that k is a product of
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small primes at small powers. If the cardinal of the set C(Zp), denoted |C(Zp)| ,
if |C(Zp)| | k, we have kP = O in C(Zp) and the fact that kP = O in C(Zp) is

used to find a nontrivial divisor of n.

The Lenstra’s algorithm for elliptic curves. Let n ≥ 2 be a integer.

We want find the prime factors of the number n.

Step 1. We check if gcd(n, 6) = 1 and if is not on the form mr for r ≥ 1.

Step 2. We choose the integers 1 ≤ b, x1, y1 ≤ n.
Step 3. We consider c = y21 −x31− bx1 mod n and let C the elliptic curve

C : y2 = x3 + bx+ c

with P = (x1, y1) ∈ C.
Step 4. We check if D = gcd(4b3 + 27c2, n) = 1. If D = n, we choose a

new b. If 1 < b < n, then D | n.
Step 5. We search a number k such that k is a product of small primes

at small powers, k = lcm[1, 2, 3, ...,K], K a fixed integer.

Step 6. We compute

kP =

(
ak
d2k
,
bk
d2k

)
.

Step 7. We compute D′ = gcd(dk, n). If 1 < D′ < n, then D′ is a

nontrivial factor of n. If D = 1, we go to the Step 5 and increase k or we go

to Step 2 and we choose another curve. If D = n, then we go to Step 5 and

decrease k.

With Pollard’s p− 1 algorithm we use the groups of the form Z∗
p, which p

is a prime divisor of the number n. For a fixed n the group Z∗
p is fixed. If we

use the Lenstra’s algorithm on elliptic curves on the field Zp we have various

groups which can be utilized depending on the chosen curves and the chances

to find a group whose order is not divisible with a big prime or with a power

of big prime. With a Lenstra’s algorithm we have a kind of flexibility which

allow us to find another elliptic curve and we can restart the algorithm.
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ANNEX 3

QAM-constelation

For the following presentation, we use Wikipedia.org. A constellation di-

agram is considered a representation for a signal modulated using a digital

modulation scheme, as for example quadrature amplitude modulation, QAM.

The signal is represented in a diagram in a two-dimensional complex plane

with axes X−Y . Such a diagram represents as points in the complex plane a

possible symbols which can be selected from a given modulation scheme. With

such a diagram, we can recognize which type of interference and distortion for

a signal we have.

The constellation diagram is useful for QAM, in which the constellation

points can be usually arranged in a geometric figure as for example a square

grid in which the vertical and horizontal spacing are equal. The number of

points in the grid is usually a power of 2 since in digital telecommunications

the data are usually binary. Therefore, we have 16-QAM, 64-QAM, etc. We

must remark that, by moving to a higher-order constellation, it is possible to

obtain a good advantage: to transmit more bits per symbol.

When a signal is received, the decoder examines the received symbol. This

signal can be corrupted by the channel or the receiver. The decoder can

estimate and select the closet point from the constellation diagram, using

usually an Euclidean distance or another defined distances. Therefore it will

decode incorrectly if the corruption has caused that the received symbol can

be moved closer to another constellation point than the transmitted one. In

this sense, the constellation diagram give us a straightforward visualization of

this process.

See two constellations: Z[i]π for π = 2 + i and for 16−QAM.
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Fig. 1:(From [Hu; 09]) Z[i]π for π = 2 + i

Fig. 2: 16-QAM, from Wikipedia.org
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