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Notations

K(p)

K A1,02, ..., 0y >

iw (V)

the algebra obtained by the Cayley-Dickson process of dimension 2¢

real quaternion division algebra

real octonion division algebra

generalized quaternion algebra

generalized octonion algebra

a symmetric bilinear space

the set of natural numbers

the ring of integers

the field of rational numbers

the field of real numbers

the field of complex numbers

the orthogonal sum of the vector spaces V; and V5
a symmetric bilinear space with diagonal matrix (o, ...cup,)
the tensor product of the matrix A and B

the hyperbolic plane

a n—dimensional quadratic irreducible form

the function field of ¢

a Pfister form

the Witt index of (V,b)

the level of the field K

the level of the algebra A

the sublevel of the algebra A

the commutator of the elements x,y from the algebra A
the Hamming weight

the Hamming distance between two codewords

a finite field
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Rezumat

Aceasta teza prezinta, intr-o maniera succinta, rezultatele originale ale
autorului in studiul algebrelor obtinute prin procedeul Cayley-Dickson.

Lucrarea este organizata in 4 capitole, are trei anexe si o bibliografie care
cuprinde 135 de titluri. Ultima parte este dedicata prezentarii unor directii de
dezvoltare personala si stiintifica.

Capitolul 1 prezinta pe scurt rezultate si proprietati cunoscute ale alge-
brelor obtinute prin procedeul Cayley-Dickson.

Capitolul 2 este dedicat prezentarii unor noi rezultate in cee ce priveste
nivelul si subnivelul algebrelor de cuaternioni si octonioni generalizand aceste
doua notiuni si pentru orice algebra obtinuta prin procedeul Cayley-Dickson.
Un rezultat foarte important in acest studiu, demonstrat de catre autor, este
faptul ca pentru orice numar natural n putem gasi o astfel de algebra care sa
aiba nivelul n. Acest rezultat generalizeaza doua rezultate foarte tari datorate
lui Pfister si T.Y. Lam si anume:

Orice corp este fie de nivel infinit, fie de nivel finit de forma 2™ si pentru
orice numar de forma 2™ putem gasi un corp K de nivel 2", respectiv

Pentru orice numar natural n, exista un domeniu de integritate R astfel
incat nivelul sau sa fie n.

Capitolul 3 prezinta noi rezultate importante ale algebrelor obtinute prin
procedeul Cayley-Dickson. Este cunoscut faptul ca aceste algebre sunt sarace
in proprietati. Cuaternnionii nu sunt algebre comutative iar Octonionii au
pierdut si comutativitatea si asociativitatea. In schimb, sunt algebre alterna-
tive, asociative in puteri si flexibile. Incepand cu Sedenionii, raman valabile
doar ultimele doua proprietati, pierzandu-se si alternativitatea. Identitatea lui
Hall pentru cuaternioni si octonioni a fost generalizata pentru orice algebra
obtinuta prin procedeul Cayley-Dickson. Folosindu-se o idee data de Bales
in [Ba; 09], au fost gasite anumite proprietati ale elementelor unei baze intr-o
astfel de algebra, permitandu-ne sa dam astfel un exemplu de functie olomorfa
definita pe o algebra obtinuta prin procedeul Cayley-Dickson. In plus, s-au
rezolvat anumite ecuatii si, folosindu-se cuaternionii de tip Fibonacci-Lucas

peste Q, s-a definit o structura de algebra peste aceste elemente.
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Capitolul 4 este dedicat recentelor aplicatii ale algebrelor obtinute prin
procedeul Cayley-Dickson in teoria codurilor. Pentru orice numar prim p, s-a
identificat o submultime V in A; cu ajutorul caruia am gasit un izomorfism
intre corpul claselor de resturi modulo un prim = din V si Z,, cu p numar
prim astfel incat n(r) = p. In acest fel, s-a putut obtine un algoritm mult
mai flexibil (pastrand proportiile, ca algoritmul lui Lenstra pe curbe eliptice
comparat cu algoritmul p — 1 al lui Pollard) care ne permite sa construim

coduri corectoare de erori peste Z, pentru aproape orice numar prim p.

Ultima parte este dedicata abordarii unor noi directii de cercetare care
au ca punct de plecare rezultatele prezentate in aceasta lucrare: cum poate fi
abordat studiul nivelului si subnivelului unei algebre obtinute prin procedeul
Cayley-Dickson pentru a putea obtine noi rezultate, gasirea de noi identitati si
proprietati ale acestor algebre si dezvoltarea aplicatiilor lor in teoria codurilor.
In plus, au fost prezentate si alte noi directii care au ca baza noile conexiuni
ale altor algebre in teoria codurilor, cum ar fi unele tipuri de algebre logice
(BCK-algebras, BCl-algebras, etc). De asemenea, sunt prezentate si unele

directii de dezvoltare ale activitatii didactice.
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(B) Scientific and professional achievements and
the evolution and development

plans for career development
(B-1) Scientific and professional achievements

Chapter 1

Introduction
1. Preliminaries

Let K be a field, and let A be a vector space over the field K with a binary
operation
VVAXA— A, (1.1,

called the product of the element x and y. We call A an algebra over the field
K if we have the following identities, for all elements x,y,z € A and for all

scalars a,b € K:

(x+y)-z=x-2+yz;
z-(y+z)=z-y+z-z

(az) - (by) = (ab)(z - y).

We remark that the binary operation (1.1) is bilinear and is called the
multiplication in A. In general, the multiplication of elements of an algebra
is not necessarily associative and, due to this situation, we will consider two

distinct cases: associative algebras and nonassociative algebras. Sometime,
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some authors use the notion of an algebra when they refer to an associative
algebra.

An algebra A is called unital or unitary if this algebra contains an identity
element with respect to the multiplication (1.1).

In the following, in all this study, we suppose that K is a commutative
field with charK # 2 and A is an algebra over the field K. The center C
of an algebra A is the set of all elements ¢ € A which commute and associate
with all elements x € A.An algebra A is central if its center is equal with the
ground field, C' = K.

An algebra A is a simple algebra if A is not a zero algebra and {0}
and A are the only ideals of A. The algebra A is called central simple if the
algebra Arp = F' ®p A is simple for every extension F' of K. A central simple
algebra is a simple algebra. An algebra A is called alternative if 2%y = x (zy)
and zy? = (xy)y, for all z,y € A, flexible if x (yz) = (xy)x = zyz, for all
x,y € A and power associative if the subalgebra < z > of A generated by any
element x € A is associative. Each alternative algebra is a flexible algebra
and a power associative algebra.

An element z in a ring R is called nilpotent if we can find a positive integer
n such that ™ = 0.A power-associative algebra A is called a nil algebra if and

only if each element of the algebra is nilpotent.

Artin’s Theorem. [Sc; 66] The subalgebra generated by two arbitrary

elements x,y of an alternative algebra A is associative.

In each alternative algebra A, the following identities

a(z(ay)) = (aza)y,
((za)y)a = x(aya),
(ax)(ya) = a(zy)a

hold, for all a,x,y € A. These identities are called the Moufang identities.

A unitary algebra A # K such that we have z? + o,z + 3, = 0 for each
x € A, with a,, 8, € K, is called a quadratic algebra.

It is known that a finite-dimensional algebra A is a division algebra if and

only if A does not contain zero divisors. (See [Sc;66])
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An algebra A is semisimple if it is a direct sum of simple algebras. An
associative K-algebra A is said to be separable if for every field extension
K C L the algebra A ® ¢ L is semisimple.

Wedderburn’s Theorem. [Sch; 85] Let A be a simple algebra over K.
Then A ~ M, (D), where D is a division algebra over K.

In the following, we will briefly present two important and very known al-
gebras: the quaternion algebras,which are associative algebras, and octonions
algebras, which are nonassociative algebras.

In October 1843, William Rowan Hamilton discovered the quaternions,
which is a 4-dimensional algebra over R. This algebra is an associative and
a noncommutative algebra. In December 1843, John Graves discovered the
octonions, an 8-dimensional algebra over R which is a nonassociative and a
noncommutative algebra. In 1845, these algebras were rediscovered by Arthur
Cayley. They are also known as the Cayley numbers. This process, of passing
from R to C, from C to H and from H to O was generalized to algebras over
arbitrary fields and rings. It is called the Cayley-Dickson doubling process or
the Cayley—Dickson process. Clifford algebras were discovered, in 1878, by
W. K. Clifford. These algebras were defined to have generators ej, es, ..., e,
which anti-commute and satisfy e = a; € R, for all i € {1,2,...,n}. These
algebras generalize the real numbers, complex numbers and quaternions( see

[Lew; 06 ])

1.1. Quaternion algebras

Let H be the real quaternion algebra with basis {1, 1, j, k}, where
P2 =42 =k%>=—-1,ij = —ji,ik = —ki, jk = —kj (1.2.)

and each element from H has the form ¢ = a4+ bi + ¢j + dk,a,b,c,d € R.
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We remark that H is a vector space of dimension 4 over R with the addition
and scalar multiplication.

Also H has a ring structure with multiplication given by (1.2) and the usual
distributivity law.

In the following, we will consider the quaternion algebra over an arbitrary
field K with charK # 2.We consider two elements o, € K and we define
a generalized quaternion algebra, denoted by H(w, 3) = (QI’(B ) , with basis

{1, f1, f2, f3} and multiplication given in the following table:
L Al | s
1 1 bil f2 f3
|l ] «a fs | afs
ol 2| =fs| B | —Bh

fa | fa | -afs | Bfi | —af
If a € H(e, B), @ = ap + a1 f1 + a2 f2 + a3 f3, then

a=ao—a1fi —asfo—asfs

is called the conjugate of the element a. For a € H(x, ), we consider the

following elements:

and

n(a) = aa = aj — aa} — Bai + afaj € K,
called the trace, respectively, the norm of the element a € H(a, 8). It follows that
(a4+@)a =a*+da=a?+n(a)-1
and
a®> —t(a)a+n(a) = 0,Ya € H(a, B),

therefore the generalized quaternion algebra is a quadratic algebra.
The subset
H(a, B)o = {z € H(a, 8) | t(x) =0}
of H(a, §) is a subspace of the algebra H(a, ). It is obvious that

H(a, 8) = K - 1@ H(a, B)o,
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therefore each element z € H(a,3) has the form x = -1+ ', with z( €
K and 7 € H(e, ). For K = R, we call zq the scalar part and T the vector
part for the quaternion x.

If, for z € H(a, ), the relation n (z) = 0 implies = 0, then the algebra
H(ea, B) is a division algebra. A quaternion non-division algebra is called a
split algebra.

Using the above notations, we remark that H(—1,—1) = (7T;1) is a

division algebra.

Proposition 1. ([La; 04],Proposition 1.1)

1) The quaternion algebra H (B1, B2) is isomorphic with the quaternion al-
gebra H (33261,31252) , where z,y € K*.

2) H(-1,1) ~ My (K).O

From the above proposition, we have that a Quaternion algebra is a division

or a split algebra.

1.2. Octonion algebras

The real octonion division algebra is a non-associative and non-commutative

extension of the algebra of quaternions, H (—1,—1) = (71]1’{1). Among all

real division algebras, octonion algebra forms the largest normed division al-

gebra.([Sc; 54])
A generalized octonion algebra over an arbitrary field K, with char K # 2,
is an algebra of dimension 8, denoted OQ(«, 3,7), with basis {1, f1, ..., fr} and

multiplication given in the following table:

1| Al | | ]l | f | f |
1 1 f1 fo f3 fa f5 fe f7
f1 f1 o f3 afs I5 afs - f7 —afs
f2 fo | —fs B —Bf1 fe f7 Bfa Bfs
f3 f3 | -afz Bfi —af f7 afs —Bfs | —aBfa
fa fa | =fs | —fe - f7 Y - -2 —f3
fs fs | -afa | —f7 -afe | vf1 -y vf3 ayfa
fe fe fr —Bfa Bfs vf2 —f3 -By —B1f1
f7 fr | afe | —Bfs | aBfa | vf3 | —avfe | Bvfi afy
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The algebra O(«, 8, ) is a non-commutative and a non-associative algebra,
but it is alternative, flexible and power-associative.

Ifa € O(a, B,7), a =ao+ a1 f1 +asfa+asfs +asfa+ asfs + as fo + ar fr,
then a = ag — a1f1 — asfo — asfs — asfs — asfs — agfes — arfr is called the
conjugate of the element a. For a € O(a, 3,7), we define the elements:

t(a)=a+aec K
n(a) = aa = a3 — aa? — Ba3 + afa3 — yai + ayai + Byai — afyai € K.

These elements are called the trace, respectively, the norm of the element
a € 0(a,B,7). It follows that

(a+@)a =a®>+da=a*+n(a)- 1

and
a®> —t(a)a+n(a) =0,Ya € a € Oa, 3,7),

therefore the generalized octonion algebra is a quadratic algebra.
The subset

O(a, B,7)0 = {z € O(, B,7) | t(z) =0}
of O(c,B,7) is a subspace of the algebra O(c, 3,~). It is obvious that

©(a7ﬂ77) =K-1 @@(O‘7577)07

therefore each element = € O(a,f,v) has the form ¢ = zo - 1 + 7, with
2o € K and 7 € O(a, B,7)o. For K = R, we call 2o the scalar part and 7
the vector part for the octonion .

If, for x € O(c, 8,7), the relation n () = 0 implies = 0, then the algebra
O(w, B8,7) is a division algebra.( see [Sc; 54] and [Sc; 66])

A composition algebra A over the field K is an algebra, not necessarily
associative, with a nondegenerate quadratic form N which satisfies the relation

N(zy) = N(z)N(y),Vz,y € A.
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A unital composition algebras are called Hurwitz algebras.

Hurwitz’s Theorem.[Ba; 01] R, C, H and O are the only real alternative
division algebras.

Theorem ([Theorem 2.14, McC,30]) A is a composition algebra if and only
if A is an alternative quadratic algebra.

1.3. Algebras obtained by the Cayley-Dickson process

As we remarked above, the Octonion algebra extends the Quaternion alge-
bra and the dimension of the Octonion algebra is double that the dimension
of Quaternion algebra. This procedure of doubling dimension of an alge-
bra is called the Cayley-Dickson process. In the following, we briefly present
the Cayley-Dickson process and the properties of the algebras obtained. (see
[Sc; 66] and [Sc; 54]).

We consider A, a finite dimensional unitary algebra over a field K, with a
scalar involution

A= Aa—a,

i.e. it is a linear map with the following properties

ab=ba, a = a,

and
a+a,aa € K -1 forall a,b € A.

An element @ is called the conjugate of the element a, the linear form
t:A—> K, t(a)=a+a
and the quadratic form

n:A— K, n(a) =aa



18 Cristina FLAUT

are called the trace and the norm of the element a, respectively. Hence an
algebra A with a scalar involution is quadratic.
We consider v € K a fixed non-zero element. We define the following

algebra multiplication on the vector space

A &) A: (al,aQ) (b1,b2) = (a1b1 + VBQGQ,GQE—" b2a1) . (13)

The obtained algebra structure over A @ A, denoted by (A,~) is called the
algebra obtained from A by the Cayley-Dickson process. We have dim (A,~) =
2dim A.

Let z € (A,7), * = (a1, az2). The map

(A7) = (4,y), = T = (a1,-a2),

is a scalar involution of the algebra (A,~), extending the involution ~ of the
algebra A. Let

t(z) = t(a1)
and
n (z) =n(a1) — yn(az)
be the trace and the norm of the element x € (A4,7), respectively.
If we consider A = K and we apply this process t times, ¢ > 1, we obtain
A1y ey
AF{;%?J) (1.4.)
Using induction in this algebra, the set {1, fa,..., fn},n = 2!, generates a

an algebra over K,

basis with the properties:
fP=~l, € K, #0,i=2,...,n (1.5.)
and
fifi=—fifi=Bijfe, Bij € K, Bij #0,i # j,4,5 = 2,..n, (1.6.)

Bij and fi being uniquely determined by f; and f;.
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From [Sc; 54], Lemma 4, it results that in any algebra A; with the basis
{1, fa, ..., fn} satisfying relations (1.5) and (1.6), we have:

fi(fiz) = viz = (xfi) fi, (1.7.)

for all i € {1,2,...,n} and for every z € A

For ¢ = 2, we obtain the generalized quaternion algebras and for ¢ = 3,we
obtain the generalized octonion algebras.

We remark that the field K is the center of the algebra A; for ¢ > 2.(See
[Sc; 54]). Algebras A; of dimension 2! obtained by the Cayley-Dickson process,
described above, are central-simple, flexible and power associative for all t > 1
and, in general, are not division algebras for all ¢ > 1. But there exist fields on
which, if we apply the Cayley-Dickson process, the obtained algebras A; are
division algebras for all ¢ > 1,as we can see in the next chapter (See [Br; 67],
[F1; 12] ).

In 1878, W. K. Clifford discovered Clifford algebras. These algebras gen-
eralize the real numbers, complex numbers and quaternions( see [Le; 06 ]).

The theory of Clifford algebras is intimately connected with the theory
of quadratic forms. In the following, we will consider K to be a field of
characteristic not two. Let (V,q) be a quadratic K—vector space, equipped
with a nondegenerate quadratic form over the field K. A Clifford algebra for
(V,q) is a K—algebra C' with a linear map i : V' — C satisfying the property

i(x)® =q(x) 1,z €V,

such that for any K —algebra A and any K linear map v : V — A with v2 (z) =
q(x)-14,Vz € V, there exists a unique K-algebra morphism v’ : C — A with
v=7"oi.

Such an algebra can be constructed using the tensor algebra associated to
a vector space V. Let T(V) = K@V & (V® V) & ... be the tensor algebra
associated to the vector space V' and let J be the two-sided ideal of T'(V)
generated by all elements of the form « ® © — ¢ (z) - 1, for all € V. The
associated Clifford algebra is the factor algebra C(V,q) =T (V) /T . ([Kn;

88], [La; 04])
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Theorem Poincaré-Birkhoff-Witt. ([Kn; 88], p. 44)If {e1,ea,...,en}
is a basis of V , then the set {1,ej,ej,...€j,,1 < s <n,1 <ji; <jo <..<
Js < n}is a basis in C(V,q).

We remark that e;e; = —eje; and e? = ¢ (z). If V has dimension n,
therefore the associated Clifford algebra has dimension 2". The most impor-
tant Clifford algebras are those defined over real and complex vector spaces
equipped with nondegenerate quadratic forms. Every nondegenerate quadratic
form over a real vector space is equivalent with the following standard diagonal
form:

2 2 _ 2 2
qx) =21+ ...+ x; — 2 — ... — T,

where n = r + s is the dimension of the vector space. The pair of integers
(r,s) is called the signature of the quadratic form. The real vector space with
this quadratic form is usually denoted R, , and the Clifford algebra on R, ,
is denoted Cl, s (R). For other details about Clifford algebras, the reader is
referred to [Ki, Ou; 99], [Ko; 10], [Om; 62] and [Sm; 91].

Example 3.4.1.

i) For p = ¢ = 0 we have Clyo (K) ~ K;

ii) For p = 0,¢ = 1, it results that Cly; (K) is a two-dimensional algebra
generated by a single vector e; such that e = —1 and therefore Cly ;1 (K) ~
K (e1). For K =R it follows that Cly1(R) ~ C.

iii) For p = 0,q = 2, the algebra Cly o (K) is a four-dimensional alge-
bra spanned by the set {1,e1,e2,e1e2}. Since e = €3 = (e1e2)? = —1 and
e1e9 = —ege1, we obtain that this algebra is isomorphic to the division quater-
nions algebra H. We remark that the construction is similar with Cayley-
Dickson process: Cly 1 (R) ~ C,Cly 2 (R) ~ H, but Cly s (R) ~ My (C) is not
isomorphic with O, the octonions, since it is associative, Cl 3 (R) ~ My (H).

iv) For p=1,¢g = 1 or p = 2,q = 0, we obtain the algebra Cl; ; (K) =~
Cls,o (K) which is isomorphic with a split quaternion algebra.([Gi, Mu; 91])
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1.4. Nonassociative quaternion algebras

Let A be a quadratic separable algebra over the field K with a scalar
involution —: A — A,a — @. Let v € A — K. Using relation (1.3), the
vector space A & A becomes a quaternion nonassociative algebra over K.
Nonassociative quaternion algebras are not power-associative algebras and are
not quadratic algebras. If A is a separable quadratic field extension of the field
K, therefore a nonassociative quaternion algebra is a division algebra.(see [Wa;
87], [Pu, As; 06])

Quaternions, octonions and algebras obtained by the Cayley-Dickson pro-
cess have at present many applications, as for example in physics, coding
theory, computer vision, etc. For these reasons, these algebras are intense
studied, see for example [Pu; 13], [Pu, St; 15], etc. and some of these appli-
cations will be presented in the next chapters. For other details about these
algebras, the reader is referred to [St; 09] and [Vo; 14].
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Chapter 2

Levels and sublevels of algebras obtained by the Cayley-Dickson
process

As we can seen, the theory of quaternion algebras, octonion algebras and
algebras obtained by the Cayley-Dickson process is closely related to the al-
gebraic theory of quadratic forms.

In the following, we will present the generalization of the concepts of level
and sublevel of a composition algebra to algebras obtained by the Cayley-
Dickson process and we will show that, in the case of level for algebras obtained
by the Cayley-Dickson process, the situation is similar as for the integral
domains. For this purpose, we will prove that for any positive integer n, we
can find an algebra A obtained by the Cayley-Dickson process which has the
norm form anisotropic over a suitable field and has the level n € N—{0}.These
results were obtained in the papers [F1; 11] and [F1; 13]

2.1. Quadratic forms

For the general notions of quadratic and symmetric bilinear spaces, we
used [La; 04], [La, Ma; 01], [Om; 62], [Sch; 85].

Definition 2.1.1. [Sch;85] A symmetric bilinear space (V,b) over a field
K is a vector space V with a symmetric bilinear form b: V x V — K. From
now on, we will understand by a bilinear space a symmetric bilinear space.

Two symmetric bilinear spaces (V1,b1) and (Vz, by) are isomorphic (or iso-
metric) if there is a bijective map 7 : Vi — V4 such that be (7 (z),7 (y)) =
b1 (z,y) . We denote this with V3 = V5. The map 7 is called an isometry.
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A symmetric bilinear space (V,b) is called regular(nonsingular or nonde-
generate) if for each element x # 0,z € V, there is an element y € V such that
b(x,y) # 0.

A quadratic space (V, q) over a field K is a vector space V with a quadratic
formqg:V — K.

Since

bq:%((J(QE‘Fy)—Q(fE)—Q(?J))

is the associated bilinear form of ¢, in the following, we will consider symmetric
bilinear spaces and quadratic spaces as the similar objects and sometimes we

will use the notation ¢,with ¢ the quadratic form on V.

Let (V1,b1) and (V3, b2) be two bilinear spaces. Let V = V1 @Vo(V = Vi xV,
and V3 N'Va = {0}, V1, V4 considered as subspaces of V), the direct sum, with

the bilinear form
b:VieVy — K7b(($/1’$/2) > (37/1/7'7;,2/)) =b (.7;/1,1‘/1/) +bo (.1‘/27.');‘12/) .

V is called the orthogonal sum of (V1,b1) and (Va, bs), denoted by Vi L V5.
If b1 and by are symmetric, it results that b is symmetric. Let ¢, g2, q be the
associated quadratic forms. We write sometimes ¢ = ¢q; L ¢o instead of
V=v1VW.

We will denote m x ¢ =q L ... L. g,where m € N.
——

m—times
A quadratic form represents the scalar o € K if there is an element = €

V,x # 0, such that ¢ () = «. The space (V, q) is called universal if g represent
all nonzero scalars.

We call a quadratic form ¢ : V' — K anisotropic if ¢ (z) = 0 implies z =
0,for all x € V, otherwise q is called isotropic. A bilinear form b: V xV — K
is called anisotropic if b(x,x) = 0 implies x = 0,for all z € V| otherwise b is
called isotropic. A bilinear space (V,b) is called isotropic if its bilinear form
is isotropic. A subspace V' of V is called totally isotropic if b(x,y) = 0, for

all z,y € V’'.An isotropic bilinear space is universal.

Let (V,b) be a symmetric bilinear space of dimension n, with a basis B =

{e1,ea, ..., e, }. The matrix A associated to bilinear form b with respect to basis
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B is a symmetric matrix. Every symmetric matrix is congruent to a diagonal

matrix
a; O 0 0
0 a9 0 0
0 0 0 0 ,
0 0 .. ap—1 O
0o 0 .. 0 Qn,

therefore we will denote the vector space (V,b) with < a1, ..., > .

Proposition 2.1.2. ([Sch; 85], Lemma 3.7.) If o € S, is a permutation
of degree n, therefore we have:

1) <aq, .y >2< Q1) Qo (n) >

2) For arbitrary non-zero elements b; € K*, we have
<Ayl > b%al,...b%an > .0

Definition. 2.1.3. [La; 04] A regular bilinear space (V,b) of dimension
two isomorphic to < 1,—1 > is called hyperbolic plane.

Proposition 2.1.4. ([Sch; 85], Theorem 4.5.) Let (V,b) be a regular
bilinear space of dimension 2n. The following conditions are equivalent:

i) V contains a totally isotropic subspace W of dimension n.

i) (V,b) =< 1,..,1,—-1,..,—1>~<1,—-1,...1,-1 > .00

A space which satisfies one of the equivalent conditions of the above propo-

sition is called a hyperbolic space.

Proposition 2.1.5. ([Sch; 85], Corollary 4.6.) Let (V,b) be a regular
bilinear space of dimension 2. The following conditions are equivalent:

i) (V,b) is isotropic;

i) (V,b) ~<1,—-1>.0

Definition 2.1.6. [La; 04] Let A = (a;;) € M,, (K),B = (b;;) € M,,(K)
be two square matrices. The matrix A ® B € M, (K), defined as follows

auB algB algB alnB
A®B =

am1B apm1B a1 B ... amnB

is called the tensor product of the matrix A and B.
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Let ¢ be a n—dimensional quadratic irreducible form over the field K,
n € N,n > 1, which is not isometric to the hyperbolic plane,< 1,—1 > . We
can consider ¢ as a homogeneous polynomial of degree 2,

P (X)=p(Xy,..X,) = Zainin,aij € K*.

We define the function field of ¢, denoted by K(g), as the quotient field of
the integral domain

K[Xla aXn] / (50 (X17 aXn)) :

Since (X1, ..., X;,) is a non-trivial zero, ¢ is isotropic over K ().

Example 2.1.7. In the polynomial ring K[X;, X5], we consider the ideal
generated by the irreducible polynomial ¢ (X1, X) = X7+ X2. Therefore, the
function field of ¢ is the field K (X;) (\/—T(f) .

Considering n € N — {0}, we define a n—fold Pfister form over K a
quadratic form of the type

<l,a1 > ®..Q <1,a, >,a1,...,a, € K*.

A Pfister form is denoted by < ay,as,...,an, > . For n € N,n > 1, a Pfister

form ¢ can be written as
<l,a1 > ®.0 < 1l,a, >=<1,a1,02, ..., 0n, G102, ..., 410203, ..., G1A2...0p > .

If p=<1>1 ¢, then ¢ is called the pure subform of . It is known that a
Pfister form is hyperbolic if and only if is isotropic. Therefore a Pfister form
is isotropic if and only if its pure subform is isotropic.( See [Sch; 85] )

For a field L, we define

L* = LU {0},

where z + co =z, for x € L, xoo:oofoerL*,oooo:oo,é:O,%:oo.
An L—place of the field K is a map A : K — L° with the properties:

Az +y)=A()+A(y),A(zy) = A (2) A (y),

whenever the right sides are defined.
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Theorem 2.1.8. ([Kn; 76], Theorem 3.3. ) Let F be a field of character-
istic # 2, ¢ be a quadratic form over F and K an extension of the field F.
If oK s isotropic, then there exist an F—place from F (p) to K.

A subset P of K is called an ordering of K* if

P+PcCP,PPCP,PU-P=K"

A field K with an ordering is called an ordered field, the elements from
P are called positive and from —P are called negative. For z,y € K, K an
ordered field, we define x >y if (x —y) € P.

A field K is called a formally real field if —1 is not a sum of squares in
K. Since each element from a finite field is a sum of squares (see Proposition
3.7. from [Sch, 85]), it results that a finite field is not a formally real field.
Therefore, a formally real field has characteristic equal with 0.

A quadratic semi-ordering (or a g-ordering) of a field K is a subset P of
K with the following properties:

P+PCcPK?PCcP1cP,PU-P=K,Pn—-P={0}.

We define z > y if (z — y) € P. We remark that if the field K contains a
g-ordering, therefore K is a formally real field.

Obviously, every ordering is a g-ordering ([La; 04],[Sch; 85]). A g-preordering
is a subset Py of K such that

Py+ Py C Py, K*Py C Py, PoN—Py = {0}.

Then there is a g-ordering P such that Py C P or —FPy C P. (Lemma 7.3,
[Sch; 85], p.133)
If ¢ ~<ay,...,a, > is a quadratic form over a formally real field K and

P is an ordering on K, the signature of ¢ at P is
sgn (o) =i | a; >p 0} —{i| a; <p 0}].

The quadratic form ¢ is indefinite at ordering P if dim¢ > |sgn(p)]|.

Proposition 2.1.9. ([Sch;85], p. 17, [La; 04], p.12)
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i) Let (V1,b1) and (Va, be) be two isomorphic bilinear spaces with orthogonal
decompositions Vi = V| L V" Vo =V§ L V', such that V{ and V3 are regular
subspaces and V| ~ V3. Therefore V' ~ Vj'.( The Witt Cancellation Law)

i1) For a bilinear subspace (V,b), all its mazimal totally isotropic subspaces

have the same dimension. [

Definition 2.1.10. For a regular bilinear space (V,b), the dimension of
maximal totally isotropic subspaces is called the Witt index of (V,b) and will
denote it by iy (V).

Proposition 2.1.11. ([Sch;85], Corollary 5.1, [La; 04] Corollary 4.4.) If a
bilinear space (V,b) has iw (V) = m, therefore V has the following orthogonal

decomposition
V=H 1Hy, 1. 1LH,1lV,

where V' is anisotropic, unique determined up an isomorphism, and Hy, Ho, ..., H,,

are hyperbolic planes.(]

A quadratic form 1 is a subform of the form ¢ if ¢ ~ @b L ¢, for some
quadratic form ¢. We denote ¥ < ¢.

From the above proposition, the Witt indez of a quadratic form ¢, denoted
by iw (), is the dimension of a maximal totally isotropic subform of .
Indeed, if

® =~ Panlon,

with ¢, anisotropic and ¢}, hyperbolic, the Witt index of ¢ is % dim ¢p,. The
first Witt index of a quadratic form ¢ is the Witt index of ¢ over its function
field and is denoted by i1 (¢) . The essential dimension of ¢ is

dimes () = dim () — i1 (@) + 1.

(see [Sch; 85])
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2.2. Brown’s construction of division algebras

Generally, algebras A; of dimension 2¢ obtained by the Cayley-Dickson
process are not division algebras for all ¢ > 1. But we can find fields on
which, if we apply the Cayley-Dickson process, the resulting algebras A; are
division algebras for all t > 1. For example, we can consider the power-series
field K{X1, X, ..., X;} or the rational function field K (Xi, Xs,..., X¢), where
X1, Xo, ..., X; are t algebraically independent indeterminates over the field K.

In 1967, R. B. Brown constructed, for each ¢, a division algebra A; of
dimension 2! over the power-series field K{Xi, Xa, ..., X;}. We will present
this construction, using polynomial rings over K and their field of fractions
(the rational function field) instead of power-series fields over K (as it was
used by R.B. Brown, see [Br; 67]).

For each t, we will construct a division algebra A; over a field F}, as follows.
Let X1, Xs, ..., Xy be t algebraically independent indeterminates over the field
K and

F, =K (X1, Xo, ..., X¢)

be the rational function field. For i = 1,...,¢, we building the algebra A;
over the rational function field K (X1, Xa, ..., X;) by setting o; = X for j =
1,2,..., 4. Let Ag = K. Using induction over i, supposing that A; ; is a divi-
sion algebra over the field F;_; = K (X3, X2, ..., X;-1), we can prove that the
is a division algebra over the field F; = K (X3, Xo, ..., X;).
Let
AE1 =F®r_, Ai—1.

For a; = X; we apply the Cayley-Dickson process to the algebra Agl. The
resulting algebra, denoted by A;, is an algebra over the field F; with the
dimension 2°.
Let
r=a-+bv;, y=c+dv;,

be nonzero elements in A; such that xy = 0, where v? = «;. Since

xy = ac + X;db + (bé + da) v; = 0,

algebra A;
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we obtain
ac+ X;db =0 (2.2.1.)

and
bé + da = 0. (2.2.2)

The elements a, b, c,d € Agl are non zero elements. Indeed, we have:
i)If a=0and b#0, then c=d=0=y =0, false;
i)Ifb=0and a #0, then d =¢c = 0=y =0, false;
iii)If c=0and d # 0, then a = b= 0=z =0, false;
iv) Ifd = 0and ¢ # 0, then a = b =0 = x = 0, false.
It results that b # 0,a # 0,d # 0,c¢ # 0. If {1, fo, ..., foi-1} is a ba-

27571 21:71 ,

.. g

sis in A;—y,then a = 32 g;(1® fj) = > 9if5,9; € Fiog; = 37.95,9] €
i=1 i=1

K[Xy,..,Xi], ] #0, j = 1,2,..271 where K[Xy,..., X;] is the polynomial

ring. Let ap be the less common multiple of g7, ....g%;_,, then we can write

a i1 b1 c1
a = ——, where a; € A% ",a1 # 0. Analogously, b = —,c = ,d =
ag ! ba Ca
d i—1
,b1,¢1,d1 € AE - {0} and ag, by, c2,ds € K[Xla "'7Xt] - {0}
2

If we replace in relations (2.2.1.) and (2.2.2.) , we obtain
alcldzbg + Xid_1b1a202 =0 (223)

and
bicidoas + diarbacy = 0. (224)

If we denote
a3 = a1by, b3 = brag, c3 = c1ds, d3 = dic,

as,bs,cs, ds € Agl — {0}, relations (2.2.3.) and (2.2.4.) become

azcs + X;dzbz =0 (2.2.5.)

and
bscs + dszasz = 0. (226)
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Since the algebra Agl =F, ®F,_, A;_1 is an algebra over F;_; with basis
X'® f;,i €N and j =1,2,...2°71 we can write ag, bs, c3,d3 as

as = Z.’E]le, bg = ZyJX'LJ7 C3 — ZZ]XZJ, dg = ZU)inJ,
jzm jzn jzp jzr
where x;,y;, zj, w; € Ai—1, Tm, Yn, Zp, Wr # 0. Since A;_; is a division algebra,
it follows that x,,2, # 0,w,yn # 0, Ynzp # 0,wrxy # 0. Using relations
(2.2.5.) and (2.2.6.), we obtain that

2m+p+r=2n+p+r+1,

which is false. Therefore, the algebra A; is a division algebra over the field
Fi =K (Xl,Xg, veey XZ) of dimension 21

2.3. Levels and sublevels of algebras obtained by the Cayley-

Dickson process

In the following, we assume that all quadratic forms are nondegenerate.

Definition 2.3.1. We consider K a field. The level of the field K, denoted
by s(K), is the smallest natural number n such that —1 is a sum of n squares
of K. If —1 is not a sum of squares of K, then s(K) = co.The definition is the
same for the commutative rings.

The level of the algebra A, denoted by s(A), is the least integer n such
that —1 is a sum of n squares in A.

The sublevel of the algebra A, denoted by s(A), is the least integer n such
that 0 is a sum of n + 1 nonzero squares of elements in A.

If these numbers do not exist, then the level and sublevel are infinite.
Obviously, s(A) < s (A).

A. Pfister, in [Pf; 65], proved that if a field has a finite level then this level
is a power of 2 and any power of 2 can be realised as the level of a field.

The level of division algebras is defined in the same manner as for the fields
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and was intensively studied in several papers, as for example: [Le; 90|, [Lew;
89], [Lew; 06] . In [Lew; 87], D. W. Lewis constructed quaternion division
algebras of level 28 and 2% + 1 for all k € N — {0} and he asked if there
exist quaternion division algebras whose levels are not of this form. Using
function field techniques, these values were recovered for the quaternions by
Laghribi and Mammone in [La,Ma; 01]. Using the same technique, in [Pu;
05], Susanne Pumpliin constructed octonion division algebras of level 2¥ and
2% +1 for all k € N — {0}. In [Hoff; 08], D. W. Hoffman proved that there
are many other values, other than 2* or 2* + 1, which can be realised as a
level of quaternion division algebras. In fact, he showed that for each k € N,
k > 2, there exist quaternion division algebras D with level s (D) bounded
by the values 2% + 2 and 2¥*1 — 1 (ie. 28 +2 < s(D) < 2¥+!1 —1). In [Kr,
Wa; 91], M. Kiiskemper and A. Wadsworth constructed the first example of
a quaternion algebra of sublevel 3. Starting from this construction, in [O’ Sh;
07(1)], J. O’ Shea proved the existence of an octonion algebra of sublevel 3 and
constructed an octonion algebra of sublevel 5. The existence of a quaternion
algebra of sublevel 5 is still an open question. In [O’ Sh; 10], Theorem 3.6.,
O’Shea proved the existence of an octonion division algebras of level 6 and 7.
These values, 6 and 7, are still the only known exact values for the level of
octonion division algebras, other than 2% or 28 + 1, k € N — {0}. It is still
not known which exact numbers could be realised as levels and sublevels of
quaternion and octonion division algebras but, for the integral domains, this
problem was solved in [Da, La, Pe; 80], when Z.D. Dai, T.Y. Lam and C.
K. Peng proved that any positive integer n can be realised as the level of an

integral domain, namely the ring
R, = R[X1,X,... X))/ (1+ X7 + X5 + ... + X})
has the level n.

Cassels-Pfister Theorem. Let ¢, =<1 > J_z// be two quadratic forms
over a field K with charK # 2. If ¢ is anisotropic over K and g (y)
is hyperbolic, then aip < ¢ for any scalar represented by . In particular,
dim ¢ > dimt).(La, Ma;01, p.1823, Theorem 1.3.)

Springer’s Theorem. Let @1, py be two quadratic forms over a field K
and K(X) be the rational function field over K. Then, the quadratic form
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w1 L Xg is isotropic over K(X) if and only if o1 or oo is isotropic over
K.(La, Ma;01, p.1823, Theorem 1.1.)

Let A; be an algebra obtained by the Cayley-Dickson process, with the
set {1, fa, ..., fg},¢ = 2" as a basis with the properties:

f’L2 :ai17 ai EK,QZ#(), i:27"'7q

and
Tifi = —fifi=Bijfe, Bij € K, Bij #0,i # j,i,5 = 2,...q,
Bij and fi being uniquely determined by f; and f;.

If .
re€A,x=a11+ Ziﬂifi;

i=2

then
q
T=a11- Y xif;
i=2

and

q
t(z) = 2z1,n (z) = 2 — Zaﬂ:?.
=2

In the above decomposition of x, we call x1 the scalar part of x and z” =

q
>, fi the pure part of x. If we compute

=2
x2 _ x% +ﬂ§//2 +29§1CE” _
t
2 2 2 2 2 t 2 7
= 2] + a175 + agrs — ooy + agxy — ... — (—1) (Hai)xq + 2x12",

i=1

the scalar part of 22 is represented by the quadratic form

t
Te =< 1,071,002, —a103, a3, ..., (—1)t (HO@) >=<1, 5o, ...,,Bq > (231)
i=1

and, since

t

"2 2 2 2 2 t 2

2" = oqxs + awxs; — ajanx; + asx: — ... — (—1) (Hai)xq €K,
=1
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is represented by the quadratic form Tp = T |4,: Ag — K,

t

Tp =< a1, 09, —1ag, a3, ..., (1) ([ Jeu) >=< B2, ... By > (2.32)
=1

The quadratic form T¢ is called the trace form, and Tp the pure trace form of
the algebra A;. We remark that Tc =< 1 >1 Tp, and the norm
n=n¢ =<1>1 —Tp, resulting that

t
ne =< 1, —ay, —ag, aq1ag, ag, ..., (—1)" 1! (Hai) >=<1,—f2,...,—f4 > .
i=1

The norm form n¢ has the form

no=<1,-o>®.0<1,—a; >

and it is a Pfister form.
Since the scalar part of any element y € Ay is %t (y), it follows that

Proposition 2.3.2.( [Fl; 11] For an algebra A obtained by the Cayley-
Dickson process and with the above notations, we have:

i) If s(A) <n then —1 is represented by the quadratic form n x Te.

it) —1 is a sum of n squares of pure elements in A if and only if the
quadratic form n X Tp represents —1.

iii) For n € N— {0}, if the quadratic form <1 >1 n x Tp is isotropic
over K, then s(A) < n.

Proof. i) Let y € Ay = x1 + zafa + ... + 24fy, v € K, for all i €
{1,2,...,q}. Using the notations given above, we get

y? =22 + foxd 4 ... + qug +2z1y",

where

Yy’ =xafo+ ..+ xyfy



34 Cristina FLAUT

If —1 is a sum of n squares in A, then

“l=yi+.tyn =

= (ac%l+52x52+...+ﬂqqu+2x11yf) +...
+ (1:%1+62x22+...+quiq+2xn1y;’) .

Then we have

n n n
—-1= 29%21 + BQZQ:?Q + ...+ ﬂqu?q
i=1 i=1 i=1

and

n n n
E Ti1Tio = E Ti1xi3 = ... = E Ti1 T = 0,
i=1 i=1 i=1

then n x T represents —1.
ii) With the same notations, if —1 is a sum of n squares of pure elements
in A, then
A=yl .+l =

= (Bowiyt..A+Bexl, + 2r11y)) +...
+ (Botngt A Bemhy + 201y -
We have

n n
—1=F) b+ .+ ByD> 7oy
=1 =1

Therefore n x Tp represents —1. Reciprocally, if n x Tp represents —1,

then
n n
-1= 62233122 +..+ 5qufq.
i=1 i=1

Let

2 2
u; = xi2f2+...+xiqfq.

It results t (u;) = 0 and

uf =-n(u) = 62;5?2 + ..+ Bqa:?q,
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for all i € {1,2,...,n}. We obtain
—1=u?+ .. +ui.

iii) Case 1. If —1 € K*?, then s(A4) = 1.

Case 2. —1 ¢ K*2. Since the quadratic form < 1 >1 n x Tp is isotropic
then it is universal. It results that < 1 >1 n x Tp represent —1. Then, we
have the elements « € K and p; € Ag, ¢ = 1,...,n, such that

n n
—1=0"+B) P+ + By Pl

i=1 i=1

and not all of them are zero.
i) If @ =0, then

n n
=1 i=1

It results

-1 = (Bopiy+ ...+ ﬂqp%q) + ...
+ (B2pZy + -+ Bepayg) -

Denoting
u; = pizfa + ... + Pig Sy
we have that t (u;) = 0 and

uj = —n(u;) = Bopiy + .. + ﬂquzq’
for all i € {1,2,...,n}. We obtain —1 = u? + ... + u2.
ii) If o # 0, then 1+ a2 # 0 and

0=140+B) po+ o+ 5, > 02

=1 i=1

Multiplying this relation with 1+ o2 | it follows that

n n
0=(140)+ B2 1+t By 1oy
=1 i=1
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Therefore
RS S T 3
i=1 i=1
where
riy=ri(1+a) 7 j €{2,3,...q}
and we apply case i). Therefore s(A) < n.OJ

Proposition 2.3.3.( [Fl; 11] For the algebra A, obtained by the Cayley-
Dickson process, the following statements are true:

a) If n € N— {0}, such that n =2F — 1, for k > 1, then s(A) < n if and
only if <1>1nxTp is isotropic.

b) If —1 is a square in K, then s(A) =s(A4) =1.

c) If-1 ¢ K*2 then s(A) = 1 if and only if Tc is isotropic.

Proof. a) From Proposition 2.3.2, supposing that s(A) < n, we have
n n n
1= "ph+5Y Pht . t+B) 1y
i=1 i=1 i=1
such that
n n n
Zpﬂpiz = Zpﬂpi:z == Zpilpiq = 0.
i=1 i=1 i=1

For the level reasons, it results that

n
1+ szzl # 0.
i=1
Putting pasq = 1 and porg = Porg = ... Parg = 0, we have
n+1 n+1 n+1
0= > "ph+5> pht..tB,) 1iy (2.3.3.)
i=1 i=1 i=1
and
n+1 n+1 n+1

Zpﬂpm = Zpilpi?, =..= Zpﬂpiq =0.
i=1 i=1 i=1
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2
n+1 n+1
Multiplying (2.3.3) by 3 pZ, since (Z p?l) is a square and using Lemma
i=1 i=1

1=
from [Sch; 85], p.151, for the products

n+1 n+1 n+1 n+1

ZP?QZ Pirs s Zp?quz?la
i=1 =1 i=1 =1

we obtain
n+1 2 n+1 nt1
0= (Zp%) + B2 rh et By TR, (2.3.4.)
=1 i=1 i=1
where
Tri2, "~riq c K,TL —+ ]_ = Qk’
n+1 n+1 1
T12 = sz‘lpiz =0,7r3= Zpﬂpm =0,...,7r1qg= Zp“p’iq = 0.
i=1 =1 p
n+1 n+1
Therefore, in the sums Y 73, ..., > r7, we have n factors. From (2.3.4), we
1=1 i=1

get that <1 >1 nxTpis isotropig.

b) If -1 =a%? € K C A, then s(A) = s(A4) = 1.

c) If —1 ¢ K*? and s(A) = 1, then, there is an element y € A\K such
that —1 = y2. Hence y € Ay, so J = —y. It results that

(1+y)2:1+2y+y2=2y

and
(2y+2y) =y—y=0.

N —

To(1+y) = %t ((1 +y)2) =

Therefore T¢ is isotropic.
Conversely, if Tc = < 1 >1 Tp is isotropic, from Proposition 2.3.2., iii),
we have then s(A) = 1.0

Proposition 2.3.4.([Fl; 11]) The quadratic form 2% x T is isotropic if
and only if <1 >1 2F x Tp is isotropic.

Proof. Since the form < 1 >1 2F x Tp is a subform of the form 2* x T,
if the form < 1 >1 2% x Tp is isotropic, we have that 2*F x T, is isotropic.
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For the converse, supposing that 2¥ x T is isotropic, then we get

2k 2k ok
S8 Wh By 12, =0, (2.3.5.)
=1 i=1 i=1

where p;,p;; € K,i=1,..., 2k j€2,...,q and some of the elements p; and Dij
are nonzero.

If p;=0,Yi=1,...,2%, then 2¥ x Tp is isotropic, therefore < 1 >1 2¥ xTp
is isotropic.

It
279
> i #0,
i=1
21€
then, multiplying relation (2.3.5) with > p? and using Lemma from [Sch; 85]
i=1

p.151, for the products

2k 2k 2k 2k
Zp122zp123 ceey szzquzza
i=1  i=1 i=1  i=1
we obtain
2k 2k ok
(Zp?)Q + BQZT?Q +..+ ﬁqu?q =0,
i=1 i=1 i=1

then < 1 >1 2% x Tp is isotropic.
2k
For the level reason, the relation > p? = 0, for some p; # 0, does not
i=1

work. Indeed, supposing that p; # 0, we obtain

2k

~1=> (py ")’

i=2
false.d
Remark 2.3.5. i) If the algebra A, obtained by the Cayley-Dickson pro-

cess, is a division algebra, then its norm form, n‘é7 is anisotropic. However
there are algebras A obtained by the Cayley-Dickson process with the norm
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form né anisotropic which are not division algebras. For example, if K =R

and t = 4, the real sedenion algebra

~1,-1,-1,—1
R

with the basis {1, fi,....., fi5} has the norm form anisotropic and is not a
division algebra. For example, (f3 + f10) (f6 — f15) = 0.

ii) Using Proposition 2.3.3, if the algebra A is an algebra obtained by the
Cayley-Dickson process of dimension greater than 2 and if né is isotropic,
then s (A) = s(A) = 1. Indeed, if —1 is a square in K, the statement follows
from the above. If —1 ¢ K*?, since nc =< 1 >1 —Tp and n¢o is a Pfister
form, we obtain that —Tp is isotropic, therefore T is isotropic and, from the
above proposition, it results that s (A4) = s (4) = 1.

In the following, we consider A, an algebra obtained by the Cayley-Dickson
process over a field K, having dimension ¢ = 2¢. For the algebra A,let Tc,

Tp, ne be its trace, pure trace and norm forms, respectively.

Theorem 2.3.6.([F1; 13]) We consider A an algebra of dimension 2 ob-
tained by the Cayley-Dickson process, of finite level, over a field K. Therefore

s(A) < s(A) < s(A) + 1.

Proof. Denoting n =s(A), we find the nonzero elements
Uy = Tyt +Tinfo + .o+ Tigfq € A,
with
U;’ = :C»L‘Qfg + ...+ xiqfq cA
the pure part of u;, where x;; € K,i € {1,2,...,n+1},j € {1,2,...,q},q = 2%,
such that 0 = u? + ... + u2_ ;. We obtain

n+1
S (@2 + (W) + 22ul) =0,

=1

therefore
n+1 n+1

Z oh + Z(u;/)Q =0
i=1 i=1
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and
n+1

E xilug' =0.
i=1

Case 1. If z;; =0,Vi€ {1,2,....,n+ 1}. It results that

n+1

> W) =0,

i=1
hence, it follows that (n+ 1) x Tp is isotropic, therefore it contains < 1, -1 >
as a subform. We obtain that —1 is represented by the form (n + 1) x
Tp. Therefore, —1 is a sum of square of (n + 1) pure elements from A,
hence s(A) <n+1.

Case 2. There are at least two elements x;; # 0 such that

n+1

2 _
g x5 = 0.
i=1

Since the elements (u))? € K for all i € {1,2,....,n + 1}, it results that

s(A) < s(K).But §(ZK) =s(K) <mn, hence s(A) <n.

Case 3. If
n+1

Z 1'121 7é Oa
i=1

Zi1
we denote d; = € K, where
n+1
2
D= Z T3
i=1
It follows that
n+1 n+1

1

&
&

|
Sl =
]
8
S
+
8
S
S
I

n+1
since Y x;1u) = 0. We obtain

=1
n+1 -1 2
(22

=1
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1 2n+1 n+1 n+1
<D +1) Zul (D' +1) Z“ld +Zd2
—(D— +1)+ D' =1,
therefore s (4) <n+ 1.0

If A is a division algebra of dimension < 8, the above result is a conse-

quence of the main Theorem from [Hoff; 10].

Theorem 2.3.7.([F1; 13]) Let K be a field, X be an algebraically indepen-
dent indeterminate over K, A be a finite-dimensional K —algebra with finite
level s(A) and the scalar involution — . Let k(A) be the least number such
that the form k x né 1s isotropic over K, where né is the norm form of the
algebra A, let Ay = K (X)®k A and B = (A1, X). Then:

i) If A is a division algebra, then B is a division algebra.

it) s(B) =min{s (4), k(A)}.

i) If k(A) > 1, s(B) =min{s(A),k(4) —1}.

Proof. i) It results by straightforward calculations, using the same argu-
ments as in Brown’s construction at step ¢, described above.

ii) We have s (B) < s(A). Let k =k (A).If kxng is isotropic, it results
that k x nél is isotropic and therefore universal and it represents —X !

Hence, there are elements z1, ...,z € A; such that

E n Z XL

Let w; € B, w; = zju,u € B,u2 = X. Since t(w;) = 0, it follows that

w? = —n& (w;) = Xn&' ()

and

SR IS

It results that s (B) < k, therefore s(B) <min{s (4), k(A)}.
Conversely, assuming that s (B) = n, we have —1 = 3? + ... + y2, where

yi € B, y; = a;1 + apu, u2 = X, a1, a2 € A1 and we obtain

2 9 _ _
y; = aj; + X@ioaio + (ai001 + ai0a1) u
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for i € {1,2,..n — 1}. It follows that

n n
2 _
-1 = E ail + X E 2042,
i=1 i=1

where ¢ = 1®7 is involution in Ay, () = T. We remark that @;0a;2 € K (X),
i €{1,..., n}. Let {1, fa, ..., fg}, ¢ = 2%, be a basis in A, therefore

p]ll X
1® f),
QJZI X f])
(X
with 2 X)) and
gjin (X
@ Tji2 (X)
a2 = 1®
with
o (X
iz (X) K(X),i€{1,2,..,n}, j€{1,2,..,m}. It results that
wjiz (X)
Pgu (X) ngz (X) = Tji2 (X) -
1= (1 X (1 f; 12 (19 f;)).
2;]21 o (1eh)+ 2; oY ®f])>(<;wm(X)<®fj>>

After clearing denominators, we obtain

:Z(ZPQM (X) (1®fj))2+XZ(Z7";12 (X) (1®fj))((zré‘i2(1®f7j))a
=1 j=1 i=1 j=1 j=1
(2.3.6.)

where

v (X) =lem{gin (X), wje (X))}, i€ {1,2,...,n}, j€{1,2,...,m}

and

P (X) =0 (X) pjir (X), 750 (X) =0 (X) 7502 (X) , i € {1,..., n}, j € {1,2,...;m}.
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Case 1. If p}il (X) are not divisible by X, for some 7 and j, taking residues
modulo X in (2.3.6), denoted with two-sided arrow, we obtain

—0*(X) =D (D pha (X) (L@ f))%
i=1 j=1
In this relation, if v (X) is not divisible by X, it results that s (A) < n. If
v (X) is divisible by X, we have s(A) < n — 1 and, from Theorem 2.3.6, we
obtain s (A4) < n.
Case 2. If pj;; (X) are divisible by X, for all i and j, it results that v (X)
is divisible by X, then dividing relation (2.3.6) by X and taking residues

modulo X, we obtain

n m

0= e ) e I re0e ).

=1 j=1

It follows that the form n x ng is isotropic, therefore k(A) < n.

It results that s (B) = min{s (4), k(A)}.
iii) Since s(B) < s(B) < s(A), then s(B) < s(A). Let k =k(A). We

1

have that k x né is isotropic, therefore k x né is isotropic. Hence, there

k

are the elements z1, ..., 2, € Ay such that Znél (2;) = 0. Let w; € B, w; =
i=1

ziu,u € B,u? = X. Since t(w;)=0, we obtain w?=-ng (w;)=XnS" () and

==

k k
2w$:2Xnél (2;)=0. It results that s(B) < k — 1, therefore
i= i=
s(B) <min{s(A4),k(A) —1}.
Conversely, assuming that s(B) = n, there are yi,...,yn+1 € B, non zero

elements, such that 0= y? +... +yi+1, Yi = a1 +apu, u? =X, a;1, a0 € Ay
Using the same notations as in ii), after straightforward calculations, we obtain

n+l m n+l m m
(P ()@ F)PHX YD v (X) (1@ £))(Yorhia(1 @ T)=0.

(2.3.7.)
Case 1. If p;il (X) are not divisible by X, for some ¢ and j, taking residues
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modulo X in relation (2.3.7), we obtain

n+l m

V=30 (X)L £)),

i=1 j=1
therefore s (A) < n.

Case 2. If pl;, (X) are divisible by X, for all i and j, then dividing
relation (2.3.7) by X and taking residues modulo X, we obtain

n+l m m
V=30 () e S Pl e f)),
i=1 j=1 j=1

therefore k (A) < n + 1. It results that s(B) = min{s (4),k(A) — 1}.0

Since s(B) < s(B) < s(A), in the above Theorem, we remark that if
k(A) = 1 then s(B) = s(B) = s(A) = 1. Results analogous to those in
Theorem 2.3.7 are obtained for composition algebras in [Ti, Va; 87] and [0’
Sh; 11].

Let A; be a division algebra over the field K = Ky(Xq,..., Xt), obtained
by the Cayley-Dickson process and Brown’s construction of dimension g = 2¢,
where K is a formally real field, Xi,..., X; are algebraically independent
indeterminates over the field Ky, T¢ and Tp are its trace and pure trace

forms. Let
o =<1>1nxTp, Yy, =<1>1mxTc,n>1,

Ar(n)=A@xk K(<1>1nxTp),neN-{0}. (2.3.8.)

We denote K,, = K (< 1> 1nxTp) =K (p,), and let n‘é" be the norm
form of the algebra A,.

Proposition 2.3.8.([F1; 13])
i) The norm form nét(n) is anisotropic over K.

ii) With the above notations, for t > 2, if n = 2% 41 then 2% x nét(") 18
anisotropic over Ko (X1, Xa, ..., Xt) (pary1) -

(") is a Pfister form and a

(n)

- : . A
Proof. i) First, we consider n > 1. Since ng'

Pfister form is isotropic if and only if it is hyperbolic, if nét is isotropic over
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K, then it is hyperbolic. Since A; is a division algebra, it follows that n‘é" is

anisotropic. From Cassels-Pfister Theorem, for some o € K*, we obtain that
o, is a subform of the norm form ngt("). Since dim ¢, = 1 +n(2¢ — 1) and
Ag(n) _
o=

dim n 2¢, therefore dim ¢,, > dim né‘("), false.

If n = 1, using the Cassels-Pfister Theorem, for some o € K*, it results

that apy is a subform of the norm form nét(l). Since dim ¢ = dim nét(l) =2!

1

and the forms ¢; and nét are not similar, we obtain a contradiction.
ii) We denote

Oék:(2k+1)><<1,fX1>.

It results that Xooy, is a subform of ¢ar, 1, then
Ko (X1, X2,y Xo) () = Ko (X1, X2, ooy X) (Xaup) .
If 2% x n¢ is isotropic over Ko (X1, X2, ..., X;) (pgr41) there is a map
Ko (X1, Xa,....X}) -place: Ko (X1, Xo2,....X¢) (pary1) = Ko (X1, Xa,..,.X¢) (k) ,

and 2% x n¢ is isotropic over Ko (X1, X2, ..., X¢) (o) from [Kn; 76, Theo-
rem 3.3.]. By repeatedly applying of Springer’s Theorem, it results that the
quadratic form 2¥x < 1,—X; > is isotropic over Ky (X1) (a), in contradic-
tion with Proposition 2.2. from [La,Ma; 01]. O

Remark. 2.3.9. i) The algebra A; (n) has dimension 2! and is not
necessarily a division algebra, but, using Remark 2.3.5, this algebra is of level
greater than 1.

ii) From Proposition 2.3.2 i) and iii), if 1),, is anisotropic and ¢, is isotropic
over K, then s (A (n)) € [m+ 1,n].

Example 2.3.10. Using the same notations as those in Theorem 2.3.7,
let F be a field of level 28. If A = Ag = F, K = F, A; = K(X;) ®k Ay, since
k(A) > 2% + 1, we obtain the division K (X;)—algebra B of dimension 2 and
level and sublevel 2%. Using the same Theorem, we can continue the induction
steps. Assuming that A = A;_; is a division algebra of dimension 2/~' and
level 2% over the field K = F(X1, ..., X;_1), then, from Springer’s Theorem, it
results that k (A;_1) > 2F4+1.1f A= A; 1, A; = K(X;)®k As_1 and B is the
K (X;) —algebra obtained by application of the Cayley-Dickson process with
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a = X; to the K (X;) —algebra Ay, then B is a division algebra of dimension
2t and level and sublevel 2%, This is an example of a division algebra of level
and sublevel 2¥ and dimension 2¢,¢,k € N — {0}.

Proposition 2.3.11. ([F1; 13]) é1(<1>1nxTp) =1 for all n €
N — {0}, where Tp is the pure trace form for the algebra Ayt > 2.

Proof. Let P be an arbitrary ordering over K such that s, ..., 5, <p 0.
We remark that such an ordering always exists. Indeed, since ¢,, is anisotropic
over K (from Springer’s Theorem), it follows that Py = {a | a =0or ais
represented by ¢, } is a g—preordering, therefore there is a g—ordering P

containing Py or —F,. We have
Isgnen|=|sgn (< 1> Lnx Tp)|=(2"—1)n—1 < (2" = )n + 1=dim¢,.

It results that ¢, is indefinite at P over K, then P extends to K, from [Hoff;

08], Lemma 2.5. Since ¢,, is isotropic over K,,, we obtain that

dim((on) g an < (Qt - 1) n—1.

n

Since
dim((on) g Jan > |sgnen| = (28 = 1)n —1,
then
dim((@n)}(n)an = (2t — 1) n —1=dim O — 2

and therefore iy (¢,) = 32=1. 0

Theorem 2.3.12. ([Fl; 13]) With the above notations, we have
n
s (4: (n)) € [n = [55]nl,
fort > 2.
Proof. From Proposition 2.3.11, we have that
dim ¢, — i1 (pn) = (2° = D)n+ 1 — iy (p,) = (2" = D)n.

For the quadratic form t,,, the relation

dim ¢y, — i1 (V) = 20+ 1 — iy (V)
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holds. The forms ¢,, and 1, are anisotropic over K = Ky(Xq,..., X}), by
Springer’s Theorem. From [Ka, Me; 03], Theorem 4.1, if

dim ¥, — i1 (V) < dim @, — i1 (p5) (2.3.9.)

it results that 1, is anisotropic over K,. From Proposition 2.3.11, we have
i1 (pn) = 1 for all n € N — {0}, therefore, since i1 (¢,) > 1, if dime, <
dim ¢,,, we obtain relation (2.3.9). By straightforward calculations in relation
(2.3.9), we obtain

2'm 41—y (Ym) < (28 = 1)n

and we remark that n — [5;] — 1 is the highest value of m € N such that
the relation dim,, < dim ¢y, holds. Hence, v,, is anisotropic over K, for
m =n — [gr] — 1. From Remark 2.3.9, it results s (A4; (n)) > n — [5].0

Theorem 2.3.13. ([F1; 13]) With the above notations, we have

n+2t—1

s(A () € o= [

J,nl,
where n € N — {0}, t > 2.

Proof. Using Proposition 2.3.2 i), if the quadratic form ¢, = (m +
1) x T is anisotropic, then s(A4;(n)) > m + 1 and if ¢, is isotropic, then
s(A¢ (n)) < n. Using the same arguments as in the proof of Theorem 2.3.12, if

2! (m+1) — i1 () < (2t — 1)n, (2.3.10.)
we have ¢,, is anisotropic over K,,, therefore
s(A¢(n)) € [m+1,n].

Since i1 (¢m) > 1, the highest value of m such that relation (2.3.10) holds
isn— [%jil] — 1. Indeed, relation (2.3.10) implies

2"(m+1)—1< (2" = 1)n,

therefore
2t —1 1 B n+2t—1
m<nT+§flfn—T
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and we obtain
n+2t—1

m<n—| 51

|- 1.

O
Theorem 2.3.12 and Theorem 2.3.13 generalize Theorem 3.8. from [0’ Sh;
10].

Theorem 2.3.14. ([F1; 13]) With the above notation, for each n € N—{0}
there is an algebra Ay (n) such that s (A (n)) =n and s(A; (n)) € {n—1,n}.

Proof. Let n € N—{0} and m be the least positive integer such that n <
2™ For n = 2™, there are quaternion (A3 (n)) and octonion (A3 (n)) division
algebras of level n = 2™, (see [La,Ma; 01] and [Pu; 05]). We assume that
n < 2™. With the above notations, for ¢ = m, let A, (n) be the algebra of
dimension ¢ = 2¢. From Theorem 2.3.12, this algebra is of level

n
s (A (n) € [n = (5] 7]

and sublevel

n+2t—1

5 (4 (n) € [n— [

l,n],n € N—{0}.
Since n < 2°, it results that [3;] = 0 and [”Jrg#] = 1, therefore s(A;(n)) =n
and s(A; (n)) € {n—1,n}.0

Remark. 2.3.15. Theorem 2.3.14 gives a positive partial answer to the
question if any number n € N — {0} can be realised as a level of composition
algebras. The answer becomes positive if we replace ”composition algebras”
with ”algebras obtained by the Cayley-Dickson process”. Therefore, we can
say that any number n € N — {0} can be realised as a level of an algebra
obtained by the Cayley-Dickson process with the norm form anisotropic over
a suitable field.

Example 2.3.16. If n € {6, 7}, for ¢t > 3, from Theorem 2.3.12 and The-
orem 2.3.13, it follows that the algebra A; (n) has level 6 and 7, respectively.
This remark generalizes the results obtained by O’Shea in [O’ Sh; 10] for the
octonion division algebras.
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Theorem 2.3.17. With the above notations, we have that s (As (n)) = n,
for n=2F +1.

Proof. First, we prove that the form
sy =nx <1> L(n—1)x Thar
is anisotropic over K,,. If the form s, is isotropic over K,, since the form
o =<1>LlnxTH"

is a subform of the form ¢,, and the norm ¢!, is isotropic over its function field
K (¢l],), then ¢, is isotropic over K (¢}). From [Kn; 76, Theorem 3.3.], we
have that there is a K—place from K, to K (¢},). Let

w =nx <1>L(n—1)xTH".

Then, over K, we can write
o Ai g
np = 7, L Xy (n— 1)n' .

If 5z, is isotropic over K, then sz, is isotropic over K (¢},) . We obtain that s,

=" are isotropic over K (¢!,). Using the induction steps and the

or (n— 1)ng
same arguments as in [La; Ma, 01], Proposition 2.2, for A;_; = Ay, we have
that s, is anisotropic over K () and from Proposition 2.3.8, ii), we obtain
that (n— 1)né"‘1 is anisotropic over K (¢!,). Therefore s, is anisotropic over
K,.

Now, from Remark 2.3.9 ii), we have s (4; (n)) < n. If s(A; (n)) < n, then

the form ¢, is isotropic over K, false.[]

The above result generalizes Theorem 3.1. from [Pu; 05].



50 Cristina FLAUT

Chapter 3

Properties of algebras obtained by the Cayley-Dickson process
and some of their applications

3.1.Preliminaries

As we remarked in the previous chapters, quaternions, octonions and al-
gebras obtained by the Cayley-Dickson process have at present many appli-
cations, as for example in physics, coding theory, computer vision, etc. For
this reasons these algebras are intense studied. Since the algebras obtained
by the Cayley-Dickson process are poor in properties when their dimension
increase, losing commutativity, associativity and alternativity, the study of
all kind of identities on these algebras is one of the direction of the study.
In [Ra; 88], the author proved that in a generalized Octonion algebra over a
field of characteristic different from 2,3,5 any polynomial identity of degree
less than 5 is not satisfied and he found the type of polynomial identities of
degree 5. In [Is; 84], the author considered generalized Octonion algebras C
over finite fields and found a finite basis for the ideal I of all identities in C.
In [He; 97], the authors studied identities on generalized Octonion algebras
and found all homogeneous multilinear polynomials of degree < 6 which are
identities for all generalized Octonion algebras. It is very interesting to extend
this study to all algebras obtained by the Cayley-Dickson process, since this
kind of relation can be helpful to replace the missing commutativity, associa-
tivity and alternativity. For example, in [Ha; 43], Hall proved that the identity
(xy — y:r)2 z=z(xy— y:r)2 holds for all elements z,y, z in a quaternion al-

gebra. This identity is called Hall identity. Moreover, he also proved the
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converse: if the Hall identity is true in a skew-field F, then F is a quaternion
division algebra. In [Smi; 50], Smiley proved that the Hall identity is true for
the octonions and he also proved the converse: if the Hall identity is true in
an alternative division algebra A, then A is an octonion division algebra.

In [F1, Sh; 13(1)], authors proved that the Hall identity is true in all al-
gebras obtained by the Cayley-Dickson process and, in some conditions, the
converse is true for split quaternion algebras and split octonion algebras. As
we remarked, these algebras are poor in properties, therefore any supplemen-
tary relation, identity or property can be very useful for the study of these
algebras. For example, we are looking for a similar relation as Hall identity,
to characterize some type A of nonassociative algebras, N' ={alternative al-
gebras, quadratic algebras, quaternion algebras, octonions algebras, algebras
obtained by the Cayley-Dickson process, etc.}: The property P is true on the
algebra A if and only if A € N. Such kind of results are Proposition 2.9. and
Theorem 2.10, from [F1l, Sh; 13(1)], presented here in Proposition 3.2.9 and
Theorem 3.2.10.

In the paper [Ba; 09], the author, by using exclusive or operation and a
twist map, described an easy way to multiply the elements from a basis in
algebras obtained by the Cayley-Dickson process. Using this algorithm, we
found some very interesting relations and properties of the elements from a
basis in such algebras, relations which are used to provide an example of a left
hyperholomorphic function in generalized Cayley-Dickson algebras (Theorem
2.12). Moreover, in the Theorem 2.10, we proved that for the study of left A,;-
holomorphic functions in generalized Cayley-Dickson algebras A; = (%)
with 1 < 0,...,v% < 0. it is suffices to consider left A;-holomorphic functions
only in the algebras (—tz==1).

From Fundamental Theorem of Algebra, we know that each polynomial
of degree n with coefficients in a field K has at most n roots in K. If we
consider the coefficients in H (the division real quaternion algebra), the above
result is not true. For the division real quaternion algebra, there is a kind of
a fundamental theorem of algebra: If a given polynomial has only one term of
the greatest degree in H then it has at least one root in H. (see [Ei, Ni; 44],
[Ni; 41], [Sm; 04] ).

The similar results was obtained for octonions in [Sm; 04]. From this
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reason, some type of equations, with one or more than one greatest term, over
algebras obtained by the Cayley-Dickson process were studied. In this process,
as a good examples, appeared the notions of Fibonacci elements, Fibonacci-
Narayana, Fibonacci-Lucas elements on Quaternion and Octonion algebras.
(see [F1, Sh; 13], [Po, Ke; 15], [Fl, Sh; 15(3)], [Ram; 15], [Ta, Yi, Sa; 16])
These elements are very useful, since they provide sets of invertible elements,
when the Quaternion and Octonion algebras are split.
(https://groups.google.com/forum/#!topic/sci.physics/T2zSvt_AjSQ).

3.2. Hall identity in algebras obtained by the Cayley-Dickson

process

Let A be an algebra obtained by the Cayley-Dickson process with the
basis {eg = 1,€1, ..., e, } such that, e, = —erem, r #m,e2, =y, € K,m €

n n
{1,2,...,n}. For elements a = >  amem,b= > bne, we define an element
m=0 m=0

in K, denoted by T (a,b), T (a,b) = . €2 amby,. We denote by A the set

m=0

n
of the elements {@ | @ = Y. @mem,am € K}. It results that the conjugate

m=1
—
of the element a can be written as @ = ag — @. Obviously, ( 7) = @ and

€ = €m.

Lemma 3.2.1. ([Fl, Sh; 13(1)]) We consider A an algebra obtained by
the Cayley-Dickson process. The following equalities are fulfilled:
1) T (a,b) =T (b,a), for all a,b € A.
2) T (Aa,b) = AT (a,b), for all N € K, a,b € A.
3) T (a,b+c) =T (a,b)+ T (a,c), for all a,b,c € A.
4) T(a,a) =aa=n(a), forallae A
9)
@Y =T (7, ?) v, (3.2.1.)

ab=ba—207 +2T (7, ?) , (3.2.2))
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=3 — —
% :—T(ﬁ, b)+7b. (3.2.3.)
(@) € K, (3.2.4.)
for all a,b € A.
n % n
Proof. 5) For q = > amem, b = Y, bpen, we obtain
m=1 m=1
7?: Z AmCm * Z bnem= Z efnambm—kazT (7, ?) +a,a € Z
m=1 m=1 m=1
(3.2.2.)
. .
Computing b @, it follows that
- -
b?:T(?, b)—a,an. (3.2.6.)

. —
If we add relations (3.2.5) and (3.2.6), it results @ b + b d = 2T (7, b) ,
therefore relation (3.2.1) is obtained.
N —
For a =ag+ @ and b = by + b, we compute

- - -
ab:(ao—i—7) (b0+ b) :aob(]+a()b -I-b(]?—f—?b

and
S —
ba:(bo+?)(a0+?):b0ao+b07+aob+ .

b

Subtracting the last two relations and using relation (3.2.1), we obtain
- - — —

ab—ba=Tb — 0@ =2T (ﬁ b ) — 2@, then relation (3.2.2) is proved.

Relation (3.2.3) is obvious. For @ = Y amenm, it results that (@)% =
m=1

S (am)? € K.O

m=1

For quaternion algebras, the above result was proved in [Sz; 09].
Proposition 3.2.2. We consider A an algebra obtained by the Cayley-
Dickson process such that €2, = —1, for all m € {1,2,..n}. If n—1 € K—{0},

then, for all x € A, we have

n

_ 1
T = E emTem.
1—n
m=0
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n
Proof. Let = ) epny,. From Lemma 3.2.1, we obtain
m=0
n
EmTem =T+ Y emTen, =
0 m=1
n

x4+ > em (emz — 26m7 + 27T (6m,7)) =

m=1

NE

I3
]

n n n
St S e 23 AT 123 e =
m=1 m=1 m=1

—z—nr+2n7T —2 > emTm =
m=1
=(1-n)z—-20-n)2T=>0-n)(z—27)=
=(1-n)z.0O
Theorem 3.2.3. We consider A an algebra obtained by the Cayley-
Dickson process. Then for all x,y,z € A, it results that

(zy —yx)? 2 = 2 (zy — ya)°. (3.2.7.)

Proof.

We will compute both members of the equality (xy — ym)2 z=z (zy — yw)2 .
Using relation (3.2.2.) from Lemma 3.2.1 and since T (7, 9) € K, we obtain
(—29 7 +2T(Z,9) 2 =2 (297 +27(7, 7))’ =
= 1@ +ar? (@) - 8T T (@, Y] 2 =
=2 [4T ) +41* (@ 9) -8 (T ) T(F, T =
= 4(YT) 2+ 4T (T, ) 2 - 8T (7, ) (V7) z =
=42 (PT) 4+ 4T (7, 9) 2 - 8T (7, ) 2 (Y 7).

Dividing this last relation by 4 and after reducing the terms, it results
(VT) 22T (F.9) (YD) e =2(VT) - 27(Z.9) = (V7).
We denote
E = [§3) (77| -
—27(7,Y)(YT)z—2T (., 9)z(Y )]

and we will prove that £ = 0.
We denote

Bi=(Y7) 220 (7,9)(V7)=

and

By =z(Y) - 20(Z,9) = (V7).
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First, we compute F;. We obtain

By =(Y7) =27 (@, %) (V7))
From Lemma 3.2.1., relation (3.2.3), we have ¥ 7= T (Y, @) + 7—7}
Then (¥ 7)2 =12 (¢, %) + (ﬁ) LT (T, 7) T T
Therefore
By=[1? (7,7)+(ﬁ) +
T (.7) TE20 (2. 7) (7))
= (7, )+(77) +
12T (F,7) (T 7 - 7))
Since ﬁ — Y7 =-T(Y,7), it results that
(T7) 2T (7, 9) (T 7))=
(V7)) -7 P)=ac K,
from Lemma 3.2.1, relation (3.2.4) . Hence Fy = az.
Now, we compute FE>. We obtain
By =2|(§7) =27 (3, 9) (V7)) =
= za = az since o € K.
It follows that E = E; — Ey = 0, therefore relation (3.2.7.) is proved. O

Remark 3.2.4. 1) Identity (3.2.7) is called the Hall identity. From the
above theorem, we remark that Hall identity is true for all algebras obtained
by the Cayley-Dickson process.

2) Relation (3.2.7) can be written: [x,y
where [z,y] = 2y — yx is the commutator of two elements. If A = H, then the
identity (3.2.7.) is proved by Hall in [Ha; 43].

Pe=zleyf or [lry.2] =0,

Proposition 3.2.5. For an arbitrary algebra A over the field K such that
the relation (3.2.7.) holds for all x,y,z € A, we have the following relations:

[yl [w, 9] s 2]+, ylle, o], 2]+ [[ws ][z, ol 2] + ([, o] [z, 9], 2]=0, - (3.2.8.)
([, v][w, yl, 2] + [[w, ylz, o], 2] + [z, yllw, o], 2] + [[u, o] [2, 9], 2] =0, (3.2.9.)

[[u, yllu, v], 2]+ [z, v][u, v], 2]+[[u, v][u, y], 2] +[[u, v][2, 0], 2]=0  (3.2.10.)

for all x,y,z,u,v € A.
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Proof. We linearize relation (3.2.7.). Let z,y,z € A be three arbitrary
elements such that (zy — yx)2 2=z (zy —yz)°.
For = + Au,y + A\v, z we obtain
[(x + M) (y + ) — (y + M) (z + M)z =
= z[(z + M) (y + o) — (y + \v) (z + du)]?.
It results
[2y — yz+A(uy + 20 — yu — v2)+A? (uv — vu)]?z =
=z [zy — yr+A(uy + 2v — yu — va)+A? (uv — vu)]2 .
We obtain
(e — y2)? 4N {(uy — )+ (o — v ot
A (uv — vu)® 2+
+Al(zy — yz) ((wy — yu) + (zv — vz))]2+

FA((uy = yu) + (20 —v2)) (2y — yo)]+
+A2[(uv — vu) (vy — yx)] 2+
+A2[(zy — yz) (uv — vu)]z+

[

+A3[[(uy — yu)+(zv — vx)] (uv — Vu)]2+
+A3[(uv — vu) [(uy — yu)+(zv — v2)]]2z =
2 (xy — yz) "+ 222 (uy — yu)+ (20 — vz)*+
A4z (uv — vu)® +

+A2[(zy — yz) ((uy — yu) + (20 —vz))]+

(
(
(
[
(

+Az[((uy — yu) + (zv — vz)) (vy — yz)|+
+A%2[(uv — vu) (zy — yo )]+
+A%z[(zy — ya) (uv — vu)]+
A% 2([(uy — yu)+(zv — vz)] (uv — vu)]+

+A3z[(uv — vu) [(uy — yu)+(xv — vz)]], for all x,y, z,u,v € A.

Since the coefficients of A are equal in both members of the equality, we obtain:
[y — ya) (uy — yu) + (@0 — vz)))2+

F[((uy — yu) + (zv — vz)) (2y — yx)]z =

— 2[(wy — ya) (uy — yu) + (20 — va)))+

+2[((uy — yu) + (w0 — va)) (wy — ya)).

We can write this last relation under the form:

{[z, yl [w, I}z H-{[, y] [, 0]} 2+

Hlw yl [z, vtz + {lz, ol [z, 4]}z =

= [z, y] [w, 9]} + [z, y] [z, ]} +
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+2{[u,y] [z, y]} + 2{[z, v] [z, y]}.

It results

[z, 9] [w, y], 2]+ [z, y] [z, 0], 2]+ [[w, y][z, y], 2]+ [, v][z, y], 2]=0
and we obtain relation (3.2.8.).

Since the coefficients of A? are equal in both members of the equality, we
obtain:

[y — yu) + (20 — va) 22+

(v — vu) (ay — ya))z+

(wy — ya) (uv — vu))z =

= z[(uy — yu) + (zv — va)]*+

+2[(uv — vu) (zy — yz)]+

+z[(xy — yz) (uv — vu)).

It results that

[(uy — yu) (zv — vx)]2+[(zv — v2) (Wy — yu)]z+

+[(uv —vu) (zvy — ya))z+([(zy — yz) (ww —vu)]z =

2l(uy — yu) (w0 — va)]+2](@v — ve) (uy — yu)l+

+2[(uv — vu) (zy — ya)]+2((zy — yz) (wo — vu)].

We can write this last relation under the form:

([, ] [w, y], 2]+ [[w, y] [z, 0], 2]+ [z, 4] [w, 0], 2]+ [[u, v] [z, 9] , z]=0
and we obtain relation (3.2.9.).

Since the coefficients of A3 are equal in both members of the equality, we
obtain:

[[(wy = yu) + (xv — vx)] (wv — vu)]z+

+[(uo — vu) [(uy — yu) + (20 — va)]]z =

= z[[(uy — yu) + (zv — va)] (uv — vu)]+

2w — vu) [(uy — yu) + (20 — v2)]).

We can write this last relation under the form:

[[w, yllu, o), 2]+ [[2, v][u, v], 2]+ [[u, v][u, y], 2]+ [[u, v][z, v], z]=0
and we obtain relation (3.2.10.). O

Remark 3.2.6.

1) In [Ti; 99] and [F1; 01] some equations over division quaternion algebra
and octonion algebra are solved. Let A be such an algebra. For example,
equation

axr = xb,a,b,x € A, (3.2.11.)
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for @ # b has general solution under the form z = dp + p?, for arbitrary
p e A

2) In [F1, St; 09], authors studied equation x%a = bx? +c¢,a,b,c € A, where
A is a generalized quaternion division algebra or an generalized octonion
division algebra. If A is an arbitrary algebra obtained by the Cayley-Dickson
process and a,b,c € A with a = b and ¢ = 0, then, from Theorem 3.2.3, it
results that this equation has infinity of solutions of the form xz = vw — wov,

where v, w € A.

Proposition 3.2.7. Let A be a quaternion algebra or an octonion algebra.

Then for all x,y € A, there are the elements z,w such that (xy — yx)? =

711} + w?

Proof. Let z be an arbitrary element in A — K. From Theorem 3.2.3,
we have that (xy — yx)2 z=z(zy— ym)z, for all z,y,z € A. Since z # Z and
(zy — ync)2 is a solution for the equation (3.2.11), from Remark 3.2.6, it results
that there is an element w € A such that (zy — yz)2 = Zw +w 7.0

Proposition 3.2.8. Let A be a finite dimensional unitary algebra with a

scalar involution

“:A—> Aa—a,

such that for all x,y € A, the following equality holds:

(27 + yz)* = 4 (2T) (y7) . (3.2.12))
Then the algebra A has dimension 1.

Proof. We remark that zy + yT = 27 + 2y € K. First, we prove that
[v7 + yZ)? = 4 (27) (yy),Vz,y € A, if and only if 2 = ry, r € K. If x = ry,
then relation (3.2.12.) is proved. Conversely, assuming that relation (3.2.12.)
is true and supposing that there is not an element r € K such that x = ry,
then for each two non zero elements a,b € K, we have ax + by # 0. Indeed, if

ax + by =0, it results z = —gy, false. We obtain that

(az + by) (az + by) # 0. (3.2.13.)
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Computing relation (3.2.13), it follows
a? (x%) + abay + bayT + b*yy # 0. (3.2.14.)
If we put a = y¥ in relation (3.2.14) and then simplify by a, it results
(y7) (2T) + by + byT + b* # 0. (3.2.15.)

Let b= —3 (27 + yT) € K,b # 0. If we replace this value in relation (3.2.15),
we obtain 4 (27) (yy) — (27 + yT)? # 0, which it is false. Therefore, there is
an element r € K such that x = ry.

Assuming that the algebra A has dimension greater or equal with 2, it
results that there are two linearly independent vectors, v and w, respectively.
Since relation (3.2.12) is satisfies for v and w, we obtain that there is an

element s € K such that v = sw, which it is false. Hence dim A = 1.0J

Proposition 3.2.9. Let A be an alternative division algebra over the field
K whose center is K. If (zy —yx)* z = 2 (zy — yx)* for all z,y,2 € A and

(zy — ya:)2 associate with all elements from A, then A is a quadratic algebra.

Proof. Let x,y € A— {0} such that xy # yx. If we denote z = zy — yz, it
follows that 22 commutes and associate with all elements from A, then 22 is
in the center of A. We obtain 22 = a € K*. For t = 2%y — yx?, it results that
t?2 = (2?y —y2?)? € K and t = (vy — yz) x + = (vy — yr) = 22 + 2. We have
2t =z (zx+x2) =220+ 202 = ar+z2rzand tz = (zx +22) 2 = zxz +w2? =
ax + zxz. Therefore tz = zt. For z +t = (x2 + ac) y—y (:v2 + x) , we have
that (z—l—t)2 = f € K, then 22 +t?> + 2tz = (3, hence tz = v € K. Since
each alternative algebra is a flexible algebra, we have zz = x(yz) — (yz) =.
From here, it follows that (z2)? = § € K. If we multiply relation (zz) (2x) = §
with z in the left side, we obtain z ((zx) (22)) = Jz. Using alternativity and
then flexibility, it results (2?z) (z2) = 0z, therefore ~«(xzz) = 6z, hence
rzr = 0z, where § = a~1§. It follows that 2z (rzx) = 02?2 = fa € K. Since
z (zzx) = (zx2) x, from Moufang identities, we have that (zzz)z = fa € K.
It results that yvx = (t2)z = (ax + 222)z = az? + (222)x = ar? + fa,

2

hence 22 = ax + b, where a = o~ 'v,b = —f. We obtain that A is a quadratic

algebra.[]
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When A is a division associative algebra, this proposition was proved by
Hall in [Ha; 43].

Theorem 3.2.10. Let A be an alternative simple algebra such that the
center of A is K, (xy—y:v)Zz = z(xy—y:r)Z, for all z,y,z € A and
(zy — ym)2 associate with all elements from A.

1) If A is a division algebra, then A = K or A = A, t € {1,2,3}, where
Ay is a division algebra obtained by the Cayley-Dickson process.

2) If A is not a division algebra, dim A = 4, and if there are two ele-
ments y,z € A such that y?,2%? € K, yz = —zy, then A is a generalized split

quaternion algebra.

Proof. 1) From Proposition 3.2.9., it results that A is a quadratic algebra,
therefore, from [Al; 49], Theorem 1, we have dim A € { 1,2,4,8}. If dim A = 1,
then A = K. If dim A = 2, since the center is K, then we can find an element
r € A— K such that 22 € K. It results that the set {1,z} is a basis in A4,
therefore A = K () is a quadratic field extension of the field K. If dim A = 4,
from [Al; 39], p. 145, we have that there are two elements z,y € A such that
2> =x+a with 4a+1# 0, 2y = y(1 —2),y?> = b,a,b € K. Denoting

z =2 — %, we obtain that 22 = (w - %)2 =a— i € K. and zy = —yz. Since

1
ok
zy=(z—-y=ay—Y=y-—yr—4=%—yrandyz=y(z—3) =yzr—3,
we have yz = —zy then (yz)® € K. It follows that in the algebra A we can
find the elements ,z such that y2, 22, (yz)2 € K and yz = —zy. Therefore,
from [Al; 49], Lemma 4, it results that A is a generalized division quaternion
algebra.

2) From the above, it results that A = Q = K + yK + 2K + yzK is a

generalized quaternion algebra, which is split from hypothesis.C]

3.3. Multiplication table in algebras obtained by the Cayley-

Dickson process

In this section, for a generalized Cayley-Dickson algebra A;, writing the

elements of the basis in a convenient way, we can obtain multiplication tables
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for certain elements of the basis. Using these results, in the next section, we
provide an example of a left hyperholomorphic function in generalized Cayley-
Dickson algebras.The results presented below, were obtained especially in the
paper [F1, Sh; 15(1)].

The current trend in hypercomplex analysis is a systematic search for all
possible function theories associated to Dirac operator in various algebras.
In this paper we investigated such as holomorphic functions for real Cayley—
Dickson algebras. We generalized the notion of left A;—holomorphic functions
from quaternions to all algebras obtained by the Cayley-Dickson process and
we provided an algorithm to find examples of left A;—hyperholomorphic func-
tions, using the shuffling procedure given by Bales.

The theory of the right A;—holomorphic functions and the theory of the
right A;—hyperholomorphic functions are similarly to the corresponding the-
ories for the left functions and can be easy treated, using the above ideas and

procedures.

Remark 3.3.1. Fory; = ... = = —1 and K = R, in [Ba; 09], the author
described how we can multiply the basis vectors in the algebra A;,dim A; =
2t = n. He used the binary decomposition for the subscript indices.

Let ep,eq be two vectors in the basis B with p, ¢ representing the binary
decomposition for the indices of the vectors, that means p,q are in Z5. We
have that eyeq = vy, (P, ¢) €pog, Where:

i) p® g are the sum of p and ¢ in the group Z% or, more precisely, the
”exclusive or” for the binary numbers p and g;

il) 7, is a function v, : Z§ x 25 — {-1,1}.

The map 7, is called the twist map.

The elements of the group Z% can be considered as integers from 0 to 2™ —1
with multiplication ”exclusive or” of the binary representations. Obviously,

this operation is equivalent with the addition in Z3.

From now on, in this section, we will consider K = R. Using the same

notations as in the Bales’s paper, we consider the following matrices:

AO:A:<1 ! ) B:(1 _1>, C:< ! _1>.(3.3.1.)
1 -1 1 1 -1 -1

In the same paper, [Ba;09], the author find the properties of the twist map
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vn and put the signs of this map in a table. He partitioned the twist table for
Z3 into 2 x 2 matrices and obtained the following result:

Theorem 3.3.2. ([Ba;09], Theorem 2.2., p. 88-91) For n > 0, the Cayley-
Dickson twist table v, can be partitioned in quadratic matrices of dimension 2
of the form A, B,C,—B,—C, defined in the relation (3.3.1). Relations between

them can be found in the below twist trees:

Ao A
A, A B B A A ¢ <
B -B

e

B .C B C B ¢ -€ B
C g

¢ ¢ -& B € ¢ cCc¢C

Fig. 1: Twist trees([1], Table 9)

O

Definition 3.3.3. Let x = zg,z1,%2,.... and y = Yo, Y1, Y2, --... be two
sequences of real numbers. The ordered pair

(I7y) = Z0,Y0,%1,Y1,22,Y2; .-

is a sequence obtained by shuffling the sequences x and y.

In [Ba;09], is provided the below algorithm for find =, (s,7), where s,r €
7y -

i) We find the shuffling sequence (s,r).

ii) Starting with the root Ag, we can find ~, (s,r) using the twist tree.
We remark that ”700”= unchanged, ”01” =left —right, ”10”=right— left,
”11” =right — right.

The multiplication table in H( — 1, —1), the quaternion division algebra, is

given below.
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[ %)

Quaternion twist table using above notations

Example 3.3.4. Let A4 be the real sedenion algebra. That means
dim A4 = 16 with {1,e1,...,e15} a basis in this algebra. Let compute ere;3 =

¥4(72,132)erg13. We have the following binary decompositions:

75 = 0111, since 7=22+2+1 and
13, = 1101, since 13 =23 +22 + 1.

Since 0111 ® 1101 = 1010(= 2 + 2 = 10), it results that 7® 13 = 10.
Now, we compute 74 (e7,e13). First, we shuffle the sequences 0111 and
1101. We obtain 01 11 10 11. Starting with Ao, it results: 49 3 A 3 —c 3

cl —C, then 4 (e7,e13) = —1 and erej3 = —eqp.

Remark 3.3.5. i) In the generalized quaternion algebra, H (y1,72), the
basis can be written as

{1 =ep,e1,e2,e1€2}.

For the generalized octonion algebra, O(~1,v2,73), the basis can be written
{1 =eo,e1,e2,e1€2,€4, €164, €264, (€162) €4}

Therefore e3 = ejes,e7 = ezeq = (erea) ey, eseq = eg and, when compute
them, in these products do not appear any of the elements 71,2, y3, or prod-
ucts of some of them at the end.

We remark that in the algebra A; = (’“’k”’“) in the products of the form

ere, (e1€2) eq, ..., ((earegrii) ... eqx)eqi,

when compute them, do not appear any of the elements 71,72, ..., or prod-
ucts of some of them at the end.
ii) Let {1 =eg,e1,€a,...,€0t_1} be a basis in the algebra A;. Using above

remarks, the basis in the algebra A; = ( ) can be written under the form

{1 =-eg,e1,€9,...,69t-1_1,€90-1,€1€9t—1,€2€9¢—1,€3C0—1,...,Eqt—1_1€9t—1}
(3.3.2.)
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with
o1 = —€gi1€; = eqr1€;, 1€ {1,2,...,271 —1}. (3.3.3.)

Proposition 3.3.6. ([Fl, Sh; 15(1)]) Let A, = (2=2) be an algebra
obtained by the Cayley-Dickson process and {ey = 1,e1,...,en_1}, n =2 be a
basis. Let v > 1, r <k <1i <t. Therefore

((€2r€21v+1) . €2k)€2i = (—1)k_7.+2 er, (334)
((e1e-)egrs1) . .. e )ens = (—1)F " ery, (3.3.5.)

where T =27 + 27T 4 . 4+ 2F 427 and
€1€2i = €2i41. (336)

Proof. From Remark 3.3.5, it results that we can use Theorem 3.3.2 for
V1,72, .., arbitrary. For T = 2" + 2"+ 4. 4+ 2% 4+ 27 we have the binary
decomposition

T, =100...0111...10...0.
———
i—k—1 k—r+1 r

Using the same remark, we obtain esregr+1 = 7y, | 01...0,10...0 ] egrqgr+1.

r+2 r+2
We ”shuffling” 01...0 and 10...0 and we obtain 01 10 00 00...00 00. Start-
— — —_——
r+2 r+2 T pairs
ing with Ag, it results
A5 A3,
then 7, | 01...0,10...0 | =1 and earegr+1 = €grygr+1.

r+2 r+2
We compute (egregrti)eqr+2. We obtain

(627'€2r+1)627‘+2 = €gryor+1€or+2 = Yn 0110, 10...0 €orjor+lyort2.
r+3 r+3
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Shuffling 011...0 and 10...0, we get 01 10 1000 00...00 00. Starting with Ay, it
—— —— —_—
r+3 r+3 T pairs
results: Ag LIy e —C, then

Yo | 011...0,10...0 | = —1,
— ——~
r+3 r4+3
therefore egr gr+1€9r+2 = —€gryor+1,9r+2. Continuing this procedure, we re-

mark that the number of ”1” in the ”shuffling” obtained influences the sign.
Since T = 2" 4+ 2"+t1 4+ ... 4+ 2F 4+ 2% has binary decomposition

T, =100...0111..10...0,
S g N
i—k—1k—r+1 7
in which we have k — r 4+ 2 elements equal with 1, we obtain relation (3.3.4).

In the same way it results relations (3.3.5) and (3.3.6). O

Proposition 3.3.7. ([F1, Sh; 15(1)]) With the same notations as in Propo-
sition 3.3.6, for the algebra A, = (%) , we have:

‘ er €T+1
k—r k—r
er, (-1) k“ eos *H)k egiyy (3.3.7.)
Y o—rt1
€T +1 — (—1) €2iy1 — (—1) €9i

for v <k, where T =27 +2"+t1 4 42k 4 21 T, =27 427+ 1 4 2F apd

‘ er €T+1

€ok (Y3 —€eM+1 > (338()
€ok 11 —€M+1 —€eM

where M = 2F + 2¢,

Proof. Case 1: r < k. We compute er, er. We have eqyer = v (s,q) e,
where s, g are the binary decomposition of 77 and 7" The binary decomposition
of M is My =T, ® T. It results M = 2%,

s = 00...0111...10...0, ¢ = 100...0111...10...0.
Nl gl N A A~
1—k k—r+1 17 i—k k—r4+1 r



66 Cristina FLAUT

By ”shuffling” s ® ¢, we obtain

01 00 00...00 111111 ...11 00 00 ...00 00.

(i—k) pairs (k—r+1) pairs T pairs

Starting with Ay, we get:

01 0 00 1 11 1 11 11 1 k— 1 00 00 k— 1
Ag S AD LBAS C3C3-C3C5 .. = (D)ol 3 (=t
A
1—k k—r+1 T

Therefore 7 (s, q) = (—1)F .
Now, we compute er, er41. For this, we will ”shuffling” 00...0111...10...0
A~

1—k k—r+1 r
with 100...0111...10...1. It results
—— A A~

i—k k—r+1 1

01 00 00...00 11 11 11...11 00 00...00 O1.

(i—k) pairs (k—7r+1) pairs T pairs

Starting with Ay, we get:

01 0 00 11 11 1 11 1 1 k—r+1 00 01 k—r+1
A S AD LBAS C3C3-C3C5 .. = (D)Mol . S —(—nte.
A
i—k k—r+1 r

For er, yier, ”shuffling” 00...0111...10...1 with 100...0111...10...0, it results
N i i N A A~
i—k k—r+1 r i—k k—r4+1 r

01 00 00...00 11 01 01...01 00 00...00 10.

(i—k) pairs (k—7r+1) pairs r pairs

Starting with Ag,we get:

A B A8 8Ba8 cBcB cBo- . B nfteB L8 o —phrte.

N
i—k k—r+1 r

For eq, +1e74+1, we compute first (77 + 1) ® (T'+ 1) . We obtain:

(@ +2t+ 42 )@ (2n 2t 2R 204 1) =
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=100...0111...10...1 | ® { 100...0111...10...1 | =
N i N A A~
i—k k—r+1 1 i—k k—r+1 1T

= 10...0000...00...0 = 2°.
NN~
i—k k—r+1 7

Now, ”shuffling” 00...0111...10...1 with 100...0111...10...1, it results
A A~ A A~
i—k k—7r+1 17 1—k k—r+1 7

01 00 00...00 11 01 01...01 00 00...00 11.

(i—k) pairs (k—7r+1) pairs T pairs

Starting with Ay, we get:

A B A8 Ba8 cBcB cBcd B )eB LS - —phrte.

N
i—k k—r+1 r

Case 2: 1 = k. We have M = 2¥ @ T = 2! + 2%, For egrer, "shuffling”
00...010...0 with 100...00...0, it results

N— A~ ——A

i—k  kt1 i—k k41

01 00 00...00 10 00 00 ...00.
(i—k) pairs (k+1) pairs

Starting with Ay, we get:

01

Ag = A — ... —2A=>C—=>C—=

i—k k+1

For egrep 1, "shuffling” 00...010...0 with 100...00...1, it results

i—k k41 i—k  k+1
01 00 00...00 10 00 00 ...01.
(i—k) pairs (k+1) pairs

Starting with Ay, we get:

01 0 00 10 00 00 01
Ay—wA—... 2 A=>C—=C—=..—=-C.

i—k k+1
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ete.d

Proposition 3.3.8. ([Fl, Sh; 15(1)]) Let A; = (22%) be an algebra
obtained by the Cayley-Dickson process. For any x1,xa,...,xs € R — {0}, we

have that ) )
(’Ylvm»%) o [ T - Ve
R o R '

Proof. Let A; = (71"@’"") with the basis {eg = 1,e1,...,en_1}, n = 2
2 2
and let A} = (%) with the basis {e[ = 1,€],...,e,,_1} such that

(eh)? =22, i € {1,2,...,n—1}. Weremark that (z;e;)?> = x?7; and from here,

it results that the map 7: A} — As, 7 (e}) = e;x; is an algebra isomorphism.
O

The above proposition generalized Proposition 1.1, p. 52 from [La; 04].

Remark 3.3.9. From the above proposition, it results that for each n = 2¢
there are only n non-isomorphic algebras A;. These algebras are of the form
A = ('“’k'*'”), with y1, ..., € {—1,1}.

Proposition 3.3.10 ([FL; 14]) Let A, = (71}1'%"71) be an algebra obtained

by the Cayley-Dickson process with {eg = 1,€1,....,en_1}, n = 2! a basis in
A Let r>1, r<k<i<t We have

‘ er €T+1
€ok—r+1 (—1)T+2 EN - (—1)T+2 EM+1 > (339)
€Eok—r+141 — (71)T+2 CM+1 — (71)T+2 (Y3

where the binary decomposition of M is My = 2F @ T, with T =27 + 2"+ +
o+ 28420

Proof. We compute egr—rr1ep. We have egn—rirer = v (8, q) epr, where
the binary decomposition of M is M, = 2 "*1 @ T and s is the binary

decomposition for 2¢~"*1 and ¢ is the binary decomposition for T’
s = 00...0 100...0,q = 100...0111..10...0.
—— —— N A~
i—ktr—1k—r+2 i—k—lk—r+1 7

By ”shuffling” s ® ¢, it results

01 00 00...00 01 01 01 ...01 11 01 01 ...01 00 00 ...00 00.
i—k k—2r—1 r+2 r
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Starting with Ag,we get:

01 00 00 01 01 01 11 01 01 01 01 2 ~00 00 2
Ag B AS . BADZAS  BAS -CHCS-CH0.S ()PP es . S ().
N———

i—k k—2r—1 r+2 T

Therefore 7 (s, q) = (—1)F 7",
Now, we compute egx—r+1ep41. For this, we will ”shuffling” 00...0 100...0
i—k4r—1k—r42
with 100...0111..10...1. It results
A~

i—k—1k—7r+1 7

01 00 00...00 01 01 01 ...01 11 01 01 ...01 00 00 ...00 O1.
i—k k—2r—1 r+2 r

Starting with Ag,we get:

01 , 00 09,01 ,01 01,11 o1 -, 01 01 1 00 01
A B AD . BABZAD  BAL cBcS-cBo. S -)Pes L S Pe.
—_—

i—k k—2r—1 r+2 T

For egr—rt1jep, "shuffling” 00...0 100...1 with 100...0111..10...0, it re-
—— N — A A

i—k+r—1k—r+42 i—k—1k—7r+1 r
sults

01 00 00...00 01 01 01 ...01 11 01 01 ...01 00 0O ...00 10.
i—k k—2r—1 r+2 r

Starting with Ag,we get:

A B A8 BaB A8 Bal BB cBeo. B)ye® .

=

i—k k—2r—1 r42

For egr—rt1, 1741, We compute first (2’“_T+1 + 1) ® (T +1). We obtain:
(2k77‘+1 + 1) ® (T + 1) —

= 00...0 100...1 | ® | 100...0111..10...1 | =
—— —— A~
i—k+r—1k—r+2 i—k—1k—r+1 7T

= 10..011.10 1..1 0..0 =2 T = M.
T P~
i—k r—1 k—2r+1 r
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Now, ”shuffling” 00...0 100...1 with 100...0111..10...1, it results
——— —— A A~
i—k+r—1k—r+2 i—k—1k—r+1 7T

01 00 00...00 01 01 01 ...01 11 01 01 ...01 00 00 ...00 11
i—k k—2r—1 r+2 r

Starting with Ag,we get:

3.4. An example of A;—holomorphic functions

Let C be the complex field and let S be a subset of C.A complex number
w is called a limit point of S if and only if for any é > 0, there is an element
z € Ssuch that 0 < |z —w| < ¢ .

We consider the map f : S — C a function with S a subset of C. Let w be
a limit point of S. A complex number [ is said to be the limit of the function
f when z tends to w in S if for an arbitrary real number e such that € > 0,
there is a real number §, § > 0 such that |f(z) — 1] < e, for all elements z € S
such that 0 < |z — w| < §. We write this

lim f (2) =1L

zZ—w

With the above notations, the function f is said to be continuous in w if
for an arbitrary real number ¢ such that € > 0, there is a real number §, § > 0
such that |f(z) — f (w)| < € for all elements z € S such that |z — w| < J.



Habilitation thesis 71

Let w be a complex number and let r be a non-negative real number. We
define the set

Bw,r)={2€C/|z—w|<r}

called the open disk of radius r about w. A subset W of the complex plane is
called an open subset if and only if for any element w € W there is § > 0 such
that B(w,r) C V.( [Wi; 08])

Let S be an open subset of C. The function f is differentiable in a point
zo € S if the limit

o) — 1 L) =S G)
z—z0 zZ— 29

exist. This limit is called the derivative of f in zg. If f is differentiable in all
points of D, then f is called holomorphic in S.

Let f:S — C be a complex function f (z + iy) = u (z,y) + v (z,y), with
u(z,y),v(z,y) areal functions. If f is differentiable in zp = x¢ + iyo, then

we have

ou Ov Ou ov

dx 9y’ dy Oz

in (zo,y0) . The above relation are called the Cauchy—Riemann equations.

Denoting with

af Ou . Ov df Ou .Ov

ST A Tl o = o i,

or Odxr Ox dy Oy dy
vxfze obtain % = fi%, therefore g—i + ig—y = 0. We call the operator D =
% +ia% the Dirac operator. If u and v satisfy the Cauchy—Riemann equations
and have continuous first partial derivatives, then f is holomorphic. Therefore
if

Df=0 (34.1)

and u and v have continuous first partial derivatives, then f is holomorphic.

In an Euclidean space the Dirac operator has the form
n
0
D= er=—
kZ:l k@xk

where eq, eq, ..., e, is an orthonormal basis in R™ and R" is considered to be
embedded in a Clifford algebra.
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How we can generalize the definition of holomorphic functions to all al-
gebras obtained by the Cayley-Dickson process? The real vector space R?
can be included in the generalized quaternion algebra H («, 3) if we identify
(x,y,2) € R® with a pure quaternion z = xi + yj + zk, with 22 = —n (z) € K.
Therefore, to a domain  C R3 we will associate the domain Q¢ := {¢ =
x1e1 + xoes + x3e3 / (r1,22,23) € N} included in H («, ). Consider a func-
tion ® : Q¢ — H (e, 8) of the form

3
() =Y Pr(1,72,73)es, (3.4.2.)
k=1
where (z1,22,23) € Q and & : Q — R.
We say that this function is hyperholomorphic in a domain Q. if the first
partial derivatives 0Py, /0x, exist in Q and the following equality is fulfilled in
every point of Q¢

Definition 3.4.2. Let {eqg = 1,€1,...,e,_1} be a basis in A; = (Vl’j}'@"%) ,
n = 2'. To domain Q C R 1, we will associate the domain Qe ={( =
zie1+ ...+ xp_1ep_1/(x1,22, ..., Tn_1) € 0} included in A;.

Consider a function ® : Q- — A, of the form

n—1
@(C) = Z(I)k(xla'rQa"'vxn—l)eka (343)
k=1

where (z1,%2,...,2p-1) € Q and ®; : & — R. The domain Q. is called
congruent with the domain €.

We say that a function of the form (3.4.3) is left A;—holomorphic in a
domain Q¢ if the first partial derivatives 0®/0xy, exist in Q and the following
equality is fulfilled in every point of )¢

The operator D is called Dirac operator.

Remark 3.4.3. Let H (y1,72) be the generalized quaternion algebra with
the basis {1, e1,ea2,e3}, 71 <0, 72 < 0 and H(—1, —1) be the usual quaternion
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division algebra with the basis {1,4, 7, k}. Let Q be a domain in R?, and let
={¢ =zi+yj+zk : (x,y,2) € Q} be a corresponding domain in
H( —1,—1). The function ® : Q, — H( — 1, —1) of the form

(I)(C) = U (Z‘,y,Z) + ug (l’,y72)l+ us ($7yvz)] + uq (l’,y,Z) k.

is hyperholomorphic in the domain € if

0P 0P 0P
D[®](¢) = i— =0
[2UO) =g, +ig, thy,
and the first partial derivatives Quy/Oxy exist in Q.
For another domain A C R3, we associate the domain AE = {Z = Tey +
yes + zes : (2,y,2) € A} in the algebra H (y1,72). The Dirac operator in

H (v1,72) , denoted by D, is

~ 0 0
D=c¢ + e2—= +e3—

Yor T %oy T Por

The elements of bases in H(—1,—1) and H (y1,72) satisfy the following
equalities:
er=1iv—71, €2 =jv—2, 3=k (3.4.4.)
Now we establish a connection between hyperholomorphic functions in the
algebras H (—1,—1) and H (vy1,72), where 71 < 0, 2 < 0. For this, we denote
1 1 1
x, Yy = Y, zZ = zZ.
Vo = Vs
These relations give us the operator equalities:
o__t o0 o0 1 90 0__1 9
o =m0z’ 0y =m0y 07 iz

Now, using relations (3.4.4) and (3.4.5), we obtain

xTr =

(3.4.5.)

~ 0P 0P 0P

D[®](¢) = e1 5= 0 +exo= Ehi +€387 =
6‘1) 1 0d 1
=i /71 + V2 + ko ——— /717 =
Ty ”8F o= Y
0d 0® 0d
=i ;% k%2 ~ D)) =o.

Jr oy 0z
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Using the above notations, we obtain the following theorem:

Theorem 3.4.4. Let Q be an arbitrary domain in R? and A be a domain
in R® such that the coordinates of the corresponding points ( = xi+yj + zk €
Q¢ and ( = Te1 + yea + Zes € AE satisfy the following relations:

—
t
—
t

1
Y, 2=

Z.
—7 -2 VY172

Then if the function ® : Q¢ — H(—1,—1) is hyperholomorphic in the domain

Q¢, then the same function ®, of (, is hyperholomorphic in the domain AE €
H(~1,7v2) with v1 < 0, v2 < 0. The converse is also true.

Proof. It results directly from Remark 3.4.3.00

Remark 3.4.5. (i) The above Theorem tell us that for studying hyperholo-
morphic functions in generalized quaternion algebras H(~yq,v2) with v < 0,
v2 < 0 it is suffices to consider hyperholomorphic functions only in the usual
quaternion algebra H(—1,—1).

(ii) The result similar to the previous remark was established in the pa-
per [Pl, Sh; 11], Theorem 5, in a three-dimensional commutative associative

algebra.

Theorem 3.4.6. Let A, = (2:20t) be a generalized Cayley-Dickson
algebra with v1 < 0,...,7 < 0. Let Q be an arbitrary domain in R2 -1 gnd
A be a domain in R2 =1 such that the coordinates of the corresponding points
C=mer+ .. +oo 1621 € Q and =T &1 +FaEa+. .. +To_1 Cpe1 € Af

satisfy the following relations

1 1 1 ~
——T1, Ta=—7—=2T2, ..., Tp = —F————=oTp.
v—n V=2 (=D)fy1 ooy
If the function ® : Q¢ — (%) is left Ai-holomorphic in the domain )¢,
then the same function ®, but depending of C is left Ay-holomorphic in the

T =

domain AE € A;. The converse is also true.

Proof. Let {1,e1, ..., en1} be a basis in (=5=) and {11, .., &1} be
a basis in A; = (Vhﬁiﬁt).

Since

’élzel\/_’yl? ,52:62\/_727"'7
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coslpor = eV (1)t

the result is obtained from a simple computation as in Remark 3.4.3.0J

Remark 3.4.7. Using above Theorem, it is obvious that, for studying
left A;-holomorphic functions in generalized Cayley-Dickson algebras A; =
(%) with v1 < 0,...,7 < 0. it is suffices to consider left A;-holomorphic
functions only in the algebras (%) .

Now we consider another class of differentiable functions. Let A; = (%) ,
with 74 = ... = 74 = —1, and the domain Q@ C R2?". We denote with Qe =
{{=20+me1+ ...+ zp_16n-1 : (Zo,21,...,Zp—1) € Q} a domain in A;.
This domain is congruent with the domain (2.

We consider a function ® : Q¢ — A; of the form

n—1
() = Z Qi (20, 21, -, Tp—1)e€k; (3.4.6.)
k=0
where (29, Z1,...,2p—1) € Q and &y : Q@ = R.

We say that a function of the form (3.4.6) is left A,—hyperholomorphic in a
domain Q¢ if the first partial derivatives 0Py /0zy, exist in Q and the following
equality is fulfilled in every point of Q¢

In the following, we will provide an algorithm to constructing a left A;—hyperholomorphic
function. Using the above notations, let v (z,y) be a rational function defined
in a domain G C R2. In the following, using some ideas given in Theorem 3
from [Xi, Zh, Li; 05], we will give an example of left A;—hyperholomorphic

function, for all ¢t > 1, ¢t € N. For this, we consider the following functions:

1
$1 =x0 +e1x1, ¢ = ;(T/o +e1z1),
1

1
t—1
P2s—1 = T2s — €1T25+1, P25 = —*e (CU2s - 61$2s+1), s € {1»2, w2 - 1},
1

Fy (Q) = v (1, 02) + v (p1,p2) €2 + v (p3,pa) ea + [V (ps, pe) €2] €2+

+v (p7, ps) es+(v (po, p10) €2) es+(v (p11, p12) €a) es+[(v (p13, p14) €2) €a] eg+...
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t—1 ¢ k—1 t—1
A (D (D v (pri—1, P1a) €27 ) €241 )€k )€ )+Z( (p2i—1, pai) €2i) ,
i=4 k=1 r=1 =1

where M, = 27 + 27+ + 42k 4 20,

It results

Fy (Q) = v (1, ¢2) +
t—1 ¢ k-1

+) QD v (pMypi—1:PM,) €27 )€2r 1. )Egr ) €gi +Z v (p2i-1,p2i) €2i) ,
i=1 k=1 r=1

or

F(Q)=F1(Q+
t—2 k

+(O> O w pM7‘k(t71)71,pMTk(t71))€2T)€2r+1...)62k)€2t—1)+ﬂ(p2t—1,1,p2t—1)€2t—1.
k=1 r=1

1

We denote with Ca; the ”complex” planes {xos+e1Za511 / T2s, Tas+1 € R}
and with Doy = {(22s,T2s41) / Ta2s + e172541 € Cas}, s € {0,1,2,...,2071 —
1} the Euclidian planes. Let Gos be domains in Cos and let égs be the
corresponded domains in Dsg. We have the following theorem

Theorem 3.4.8. With the above notations, we consider the functions
v (@1, 02) and v (pas—1,p2s) defined in the corresponding domains Gy C Cq
and Gas C Cay, s € {1,2,...,287Y — 1}.  Then the map F; () is a left
Ai—hyperholomorphic function in the domain © C Ay which is congruent
with the domain CNT'O X CNT'Q X C~7'4 X ... X égtfl_l - RQt, for t>1..

Proof. For t = 1, we have F; ({) = v(¢1,¢2), which is an holomorphic
function in Dy C Cy, as we can see in [Xi, Zh, Li; 05], Theorem 3.

For t = 2, we obtain F5({) = v(¢1,d2) + v (p1,p2) e and for t = 3,
we get F5(() = v (1, d2) + v (p1,p2)ex + v (p3, pa) es. Fo(¢) and F3 () are
hyperholomorphic, respectively octonionic hyperholomorphic function, from
Remark 2.1 and Theorem 3 from [Xi, Zh, Li; 05].

For ¢ > 4, using induction steps, supposing that F;_; (¢) is a left A;_1-
hyperholomorphic function, we will prove that F; (¢) is As-hyperholomorphic.
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7

That means D[F;] = 0. We have that

3Ft aFt 8Ft
D[F,] = —t = —t —t =
[F] Zekaxk Z eka + Z ekagck
k=0 k=0 fe=2t—1
2t=1_1
OF;
= D[F,_1] + €9t .
[t } 2 kzz() axk+2t—l
gt—1_

From induction steps, we obtain D[F;_1] = 0. We will prove that >
k=0
0. This sum has 2/~! terms. First two terms are:

OF} OF,
— €
angt—l 16$2t71+1

OF;

8x2t_1+k

8p2t—1

_ 0v Opyp1y ov  Opgi—1 e ov  Opgt-1_4 ov
B 8p2t71,1 8:@4 ap2t71 8332%1 !

v N v (_1>e< ov (—e1) + 8v>
8p2t—1_1 8p2t—1 €1 ! 8p2t—1_1 ! 3p2t71

ov ov ov ov

ap21—1,1 8952“1“ aPQt—l 8x2171+1

= —+ €1 — — € = 0'
apgt—l_l apgt—l ! 8p2t—1_1 ! 8p2t—1
Since e = vy, 72 = 1, 8{)2?_”1 - and apf:j—l can be written as asi-1_q (¢) +

bot—1_1 (¢) e, respectively age—1 (¢)+bgi—1 (¢) e1 where age-1_1 (¢), bae—1_1 (¢),

agi—1 (€), bae—1 (¢) are real valued functions.

Case 1: r < k. In the general case, we denote T' = 2" + 271 4 2F y 9t—1

and T} = 2" 4+ 2"+1 + . 4+ 2% for r < k. We will compute the terms

OF; OF;
—er, 78:1371 — €741 7@3,‘T+1 .

We compute first gf; It results

oF, < v Opr_1 v Opr

dxp dpr—1 dxp ' dpr dar

) 627')627‘«{»1)...62)«:)621—1 =

>:
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— (e (o e Y eardea e =
apT71 apT 61 2 2r+ ...Co 2t —

=( v +ﬁe €or )€or+1)...Cok )€
= (... apT71 apT 1 r 27-+1 2k Qt—l.

- under the form arp_1 (¢) +br—1 (¢) e1 and aap“T under

the form ar (¢)+br (¢) e1, where ar_1, br_1, ar, br are real valued functions,

Since we can write 3 v
T —

using Proposition 3.3.6, we obtain:

oF, ( Ov ov

% = apTil —|— apT€1> €2r)€2r+1)...€2k)€2t—1 =

= (...(O,Tfl(c)egr)eydrl)...€2k)egt—l + (...(bel(C>€1)€2r)€2r+1)...621@)62t71+

+(...(ar(Q)er)ear )egrir)...ar )egi—1 + (...(br(C)er)er)ear )egrtn)...eqn )egi—1 =

=ar_1(Q)(-1)*"Per 4+ br_1()(-1) " Per g+

+ar(C)(=1)F " Peri — br(Q)(—1)F " er.

OF;

6$T :

Using Proposition 3.3.7, we compute —er,

OF;

~eTi g = Ten (ar—1(O) (=1 2er + bp_1 (O)(—=1)F " Ber i+

+ar(Q) (=) Ber g — br(O)(—1)F " Rer) =

— <aT_1(<-)(1)kr+2(1)k7’+162i _ bT—l(C)(1>kr+3(1)kr+1€21+1> .

_ ( o aT(C)(71)k7r+3(71)k7r+162i+1 o bT(C)(l)kr+2(1)kr+162i> _
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— <CLT_1(<)(1)2]€2T+36211 _ bT—l(C)(1)2k2T+4621¥+1> .

- ( —ar (=) ey — bT<<><—1>2’€—”+3ezi>'

Now, we compute BaFt . We obtain
TT41

OF, _( ( Oov  Opr—_1 v Opr

- €9r JEgr+1 )...€9k JEgt—1 =
Opr—1 0xp41  Opr awTJrl) Jearsr)-car)ey

Orri1

( ( dv e1 + dv >e Jegr+1)...e9x )€
- ees - - T r+1 ). k t—1.
Bpr 2 Ty )20 2k )€2

under the form ar_1 (¢)+br_1 (¢) e; and BSTUT under

Since we can write 5 v
PT—1
the form ar (¢)+br (¢) e1, where ap_1, br_1, ar, by are real valued functions,

using Proposition 3.3.6, we obtain:

OF, < ( ov i ov >e Yegrar).on)e
=1 ... I — — r r+1 )... k t—1 —
Oxri1 dpr-1 ! dpr ot e

= (...(—aT_1(()61)627«)627~+1 )...€2k)62t71 —(...(bT_l(C)elel)egr)€2r+1)...621‘:)62t71 +

+(...(aT(C))€2r)€2r+1)...egk)(igt—l + (...(bT(C)el))egr)627+1)...ezk)€2t71 =

= —ar 1 (=D " Peryr +br 1 (=) Per+

+ar(C) (=1 er + br(O)(—1)F T Her .

Using Proposition 3.3.7, we compute —eTlHMLf:I.

OF,

—erip1s—— = —eryy1 —ar 1 (O(=1)F T Per iy 4+ br 1 (O(-1)F T Rer+
Orri1
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+ar(O)(~1)F " 2ep + bT<<)(—1)’“-T+3eT+1> _

k—r+1

- ‘(“T1<<><—1>’f—r+3<—1> €2 — bT1<<><—1>’f-r+2<—1>kT“ew)—

k—r+1

‘(‘ ar(C) (1) TFR(=1) T ey — bT<<><—1>k-"+3<—1>k"“em) N

— _ (aTl(C)(_1)2k_2r+4e2i _ le(C)(—l)2k_2r+362i+1> o

- ( —ar(Q)(=1)*" 2 Beyiy — bT(C)(—1)2k_2T+4eQ7:).
Now, we can compute —er, gﬂ% — eTlJrliagfil. It results

JF; OF;
—en 3:1:T T 8xT+1

— _ (aT1<<)(_1)2k—2r+362i _ le(C)(_l)Zk—2r+462i+1> _
- ( —ar(Q) (1) ey — bT(C)(—l)Qk_QT%eQi) -
(om0 e = b (-1 e ) -

- ( —ap()(—1)* 2 Beg yy — bT(<)(_1)2k_2T+4€2i) =0.

Case 2: r = k, we use Proposition 3.3.6 and Proposition 3.3.7 and it easy

to show that
OF; )

8xT + 8$T+1
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Remark 3.4.9. The above proposition generalizes Theorem 3 from [Xi,
Zh, Li; 05].

The Algorithm

1) Input t¢.

2) Input functions v, ¢1, ¢po.

3) Forie{l,...t—1}, ke {1,...,i}, r € {1,...,k — 1}, compute M,j; =
2"+ o+ 28 420 0 (a1, PMs) = QMo+ B €1

4) Forie {1,...,t =1}, ke {l,..,i},re {1,....,k — 1},

-if r < k, we compute

(. (Qpg, . + Brp €1) €20 )€2rt1... )€K €9 ) =

= (_1)k7T+2 (aM'rkieMrl«i - BMrkieMrlmtfl)

-if r = k, we compute
v (p2i_1,pai) €2i = (i1 + Pai_1€1)eni =

= (l9i_1€9i + 527:_1627:_,_1.

5) Output function

t—1 1 k—1
Fi(Q) =v(d1,02)+) (O ( )T (@t () ety — Bty (€) €nrpi—1)))+
1=4 k=1 r=1

t—1
+Z (i1 (C) €gi + Bai_1 (C) e2iq1) -
=1
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3.5. Some equations in algebras obtained by the Cayley-Dickson
process

In the following, we reduced the study of an algebraic equation in an arbi-
trary algebra H (y1,92) with 71,72 € R\ {0} to the study of the corresponding
algebraic equation in one of the following two algebras: division quaternion
algebra or split quaternion algebra. Moreover, De Moivre’s formula and Eu-
ler’s formula in generalized quaternion algebras, founded in [Ma, Ja; 13], was
proved using this new method, for 71,72 < 0. With this technique, the above
mentioned results were also obtained for the octonions.The results presented
below, were obtained especially in the paper [Fl, Sh; 15(2)].

We denote with v = sign(y1)y1, 74 = sign(y2)y2. An isomorphism be-
tween the algebras H(v1,72) and H(—1, —1) or between the algebras H(~y,v2)
and H(1,—1) is given by the operator A and its inverse A~!, where

A et =i, ex iV, es e ks (3.5.1.)

Depending on the sign of 47 and 79, we obtain four distinct operators. It

is easy to prove the following properties for the operator A :
1) A(Az) =AA(x) ,VIeR,Va € H(v,7);
2) Alz+y) = Ax)+ Ay),V 2,y € H(v,72);
3) A(zy) = A(z) A(y),V z,y € H(n,72)-

From here, it results that the operators A and A~! are additive and mul-

tiplicative.

Proposition 3.5.1. The operators A and A~' are continuous and their

norms are equal with 1.

Proof. We denote by || [[gz(4,,1,) the Euclidian norm in H (1, 72). Since
the spaces H (71,72) and H(—1,—1) are normed spaces, then the continuity

of A is equivalent with the boundedness of A, i.e. there is a real constant c
”A(f)”m(fol)

llz H(v1,7v2)

such that for all z € H (y1,72), we have < c. Supposing that 71,
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Y2 < 0, it results that
HI0+111\/*“/1+$2j\/*"/2+13k\/’W” _
[[zo+zie1+arest+xzes|| -
\/z2_£2 2 2.
_ 0TIV —®3V2+TEYs

2 2 2 2
\/20—11"{1 —x372+T373

Since each algebra H(~;,v2) is isomorphic with division algebra of quater-
nions or with algebra of split quaternions, it results that the above operators
provide us a simple way to generalize known results in these two algebras to
generalized quaternion algebra.

Let © = g + x1e1 + xoe3 + wzes € H(vy,72) and let f : H(yy,v2) —
H(~1,72) be a continuous function of the form f(z) = fo(zo,x1,22,23) +
fi1(zo,z1,22,23)e1 + fo(xo,x1, T2, x3)ea + f3(xo,21,22,x3)es. Let F be the
one of the operators given by the relation (3.5.1), depending on the signs of 4
and 72. We define the operator § which for any continuous function f, taking
values in H(7;,72), maps it in the continuous function §f, taking values in
H(—1,—-1) or H(1,—1) by the rule:

§f = fo+ fiF(e1) + f2 F(e2) + f3 F(e3).

Theorem 3.5.2. Let 2° € H(v1,72) be a root of the equation f(x) =0 in
H(vy1,72). Then F(z) is a root of the equation Ff(F(x)) = 0 in H(-1,-1)

or H(1,—1), depending on the signs of y1 and ~vo. The converse is also true.

Proof. Let 71,72 > 0. Applying operator A to the equality f(2°) = 0 and

using the continuity of A, we obtain

A(f (") = Af(A(2")) = A(0) = 0.

To prove the converse statement we apply the operator A~! to the equality

f(2°) = 0. The remaining cases can be proved similarly. (]

Therefore, all results from division algebra of quaternions or algebra of
split quaternions can be generalized in H(7y1,72).

It is known that each polynomial of degree n with coefficients in a field K
has at most n roots in K. If we consider the coefficients in H(—1,—1), the

situation is not the same. For the real division quaternion algebra over the real



84 Cristina FLAUT

field, there is a kind of a fundamental theorem of algebra: If a polynomial has
only one term of the greatest degree, then it has at least one root in H(—1,—1).
([Sm; 04], Theorem 65; [Ei, Ni; 44], Theorem 1).

We consider the polynomial of degree n of the form
f(fl?) = aoXa1T ... 0p_1T0pn + LP(LU), (352)

where z, ag, a1,...,a,-1, a, € H(—1,-1), with a; # 0 for £ € {0,1,...,n}
and ¢(x) is a sum of a finite number of monomials of the form bozbix ... b1 xb;
where ¢ < n. From the above, it results that the equation f(z) = 0 has at
least one root. Applying operator A~' to this last equality, the equation
(A7) (A71(x)) = 0, with x = 29 + z1e1 + T2e2 + T3e3, has at least one root

in H(+y1,72). Therefore, we proved the following result:

Theorem 3.5.3. In the generalized quaternion algebra H(y1,72) , any
polynomial of the form (3.5.2) has at least one root. ]

In the following, we will use some ideas and notations from [Ch; 98]. Let

q = qo+ qie1 + q2e2 + qzes € H(v1,72), 71.72 > 0, qo,q1,¢2,93 € R and
n(q)| = \/qg + 7147 + 2G5 + 717293 -Consider the sets

S& = {g € H(y1,72),7,72 < 0: n(q) = 1},
S&={q € H(y1,7),7,72 <0: go = 0,n(q) = 1}.
Any g € 8¢ can be expressed as ¢ = cosf + esin 6, where
_ _ qie1 + qaez + gze3
cost =qp, €

VNad + 726 + 17283 '
Using Proposition 2 from [Ch; 98] and applying the operator A~! we will

find De Moivre’s formula for H (y1,72) , 71,72 < 0.

Theorem 3.5.4. Let q = cosf +esinf €S2, 6 € R. Then ¢" = cosnfl +
esinnf, for every integer n.

Theorem 3.5.4 is the same with Theorem 7 from the paper [Ma, Ja; 13],
obtained with another proof.[]

Using Corollary 3 from [Ch; 98] and Theorem 3.5.2, we obtain the next
statement.
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Proposition 3.5.5. 4) In H(vy1,72), 71,72 < 0 the equation ™ =1 whit

n integer and n > 3 has infinity of roots, namely
27 27
q=cos— +esin— €S}, e SA.
n n

it) In H(v1,7v2), 71,72 < 0 the equation " =a,n € N, a € R has infinity
of roots, namely {/aq, where q = cos 2& +551n T e 83, with € €SZ. If n is
even it is necessary that a > 0.0

In the following, we will generalize in a natural way De Moivre formula and
Euler’s formula for the division octonion algebra O (—1,—1,—1). For this, we
will use some ideas and notations from [Ch; 98]. We consider the sets

S3={ac0(-1,-1,-1): n(a) =1},

S& ={a€0(a,8,7): n(a) =1},
S?={ac0(-1,-1,-1): t(a) = 0,n(a) = 1}.

={a€O(-1,-1,-1): t(a) =0,n(a) =1}.

We remark that for all elements a € S%, we have a? = —1. Let a € S3,a =
ag+a1 fir+asfotasfs+asfa+asfs+asfe+arfr. This element can be written
under the form

a = cos A+ wsin A,
where cos A = ag and

_arfitasfotasfs+asfst+asfs +asfe +arfr

Va3 +a}+a3 + a3+ a? +af + a2

_afh tafotasfstaafatasfs +acfs +arf
V1 —ad? .

2 = —1, we obtain the following Euler’s formula:

Since w

oo n o n o\ 2n n 1yon—1

Aw ()\U)) _ ( 1) 2 )\ .

“ = ; nl _; 2n)! “"Z =
= cosA+wsin .
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Proposition 3.5.3. The cosinus function is constant for all elements in
S2.

Proof. Indeed, cosw = Y % = cosi.0

i=1
Proposition 3.5.4. For w € S%, we have (cosA\; + wsin A;)(cos Ag +
wsin Az) = cos(A1 + A2) + wsin(A; + Az2).

Proof. By straightforward calculations O

Proposition 3.5.5. (De Moivre formula for octonions) With the above

notations, we have that

a™ = €™ = (cos A + wsin \)" = cosn\ + wsinn\,

where a € S®, n € Z and X € R.

Proof. For n > 0, by induction. We obtain

a1 = (cos A+ wsinA)"! =

= (cosA+wsin\)" (cos A\ + wsin \) =

(cosnA + wsinn\) (cos A + wsin \) =

cos(n + 1)\ + wsin(n + 1)A.

Since a™! = cos A — wsin A\ = cos(—\) + wsin(—2A), it results the asked
formula for all n € Z.OJ

Remark 3.5.6. We know that any polynomial of degree n with coefficients
in a field K has at most n roots in K. If we consider the coefficients in
O(-1,-1,-1), there is a kind of a fundamental theorem of algebra: If a
polynomial has only one term of the higher degree, then it has at least one
root in @ (—1,—1,—1) (see [Ch; 98], Theorem 65).

Theorem 3.5.7. Fquation ™ = a, where a € O (—1,—1,—1)\ R, has n
T00tS.

Proof. The octonion a can be written under the form a = y/n (a) \/%
n(a

is in 83, then we can find the elements w € S? and

The octonion b = —2

n(a

A € R such that b = cos A + wsin A. From Proposition 3.5.5, we have that
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the solutions of the above equation are x, = {/Q (COS M‘% + wsin M’%) ,

where @ = \/n(a) and r € {0,1,....,.n —1}.00
Corollary 3.5.8. If a € R, therefore the equation x™ = a has an infinity

of roots.

Proof. Indeed, if a € R, we can write ¢ = a -1 = a(cos 2w + wsin 27),

where w € S? is an arbitrary element. [J

In the following, we will consider the generalized real octonion algebra
O(a, B,7) and the algebras O(—1,—1,—1) and O(1,1, —1). Let {1, f1,..., f7}
be a basis in O(«, 8,7), and {1, ]?1, o ]?7} be the canonical basis in O(—1, —1,—1)
and {1, fl, cey ﬁ} be the canonical basis in O(1,1, —1).

We prove that the algebra O(a, §8,v) with «, 5,7 € R\ {0} is isomorphic
with algebra O(—1,—1,—1) or O(1,1,—1) and indicate the formulae to pass
from one basis to another basis. Thus, if a, 5,7 < 0 then the real octonion
algebra O(«, 8,7) is isomorphic with algebra Q(signea, signf, signy) and this
isomorphism is given by the relations:

Ay [ A (Gigna)a,  fas for/(signB)B, [z f3v/aB,
fi= fa/(signy)y,  fs v fs/ams fo = o /By, fr fo/MaBy,

where M = (signa)(signf)(signy).
We obtain 8 operators. It is easy to prove that the operators Ay, k = 1,8 is
additive and multiplicative. The following statement can be proved completely

analogous as Proposition 3.5.1.

Proposition 3.5.9. The operators Ay, k = 1,8 are continuous and have
norm 1.0
7
Let z =z + Y. 2 fr € O(a, 8,7) and let g : O, 8,7) = O, 8,7) be a
k=1

7
continuous function of the form g(z) = go(xo,...,27) + > gx(zo,...,27) [k
k=1
Let L be one of the operators Ay, k = 1,8, depending on the signs of «, 3 and

~. We define the operator £ by the rule:

7
£9:=fo+Y_ gk L(fr)-
k=1
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The operator £ for any continuous function g, taking values in O(«, 8,7),
maps it in the continuous function £g¢, taking values in O(—1,—1,—1) or
0(1,1,-1),

The following statement can be analogously proved as in Theorem 3.5.2.

Theorem 3.5.10. Let 2° € O(a, 3,7), be a root of the equation g(x) =
0 in O(, B8,7). Then L(z°) is a root of the equation £g(L(z)) = 0 in
O(-1,-1,-1) or O(1,1,-1), depending on the signs of «,B, and ~y. The
converse s also true. [J

Thus, the study of algebraic equations in an arbitrary algebra O(«, 3,7)
with a, 8,7 € R\{0} was reduced to study of the corresponding algebraic equa-
tion in one of the following two algebras: division octonion algebra O(—1,—1, —1)
or algebra O(1,1,—1).

Using the above notations, we can prove the following theorem.
Theorem 3.5.11. Fquation ™ = a, where a € O(a, 8,7) \ R, a, 3,7 < 0,
has n roots.

a

Proof. The octonion b = D) is in Sg, then there are w € 8(2;, w =

A7t (w),w € 8? and A € R such that b = cos A + wsin A. From Proposition

3.5.2, we have that the solutions of the above equation are z, = A7* (F,) =
%/n (a) (cos 22T 4 @sin 22T where r € {0,1,...,n — 1} and 7, is a
solution of the equation 2" =@ in O(-1,-1,-1).00

Remark 3.5.12. Using the operator AT, the rotation of the octonion
z € O(a, 3,7) on the angle A around the unit vector w € S is defined by the
formula

where u € 83, w € 8%, u=cos3 +wsin3 and ¥ = cos § — wsin 3.

By straightforward calculations, it results that the rotation does not trans-
form the octonion-scalar part, but the octonion-vector part 7 is rotated on

the angle A around w.

Example 3.5.13. 1) Let a € S3,
— V2 17 17 17 1 17 17 17
a = 2 +\/ﬁf1+mf2+\/ﬁf3+\/ﬁf4+mf5+\/ﬁfﬁ"'\/ﬁf?awe

have cos A = §7Sin)\ = g It results that @ = cos 7 + vsin 7, where v =
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%(]71 + fg + f;, + ]?4 + ]?5 + f(j + f;) The vector a corresponds to the rotation

of the space R8on the angle 5 around the vector v = (\iﬁ, \%, ceey \%) e R’
written in the canonical basis.
2) In the algebra 0(2,4,7), for the above element a € S?, we have
| _ V2 1 1 1 1 1 1 1 3
b=A" (a)=5 457Nt letrslst iz it lstp s fetasfr € SGand
corresponds to the rotation of the space R%on the angle 5 around the vector

_ 1 1 1 1 1 1 1 —— 3 :
v = (Tﬁ, Tx/ﬁ’ 77\/5, m, 14> m, ﬁ) € R'written in the basis {fla .. .7f7}.

In this case when o« = 8 = 1,7 = —1, the octonion algebra O(1,1,—1)
is not a division algebra (it is a split algebra). The norm of an octonion
a € 01,1,-1), a = ap + a1 fi + asfo + azfs + asfs + asfs + asfo + a7 fr,
in this situation, can be positive, zero or negative. In the following, we used
definitions and propositions obtained for the split quaternions as in [Oz; 09]
to generalized them to similar results for the split octonions. A split octonion
is called spacelike, timelike or lightlike if n(a) < 0,n(a) > 0 or n(a) = 0. If
n(a) =1, then a is called the unit split octonion.

Spacelike octonions

Let a € O(1,1,—1) such that n (a) = —1, be a so called spacelike octonion.
a1 fitasfotasfatasfatasfstacfetarfs
Vi+ad

—1 and t(w) = 0, therefore w? = 1. Denoting sinhA = ag and cosh A =

V1+a3, X €R, it results:

For the octonion w = , we have n(w) =

a = e =sinh A\ + wcosh \.
If a € O(1,1,-1) with n (a) < 0, we have a = /|n (a)|(sinh A 4+ w cosh \).

Proposition 3.5.14. We have that a™ = (y/|n(a)])"(sinh A + w cosh A)
for n odd and a™ = (\/|n (a)])™(cosh A + wsinh A) for n even. O

Timelike octonions
Let a € O(1,1,—1) such that n(a) = 1, be a so called timelike octonion.

If 1 —a? > 0, for the octonion w = alfl+a2f2+“3f374f4+a5f5+a6f6+a7f7 we
) 17@% )
have n (w) = 1 and t (w) = 0, therefore w? = —1 Denoting cos A\ = ag and

sin A = /1 — a3, A € R, it results:
Proposition 3.5.15. With the above notations, we have the Euler’s for-

mula:

a=eM = cos A+ wsin \.
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o0

Proof. Indeed, e’ = > (’\ Z 2n))}2n + wZ 1);” li‘% L —cos A +
i=1
wsin A.0O

Ifa € O(1,1,-1) with n (a) > 0, it results a = \/n(a) (cos A + wsin A) .00

Proposition 3.5.16. We have that a™ = (y/n (a))™(cosnA + wsinnA).O]

Proposition 3.5.17.
DIf a € O(1,1,-1), it results a™ = (y/n (a))™(cosnA + wsinnA).
2) The equation =™ = a has n roots: %/|n (a)] (cosh 2 4+ wsinh 2) .0

a1 fi+azfa+asfatasfatasfs+aesfet+arfr with

\/agfl ’
n(w) = —1 and t(w) = 0, therefore w? = 1. Denoting coshA = ap and
sinh A = \/aZ — 1, X\ € R, we have the following result:

If 1 —af < 0, we have w =

Proposition 3.5.18. With the above notations, we have Euler’s formula:

a = e = cosh A + wsinh \.

Proof. Indeed, e*" = Z (’\w) = Z (3:;, +w Z (2n+1), =cosh A-w sinh A\.(J
n=0

Ifa€acO1,1,-1) with n(a ) <0, it results a = y/In(a)|(cosh A +
wsinh A).00

Proposition 3.5.19.
1) If a € O(1,1,-1), then a™ = (y/In(a)|)"(coshnX + wsinh n)).
2) The equation z" = a has only one root: */In(a)| (cosh 2 + wsinh 2) .0

Remark 3.5.20. Using the above technique, De Moivre’s formula and
Euler’s formula can be easy proved for the octonion algebra O(c, 3,7), with
a,B,7 € R\ {0} such that O(a, S,7v) is split. Thus, the study of algebraic
equations in an arbitrary algebra O(«, 8,7) with «, 3,7 € R\ {0} was reduced
to study of the corresponding algebraic equation in one of the following two
algebras: division octonion algebra Q(—1,—1,—1) or algebra O(1,1, —1).

3.6. Fibonacci elements in Quaternion and Octonion algebras
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The results presented in this section were obtained especially in the papers
[F1, Sh; 13] and [Fl, Sa; 15]. The Fibonacci numbers was introduced by
Leonardo of Pisa (1170-1240) in his book Liber abbaci, book published in
1202 AD (see [Kos; 01], p. 1, 3). These numbers was used as a model for
investigate the growth of rabbit populations (see [Dr, Gi, Gr, Wa; 03]). The

nth term of these numbers is given by the formula:

fn = fn—l +fn—2, n>2,

where fo =0, f1 = 1.

The following sequence
lo=2;fi=Ll,=lp1+1lp2, n>2

is called the Lucas number. Some properties of these numbers are known.

Proposition 3.6.1. Let (f,,)n>0 be the Fibonacci sequence and let (1,,)n>0
be the Lucas sequence. Therefore the following properties hold:
) f2+f20 = fans1,VnEN;
ii) 72L+1 - fsfl = fon,¥ n € N
iX) filmtp = fomsp + (—1)erl fo, ¥V m,peN;
X) fotplm = fomip + (=)™ fp,¥V m,p € N;
xi) fonfmtp = % (l2m+p + (_1)m+1 lp) ,V'm,p €N;
xii) Lnlp + 5fmfp = 2lmyp,V m,p € N.O

Let H (81, B2) be the generalized real quaternion algebra.

We denote by t (a) and n (a) the trace and the norm of a real quaternion

In [Ho; 61], the author generalized Fibonacci numbers and gave many
properties of them: h, = h,_1 + hn_o, n > 2, where hg = p,h; = g,
with p,q being arbitrary integers. In the same paper [Ho; 61], relation (7),
the following relation between Fibonacci numbers and generalized Fibonacci

numbers was obtained:
hn-‘,—l :pfn +qfn+l- (361)

The same author, in [Ho; 63], defined and studied Fibonacci quaternions and
generalized Fibonacci quaternions in the real division quaternion algebra and

found a lot of properties of them. For the generalized real quaternion algebra,
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the Fibonacci quaternions and generalized Fibonacci quaternions are defined

in the same way:

Frn = ol + frni1€2 + foi2€3 + fogsea,
for the nth Fibonacci quaternions, and

H, =h,1+ hpi162 + hpioes + hypysey,

for the nth generalized Fibonacci quaternions.
In the same paper, we find the norm formula for the nth Fibonacci

quaternions:

n (Fn) = ann = 3f2n+37 (12)

where F,, = fo-1— foi1€2 — fni2€3 — faises is the conjugate of the F),
in the algebra H. After that, many authors studied Fibonacci and generalized
Fibonacci quaternions in the real division quaternion algebra giving more and
surprising new properties (for example, see [Sw; 73], [Sa-Mu; 82] and [Ha; 12]).

M. N. S. Swamy, in [Sw; 73], formula (17), obtained the norm formula for
the nth generalized Fibonacci quaternions:

n (Hn) = Hnﬁn =
3(2pq — P°) font2 + (P + @) fon+3,

where H,, = h, -1 — hpt1e2 — hyioes — hyyseq is the conjugate of the H,, in
the algebra H.

Similar to A. F. Horadam, we define the Fibonacci-Narayana quaternions
as

Un - unl + Un+1€2 + Unp+2€3 + Un+3€4,

where u,, are the nth Fibonacci-Narayana number.

As in the case of Fibonacci numbers, numerous results between
Fibonacci generalized numbers can be deduced. In the following, we will study
some properties of the generalized Fibonacci quaternions in the generalized
real quaternion algebra H (81, 82). Let F, = fol+ fnr1ea+ fnioes+ fniseq
be the nth Fibonacci quaternion and H,, = h,1+ hyy1€2 + hyyoes + hyseq
be the nth generalized Fibonacci quaternion. A first question which can arise
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is what algebraic structure have these elements? The answer will be found in
the below theorem, denoting first a nth generalized Fibonacci number and a
nth generalized Fibonacci element with h2'9, respectively H?'4. In this way,

n

we emphasis the starting integers p and q.
Theorem 3.6.2. The set H,, = {H?9 / p,q € Z} U {0} is a Z—module.

Proof. Indeed, aHE9 + ng/ﬂ' = H;:p'*'bp/’“q"'bq/ € H,,, where

a,b,p,q,p',¢ € 2.0

Proposition 3.6.3. i) For the Fibonacci quaternion elements, we have

n
S (=D E, = ()" Fyy + 1463+ es.
m=1
i1) For the generalized Fibonacci quaternion elements, the following relation

18 tr%e
S (—1)™H HBI=(-1)"T HEY) — ptgtpestqes+pestqes.O

m=1
From the above proposition, we can remark that all identities valid for
the Fibonacci quaternions can be easy adapted in an approximative similar

expression for the generalized Fibonacci quaternions.

In the following, we will compute the norm of a Fibonacci quaternion and
of a generalized Fibonacci quaternion in the algebra H (81, 52) .
Let F, = frl+ fny1€2+ fni2es+ fniseq be the nth Fibonacci quaternion,

then its norm is

n(Fo) = f2 = Bifii — Bafiva + BiBaflys.

Using recurrence of Fibonacci numbers, we have

Proposition 3.6.4. The norm of the nth Fibonacci quaternion F, in a

generalized quaternion algebra is

0 (Fn) =han 15 T (- Br Do 2522 B1-1) (152) fufusr. (3.6.2)

Let H,, = hp1+hp1ea+hyoes+hys3eq be the nth generalized Fibonacci

quaternion. The norm is given in the following
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Proposition 3.6.5. The norm of the nth generalized Fibonacci quaternion

H21 in a generalized quaternion algebra is
1-285,—3 1-285,— 1-285,—3 1-2B5,—
n (HE) =p*ho, 4 (= BV, 1177 P 46 hon 15777 g (— i) hg, Y-

=2p(=P1 = 1) (=pBe+p+q) fa—1fn — 2¢*(=B1 — 1) (1-B82) fnfni1 +

Fhy PP 4 90081 Ba(fan + fonts) — 20aBa (1 + Br) fut1 fato. (3.6.3.)

O
It is known that the expression for the nth term of a Fibonacci element is
1 a™ g"
= —[a" — " = —=[1 - =], 3.6.4.
fu=glo” =57 = 2 - ] (3:6.4)

_ 145 _ 1-V5
Wherea—%fandﬁ— 2‘[.

From the above, we can compute the following

lim n (F,) = nh—{r;o(f?’ - 51f3+1 - ﬁ2f72z+2 + 6152f721+3) =

n—oo

2n a2n+2 a2n+4 a2n+6

= lim (&4 Bz +5152

n— o0 5
n— o0

)=

= sgnE(f1, f2) - 00

where

E(B1,B2) = (3 — %oﬁ - %a“ + %oﬁ) =

=5 (1= Bi(a+1)— B2 (3a+2) + B2 (8o +5)) =

=3[l = B1 — 282+ 5B1B2 + a (—B1 — 382 + 8B152)], since o = a + 1.
If E(p1,B2) > 0, there exist a number n; € N such that for all

n > ny we have

hymao? 3% 4 (=Br = Vhgy 25577 = 2(=B1 — 1) (1 = B2) fafus1 > 0.

In the same way, if E(/31,02) < 0, there exist a number ny € N such that for

all n > ny we have

han 29?0 4 (=B — Dhy 2577 = 2(—B1 — 1) (1 — Ba) fufusr < 0.
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Therefore for all 8, 82 € R with E(81, 82) # 0, in the algebra H (f1, 82) there
is a natural number ng = max{ny,ns} such that n (F,) # 0, hence F,, is an

invertible element for all n > ngy. Using the same arguments, we can compute

lim (n(HP?)) = lim (hi - 51h%+1 - 52hi+2 + 5152hi+3) =

n—oo n— oo

= lim [(pfu-1+9fn)’-B1 (Pfutafus1)’-B2 (Pfasr+afuse)’ +

+51B2 (Dfat2+afois)’] =

= sgnE'(B1, B2) - 00

where
E'(B1,8) = Ll(p+ aq)* = B1 (po+ a2q)” — Bo (pa® + a®q)" +
+B152 (pa® + 044(1)2] =
=1 (p+ag)’[1 - p10? - Baat + 1520 =
=5 (0 +0a9)" E(By. 52).
Therefore for all 31,82 € R with E'(31,82) # 0 in the algebra H (81, 52)
there exist a natural number n{ such that n (HP?) # 0, hence HEY is an
invertible element for all n > ny.

Now, we proved

Proposition 3.6.6. For all f1,82 € R with E'(B1,52) # 0, there ex-
ist a natural number n’ such that for all n > n' Fibonacci elements F,

and generalized Fibonacci elements HE? are invertible elements in the algebra

H (81, 62) .00

Remark 3.6.7. Algebra H (51, 52) is not always a division algebra, and
sometimes can be difficult to find an example of invertible element. Above
Theorem provides us infinite sets of invertible elements in this algebra, namely

Fibonacci elements and generalized Fibonacci elements.

Let n be an arbitrary positive integer and p, g be two arbitrary integers.
The sequence g,, (n > 1), where

nt1 = Dfn +qlay1, n >0
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is called the generalized Fibonacci-Lucas numbers.
To emphasize the integer p and ¢, in the following, we will use the notation
g2 instead of gy

Let Hg (v, 8) be the generalized quaternion algebra over the rational field.
We define the n-th generalized Fibonacci-Lucas quaternion to be the element
of the form

GY = gh il + gplyi+ gplad + gnlsk,
where i? = o, j2 = 3, k = ij = —ji.

In the following proposition, for « = —1 and 8 = p, we compute the norm
for the n-th generalized Fibonacci-Lucas quaternions.

Let A be a Noetherian integral domain with the field of the fractions K
and let Hg (o, 8) be the generalized quaternion algebra. We recall that O
is an order in Hg (o, 8) if O C Hk («, 8) and it is a finitely generated A—
submodule of Hg («, 8) which is also a subring of Hg («, 8) (see [Vo; 14]).
In the following, we will built an order of a quaternion algebras using the
generalized Fibonacci-Lucas quaternions. Also we will prove that Fibonacci-
Lucas quaternions can have an algebra structure over Q. For this, we make

the following remarks.

Remark 3.6.8. [Fl, Sa; 15] Let n be an arbitrary positive integer and
P, q be two arbitrary integers. Let (gifl’q)n21 be the generalized Fibonacci-Lucas

numbers. Then

Dfng1 +qlp = g% + gﬁ’fl,v n € N*.

Proof.

Plnt1 +aln = pfn-1 +qln +fn = g0+ pfn = gh "+ gity

Remark 3.6.9. [Fl, Sa; 15] Let n be an arbitrary positive integer and
p,q be two arbitrary integers. Let (g0?),-, be the generalized Fibonacci-
Lucas numbers and (Gﬁ’q)n21 be the generalized Fibonacci-Lucas quaternion

elements. Then:
GP1 =0 if and only if p=¢ = 0.
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Proof. 7 <7 It is trivial.

7 =7 If GPY = 0, since {1,%,],k} is a basis in Hg (o, 8), we obtain that
Pd — A _ DG P _
gn - gn+1 — JIn

iy = gy = 0. Tt results gp?) = gh' ) —gh? =0, ..., g5 =0,
g’?=0. But ¢{"? = P =
p=0.0

pfo + qly = 2q, therefore ¢ = 0. From g , we obtain

Theorem 3.6.10. [F, Sa; 15] Let M be the set

M= {Z 5GEi%|n € N*, p;, q; € Z, (V)i = Ln} U{1}.

i=1

1) The set M has a ring structure with quaternions addition and multiplica-
tion.
2) The set M is an order of the quaternion algebra Hg (o, ) .

3) The set M = {Z 5Gﬁi’q§ neN*pl,q €Q (V)i= l,n}u{l} is a Q—algebra.
i=1

Proof. 2) First, we remark that 0 M.
Now we prove that M is a Z— submodule of Hg (c, 53) .
Let n,m € N*, a,b,p,q,p ,q € Z. It is easy to prove that

, /’ ! . i b /’b !
agp? +0gp, " = g + g 0
This implies that
aGPY + bGP 1 = Gt 4 GIP b

From here, we get immediately that M is a Z— submodule of the quaternion
algebra Hg (o, 8) . Since {1, 4,7, k} is a basis for this submodule, it results that
M is a free Z— module of rank 4.

Now, we prove that M is a subring of Hg (o, 8) . It is enough to show that
5GP . 5G§’,;’q/ €M. For this, if m < n, we calculate

5927(1 : 597317(1 =5 (pfn—l + qln) -5 (p,fm—l + q/lm) =

= 250D o1 fm—1 + 2594 fr1lm + 25P qfrm—1ln + 25¢q Ll (3.2).

Using some previous results and above equality, we obtain:

5g£,q'5g%’q = 5pp/ [Zm+n*2 + (_l)m : lnfm]+25pq/ [fm+n71 + (_1)m . fnfmfl] +
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m

: lnfm] -

250 q [frntn-1 + (=)™ - fremi1] + 2544 [lnin + (—1)

=5 (ppllm+n—2 + 5p/q.fm+n—1)+5 |:5p/q (_l)m : va—m+1 +pp, (_1)m : ln—m} +

+25 (pq/fm+n71 + qq/lern) +25 [pq/ : (_1)m “frnem—1+ qq/ : (_l)m : lnfm} =

5p q,00 5p 4,0 50 q-(—1)™ pp -(=1)™ 5p q-(—1)™,0
=50 mina + 5Gmin—1 + RO A 59n’lﬁf+1 oy

’ ’ 5 /._1 m 5 /~_1m
Therefore, it results that 5G29 - 5G§,;”1I eM.
From here, we get that M is an order of the quaternion algebra Hg (a, ) .
1) and 3) are obviously.[J

Remark 3.6.11. For « = § = —1, we have that M is included in the set

of Hurwitz quaternions,
. . 1
H={q¢=a1+azi+asj+ask € Hg(-1,-1),a1,a2,as,a4 € ZorZ+§},

which is a maximal order in Hg (-1, —1).

3.7. Real matrix representations for the complex quaternions

The results presented in this section, were obtained especially in the paper
[F1, Sh; 13(2)]. It is know that each finite dimensional associative algebra
A over an arbitrary field K is isomorphic with a subalgebra of the algebra
M, (K), with n = dimg A. Therefore, we can find a faithful representation
of the algebra A in the algebra M,, (K) . For example, the real quaternion divi-
sion algebra is algebraically isomorphic to a 4 x 4 real matrix algebra. Starting
from some results obtained by Y. Tian in [Ti; 00] and in [Ti; 00(1)], in the
we will show that the complex quaternion algebra is algebraically isomorphic
to a 8 x 8 real matrix algebra and will investigate the properties of the ob-

tained left and right real matrix representations for the complex quaternions.
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We also provide some examples in the special case of the complex Fibonacci

quaternions.

—b
Let K be the field {( Z ) | a,b € R}. The map
a

@:C—)K,cp(a—}—bi):(a _b>,
b a

2

—b
where i = —1 is a fields morphism and ¢ (z) = “ ) is called the

b a
matrix representation of the element z = a + bi € C.

Let H =H (-1, —1) be the real division quaternion algebra.

A complex quaternion is an element of the form @ = co+cie; +coes+c3e3,
where ¢, € C,n € {0,1,2,3},

e2 =-1, ne{1,2,3}
and
Em€n = —€nptm = anetv 6mn S {_17 1}7m 7& n,m,n {1a273}7

Bmn and e; being uniquely determined by e,, and e,. We denote by H¢ the
algebra of the complex quaternions, called the complex quaternion algebra.
This algebra is an algebra over the field C. Let {1, e1, e, e3} be a basis in He.
The map v : R — C,v(a) = a is the inclusion morphism between R-
algebras R and C. We denote by F the C-subalgebra of the algebra Hc,

F={Q€eHc | Q=cop+cie1 + caes +czes,c, € Ryn € {0,1,2,3}}.

By the scalar restriction, F became an algebra over R, with the multipli-

cation 7 -7
a-Q=7()Q =aQ,a €R,Q€F.
We denote this algebra by Hg. The map
6:H —Hg,0(1) =1,6(i) = €1,6 (j) = e2,0 (k) = e3

and
0 (ap + ari + azj + ask) = ao + are; + azes + azes,
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where a,, € R,m € {0,1,2,3} is an algebra isomorphism between the algebras
H and Hpg.The algebra Hg has the same basis {1, e1, €2, e3} as the algebra He.
From now one, we will identify the quaternion ag + a1i + aoj + agk with the
”complex” quaternion ag + aije; + ages + ases, a,, € Rym € {0,1,2,3} and
instead of Hr we will use H.

It results that the element Q € Hg, Q = c¢o + c1eq + caes + c3e3, ¢, €
C,m € {0,1,2,3}, can be written as @ = (ag + ibo) + (a1 + ib1)e1 + (a2 +
iby)es + (az + ib3)es, where ap,, b, € R,m € {0,1,2,3} and i2 = —1.

Therefore, we can write a complex quaternion under the form

@Q =a+ib,

with a,b € H, a = ag + a1e1 + azes + azes, b = by + bie; + baoes + bzes.
The conjugate of the complex quaternion  is the element Q = cg —c1e1 —

coeq — c3e3. It results that

Q =a+ib. (3.7.1.)
For the quaternion a = ag + ai1e1 + ases + azes € H, we define the element
a® = ag + are1 — azes — ases. (3.7.2.)
We remark that
(a*)"=a (3.7.3.)
and
(a+0b)" =a*+b", (3.7.4.)

for all a,b € H.
For the quaternion algebra H, in [Ti; 00], was defined the map

ap —ai; —ag —as

a1 Qo —asz az
ArH— My (R),A(a) = ,

az as ao —ay

az —az dai ao

where a = ag + a1e1 + ases + agez € H, is an isomorphism between H and

the algebra of the matrices:

ap —a; —ag —asg
a; ag —as ag

, @0, a1,a2,a3 € R
az ag Qo —ax

az —a2 a ao
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We remark that the matrix A (a) € My (R) has as columns the coefficients
in R of the basis {1, e1,es,e3} for the elements {a,aey,aes,aes}.

The matrix A(a) is called the left matriz representation of the element
a € H.

Analogously with the left matrix representation, for the element a € H,

in [Ti; 00], was defined the right matriz representation:

apg —ai —az —asg

ay ag as —az
p:H— MyR), pla)= ,

as —ag Qo aq

as a2 —aip ao

where a = ag + a1e1 + ases + agez € H.

We remark that the matrix p (a) € My (R) has as columns the coefficients

in R of the basis {1, e1,es,e3} for the elements {a,eja,esa,eza}.

Proposition 3.7.1. [Ti; 00] For z,y € H and r € K we have:

PA@+y)=A(2)+A(Y), Azy) =A (@) A(y), A(rz) =rA(2),
A1) =1, r e K.

it) p(x+y)=p@)+py),play)=py)p@),p(rz)=rp(z),

p(].) :I4, re K.

iii) A (271 = (A @) 0 (a71) = (p (@), for @ £ 0.0

Proposition 3.7.2. [Ti; 00] For = € H, let @ = (ag,a1,az,a3)" €
Mixq (K), be the vector representation of the element x. Therefore for all
a,b,x € H the following relations are fulfilled:

i) ad = \(a) T

i) 7h=p(b) T

iii) azh = A (@) p(0) T = p(b) A (a) .

0)p (5) A (a) = A(a) p ().

v) det (A (x)) = det (p () = (n (2))* .0

For details about the matrix representations of the real quaternions, the

reader is referred to [Ti; 00].
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0
0

_1 ) = A(er) = A(9). The

0
(2@ A0
F“”(A(b) Ma)

Let & be the matrix 8 =

o O = O
o O
- o O O

matrix

where Q = a + ib is a complex quaternion, with a = ag + a1e1 + ases +
aszez € H,b = by + biey + boey + bzes € H and i? = —1, is called the left real
matriz representation for the complex quaternion Q). The right real matriz

representation for the complex quaternion @ is the matrix:
a) —p(b
0(Q) = p(*) p(*) .
p(b7) p(a”)

We remark that I'(Q),0(Q) € Mg (R).
Now, let M be the matrix

M =(1,—e1,—ez,—e3)" .

Proposition 3.7.3. If a = ag+ aje; + ases + azes € H, we have:
i) A(a) M = Ma.

i) OM = Me;.

iii) X (ia) = 0X(a) and X (ai) = A (a)0.

Proof. By straightforward calculations. O

Proposition 3.7.4. Let a,x € H be two quaternions, then the following
relations are true:

i) a*i = ia, where i2 = —1.
ii) ai = ia*, where i® = —1.
i) —a* = iai, where i2 = —1.

i) (va)” = z*a*.
v) For X,A € He, X =z + iy, A = a + ib, we have

XA=za—yb+i(x*b+ya).
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Proof. Relations from i), ii), iii) are obviously.
iv) From ii), it results (za)* = —i (za)i = —izai = (ixi)(iai) = v*a*.
v) We obtain

XA = (z+iy) (a+ib) = xa+ xib + iya + iyib =

=za—y*b+i(z*b+ya).O
Proposition 3.7.5. For X;A € He, X = z + iy, A = a + ib, we have
XA =T(X)T(4).

Proof. It results that

[ A@ A ) [ A@ A )
”X)”A"<A<y> AG) )(A(b) Aa) )‘
:< A@)A(@) = AyIAB) A (@) A (b)A () Aa) )

A A (@) +A@E)AB) A ) AB7) +A (57) A (a”)
_ Aza —y*b)  —A(xb* + y*a®)
Aya + x*b)  A(—yb* +z*a*) |

F(XA)z( Aza—y*b) —A((z*b+ya)*) >:

AMz*b+ya)  M(za—y*b)*)

AMza —y*b)  —A(xb* + y*a®) 0
Aya +z*b)  Mz*a* —yb*) |’

Definition 3.7.6. For X € Hy, X = = + iy, we denote by

X = (7, 7) € Msx1 (R)

the vector representation of the element X, where

r=x0+T1€1+T262+T3e3 € H, y=yo+y1€1+y2ea+tyses € H and
7=(x0,x1,x2,x3)t € Myyx1 (R),

7:(@/0, Y1,Y2,93)t € Myx1 (R) are the vector representations for the quater-

nions z and y, as was defined above.
Proposition 3.7.7. Let X € Heo, X = x + 1y, z,y € H, then:
1
i) X=r (X) 0 ) , where 1 = Iy € My (R) is the identity matriz and

0 =04 € My (R) is the zero matriz.



104 Cristina FLAUT

i) AX =T (4) X.

1 0 0 O
0 1 0

iii) ay? =, where a= 00 1 e My (R).
0 0 0 -1

i) a® = Iy.
. 1 B A (l‘) Y (y*) 1 . A (x) —
Proof. I)F(X)<O>_< Ay)  A(z) ><0>_< A(y) >_

_(A(lm))_(A(l)?)_ i
\aay ) \aw )\ 7

ii) From i), we obtain that

1 1
AX=T (AX) ( . )—r (A)T (X) ( .
10 0 O Yo Yo
1
i) api=| ° 0 0 ool v =g o
00 -1 0 —ys Yo
00 0 -1 —ys ys

oM
) , therefore we
M

Proposition 3.7.8. Let Mg be the matrix Mg = <
have —3 M{Ms = 1.
Proof. By straightforward calculations.[]

Theorem 3.7.9. Let Q € He be a complex quaternion. With the above
notations, the following relations are fulfilled:

i) T (Q*) Mg = MgQ, where Q = x + iy, Q* = a* + iy, z,y € H.

ii) Q = —LMIT (Q7) M.

Proof. i) Let Q be a complex quaternion. We obtain
* M
Ft (Q*) MS — A (33 2 A (y) 0 _
“A(y") A=) -M

Ax*)OM — X (y) M _ Az*i—y) M _
“A(y*)OM — \(z) M “Ay*i+x)M
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_ A (i +ity) M _ A (x +iy)) M _
“Aiy+x) M —M(xz +1iy)

[ Oz +iy)M [ M (x+iy) oM\
( —M(x +iy) )( —M (x + iy) ) ( M >( +iy)=MsQ.

ii) If we multiply the relation I'* (Q*) Mg=M3Q to the left side with

—1M{, we obtain Q=—1MIT" (Q*) Ms.O
Proposition 3.7.10. For X, A € Hg, X=x + iy, A=a + ib, we have

O (XA) =6 (4)0(X).

Proof. It results that
*b *b
O (XA)= p(fay ) (e tya) _
p ((z*b+ya)”)  p ((za-y*b)™)

(za-y*b -p (x*b+ya) )_

( P *b+ya p ((za-yb)")

(za- y*b -p (z*b+ya)
p xb*+y a*) pleta*yb*) |

p(*) p(a*) p(y*) pl(a¥)
[ pl@p@)-p®)ply")  -pla)py)-pO)px*) \_
(") p(x)+p(a*)p(y*) -p (") p(y)+p(a*)p(z*)

_( pla—yd) —plebtya) | o
p(zb* +y*a*) p(x*a” —yb*)

Proposition 3.7.11. Let X €e He, X = x + iy, z,y € H, then:
1 0 1
i) X = ( 0 ) 0 (X) ( 0 ) , where 1 = Iy € My (R) is the identity
o

matriz, 0 = O4 € My (R) is the zero matriz and o € My (R) as in Proposition
2.5 ii).
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. 10 10
u)XAz(O a)eun(() a)?
10 10
zzz)F(A)(O a>®(3)<0 a)
:<(1) 0)@(3)(3 O)P(A),forallA,BeHc

iii) We obtain AX B=A(XB)=I (A) X B=

cw(y ew (0 )%

Since AXB = A(XB) = (AX)B, it results that

a2 e () 0 )ax-
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1 1
= ( 0 ) O (B) ( 0 0 ) I'(A) ?, therefore we obtain the asked relation.

0 « a

Theorem 3.7.12. With the above notations, the following relation is true:

I (X) = M;© (X) My,

where
—-A; 0
M= eM ,
! 0 A1> s (R)
—A 0
M2_< 02 i > € Mg (R) and
0 -1 0 O
-1 0 0 O
A= e My (R),
! 0o 0 o0 1 +(R)
0 0O -1 0
0O -1 0 O
-1 0 0 0
Ay= e M4 (R).
? 0 0 0 -1 +(R)
0 0 0

Proof. First, we remark that A;p (a) A2 = X (a).
We have
MO (X) M, =
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Remark 3.7.13. From the above results, it results that

1
Q= —ZNlet (X™*) Na,
where Q € H¢ is a complex quaternion, Ny = MIME and Ny = M{Msg.

Proposition 3.7.14. For Q € Hg, Q = a + ib, we have:

det T (Q) =det © (Q) =n (aa* + b*b)* =n (a*a + b*b)”.

Proof.
We obtain: detT (Q)=det

Aa) =) )
Ab)  Ala”)
=det (A (a) A (@*) +X (b*) A (b))=

=det (A (aa*+b*b)) = n (aa*+b*b)> .

For the second, we have: det © (Q)=det <

=det (p (a) p(a®) +p (b) p (b7))=
=det (p (a*a+b*b))=n (a*a+b*b)° .

pla) —p(b) \_
p(b*)  pla”)



Habilitation thesis 109

Chapter 4

Some applications in Coding Theory

4.1. Preliminaries

Coding Theory is a mathematical domain with many applications in In-
formation Theory. Various type of codes and their parameters have been
intensively studied.(see [Li, Xi; 04]) As one of the important parameters of a
code, the distance associated (such as Hamming, Lee, Mannheim, etc.) was
also studied for many types of codes and formulae for the minimum values or
the maximum values for such distances were found (see [Ne, In, Fa, Pa; 01]).
Some of these codes, which have undergone significant development over the
last years, are Integer Codes. Integer Codes are codes defined over finite rings
of integers modulo m, m € Z and have some advantages over the traditional
block codes. One of these advantages is that integer codes are capable of cor-
recting a limited number of error patterns which occur most frequently, while
the conventional codes intend to correct all possible error patterns, without
completely succeeding. Integer Codes have a low encoding and decoding com-
plexity and are suitable for application in real communication systems (see
[Ko, Mo, Ii, Ha, Ma; 10]). There are some other codes similar to the Integer
Codes, such as for example codes over Gaussian integers ([Hu; 94], [Gh, Fr;
10], [Ne, In, Fa, Pa; 01], [Ri; 95]), codes over Eisenstein—Jacobi integers, [Ne,
In, Fa, Pa; 01], a class of error correcting codes based on a generalized Lee
distance, [Ni, Hi; 08], codes over Hurwitz integers, [Gu; 13], etc, which have
been intensively studied in recent years.

QAM, that is quadrature amplitude modulation, is used in many digital

data radio communications and data communication applications. The most
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common errors which appear in many digital data radio communications and
data communication applications are those which change a point into its near-
est neighbor. The Hamming distance and the Lee distance are not able to
correct these errors in a QAM signal. To improve this situation, in [Hu; 94],
Huber constructed codes over Gaussian integers with a new distance, called
Mannheim distance. He proved that these codes can correct Mannheim error
of weight 1 and used this new distance to find the properties of these codes (see
[Mo, Ha, Ko; 04] for further details). Nevertheless, in [Ni, Hi; 08] the authors
introduced a new distance which generalized the Lee distance and constructed
codes capable of correcting errors of generalized Lee weight one or two.

In [Gu; 13], the author generalized some results from [Ne, In, Fa, Pa; 01]
constructing codes over Hurwitz integers.

The results presented below, were obtained, by the author, especially in
the papers [F1; 15(1)], [F1; 16].

In information theory and coding theory the error correction are consid-
ered a technique used for sending a message, in a redundant way, helping the
sender to control errors in data transmission over unreliable or noisy commu-
nication channels. In coding theory, a block code is an error-correcting code
which encode data in blocks. A block code acts on a block of k£ bits of input
data to produce n bits of output data. We denote this with (n, k). When a
very long data stream is transmitted using a block code, the stream is broken
into pieces of some fixed size. Each such piece is encoded into a codeword,
using the block codes, also called block, and it is transmitted to the receiver
for decoding them.

Let A # & be a finite set called alphabet. A block code is an injective map

C: Ak 5 Am,
where k,n € N and AF = A x A x ... x A.The cardinal ¢ of the set A is called
—_—

k—times

the size of the alphabet. When ¢ = 2, the block code is called binary block
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code and we can identify the alphabet A with the field Zs. A message is an
element m € A* and k is called the length of the message and represents the
number of symbols from the message m.The number n represents the length
of the block and represents the number of symbols in a block. The rate of a
block code is

k
R=-—
n

and measures the transmission speed.
The Hamming distance between two code-words z = (z7...x,) € C and

y = (y1...yn) € C is the number of positions where x and y differ

dy (z,y) ={i / i #vi, i € {1,2,...,n}}].
The Hamming weight is
wy(x)={i/z;, #0,z€C}|.
The minimum distance of a block code is

dmin — mln{dH (xvy) , L 7é Y, T,y S C}

Let € A™ and e € N. We define the sphere S (z, ) of radius e and center
z to be the set

S(ze)={y€e A" /dy(z,y) <e}.
We have .
1S (@ye)l = 3B (g — 1),
i=0

see [Va; 75].

Definition 4.1.1, [Va; 75]. 1) A code C is called e-error-correcting code
if and only if for all z,y € C,x # y, we have dy (z,y) > 2¢ + 1.From here, for
all ,y € C,x # y, it results that S (z,e) N S (y,e) # 2.

2)If A" = ngJCS (x,e) then the code C is called perfect. It result that
for each y € A", there is an element & € C, unique determined, such that
dy (z,y) <e.

Proposition 4.1.2. A code C with minimum Hamming distance d = dyin

can detected d — 1 errors and can correct [%] errors.
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Definition 4.1.3. Let F,» be a finite field with p a prime number. Using
its vector space structure over Z,, let {a1,....as} be a generating system for
S

F,n. Therefore, each T € Fyn has the form T = ) 7;a;,2; € Z. The s—Lee
i=1

weight of T is
S

w () =) |l

i=1

and Lee distance between 7,y € Fpn is
dr (§7g) = wL (E_ y) :

Definition 4.1.4. 1) A linear code of length n over the alphabet Z, is a
linear subspace of the vector space Zy. If k = dimz, C and d is the minimum
Hamming distance, therefore the information rate of the code is R = % and C
is a code of the type [n, k,d], .

2) Let C be a code of the type [n,k]. A matrix G whose lines are a basis
in C over Z, is called a generating matriz for the code C.

3) A parity check matriz, H, of a linear code C is a generator matrix of the
dual code, C*+ = {y € Zy | <y,x>= 0,z € C}. Therefore, we have that
¢ € C if and only if cH? = 0.

4) With the above notations, for each z € Zq, the syndrome of the vector
zis s (z) = Ha' € Z)7F.

How we can use the syndrome in the decoding process? We define the
vector space modulo C, Zy /C. We remark that two vectors x,y € Zj belong
to the same equivalence class ¢ + C if and only if s(z) = s(y). Indeed, if
xz,y € ¢+ C, we have x —y € C, therefore H (z — y)t = 0. It results that
Hax' = Hyt. Therefore, for decoding using the syndrome, we must follow the
below algorithm:

-We compute the syndrome of the received vector z, s (x);

-We search a representative e such that s(e) = s (x);

-We will decode x by ¢ =z — e.

Definition 4.1.5. A code C C Zj is called a cyclic code if and only
if C is a linear code and if for each ¢ € C, ¢ = (co,...,cn—1), we have

(Cn—1,C0y oy Cn—2) € C.
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Remark 4.1.6. To each codeword c € C, ¢ = (cp, ...,Cn—1), We associate
the polynomial code ¢ (z) = ¢y + 12 + ... + c,—12" L. We have
z(co+ 1z 4 ..+ en13"7h) = o1 (8" — 1) + Cum1 + 0T + o+ gz
It results that C is an ideal in the ring Z4[z] / (2™ — 1), therefore a principal
ideal since Zg4[z] / («™ — 1) is a principal ring. This ideal is generated by the
unique monic element in C of minimum degree, called the generator polynomial

and denoted with g. The polynomial g is a divisor of the polynomial =™ — 1.

4.2. Integer Codes

Integer Codes are codes defined over finite rings of integers modulo m, m €
Z. These codes have a low encoding and and decoding complexity and are suit-
able for application in communication systems. Thus they became increasingly
popular over the last years (see [Ko, Mo, Ii, Ha, Ma; 10]).

These codes were defined first in [Vi, Mo; 98]. Let Z, be a ring of integer
modulo p, where p is an arbitrary integer. Let H € M,, ,, (Z,) be a matrix.
An integer code of length n and parity check matrix H is the set

C(H,f):{CEZZ/cHT:fmodp},

where f € Z;'. The matrix H is called the parity check matrix for the code
C (H, f) (see [Ko, Mo, Ii, Ha, Ma;10]). Therefore, if ¢ = (¢1,...,¢,) € C(H, f),

we have

Zcih]’i = fj,fj S Zp,j S {1,2, ,m} (4.2.1.)
i=1

When f = 0, the code are linear. In the following, we will consider only linear
codes. Supposing that a codeword c is sent through a noisy channel, we can
receive a vector under the form w = ¢ 4 e, where e = (eq,...e;,) is an error
vector. If ¢t of the entries of e are nonzero, we say that ¢ errors occurred in
c. Integer codes have many applications in various domains as for example
information theory, computer science, graph theory, etc. In coding theory
these codes are a useful tool in a single-error—correction codes. It results
that the integer codes over the block codes can correct errors of a given type.

Therefore, for a given channel we can choose the type of the most common
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errors and after that we construct integer code capable of correcting those
errors. ( see [Ko, Ma, Mo; 10])

Definition 4.2.1. [Ko, Ma, Mo; 10] The code C (H, f) is called t—multiple
(%e1, ..., ke,) errors correctable if this code can correct up to t errors with

values in the set E = {=£ey,...,,xe,}, called the error set.

In [Ta; 08], the author described the construction of the linear perfect
Integer Codes. We shortly present this construction from the above mentioned
paper. Let p be a prime integer and Z, the residue group modulo p. Let
Zy = (Zp — {0}, -) the multiplicative cyclic group. We denote with = {h; =
(hj1,--hjn), 7 € {1,2,...,m}}, the integers modulo p defined in (4.2.1). We
consider the errors set E = {+ey, ..., +e,}, as was defined in Definition 4.2.1,
supposing that 1 € E. We consider g a generator of Z,, therefore ng_l =—1.
If we take Z;/{—1,1}, we have that g is also a generator in Z/{—1,1}. The
idea of this construction is to organize E as a subgroup isomorphic with a
subgroup G of Z;/{—1,1}. The group Z;/{—1,1} is generated by g and G
must be generated by an element of the form gt, ¢ / pT_l since the order of the
group G is a divisor of prl, the order of the group Zy /{1, 1}. Therefore, we
have that z € G if and only if it is on the form
p—1
IR

Algorithm for Perfect Integer Codes.(see [Ta; 08])

1. We find a generator g for the group Z/{—1,1};

2. All elements e; € E will be write on the form e; = g*¢ in Zy /{—1,1}.

3. We consider D the set of all divisors of ’3—;1. For all s € D, let o; = sp3;.
If the set {8y mod t,...,Bt_1mod t} is equal with the set {0,1,...,t — 1},
therefore we obtain the subgroup G = {(g°)’¢, j € {0, ..., %}}

=gt j€/0,..,

Let Z[i| = {# = a+bi / a,b € Z}, p € Z be a prime number of the
form 4k + 1, such that p?> = a%? +b?> = 77 = n (7), where 7 € Z[i], 7 = a + bi
and n(m) is the norm of the Gaussian integer 7. The Gaussian integer 7 is
called a prime integer in Z[i]. We consider Z[i], the residue class modulo
7m.How we can obtain Z[i],? The procedure is presented in [Hu; 94], Appendix
E and [Da,Sa,Va; 03], Proposition 2.1.2, which we briefly describe it in the

following.
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Let z € C, z = a+bi. We define [z] = [a]+[b] i, where [a] is the integer part
of the real number a. Let u, w € Z[i], w # 0. We can find «, 8 € Z[i] such that
u = aw + (3, where a = [%}, B =u—awand n(8) < n(w). Indeed, let
L =g +iy,x,y € Randlet a,b € Z such that n(z —a) < 1 and n(y —b) < 1.
We take @« = a + bi € Z[i] and 8 = w[(z —a) +i(y — b)]. We remark that
B =u—aw with a = [n%)] . It results n(f%) = (x—a)?+@y-b>< 1
therefore n (8) < n(w).

Now we can consider the modulo function f : Z, — Z[i],

f(u) =u modrm =u— {M] T =03, (4.2.2.)
n ()
with n(8) < n(w). We remark that the representation of Z[i], as points in

the complex plane is called signal constellation. (see [Hu; 94])

Proposition 4.2.2 . ([Da,Sa,Va; 03], Proposition 2.1.4. ) For each
w,w € Z[i], there is the greater common divisor (u,w) € Z[i] and the following

relation holds

(u,w) = au + bw, a,b € ZJ[i].
Proof. The set I = {au+bw / a,b € Z[i]} is an ideal in Z[i]. We consider

the element @ = ou + 7v € I such that it is not zero element and its norm is
minimum. From the above, we can find o and 3 such that u = ¢ + r, with
n(r) < n(0), which is false. Therefore r =0 and 0 | u.0]

We have that (7,7) = 1, therefore 1 = vym 4 vo7. Using (4.2.2) and the
above proposition, we can find g : Z[i], — Z,,

9(B) = f1(B) = B (vam) + B (vim) mod p

the inverse of the map f. Indeed, we have that f (g (8)) = f (8 (vo7) + B (v17)) =
B (v27) + B (v17) mod 7 =
=B(1 —v7) + B (vi7) = B.

Remark 4.2.3. From the above, it results that Z[i], is isomorphic with
Zy, therefore the field Z,, is isomorphic with the residue class of Z[i] modulo
m, where n (1) = p. The idea which arise from here is to try to find a subset

S of an algebra obtained by the Cayley-Dickson process and an equivalence
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relation p such that S/p is isomorphic with the field Z,. In papers [F1; 15],
[F1; 16], was found such a construction.

Over Z[i]x, in [Hu; 94], in the similar way as in [Vi, Mo; 98], were defined
binary block codes. A block codes over the Gaussian integer Z[i], is a set of
codewords of length n of the form ¢ = (¢y, ..., ¢, ), where ¢; € Z][i].

In the following, we briefly present the construction of such a codes with
the minimum Mannheim distance dy; > 3, as was designed in [Hu; 94]. This is
necessary to understand how these codes were generalized to Hurwitz Integers
in [Gu; 13] and more generally to subsets S of algebras obtained by the Cayley-
Dickson process with the property that S is isomorphic with Z,,p a prime
number. This isomorphism allows us a more flexibility since for a given p,
we can find different sets S being in different algebras A;, obtained by the
Cayley-Dickson process.

For ¢1, ¢y € Zli]x,and ¢ = (¢ — ¢2) mod 7, we define the Mannheim weight
of ¢

wps (¢) = |Rec| + [Imc]

and the Mannheim distance between ¢; and ¢o
dyr (e1,c2) = wpy (c).

If v = (vo, ... Un—1) € (Z[i]x)™, we have wys (v) = > war(vg).
i€{0,..,n—1}
Let p = 4n 4+ 1 be a prime number. We will define codes of length n

which can correct one Mannheim error of weight 1. Such errors of weight one
can take only values from the set {—1,1 — 4,7} and are situated in positions
j€{0,1,...,n—1}. For an element ¢ € Z[i], of order p — 1, a One Mannheim
Errors Correction code (OMEC) C is given by the parity-check matrix

H= (O’O,Jl, ...,0174;171) . (4.2.3.)

We know that a codeword ¢ belong to C if and only if Hc! = 0. It is clear

that in this case the generating matrix is

—ol 1 0 0
—o? 0 1 0
G = 7
S
—0 2 0 O 1
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Decoding is easy using the syndrome. We remark that ¢”, 2", o3".04" €
{—1,1 —i,4}. If we receive a vector r = ¢ + e, with e an error of wys (e) =1
resulted at position ¢, computing the syndrome, we obtain the location g from
the relation s = g%mod n, with s the syndrome. If we reduce ¢ modulo n, we

obtain ¢, the location of the error, and from here we obtain ¢¢~¢, the value of

the error.
The above codes can be generalized to codes of length n = 2 ::1 and the
parity check matrix )
H= (00,01, ...,Up’4_171) , (4.24.)

with o € Z[i]» an element of order p" — 1.In this way, in [Hu; 94], were
defined, OMEC block codes over Z[i]» of the form [n, k, dps], determined by the
matrix H from (4.2.4) of length %, of dimension & and minimum Mannheim
distance dj;.

To obtain Mannheim Errors Correction codes which can correct errors of
Mannheim weight greater than one, in the same paper, was considered a code

C defined by the parity check matrix

o ot o? on1
o o 10 gPn=1) ’ (4.2.5)
S0 oHHL g2 (D)
where o € Zli];~ is an element of order 4n and ¢™ = i. If ¢ € C, ¢ =

n—1
(coy .-y Cn—1) is a codeword, if we write it as a polynomial ¢ = ¢(z) = > ¢;a"
=0

and since Hc! = 0, we obtain ¢ (04k+1) =0,k €{0,1,...,t}. If g (x) is the gen-
erator polynomial, we have that g / ¢ and ¢/ (2™ —i). Such a code is called
icyclic. From here, it results that from c(x) € C, with ¢ = (co,...,cn—1), we
obtain zc (z) — ¢p—1 (2™ — i) = (icp—_1, Coy oy Cn—2) € C.

To design codes which can correct Mannheim errors of weight two, in the

same paper, was considered the case t = 2, therefore the parity check matrix
0o 1 2 n—1
o’ o' o ... 0O
H= ( 0o 5 _10 5(n—1) ) :
o’ o0° o .. ©

. 51
For a received vector = e + ¢, we compute the syndrome s = =
S5
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Hrt. If in position q1, g2, we have errors of weight one, namely o1~ % gLz~ ¢
{-1,1,—1,3}, the error determinator polynomial can be computed
f(z)=(z—0o") (2 —ol2) = 22 =512+ P, P = o1 0™ This polynomial can
help us to find the errors, if we can determine the solutions.

Using these ideas, the above results were generalized to Hurwitz Integers,
in [Gu; 13], to Octonion integers and to some subsets of algebras obtained by
the Cayley-Dickson process in [Fl; 15] and [F1; 16].

4.3. Codes constructed over Hurwitz Integers

In [Gu; 13], the author described codes over Hurwitz Integers. He played
with primes p of the form 6n + 1 and worked on the quaternion real di-
vision algebra H. He considered the set H(Z) = {q = ag + a1i + azj +
ask / ag,a1,as,a3 € Z} and the set of Hurwitz integers H = H (Z) UH (Z—f—%) )

For w = £ (14i+j+k), he defined the set R = {a + bw / a,b € Z}.
For m € R, 7 a prime element, with n(7) = p,p a prime integer, ¢1,q2 € R,
we have g1 = ¢2 mod 7 if and only if there is an element @ € R such that
q¢1 — g2 = am.Was obtained the set R, = {g mod 7 / ¢ € R}. We have that
R, and Z, are isomorphic. In this way, the field Z,, is isomorphic with a set
which was built using a subset of quaternion, extended the construction of
Huber, in which Z, is isomorphic with a set which was built using a subset of

complex numbers.

Definition 4.3.1. Let 7 € H (Z) a prime element and ¢;, g2 € H such that
there is o € H (Z) with property ¢1 — g2 = ar. We call q1, g2 right congruent

modulo m, denoted =,. .

The quotient ring of the Hurwitz integers modulo the above equivalence
relation is denoted #, = {¢ mod m / ¢ € H}.

Definition 4.3.2. [Gu; 13] For o, 8 € Hy, let y=a — 8 =, ag + a1€1 +
ases + azes mod w. The Hurwitz weight of v is

wgr () = |ao| + [a1] + |az| + [as],
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with |ag| + |a1] + |az| + |as| minimum.

The Hurwitz distance between «, 3 is defined as

dp (o, B) = wp (7).
We have that dy (o, 8) is a metric.

. . p—1 p—1
For a prime m € R, was considered ¢ € R, such that 03 =woroc s =

—w. Was defined a code C given by the following parity check matrix

0 gt o? on—1
0 7 14 7(n—1)
o o o o
H= ,t < n.
g0 gbt+1  g2(6t+1) o (n—1)(6t+1)

We have that ¢ € R is a codeword in C if and only if Hc! = 0. For the

associated code polynomial ¢ (z) = > ', wehavec (0% t) =0,k €
1€{0,...,n—1}
{0, ...,t} and therefore the code generator polynomial

g(@) = (x—0)(z—0")..(x—0%") is a divisor for ¢ (x) and for the poly-
nomial ™ — w or 2™ + w. It results that C is a principal ideal of the ring
Rx[z]/(2™ — w) or Relz]/(z™ + w). In [Gu; 13], in Theorem 4, Theorem 5,

Theorem 6, Theorem 7, were proved the following results.

Proposition 4.3.3. 1) A code C defined by the parity check matriz
H= (00,01,...,0"71)

can correct any errors of the form e(z) = ext,i € {0,1,...,n — 1}, with
wy (e;) = 1 and any errors of the form e(z) = w2z’ or e(x) = —w?z'i €
{0,1,...,n—1}, with wy (—wz) =wgy (w2) = 2. Therefore, C can correct error
vectors of Hurwitz weight 1 with one nonzero component which can take values
in the set {—1,1,w,—w}. The code C can also correct some of error vectors
of Hurwitz weight 2 with one nonzero component which can take value in the
set {w?, —w?}.

2) A code C given by the parity check matriz

u o ol o2 ... 7!
P G P (O
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can correct any errors of the form e(x) = ex',i € {0,1,...,n — 1}, with
1 S wWH (ei) S dmax-
3) A code C given by the parity check matriz

o ol g2 . on1
o= o0 o7 ol o 7(n—1)
o0 o138 526 S13(n-1)

can correct any errors of the form e;x'+e;x?, with wy (e;) ,wr (e;) € {0,1},4.5 €
0,1,....,n —1}.
4) A code C defined by the parity check matrix

o ot o2 ... on!

o0 o7 gl 7D
H = o0 gl 526 S13(n—1)

o0 19 38 S19(n-1)

can correct any errors of the form e;x'+e;x, with wy (e;) ,wr (€;) € [0, dmax],.j €
{0,1,...,n —1}.
The above results were generalized for subsets of Octonion Integers, as we

can see in the following section.

4.4. Codes over a subset of Octonion Integers

Due to the structure of the real Octonion algebra, a nonassociative and
a noncommutative algebra, in the following, we generalize the above results
to a special subset of Octonion integers, comparing them with some results
obtained until now. We prove that, under certain circumstances, these codes
can correct up to two errors for a transmitted vector and the code rate of the
codes is greater than the code rate of the codes defined on the Quaternion

integers.

As we can see in the former chapters, the octonion division algebra over
R, denoted by O (R), is a nonassociative unital algebra. This algebra is power-

associative and flexible The algebra O (R) has the basis {1, es, e3, e4, €5, €6, €7, €8}
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and 1 is the unity in O (R). The basis’s elements satisfy the following prop-
erties: e = e} =ef =e2 =e2 =c2 =¢€3 = —1 and e;e; = —eje; = e,i #
J,i,7 € {2,...,8}, where k = i ® j, where ® is "x-or” for 4,j written in the
decimal basis (see [Ba; 09]).

If & = 21 +xoes + 2363+ g4+ T5€5 + 66 + T7e7 + xges € O (R), then its
conjugate is the octonion T = x; —(argeg +x3e3+Tge4+T565+Tse6 —|—a:7e7+a:geg)
and the norm of the octonion z is n (z) = 27 = To = ¥+ 23+ 23 +a3+ai+ai+
22+23. The octonionic norm n is multiplicative.. The real part of the octonion
x is x1 and its vector part is xees + x3es + x4e4 + x5 + Tge6 + T7ET + Tgeg €
O(R).

In [Co, Sm; 03] pp. 55, the authors described Hurwitz integers or Hurwitz
Integral Quaternions, denoted by H, as elements of the form ¢ = x1 + x2e2 +
r3es +xgeq where x1, 9,3, x4 are in Z or in Z + % In the same book, pp. 99-
105, Octavian Integers or Octonion Integers were defined as the set of elements

spanned by i15g7, i2457, i26857 ’i2378 over @ (Z) s Where

, 1
labed = 5 (ea + e +ec+eq).

We will denote this ring with O. O (Z) is also called the set of Gravesian

Octonion integers, the octonions with all coordinates in Z.

8
Let w = 3 (1 + Zei) € O, be an octonion integer and let V= {a +
i=2

bw / a,b € Z}. We note that n (w) = 2 and w? — w + 2 = 0. Since octonion
algebra is a power associative algebra, it results that V is an associative and

a commutative ring and V C O.

Remark 4.4.1. For x € V, the following properties are equivalent:
i) x is invertible in the algebra V.

i) n(z) =1.

iil) z € {£1}.

Definition 4.4.2. The octonion x € V is prime in V if x is not an invertible

element in V and if © = ab, then a or b is an invertible element in V.

Proposition 4.4.3. If z,y € V, y # 0, then there are z,v € V such that
x=zy+v, withn(v) <n(y).
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Proof. In this proof, we will use some ideas given in [Da, Sa, Va; 03],
Proposition 2.1.2. Since y # 0, we have that 5 = a+ bw,a,b € R. Let
m,n € Z such that [a —m| < % and |[b—n| < 3. Let z=m +nw € V and
v=yl(a—m)+ (b—n)w]. It results that § = z+ 7, therefore x = zy+v and
v = z — zy. From here, we have that v € V. If [a —m| = % and [b—n| = 3,
we have v = y1 (1 +w). Therefore z = (z4+ 1)y +v,v' = v —y and v =
Y3 (—=1+w). We have n(v') = in(y) (5 +73) = in(y) < n(y). It results
that z = (2 4+ 1)y + v'. Then, we suppose that or [a —m| < % or [b—n| < 1
or both.We obtain that
n@) [[la=m)+56-m)"+I0-n?] <L) =n(y) D

Remark 4.4.3. Let x = a + bw € V. We have that
n(z) =27 = (a+ bw) (a + bw) = a® + ab+2b> = (a+§)2+7% = A? +7B%

Proposition 4.4.5. ([Co; 89]) Let p € N be a prime number. There are
integers a,b such that p=a®4+ab+2b% if p=Tk+1,kc 7.0

Definition 4.4.6. With the above notations, let # = x + yw be a prime
integer in V and v1,vs be two elements in V. If there is v € V such that
v1 — V2 = vT, then vy, ve are called congruent modulo w and it is denoted

v = vy mod .

Proposition 4.4.7.
i) The above relation is an equivalence relation on V. The set of equivalence
classes is denoted by V. and is called the residue classes field of V modulo 7.

it) Vo is a field isomorphic to Z/pZ, p = n(w),p a prime number.

Proof. i) We will denote the elements from V. in bold. If v; = vy mod
m and vo = v3 mod 7 then there are v,v’ € V such that vi — v, = vm and
vy — v3 = v'm. It results that vy — v3 = (v 4 V'), therefore the transitivity
holds.

ii) For vi,vy € V, we define vi + vy = (v1 +v2)mod m and vy - v =
(viva)mod m. These multiplications are well defined. Indeed, if v; = v} mod
7 and v = vh mod , it results that vy — v} = um,ve — v = W/'m,u,u’ €V,
therefore (v; + vg) — (v] + v4) = (u + «') . From Proposition 4.4.3 and since
v] = v] + um, ve = vh + u'm, it results that vive = vivh + M, with M, a

multiple of 7.
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Denoting in bold the equivalence classes from Zj, let f be the map

fi:Zy, -V f(m)=(m+m7) mod m, where m € m. (4.4.1.)

Map f is well defined, since if m = m’ mod p we have (m+ ) — (m/ +7) =
m —m' =pq = 77q,q € Z, therefore (m + 7) = (m' + 7) mod 7.

Since 1 = vy T+v2T, (see [Da, Sa,Va; 03], Proposition 2.1.4 and Proposition
2.1.5.) if f(m) =v,v = (m+7) mod m € V., we define f~1 (v) =m (v17) +
m (vo7) and W (v17) + m (voT) =M (v17m) + m (1 —vyw) = m.

Map f is a ring morphism. Indeed, f(m)+ f(m’) = (m+ 7)modm +
(m' + m)mod m = (m 4+ m' + 7)mod © = f (m + m’) and
£ (m) £ () = (m+ ) (' + 7w modr =
=(mm/ + (m+m/) 7+ 72)mod © = (mm’ + 7)mod . We obtain that V. is

isomorphic to Z,.[]

Remark 4.4.8. The field V; has the property that if z,y € V., then
there are z,v € V such that = zy + v, with n (v) <n(y).

Remark 4.4.9.

1) O(Z), hasn (m)* elements (see [Ma,Be, Ga; 09], Theorem 25).

2) From Proposition 4.4.7 and from Remark 4.4.8, we have that for v;,v; €
Viri,5 € {1,2,...,p — 1}, v; + v; = v if and only if & = i+ j mod p and
v; -v; = vy, if and only if k = ¢- j mod p. From here, with the above notations,
we have the following labelling procedure:

i) Let m € V be a prime, with n (7) = p, p a prime number, 7 = a+bw, a,b €
7.

i) Let s € Z be the only solution to the equation a 4+ bx = 0 modp, x €
{0,1,2,....,p — 1}.

iii) For k € Z, let k € Z, be its equivalence class. The element k € Z,, is
the label of the element v = m +nw € V, if m +ns =k mod p and n (v) is
minimum.

The above Remark generalizes and adapts Theorem 1 and the Labeling
procedure from [Ne, In, Fa, Pa; 01] to octonions.

3) This labelling procedure is nothing else than the map a+fw — a— ¢

mod p which is immediately induced by the reduction map of the integer ring of



124 Cristina FLAUT

Q (v/=7) reduced modulo a prime ideal P = (a + bw, p) (see [Ni, Hi; 08]). We
will use this algorithm in the next section to provide words having minimum
Cayley-Dickson weight.

Using the above labelling procedure, we will provide an algorithm to see
how we can find the representative of the class containing a given element of
V, therefore how we can find the elements the field V.

The Algorithm.

1. Let 7 € V be a prime, 7 = a + bw, a,b € Z, with n(7) = p,p a prime
positive number.

2. Let s € Z be the only solution to the equation a + bx = 0 mod p, x €
{0,1,2,....p — 1}.

3. Let ¢ = [%] € N, where [] denotes the integer part.

4. Let k € Z and k €Z, be its equivalence class modulo p.

5. For all integers «,8 € { —q¢—1,...,q}, let ¢ = (a + s8) mod p and
d=(a+ g)z + 252. We will compute ¢ and d.

6. If d < p and ¢ = k, then we find the pairs («, 8) such that k is the label
of the element a + fw € V., that means o + s = k mod p and n (« + Sfw)
is minimum. If there are more than two pairs satisfying the last condition,
then we will choose that pair such that |«| + |3| < |a| + |b| . If there are more
than two pairs satisfying the last inequality, then we will randomly choose one
of them.

Even though these calculation results do not depend on the chosen soft-

ware, we will use MAPLE to give an example for the above algorithm.

Example 4.4.10. Let p =29 and 7 = —1 4 4w, with n (7) = 29, there-
fore a = —1,b = 4,q = 14. With MAPLE, we find first that s = 22.We provide
a representative system of V., with the below small MAPLE procedure. For
k =3, we get:

for i from -15 to 14 do

for j from -15 to 14 do

c = (22%j+idmod 29; d :=(7/4)*j 2+(i+(1/2)*j)"2;
if d < 29 and ¢ = 3 then print(i, j);fi;od;od;

-5, 3
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-4, -1
3, 0

In this case, we have three solutions: —4 — w, —5 4+ 3w and 3. Since
n(—4—w)=23,n(-5+3w) =28 and n(3) =9, we choose ¢ = 3, with the
label k = 3. For k = 4, we get:

for a from -15 to 14 do
for b from -15 to 14 do
c := (22xb+a)mod 29; d := (7/4)*xb~2+(a+(1/2)*b)"2;
if d < 29 and ¢ = 4 then print(a, b);fi;od;od;
-4, 3
-3, -1
4, 0

Sincen (—4 + 3w) = 22 and n (-3 — w) =n (4) = 16, the last two solutions
are good. We will chose ¢ = —3 — w, with the label k = 4. For k£ = 6, we get:

for a from -15 to 14 do
for b from -15 to 14 do
c := (22xb+a)mod 29; d := (7/4)*xb~2+(a+(1/2)*b)"2;
if d < 29 and ¢ = 6 then print(a, b);fi;od;od;
-2, 3
-1, -1

We obtain ¢ = —2 + 3w and ¢ = —1 — w. Since n(—2+ 3w) = 16 and
n(—1—w) =2, we will choose ¢ = —1 — w with the label k = 6.

It results:
V.=1{0,1,2,3,-3 —w,—2 —w, -1 —w,—w,1 —w,2 — w,
3—w, 4 —w,—2w—2,2w — 2, 2w, 2w+ 1, —2w + 2,
242w, w—4w—-3,w—2,w—1,w,1+w,24+w,3+w,—3,—2,—1}, with labels
{0,1,2,...,27,28}, in this order.
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Codes over V.

Using ideas from the above definitions and generalizing the Hurwitz weight
from [Gu; 13], we define the Cayley-Dickson weight, denoted d¢. Let 7 be a
prime in V, 7 =a+bw. Let x € V, x = ag+bow. The Cayley-Dickson weight of
x is defined as we (x) = |ag| + |bo|, where x = ag+bow mod m, with |ag| + |bo|

minimum.

The Cayley-Dickson distance between x,y € V. is defined as

de (z,y) = weo (r —y).

We will prove that d¢ is a metric. Indeed, for z,y, z € V., we have d¢ (x,y) =
we (1) = |ay| + |b1], where oy =2 —y = a; + by mod 7 is an element in V
and |aq| + |b1| is minimum.

de (y,2) = we (az) = |az| + |b2], where as = y — 2 = az + ba mod 7 is an
element in V; and |az| + |b2| is minimum.

do (z,2) = we (a3) = |as| + |bs|, where ag = x — 2z = a3z + b3 mod 7 is an
element in V, and |az| + |b3| is minimum.

We have © —y = ag + ag mod 7. It results that we (a2 + a3) > we () since

we (a1) = |ay] + |b1] is minimum.

Remark 4.4.11. The maximum Cayley-Dickson distance d¢,,,, has the
< |a| + |b|, with 7 = a + bw.

max —

property that d¢

Remark 4.4.12. i) Since the Octonion algebra is alternative, due to
Artin’s Theorem (see [Sc; 66] ), each two nonzero different elements generate
an associative algebra. From here, for 2,y € O (R), we have that 2™ (z"y) =

™y, for all m,n € Z.

ii) Hereafter, we assume that 7 is a prime in V and n (7) =1 mod 7 such

that there are ay, @y two primitive elements (of order p — 1) in V., with the
p—1 p—1
properties a; 7 =wor oy’ = —w. Let a € {a1,as}. We will consider codes

—1
of length n = =,
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Let C be the code given by the parity-check matrix H,

1 « a? a1
1 8 16 8(n—1)

H= @ « @ : (4.4.2.)
1 a7kl Q2(Tk+1) o (Th+1)(n—1)

with & < n. We know that c is a codeword in C if and only if Hct = 0.
n—1 .

From here, if we consider the associate code polynomial ¢(z) = Y ¢z’
i=0

we have that ¢ (™) = 0,1 € {0,1,...,k}. We consider the polynomial
g(@) = (x—a)(z—a®)...(x —a™). Since the elements a,a®,...,a™
are distinct, from [Li, Xi; 04], Lemma 8.1.6, we have that ¢ () is divisible by
the generator polynomial ¢ (x). Since g (z) / ( 2™ £ w), g (x) is the generator
polynomial of the code C, it results that C is a principal ideal in the ring V. /
(2™ £ w).

Supposing that a codeword polynomial ¢ (x) is sent over the channel and
the error e (x) occurs, it results that the received polynomial is r (z) = ¢ (x) +
e(z). The vector corresponding to the polynomial r (z) = c(z) + e(x) is
r = ¢+ e and the syndrome of r is S = Hr', where H is the above parity-

check matrix.

Theorem 4.4.13. We consider C a code defined on V. by the parity
check matrix

H:( 1 a o .. an! ) (4.4.3.)

Code C is able to correct all errors of the form e (z) = e;xt, with 0 < we (&) <

1 and any errors of the form e (x) = exxt, with we (e;) = 3, ey = Fw?.

Proof. Let r(xz) = c¢(z) 4+ e(x) be the received polynomial, with ¢(x)
the codeword polynomial and e(x) = e;z denoting the error polynomial with

0 < we (e¢) < 1. Using Remark 4.4.12 ii), since a” = w, or o = —w and

w? = w— 2, we (w2) = 3, it results that e, = ™. We have the syndrome

S=at" =qal witht,L € Z,0 <t,L <n— 1. If we reduce L modulo n, we

obtain ¢, the location of the error, and from here, [ = % and o™, the value

of the error. OJ

Example 4.4.14. With the above notation, let # = 7 4 2w,p = 71,n =
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10, w = a'° and the parity check matrix
H:(l a o o ot a® af o aof ozg).

Supposing that the received vector is r = (w,1,w—1,1,1,0,0,0,1,1), we
compute the syndrome. We easily find that s = 32 is the label for the element
w.

From the below MAPLE procedures and The Algorithm from the above,

we obtain the syndrome.

print (‘pi=7+2w‘);A:=(-7%2"(-1))mod 71;

for a to 71 do b :=a”10 mod 71; if b = 32 then print(a);fi;od;
(9710+9+9722+972+973+974+97°8+9"9)mod 71;9714 mod 71;

pi=7+2w, 32 9 11 12 16 26 45 55 59 60 62 5 5

for a from -36 to 35 do for b from -36 to 35 do
c :=(32xb+a)mod 71; d := (7/4)*b~2+(a+(1/2)*b)"2;
if d < 71 and ¢ = 5 then print(a, b);fi;od;fi;od;
-2 -2
5 0

We get @ = —2 — 2w with the label 9. It results that S = Hrt = —2—2w =
a'* mod 7. We get L = 14, therefore the location of the error is t = L mod
10 = 4 mod 10. The value is w = a'*~* = &'° mod 7, therefore the corrected

vector is

c=r —(0,0,0,0,w,0,0,0,0,0)=(w,l,w—1,1,1 —w,0,0,0,1,1) mod .

Theorem 4.4.15. We consider C a code given by the parity-check matriz

1 a o ... o™t
H= ( L of alf g8 > ) (4.4.4.)
Then C can correct any errors of the form e(z) = ex’, 0 < i < n — 1,

with e; € V.

Proof. Let r(z) = ¢(x) + e(x) be the received polynomial, with c¢(x)
the codeword polynomial and e(z) = e;z* denoting the error polynomial with

e; € V.. Then, the corresponding vector of the polynomial r(z) isr =c+e
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and we will compute the syndrome S of . We have ¢; = 4,0 < ¢ < 7Tn — 1.

Therefore the syndrome is
. s1 = a'tl =M
S=Hr'= Sit M .
sg =a"ml =M

We obtain a’t9=M1 = 1, with i 4+ ¢ = M; mod(p — 1) and o®*T9~M2 = 1, with
8i+q = M mod(p—1). We get 7i = (Ma — M;) mod(p — 1), then the unique
solution of the system is i = M mod n and ¢ = (M7 — i) mod(p — 1). In

this way, we can find the location and the value of the error.(J

Example 4.4.16. Let 7 = —1 +4w,p=29,n =4, a0 =1 —w,—w = o

mod m, and the parity check matrix

Supposing that the received vector is r = (a, o?,1, a3) =1-w,—-1—-w,1,-3+w)
and using MAPLE software, we compute the syndrome. It results that

S:H’I"t: Sl:a? .
Sg:a7

The location of the error is ¢ = % = 0 mod 4 and the value of the error is
a™ % =a” =17 = (2 + 2w) mod 7. Therefore the corrected vector is
c=r—(2+2w,0,0,0) =(-1—-3w,—1 —w,1,-3 +w)mod m =

=(-24w,-1-w,1,-3+w).

Theorem 4.4.17. We consider C a code defined by the parity-check
matric

1 « a? .. ot
H=|1 a8 o% .. 0D |. (4.4.5.)
1 ol 30 . a15(n71)

Then C can find the location and can correct errors of the form e (x) = e;x?,
0<i<n-—1, with e; € V., or can only correct errors of the above mentioned

form.
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Proof. Using notations from the above Theorem, we have e; = a?,0 <

q < 7n — 1. Therefore the syndrome is

51 = a't? = oM
S=Hr'=] sg3=a%t1 =M

15 = 1PHe — oMs

Since the rank of the matrix (4.4.5) is 3, then this system always has a
solution. We obtain a’*9=M1 = 1, with i +q = M; mod(p—1), o®T4"M2 = 1
with 8 +q = My mod(p — 1), a®+9=Ms = 1 with 15i +q = M3 mod(p —1).
We can find the location of the error if 7i = (My — My) mod(p — 1) and
Ti = (Ms — Ms) mod(p — 1) or, equivalently, ¢ = M2;M1 mod n = M
mod n and the value of the error e; if
(M; —1i) mod(p—1) = (My—8i) mod(p—1) = (M3 —15i) mod(p—1)(= q). O

Example 4.4.18.

1) Let 7 = —1 +4w,p = 29,n = 4,0 = 1 —w,—w = a* mod 7, and the
parity check matrix

1 « o2 ol
H=]1 a® o' o*
1 ald 30 45

We suppose that the received vector is r = (1 —w,—1 —w,1,-3+w) =
= (a7a2,17a3). Using MAPLE software, we compute the syndrome. It
results that
51 =a =o't
S=Hr'= sg = = abita

s15 = a2 = o15ita

The location of the error is i = 7;77 = @ = 0 mod 4. We can not find the

value of the error since a’~% = o = 17 = (2 + 2w) mod = is different from
a?™ 0 =a?" =11 = (4 — w) mod 7.

2) In the same conditions, supposing that the received vector is
r=(1,0%1,0%) = (1,-3+w,1,—1 — w) and using MAPLE, the syndrome
is

51 = ol = it
S=Hr' = sg = all = oBita

s15 = a9 = ol5ita
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We can’t find the location and the value of the error, since 2 = 11;721 mod

4 # B mod 4 =0.
3) If we suppose that the received vector isr = (5,0,0,0) = (=2 — w,0,0,0) =
(a26, 0,0, 0) , the syndrome is

S1 = 0426
S =Hr'= sg = a6
s15 = o

The location of the error is 0 and the value of the error is 5. Therefore the

corrected vector is (0,0,0,0).

Theorem 4.4.19. We consider C a code defined by the parity-check

matrix

1 « a® .. a1

I — 1 o8 ol .. o801 (4.4.6.)
1 al® 30 . qlsn-1) D
1 o222 oY . o201

Then C can correct errors of the form e (z) = ez’ + e, 0 < i,j <n—1,
with e;,ej € V.

Proof. We will prove this in the general case, when we have two errors.
We have e; = a? # 0 and e; = o' #0,¢,t € Z. We obtain the syndrome:

s1 = ai+q + ajth
_ . 8i+q 85+t

S8 = Q& + «

S=Hrt=

15 = 15T 4 o155+t

S99 = a222+q + a22j+t

Denoting at? = A and o/t = B, it results that

S1 = A + B
ss=a"A+a" B
S15 = Oél4iA—|—O¢14jB

S99 = @’V A+ o?YB

S=Hr'= (4.4.7.)

If the system (4.4.7) admits only one solution, then the code C can correct

two errors. First, we will prove the following Lemma.
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Lemma. With the above notations, if we have two errors, we obtain
a™#£a 0<i,5<n—1 and 51815 # sZ.

Proof. If o™ = a™, then a"~7) =1 and Tn / 7(i — j), which is false.
Supposing that slsls—sg = 0, we have s1515 = sg. For z = o*19, it results that
olis x4+ a1438% — oWz = (a“ — a73) 2+ 0414Js% +2a779 (a“ — a7f) s1.

. 2 . . . .
We get (a” — a”) 22420 g0 —a™ sz — o' six = 0. From here, z = 0
—2a7 i g b o Y sy 4ot
(a7i—aT7)?
/Tt =0, which is false.

45 ; .. .
or r = 51 = g1, If we have © = a't9 = sy, this implies

We now return to the proof of the Theorem and we are under conditions
a™#£a™ 0<i,7<n—1and s1s15 # s3. For B = s; — A, it results that

A (a” — 0477) =55 — 51"
A (a14i _ a14j> S
A (azli - a21j) = S99 — 510219, We obtain

S15 — 310414j = (58 — sloz7j) (a” + a7j)

and

S99 — 810&21‘7 — (38 _ 51047‘7) (04141 + 0472047] +a14]) .
Denoting o + o™ = s; and a*a”™/ = p7, we have

515 — 887+ prs1 =0
and
73\ (.2 214
(38 — s1x 7) (57 —p7) = S99 — 5707,

It results that

5857 — 515
pr=———""
S1
and
2\ __
57(51815 - 58) = 81522 — S8S515-
We obtain
51822 — S8515
- 2
$1515 — 8§
and for p; we get
2
585822 — S75

pr = 9 -
51515 — S§
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From here, by solving the equation 2% — s7z 4 py = 0, we find the locations
and the values of the errors. [
Example 4.4.20.

1) Let 7 = =1 +4w,p =29,n = 4,0 = 1 —w,—w = a* mod m, and the
parity check matrix

1 « a2 ol

- 1 a8 al6 o2
- 1 ald 30 45

1 a22 o 56

Supposing that the received vector is

r= (1, a3, 1, a2) = (1,—-3+ w,1,—1 — w) and using once again MAPLE, the
syndrome is

51 = 0[21
11
S8 — (v
S=Hrt= 19
S15 — &
S92 = a?°
We obtain
$1522 — S8S515
S =——""35— :(2+w) mod T
51515 — S§
and
§88929 — 82
p7=7125 = 1mod .
§1815 — Sg

Equation 2 — (2 + w)x + 1 = 0 has no roots in V., therefore we can not
find the locations and the values of the errors.

2) If the received vector isr = (5,0,1,0) = (-2 — w,0,1,0) = (a%, 0,1, 0) ,
the syndrome is
s1=a?"=11
sg = a'* =28
s15 =027 =11

S99 — 0114 =28

S=Hr'=
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We get s; = 0 and p;y = —1 and o™ = 1,a™ = 28 mod =. It results that
o' =1,00 =4 =a'% then i = 0 and j = 10 mod 4 = 2. The errors are in
positions 0 and 2. The corrected vector is ¢ = (4,0 — 3,0) = (-3 — w,0,-3,0).

Remark 4.4.21. The above Theorems adapted and generalized Theorems
7,8,9,10,11,13,14,15 from [Ne, In, Fa, Pa; 01] and Theorems 4,5,6,7 from [Gu;
13] to octonions.

Remark 4.4.22. In this situation, when p = 7k + 1,k = 6l,] € Z, and
when the considered alphabets have the same cardinality, we note that the code
rate of the codes defined on V, can be better than in the case of the codes
defined in [Gu; 13] on R, but smaller than the codes defined on H .. Here H is
the set of all Hurwitz integers, R = {a+bw:a,b€ Z},w =5 (1+i+j+k),
with {1,4, j,k} a basis in the Quaternion algebra and R, H, are the quotient
rings modulo 7, with 7 a prime quaternion. If C; is a code over R, of length
ny = %, Cy a code over V, of length ny, = %, with n(7) = p and if
C1,Cs have the same dimension k, we obtain that the rate R, of the code Co

7k

is always greater than the rate Re, of the code Cy. Indeed, Re, = ;=5 and
6

Re1 = pT’“l. This difference appears more clearly in the case of very long codes.

In this section we have defined block codes over subsets of the Octonion
integers and we have given decoding algorithms for these codes. Specifically,
the alphabets considered are quotients of the subset of Octonion integers. Once
the metric space has been stated, we present two code constructions: the first
for one error correcting block codes and the second for double error correcting
codes. Even if these constructions are standard, following the same techniques
as the ones presented in [Ne, In, Fa, Pa; 01], by comparing these codes with
some of the codes defined on Hurwitz integers as in [Gu; 13], we note that the
code rate in the Octonions case can be better than in the Hurwitz case.

The above observation can be a good motivation to use the Octonion in-
tegers instead of Hurwitz integers for constructing such error correcting codes
and can be considered as a first step in the study of codes over Octonions,

which will lead readers to a new field.

4.5. Codes over subsets of algebras obtained by the Cayley-
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Dickson process

In the following, we will extend the study of Integer Codes to codes over
subsets of real algebras obtained by the Cayley-Dickson process. The results
presented below, were obtained, by the author, in the paper [Fl; 16].This idea
comes in a natural way, starting from same ideas developed by Huber in [Hu;
94], in which he regarded a finite field as a residue field of the Gaussian integer
ring modulo a Gaussian prime, ideas extended to Hurwitz integers in [Gu; 13]
and to a subset of the Octonions integers in [Fl; 15]. In this way, we can
regard a finite field as a residue field modulo a prime element from V, where
V is a subset of an algebra A; (R), where A; (R) is a real algebra obtained
by the Cayley-Dickson process and V has a commutative and associative ring
structure. We obtain an algorithm, called the Main Algorithm, which allows
us to find codes with a good rate. This algorithm offers more flexibility than
other methods known until now. Keeping the proportions, the Main Algorithm
is similar to the Lenstra’s algorithm on elliptic curves compared with p — 1
Pollard’s algorithm. It is well known that for a prime p, the Lenstra’s algorithm
replaces the group Z; with the group of the rational points of an elliptic curve
Ci over Z,, and, if this algorithm failed, the curve will be replaced with another
curve Cy over Z, and we can retake the algorithm (see [Si, Ta; 92]).

In the case of the Main Algorithm, the algebra A;(R) and w offer this
kind of flexibility since, for the same prime p, these can be changed and the

algorithm can be retaken.

alf“wat)
K

In the following, we will consider A; = ( the algebra obtained by

the Cayley-Dickson process and for 73 = ... = = —1, we will denote it with
A (R).
Let B = {1,ea,...,ea¢} be the a basis in A; (R), where 1 is the unit. If z =
2! 2!
x1+ Y xzie; € Ay (R), then its conjugate is the element T =21 — > z;e; and
i=2 i=2
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2i

the norm of the element  is n (r) = 7 = Tz = >_ 2. The norm n, in general,
i=1

is not multiplicative, i.e. for z,y € A; (R), we have n (zy) # n (z)n (y). We

remark that the norm is multiplicative if and only if the algebra has dimension

less or equal to 8. (See [Sc; 66]). The real part of the element x is x; and its

2t
vector part is > x;e; € Ay (R).
i=2
For example, if ¢t = 2 and 73 = 72 = —1, we obtain the Quaternion

division algebra, denoted by Q(R), for t = 3 and v1 = 72 = 73 = —1, we
obtain the Octonion division algebra, denoted by O (R), and for ¢ = 4 and
Y1 =792 = v3 = 74 = —1, we obtain the Sedenion algebra, denoted by S (R).
Due to the Hurwitz’s Theorem, for ¢ > 4, all obtained algebras are not division
algebras (i.e. we can find a,b € Ay (R), a # 0,b # 0, such that ab = 0).

2t

Let w =a(l14+ > e;)) € Ay(R),a € R, and let V={a+bw | a,b € Z}
i=2

and V'={a + bw | a,b € R} . We note that t (z) = 2, n(z) = 2!a? and

w? — 20w + 2ta? = 0. Since the algebra A; (R) is a power associative algebra,

it results that V and V' are associative and commutative rings. (See [Sc; 66]).

Remark 4.5.1. For x € V, we know that the following properties are
equivalent:

i) z is an invertible element in the algebra V.

i) n(z) =1.

iil) z € {£1}.

An element x € V is a prime element in V if x is not an invertible element
in V and if x = ab, it results that a or b is an invertible element in V.

Proposition 4.5.2. i) For z,y € V', we have n (zy) =n(z)n (y).

i) The ring V' is a division ring.

Proof. i) Denoting with ¢ = 28 — 1, let x = a + bw and y = ¢ + dw. We
obtain
n(z)n(y) = [(a +ba)? + b2a2q} [(c +da)® + d2a2q] =
= (2aba +a?+b%a? + b2qa2) (QCdoz +c+d*a®+ d2qa2) = 2abc®a+2a’cda+
dabeda® 4+ a?c? +2abd?a> + 2b%cda® + 2abd? go 4+ 2% cdgo® + a?d? o + b 2o’ +
b2d?at + a?d?qa’® + b*c2qa® + 2b2d?qat + b d% ¢t
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Computing n (zy), we get
n (zy) = [ac + (ad + bc) o — a?bd (g + 1) + 2012bcl]2—i-qoz2 [ad + be 4 2abd)® =
2abc? o+ 2a?cdo+4abedo® + a?c? + 2abd? o + 2b% cdo® + 2abd? go® 4+ 2b% cdga® +
a’?d?a? + b c2a? + b d?a? + a’d?qa? + b*c?qa? + 2b%d%qgat + b2 d? ¢t
Therefore n (zy) =n(z)n (y).

ii) Tt results from i).

Remark 4.5.3. The above result is also true for all elements from the
set V.

In the following, we will consider a = %, r>t—1,t>2.

Proposition 4.5.4. If x,y € V, y # 0, with t > 2, then there are
z,v € V such that © = zy +v and n (v) < n(y).

Proof. Since y # 0, we have that y is an invertible element in A; (R),
therefore % = a+ bw,a,b € R. Let m,n € Z such that |a —m| < % and
lb—n| < i Forz=m+nweVandv=ylla—m)+(b—n)w|, it results
that % =z+ %, therefore z = zy + v and v = x — zy. From here, we have that
v € V. Since 2t < 2"t! we have

n(v) =n(y)n((@a—-m)+(b-n)w)=
—n@) [[@=m)+ % 6 -n]"+ 5z 0 - 0] < (G + St (y) =

27 r+2 s 2
=22 n(y) =2%3n(y) <n(y).O

Definition 4.5.6. With the above notations, let @ = z 4+ yw be a prime

integer in V and v1,vs be two elements in V. If there is v € V such that
v1 —vg = vm, then vy, v9 are called congruent modulo m and we denote this by

v] = Vg mod .

Proposition 4.5.7. The above relation is an equivalence relation on V.
The set of equivalence classes mod 7 is denoted by V. and is called the residue
classes of 'V modulo 7.

Proof. Denoting the elements from V in bold, if v; = vo mod 7w and
vy = v3 mod 7, then there are v, v’ € V such that vi—vs = vm and vo—v3 = v'7.
It results that v; — v3 = (v + v’)m, therefore the transitivity holds. O

Proposition 4.5.8. For each x,y € V, there is 6 = (x,y), the greatest
common divisor of x and y. We also have that there are v and T € V, such
that § = yx 4+ 7y.(the Bézout’s Theorem).
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Proof. We denote by J = {yz + 7y | 7,7 € V}.We remark that if z =
Yz + 7'y € Jand w € V, we have wz = (wy')x + (wr’)y € J. We consider
01 = m1x + Ty € J, such that d; has the norm n (§;) minimum in J. We will
prove that § = d;.From Proposition 4.5.4, it results that z = ¢16; + r1, with
n(r;) <n(d),q,m € Vand r; = x — ¢101 € J. Since n(r;) < n(d1) and
01 € J has minimum norm in J, we get r; = 0, therefore §; | z. In the
same way, we will prove that d; | y. Since §; = y12 + 71y, it results that each

common divisor for z and y is a divisor for d;, therefore § | §; and finally
0 =200

The above proposition generalized to elements in V Proposition 2.1.4. from
[Da, Sa, Va;03], with a similar proof.

Proposition 4.5.9. V. is a field isomorphic to Z/pZ, p = n(rw), where
p is a prime number.

Proof.

For vi,ve € V., we define vi + vo = (v1 +v2)mod 7 and vy - vy =
(vive)mod m. These multiplications are well defined. Indeed, if v; = v mod
7w and ve = v mod w, it results that v; — v] = um,ve — vh = u/'m u,u’ €
V, therefore (v +wv2) — (v] +v5) = (u+u')w. Since v; = v] + um, vy =
vh +u'm, we get vivy = vivh + My, with M, a multiple of 7.

Denoting in bold the equivalence classes from Z,, let f be the map

f:Zy,— V., f(m)=(m+mx) mod m, where m € m. (4.5.1.)

The map f is well defined. Indeed, if m = m' mod p we have (m+w) —
(m' +7) =m—m' =pq=77q,q € Z, therefore (m+ 7) = (m' + 7) mod 7.

If f(m)=v,v=(m+m) mod m € V., we define f~!(v) = m.

The map f~! is well defined. Indeed, if v = v/ it results m = m’ mod T,
we have m —m' = wvg and m —m’ = Tog, therefore 7 | m—m/ and 7 | m—m/.
We obtain p | m —m’ and m = m’.

The map f is a ring morphism. Indeed, f(m)+ f(m’) = (m + 7m)mod
7+ (m' + m)mod m = (m+m' +7)mod 7 = f (m + m’) and
 (m) f (mt) = (m + ) (" + m)modr =
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=(mm/ 4+ (m+m/) 7 +72)mod © = (mm’ + 7)mod . We obtain that V. is
isomorphic to Z,.0]

Let 2 = a4 bw € V, therefore we have n(z) = (a4 ba)” 4 ¢(ba)2. For
g = 2t —1 and for certain values of ¢, we know the form of some prime numbers,

as we can see in the proposition below.

Proposition 4.5.10. ([Co; 89])

Let p € N be a prime number.

1) There are integers a,b such that p = a*>+3b* if and only if p = 1(mod
3) or p=3.

2) There are integers a,b such that p = a® + 76> if and only if p =
1,2,4(mod 7) or p = 1.

3) There are integers a,b such that p = a® + 156 if and only if p
1,19, 31, 49(mod 60).0

The label Algorithm for A; (R).

1. We will fix the elements ¢, a and therefore w.

2. We consider m € V a prime element, 7 = a 4+ bw,a,b € Z, such that
n(n)=p=(a+ ba)2 + q(ba)?, with p a prime positive number.

3. Let s € Z be the only solution to the equation a + bz = 0 mod p, x €
{0,1,2,....,p—1}.

4. Let r = [%] € N, where [ | denotes the integer part.

5. Let k € Z and k €Z, be its equivalence class modulo p.

6. For all integers o,7 € { —r —1,...,7}, let ¢ = (s7 + o) mod p and
d= (0 +710a)?+ q(ra)?

6. If d < p and ¢ = k, then we find the pairs (o,7) such that k is
the label of the element o + 7w € V,. From here, we have that o + 7s =
k mod p and n (o + 7w) is minimum. If we find more than two pairs sat-
isfying the last condition, then we will choose that pair with the following
property |o| + |7| < |a| + |b] . If there exist more than two pairs satisfying the

last inequality, then we will choose one of them randomly.

Codes over V.
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Using ideas from the above definitions and generalizing the Hurwitz weight
from [Gu; 13] and Cayley-Dickson weight for the octonions, from [Fl; 15], in
the same manner, we define the generalized Cayley-Dickson weight, for alge-
bras obtained by the Cayley-Dickson process, denoted dg. We will fix ¢, o, w
and we will consider the elements in the algebra A; (R). Let 7 be a prime in
V, m=a+bw and let x € V, x = ag + bow. The generalized Cayley-Dickson
weight of = is defined as weg () = |ao| +|bo|, where z = ag +bow mod w, with

|ao| 4 |bo| minimum.
The generalized Cayley-Dickson distance between x,y € V. is defined as

da (,y) = wa (x —y)

and we will prove that dg is a metric. Indeed, for z,y,z € V., we have
de (z,y) = wg (1) = |a1| + |b1|, where oy =2 —y = a3 + byw mod 7 is an
element in V. and |a;| + |b1| is minimum.

de (y,2) = wa (a2) = |az| + |ba|, where as =y — z = az + by wmod 7 is an
element in V, and |az| + |b2| is minimum.

de (z,2) = wg (a3) = |as| + |bs|, where a3 =z — z = a3 + bsw mod = is an
element in V. and |ag| 4 |b3| is minimum.

We obtain 2 — z = a1 +as mod m and it results that wg (1 + @2) > we (a3),
since wg (a3) = |ag] + |b3| is minimum, therefore dg (z,y) + dg (y,2) >
de (z, 2).

In the following, we assume that 7 is a prime in V with n () = p a prime
number of the form n(r) = Mn+ 1, M,n € Z,n > 0, such that there are
a primitive element (of order p — 1) in V., with the properties B = w or
B B = —w. We will consider codes of length n = %

The definitions and the Theorems below have adapted and have generalized
to all algebras obtained by the Cayley-Dickson process some definitions from
[Gu; 13], [Ne, In, Fa, Pa; 01], [F1; 15], the Theorems 7,8,9,10,11,13,14,15 from
[Ne, In, Fa, Pa; 01], the Theorems 4,5,6,7 from [Gu; 13] and the Theorems
2.3, 2.5, 2.7, 2.9 from [Fl; 15] with similar proofs.
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We consider C a code defined by the parity-check matrix H,

1 B B2 g1t
1 M+1 20M+1) (n—1)(M+1)

H= h b b , (4.5.2.)
1 MR+ g2(ME+1) - g(n—1)(Mk+1)

with k& < n. We know that c is a codeword in C if and only if Hct = 0. If we con-

n—1 )
sider the associate code polynomial ¢ (z) = > ¢;2*, we have that ¢ (BMZH) =
i=0

0,1 € {0,1, ..., k}. For the polynomial g (z) = (z — B8) (z — BM*1) ... (z — pME+D)) |
since the elements 3, M+, ..., pMF+1 are distinct, from [Li, Xi; 04], Lemma
8.1.6, we obtain that c¢(x) is divisible by g (z), where g(x) is the generator
polynomial of the code C. Since g (z) / ( ™ +w), it results that C is a principal
ideal in the ring V. / (2™ £ w).

If we suppose that a codeword polynomial ¢ (z) is sent over a channel and
the error pattern e (x) occurs, it results that the received polynomial is r () =
¢ (x)+e (z) . The vector corresponding to the polynomial r (z) = ¢ (z)+e (z) is
r = c+e and the syndrome of r is S = Hr?, where H is the above parity-check

matrix.

Theorem 4.5.11. We consider C a code defined on V. by the parity
check matrix

H:(l 8 B .. 5"—1). (4.5.3.)

It results that, the code C is able to correct all errors of the form e (x) = e;xt,
with 0 < we (e;) < 1.

Proof. We consider r (z) = c¢(z) + e(z) the received polynomial, with
c¢(z) the codeword polynomial and e(z) = e;z* the error polynomial such that
0 < we (e;) < 1. Since " = w or B = —w, it results that e; = ™. If we
compute the syndrome, we obtain S = g™ = gL, with i, L € Z,0 < i, L <

n — 1. By reducing L modulo n, we obtain ¢, the location of the error, and

from here, [ = Lgi and 8™, the value of the error. O

Theorem 4.5.12. We consider C a code defined by the parity-check
matric
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1 I3 B2 pr—1
H= ( 1 gM+1 gAML g=l)(M1) ] (4.5.4.)
Then C can correct error patterns of the form e (x) = e;a?, with e; € V., 0 <
1 <n-—1.
Proof. We consider the received polynomial, r (z) = ¢ (z) +e (z) with ¢(x)
the codeword polynomial and e(z) = e;z* the error polynomial with e; € V.

It results that the corresponding vector of the polynomial r(z) is r = ¢+ e.
We will compute the syndrome S of . We have e; = 47,0 < j < Mn — 1 and

the syndrome is
_ giti _ gM:
S=Hr'= " ?MJrl)iJrﬂ' M. ’
SM4+1 = T = B
We obtain 3it7~Mi = 1, with i +j = M; mod(p — 1) and gM+Di+i—Ma — 1
with (M + 1)i + j = M mod(p — 1). We get Mi = (My — M;) mod(p — 1), if
there is, then the solution to the system is i = 222 mod n and j = (M; —1)

mod(p — 1). From here, we can find the location and the value of the error.C]

Theorem 4.5.13. We consider C a code defined by the parity-check

matrix
1 8 g gn-1
H = 1 BMJrl 52(M+1) B(nfl)(MJrl) . (455)
1 g2M+1 g2eM+1) - gn=1)(2M+1)

Then C can find the location and can correct errors of the form e (x) = e;xt,

0<i<n-—1, with e; € YV, or can only correct error patterns of this form.

Proof. From the above Theorem, we have e; = 37,0 < 7 < Mn — 1 and
the syndrome is
51 = pite = phh
S=Hrt= Spr41 = ﬁ(M-ﬁ-l)i-i-j — BMZ

sonrp1 = BEMADHI = gMa
1 B B?
Since the matrix | 1 pM+1  g2(M+1) has its determinant equal

1 ﬁQAI—i—l ﬁ2(2M+1)
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to B3pM (62M — 1)3 # 0, it results that the rank of the matrix (4.5.5) is
3, then this system always has a solution. We obtain g*T7—M1 = 1, with
i4+q = M, mod(p—1), MFDHI=Mz — 1 with (M +1)i+5 = My mod(p —
1), BEMAi+I=Ms — 1 with (2M 4 1)i + j = Mz mod(p — 1). We can find
the location of the error if Mi = (Ms — M) mod(p—1) and Mi = (M3 — Ms)

Mo — Ms—

mod(p—1) or, equivalently, ¢ = TMl mod n = TMQ mod n and the value

of the error e; if
(My — 1) mod(p — 1) = (My — (M +1)3) mod(p —1) = (M3 — (2M +1)1)
mod(p — 1)(= j). O

Theorem 4.5.14. Let C be a code defined by the following parity-check

matrix

1 8 g gn—1
M+1 2(M+1) (n—1)(M+1)
a-| Y7 b o P (4.5.6.)
1 g2M+1 g2@M+1) - gn—1)(2M+1)
1 B3M+1 IB2(3M+1) B(nfl)(3M+1)

Then C can correct error patterns of the form e (x) = e;x’ +ejz?, 0 < i,j <
n — 1, where e;,e; € V.
Proof. We will give a proof in the general case, when we have two errors.

We have e; = 89 # 0 and ¢; = Bt +£0,q,t € Z. The syndrome is:

51 = aitd 4 i+t
= oM+D)i+d" | o (M+1)j+t

SM+1

ot +

S=Hr'= sonrs1 = aCMADitd | (M1
SaM41 = a(3M+1)i+q' + a(SJW+1)j+t'

We denote 8174 = A and i+t = B and we get

51 = A =+ B
sy =pMA+pMIB
Son41 = BQM@'A + B2MjB
sspm41 = B3MIA + B3MIB

In the case when the system (4.5.7) admits only one solution, the code C

S=Hr'= (4.5.7.)

can correct two errors. To obtain this result, we will prove first the following

Lemma.
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Lemma. Using the above notations, if we have two errors, we get BM? £

pMI0<i,j<n—1and sisopr41 # S?WH.

Proof. In the case when SM? = gMJ then M=) =1 and Mn / M(i—
J), which it is false. Supposing that s1sonr41 _5%44-1 = 0, it results sy sopr41 =
sy Mo = Bitd" we obtain that 52Mis, x4+ 52Mi g2 _32Mig g — (BMi — BMj)2 2+
BQMjS% + 26Mj (ﬁM@ _ ﬁMJ) s12. We get (BMZ _ BMj)2x2 + ZﬂMH_MjSl.T _
—28M Mg, 482 M5, 487 M5y
(BMi,ﬂMjf -
s1. If we have z = 8774 = s, this implies 87+ = 0, which it is false.

ﬁQMi

six— B?Misix =0. It results x =0 or z =

We go back now to the proof of the Theorem and we know that the following
conditions are fulfilled: fM? £ gMi (0 < 4,5 < n —1 and s;8op741 # S?MH.

For B = s1 — A, it results that

A(BME— BMI) = spppq — 51 8M

A (52Mi - 52Mj) = sonq1 — s102MI

A (B3M— B3MI) = sqpp4q — 5183M.

We obtain sops1 — 513°M7 = (5M+1 — sl,BMj) (BMi —&—BMj) and S3p41 —
51 33Mi = (3M+1 _ SlﬂMj) (BZMi 4 pMigMj | BQMj) '

If we denote by spr = B + M3 and par = M BMI | we have

SaM+1 — SM4+15M +DPpms1 =0
and
(sprg1 — s18M7) (s3y — ) = ssn1 — s18°M7.

It results that
SM+1SM — S2M+1

81

pPMm =
and
2
SM(S1S2M+1 - 8M+1) = S183M+1 — SM+152M+1-
Therefore, we obtain

S1S3M+1 — SM+1S2M+1

SM = 3
S182M+1 = Spr41

2
SM+183M+1 — Sapr41

PM = 3
S182M+1 — Spr41
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Using the above, by solving the equation 2 — sz + par = 0, we find the
locations and the values of the errors. [J

Main algorithm and some examples

The Main Algorithm

Let p be a prime number.
1. We find a,b,t € N such that we can write p under the form

p=a’+ (2" - 1) b (4.5.8))

We remark that the values for a,b,t, if there exist, are not unique. Let
{a, bi, t1},1 € {1,2,...,u} all solutions to the equation (4.5.8).

2. Let p=n;M; + 1, with n;, M; not unique such that n;M; =p—1,j €
{1,2,...,v}.

3. Forl € {1,2,...,u} and for j € {1,2,...,v}, we find the algebra

t

Ay, (R), the element w = 2Tl_l(l + %ei) ey, (R),r; >4t —1,VCA, (R),
the element 7 € V, such that n () :2;),2 we find V. such that V is isomorphic
to Z, and we find $ € V, such that 5" = w or g™ = —w.

If the elements {a;, b;,¢;} don’t exist, then the algorithm stops.

If we have at least a solution for the equation (4.5.8) but we don’t find for
Jj €{1,2,...,v} the element 8 € V, such that " = w or " = —w, then the
algorithm stops. If we have solutions in both cases, then we go to the Step 4.

4. For each solution {a;, b, t;},1 € {1,2,...,u}, let J C {1,2,...,v}. For
each j € J, we have n; such that 8™ = w or 8™ = —w. We can change w by
increasing the value of r; , if it is necessary, but working in the algebra A;, (R).
For each n; we compute M; and the rate of the obtained code, R; = fTZ Since
we can suppose that the obtained codes have the same dimension k£ = k;,
we will chose the indices I € {1,2,...,u}, j € J, the pair {a;,b;,t;} and the

number n; such that the rate ; has the biggest value.
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In the following, we will denote by Algorithm 1, the method described in
[Gu; 13] and by Algorithm 2, the method described in [F1; 15].

Remark 4.5.15. In the papers [Gu; 13] and [F1; 15] were developed several
algorithms which have built binary block codes over subsets of integers in the
real quaternion division algebra and in the real octonion division algebra.
The above algorithm has generalized these two algorithms to real algebras
obtained by the Cayley-Dickson process. Moreover, the Main Algorithm can
be generalized to almost all prime numbers, which in general the Algorithm
1 and the Algorithm 2 don’t make it. That means, in general, for a prime
number p, we can get the algebra A; (R), the element w € A; (R), the subset
V c Ay, (R), 7 € V, such that n(7) = p, we can find V, with V. isomorphic
to Z,, such that the obtained binary block code can have the highest rate.

With the Main Algorithm, we have a higher flexibility, similar to the
Lenstra’s algorithm for elliptic curves compared with p — 1 Pollard algorithm.
It is well known that for a prime p, Lenstra’s algorithm replaces the group Z,
with the group of the rational points of an elliptic curve C; over Z,. If this
algorithm failed, the curve will be replaced with another curve Cy over Z, and
we can retake the algorithm (see [Si, Ta; 92]).

In the case of the Main Algorithm, the algebra A; (R) and w offer this
kind of flexibility since, for the same prime p, these can be changed and the

algorithm can be retaken, with better chances of success.
We will explain this in the following examples.

Example 4.5.16. Let p = 29. We have a = 1,b = 2 and t = 3, therefore

p =1+ 74 with unique decomposition. It results that we can use the real
Octonion algebra. If we apply Algorithm 2, we have w = 1 (1 + .28:61'> ,
T=—-14+4w,p=29n=4,5=228=1—w,3*=—w mod T, therelfTJie we
can define codes. .

If we apply the Main Algorithm for w = i 1+ 2@) , we have m =

—1+ 8w,n = 4,s = 11 which is the label for the element w € V. We remark
that we can’t find 8 € V. such that 84 = w, as we can see from the MAPLE’s

procedures below.

for i from -15 to 14 do for j from -15 to 14 do
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(¢]
I

(11xj+i)mod 29; d := ((7/4)*j) " 2+(i+(1/4)*])"2;
if d < 29 and c = 11 then print(i, j);fi;od;od;

0, 1

4, -2

=
i

8~ {-1} mod 29; for a to 29 do
b := a”4 mod 29; if b = 11 then print(a);fi;od;
11

But, if we increase « we still work on the octonions and we take w =
3% <1 + iei> , with the label s = 24. We obtain = —1 — w with the label
4 such tilzaQt B* = w. Therefore we can define codes. In this situation, both
algorithms can be applied with success.

Example 4.5.17. Let p = 71 = 64 + 7 - 1, with unique decomposition.
Therefore a = 8,b = 1,t = 3. Then we work on real Octonion algebra. If we
apply the Algorithm 2, we have w = % (1 + iei) , T=74+2w,p="71,n=
10,5 = 32,8 =2 — 2w, % = w mod .(see []5;215])

If we apply the Main Algorithm and if we take first time w = % 1+ '2832&) ,

=
we have m = 74 4w, p = 71,n = 10, s = 16, which is the label for the element
w € V,;.We remark that we can’t find 8 € V. such that 3 = w (even if we
increase the value of r, as in Example 4.5.16), as we can see in the procedure

below.

A := -7%4"{-1}mod71; for a from 1 to 71 do b := a”~{10} mod 71;
if b = 16 then print(a);fi;od:
16

Therefore, the Algorithm 2 is better than the Main Algorithm.

Example 4.5.18. Forp=31=6-5+1,wehavep=4+3-9=16+15-1,

therefore ¢ € {4,16} and we can use the real Quaternion algebra or the real
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Sedenion algebra. If we apply the Main Algorithm for sedenions, we have
16

w = é(l—i— Zei). We get m = 3+ 8w,p = 31 and s = 19. We remark
i=2

that we can’t use the Main Algorithm for the sedenions since we can’t find
B € V. such that 8° = w. Therefore, we will use the Main Algorithm only for

Quaternion algebra, which can be applied in this case.

Example 4.5.19. Let p =61. We have that p=4-3-54+1=1+60=
1415-4 =49+ 3 -4, therefore t € {4,16} and we can use the real Quaternion
algebra or the real Sedenion algebra.

If we take p under the form p = 61 = 72 + 3 - 22, we use the real

4
Quaternion algebra. For w = % (1 + Zei> , we get m = 5+ 4w. The label for
i=2

wiss=14,n=10(p = 6- 10 + 1) and we have 3 = —4 + w, 3° = w, as we

can see in the below procedures:

=
i

-6%4~{-1}mod 61; for a to 61 do
a”{10}mod 61; if b = 14 then print(a);fi;od;
14 10 17 26 29 30 30 31 32 35 44 51

o
i

for i from -31 to 30 do for j from -31 to 30 do
c :=(14xj+i) mod 61 d := (3/4)*j 2+(i+(1/2)*j)"2;
if d < 61 and ¢ = 10 then print(i, j)fi;od;od;

-4, 1
1, 5
5, -4
In this case, the rate code is Ry = Iffkl = %, where k is the dimension

of the code, since we can’t find 8 such that 8% = w or g™ = w, for M; |
p—1,7€{1,2,.., v}
If we consider p under the form p = 1+ 15 - 4, we use the real Sedenion

16
algebra, we get n = 4 and for w = % 1+ > e ), we have 7 = —1 + 16w.
i=2
The label for w is s = 42 and 8 = 2 + 2w. In this case, the rate of the code
is Ry = ;ifl’ = % and it is greater than R;. We remark that we can use both
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algebras to define codes, but in the second case, we have chance to obtain a

better rate.(The dimension k is considered the same, in both situations).

A :=16"{-1}mod 61; for a to 61 do b :=a"{4}mod61;
if b = 42 then print(a);fi;od;
42 25 30 31 36

for i from -31 to 30 do for j from -31 to 30 do c :=42%j+i mod 61;
d := (15/64)*j"2+(i+(1/8)*j)"2; if d < 61 and ¢ = 25 then print(i, j);
fi;do;do;

-6, 8

-5, -8

-2, 5

-1, -11

2, 2

3, -14

6, -1

Example 4.5.20. Let p=151=4+3-49=16+15-9=6-25+ 1.
We have t € {2,4} and will use the real Quaternion algebra or real Sedenion
4
algebra. For w = % (1 + Zei) , we have m = —3 4+ 14w, n = 25 and s = 140,
i=2

the label for w. In this case, we can’t find an element 3, such that 82° = w,
B8 = w, B'® = w and so on, as we can see in the procedure below.

A:=-3%14"{-1} mod 151; for a to 151 do b:=a"25 mod 151;
if b = 140 then print(a);fi;od:
140

But, as we remarked, the number p can be written under the form p =
16 +15-9 = 256 + 1, then if we take ¢t = 4, we can use the real Sedenion

16
algebra. We consider w = é (1 + ZQ‘) . We obtain 7 = 1 4 24w,n = 6
i=2
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and s = 44, the label for w. We can find 8, such that % = w mod = and
B =3 — 3w, with the label s = 22.

A:=-24"{-1}mod 151; for a to 151 do
b:=a"6 mod 151; if b = 44 then print(a);fi;do;
44 22 51 100 122 129

for i from -76 to 75 do for j from -76 to 75 do
c := 44xj+i mod 151; d:= (15/64)*]j 2+(i+(1/8)*j)"2;
if d < 151 and ¢ = 22 then print(i, j);fi;od;od;
-9, 11
-4, -20
-3, 4
3, -3

Example 4.5.21. Let p = 149 = 25+31-4 = 1214 7-4. In this situation,
t € {3,5} and we can use the real Octonion algebra or a real Cayley-Dickson
algebra of dimension 32.

We can’t use the Algorithm 2 for octonions, since we can’t obtain the
8
element  and p is not under the form 7k+ 1. For w = i 1+ Eei) , we have

=2
m =9+ 8w. We consider p =1+ 437 and we can’t find an element [, even
if we take p =2k + 1 or 4k + 1 or 37k + 1.

A := -9%87{-1} mod 149; for a to 149 do

b := a”2 mod 149; if b = 92 then print(a);fi;od;
92

A := -9%8°{-1}mod 149; for a to 149 do

b := a”4 mod 149; if b = 92 then print(a);fi;od;
92

A := -9%8°{-1}mod 149; for a to 149 do
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b := a"37 mod 149 if b = 92 then print(a);fi;od;
92

8
But we can choose another «. For example, for w = % (1 +> ei) , we have
i=2

7 =9+ 16w, and s; = 46, the label for w. If we consider p = Tdn 4 1, n=2,
we get f = —2 + 4w, with label s; = 33. In this case, the rate of the code is

Rlzg%zg. For p =37Tn+ 1, n =4, the label of 8 = 4w is s3 = 35. In

this case the rate of the code is Ry = % = %. We have Ry < Rp. Therefore

the code in the first case is better, since the code can have a greater rate as
in the second case. For p = 2k + 1 or 4k + 1, we can’t find .

A := -9%x16"{-1} mod 149; for a to 149 do
b := a”2 mod 149; if b = 46 then print(a);fi;od;
46 33 116

for i from -75 to 74 do for j from -75 to 74 do
c := (46%j+i) mod 149); d := (31/64)*j 2+(i+(1/8)*j)"2;
if d < 149 and c¢ = 33 then print(i, j);fi;do;do;

-4, 17

-2, 4

0, -9

9, 7

11, -6

=
i

-9%16°{-1} mod 149; for a to 149 do
b := a”4 mod 149; if b = 46 then print(a);fi;do;
46 35 50 99 114

for i from -75 to 74 do for j from -75 to 74 do
c :=(46%j+i) mod 149); d := (31/64)*j"2+(i+(1/8)*j)"2;
if d < 149 and ¢ = 35 then print(i, j);fi;do;do;

-11, 1
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-2, 17
0, 4
2, -9
A := -9%16"{-1} mod 149; for a to 149 do
b := a”37 mod 149; if b = 46 then print(a);fi;od;

46

16
have m = 3 4+ 32w, s = 107, the label for w, 8 = 4, with the label

4,p=37-4+ 1, as we can see in the procedures below.

32
If we work on a real algebra of dimension 32, we consider w = - (1 + > e;
s

:4,71:

=
i

-3%32"{-1} mod 149; for a to 149 do
b := a”4 mod 149; if b = 107 then print(a);fi;od;
107 4 27 122 145

for i from -75 to 74 do for j from -75 to 74 do
c := (107*j+i) mod 149; d := (31/256)*j"2+(i+(1/16)*j)"2;
if d < 149 and ¢ = 4 then print(i, j);fi;od;od;

-8, 21

-7, -18

-4, 14

-3, -25

0, 7

1, -32

4, 0

8, -7

12, -14

In this case, we can work on both algebras to obtain codes with good

rates.
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(B-ii) The evolution and development plans for career
development

Career development directions

I graduated Faculty of Mathematics of University of Bucharest in 1990.
From 1991 I have worked at ”Ovidius” University of Constanta. I taught var-
ious courses for Bachelor and Master degrees, as for example: Linear Algebra,
Algebra (fundamental structures), Graph Algorithms , Graphs and Combi-
natorics, Special chapters of algebra, some of these courses can be found on
http://cristinaflaut.wikispaces.com/. I participated at several national and
international conferences:

1) Invited speaker and member in International Committee at Fifth In-
ternational FEurasian Conference on Mathematical Sciences and Applications
(IECMSA)-2016 which will be held in Belgrade (Serbia) in August 16-19, 2016.

2) Organizer of Conference in the honor of Professor Ravi P Agarwal with
occasion of DHC ceremony, 10 July 2015.

3) Member in Scientific Committee of MITAV 2015, 18-19 Iunie 2015
(Mathematics, Information Technologies, and Applied Sciences (Védy, in Czech))

4) MAOCOS 2014, International Conference on Mathematics and Com-
puter Science, June 26-28 2014, Bragsov, Romania, in Organizing Committee,

5) Workshop on Algebraic and Analytic Number Theory and Their Appli-
cations, 23-24 mai 2013, Universitatea Ovidius Constanta-Co-organizer , PN-
1I-ID-WE-2012-4-161.

6) Organizer of the conference A new approach in theoretical and applied
methods in algebra and analysis, 4-6 Aprilie 2013, Universitatea Ovidius, Con-
stanta, PN-II-ID-WE-2012-4-169, Constanta.

7) Mathematics and Computer in Business and Economics, the 9th WSEAS
International on Mathematics and Computer in Business and Economics (MCBE’
08), Bucuresti, 24-26 June 2008, with talks. (www.wseas.org.)
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8) 2007, 5-10 September- The XVIth National School of Algebra (Scoala
nationala de algebra, editia a- XVI-a) , Constanta, participant and organizer.

9) 2007-Workshop on Combinatorics and Commutative Algebra II, 26-31
August, Thessaloniki, Greece.

10) 2006-Ring and Category of Modules, 16-18 decembrie 2007, Bres-
sanone, Italia, with talk.

11) 2006, August- National School of Cryptography (Scoala Nationala de
Criptografie), Vatra-Dornei, with talk.

Between 2002-2009, 2012-2013 I was editor and from 2013, I am the Editor
in Chief of the ISI journal Analele Stiintifice ale Universitatii Ovidius din
Constanta, Seria Matematica, 20131F=0.333.

I obtained some grants:

1) PN-II- RU-PRECISI-2014-8-6330 for the paper A Clifford algebra asso-
ciated to generalized Fibonacci quaternions, Adv. Differ. Equ.-NY, 2014:279,
p-1-7,Yellow zone.

2) PN-II-ID-WE-2012-4-169, Cristina FLAUT, “Ovidius” University, Con-
stanta: A new approach in theoretical and applied methods in algebra and
analysis

3) PN-II-RU-PRECISI-2013-7-4123, for Levels and sublevels of algebras
obtained by the Cayley—Dickson process, Ann. Mat. Pur. Appl., Red zone.

4) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-
sity, South Korea, 1 April 2012- 10 November 2012, April 2013-December
2013, January 2014-July 2014.

5) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-
sity, South Korea, 1 October 2011-20 January 2012.

6) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-
sity, South Korea, 1 September 2013- 31 March 2014.

7) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-
sity, South Korea, 1 April 2012- 10 November 2012.

8) UNESCO-UNITWIN OCW/OER Initiative, Handong Global Univer-
sity, South Korea, 1 October 2011-20 January 2012.

Other 4 PN-II-RU-PRECISI grants, 1 in red zone and 3 in yellow
zone, will be obtained until the end of 2015.

I was member in the grants:
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1) Proiect POSDRU/157/1.3/S/141587, Retea de formare continui a cadrelor
didactice pentru a utiliza multimedia, instrumentatia virtuala si web 2.0 in
aria curriculard Matematica gi stiinte ale naturii (ProWeb)”, valoare totala
5.845.359,05 RON, professor formator al disciplinei Fundamente psihopeda-
gogice ale utilizarii TIC in formarea continua a cadrelor didactice din aria
curriculara Matematica si stiin21be ale naturii.

2) Sistem pentru detectie, localizare, urmaérire si identificare a factorilor
de risc la adresa obiectivelor de importanta strategica din zone de litoral —
SSSNOC”,

Cod depunere PN-II-PT-PCCA 2013-4-0377, Domeniul 8 —Spatiu si securi-
tate, Institutia coordonatoare: Centrul de Cercetare Stiintifica pentru Fortele
Navale. Parteneri: Oceanografica SRL; Unitatea Militara 02133; Eltex Echipa-
mente Electronice Industriale S.R.L.; General Conf Grup S.R.L.; Universitatea
“Ovidius”. Durata proiectului: 24 luni (1 iulie 2014-30 iunie 2016).

3) Workshop on Algebraic and Analytic Number Theory and Their Appli-
cations, CNCSIS-PN-II-ID-WE-2012-4-161, 20120 ron, 23-24 mai 2013, PN-
1I-ID-WE-2012-4-161.

4) INTUITION Network of Excellence, co-funded by European Commis-
sion, contract number 507248, 1 September 2004- 31 October 2008.

Regarding my research activity, I published several papers in ISI and BDI
journals. In this moment, the total of impact factors (regarding CNATDCU
requirements) is I=7.4585 in IST journals with IF> 0.5 and, until now, I have
32 citations in ISI journals with IF > 0.5. T also write several books and
chapters in the books, all of these can be found in my attached list of research
activities. I was invited reviewer for many ISI journals.

My didactic activity is well appreciated by the students. I organized some
scientific seminaries for students:

1) Seminarul Studentesc de Structuri Matematice Fundamentale:
2) Seminarul Studentesc: Algebre ciclice cu diviziune si aplicatiile lor in teoria
codurilor
3) Seminarul Studentesc: Coduri.
In the future, I intend to improve my courses, for this it is necessary to at-

tend conferences and scientific seminaries. I will continue to guide my students
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in all common activities, I will continue to organize scientific seminaries for
students and I will continue my work at Anale, trying to increase its impact
factor.

Scientific development directions

The study of algebras obtained by the Cayley-Dickson process constitutes
an important topic in the study of nonassociative algebras.

The results presented in this work can contribute to the development of
this domain of research and we will try in the next papers to extend them.
Most of ideas presented below can be found at the end of almost papers
written by the author ( as single author or coauthor). These papers end with
conclusions and remarks which can constitute starting points of some further
research.

Levels and sublevels of algebras obtained by the Cayley-Dickson

process

The construction of quadratic division algebras arising over rational func-
tion fields by means of the Cayley-Dickson process, presented in Chapter 2, is
closely related to, but actually much more natural than, the ones presented by
Brown in [Br, 67] and, more recently, by Garibaldi and Petersson in [Ga, Pe; 11
]. The significance of this construction is enhanced still further by the profound
connection recently established between non-associative division algebras and
the theory of signal transmissions ([Ho; 08]), with important applications to
smart phones and other technical devices. One of the main theorems from

[F1; 13]says that such algebras having any pre-assigned positive integer as
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their level always exist. This striking result constitutes great progress when
compared with what is presently known about the level of quaternion and
octonion algebras. The main result obtained in Theorem 2.3.14, where was
proved that for any positive integer n there is an algebra A, obtained by the
Cayley-Dickson process with the norm form anisotropic over a suitable field,
which has level n € N — {0} allow us to obtain further development in this
area. Since it is still unknown what exact numbers can be realised as levels and
sublevels of quaternion and octonion division algebras, as further research,
can be very interesting to improve the bounds for the level and sublevel of
division quaternion and octonion algebras and to provide some new examples
of values for the level and sublevel of division quaternion algebras or of di-
vision octonion algebras. It remains unknown whether there exist quaternion
division algebras of sublevel 5, or quaternion division algebras of level 6. The
result obtained in Theorem 2.3.14 seems to indicate that one of the problems
in finding a given value for the level of division quaternion and octonion al-
gebras can be the dimension of these algebras and it is easier to work with
algebras obtained by the Cayley- Dickson process with higher dimension. This
remark allows us to consider this problem in the reverse sense: for any positive
integer n, how can the existence of an octonion division algebra of level n in-
fluence the existence of a quaternion division algebra of level n? For example,
if we have an Octonion division algebra of level 6, its quaternion division sub-
algebra has the same level 67 Or we can built a quaternion division algebra
of level 6 starting from an octonion algebra of level 67 Or, more generally,
for any positive integer n, how can the existence of an algebra obtained by
the Cayley-Dickson process, of dimension 2¢,¢t > 4 and level n, influence the

existence of a quaternion or an octonion division algebra of level n?

Properties of algebras obtained by the Cayley-Dickson process

and some of their applications

Since the algebras obtained by the Cayley-Dickson process are poor in

properties when their dimension increase, losing commutativity, associativity
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and alternativity, the study of all kind of identities on these algebras is one
of the direction of the study. Therefore any supplementary relation, identity
or property can be very useful for the study of these algebras. For exam-
ple, we are looking for other similar relation as Hall identity, to characterize
some type A of nonassociative algebras, A' ={alternative algebras, quadratic
algebras, quaternion algebras, octonions algebras, algebras obtained by the
Cayley-Dickson process, etc.}: The property P is true on the algebra A if and
only if A € N. To support this idea, we can use for example the papers
[Po, Ro; 10], [F1; 14(1)]. Some identities in algebras obtained by the Cayley-
Dickson process can be an useful tool to find solutions for some equations in
these algebras or to solve them.

Using results obtained in the paper [Ba; 09] and obtained properties of the
multiplication of the basis’s elements as in [F1, Sh; 15(1)], we can found some
new and very interesting relations and properties of the elements from such
an algebra. Starting from results given in [Ja, Op; 10], [Ja, Op; 13], [Mi; 11]
we can try to find zeros for some quaternionic and octonionic polynomials, or
we can solve some equations and systems in these algebras as in [Er, Oz; 13],
[Mi, Sz; 08], [Mi; 10], [Sh; 11].

The Fibonacci-Lucas quaternions over Q provide us an algebra structure.
We can extend the study of this type of elements over octonions trying to

obtain the similar results.

Some applications in Coding Theory

Codes over finite rings have been intensively studied in the last time, some
of the earliest results of them are in [Bl; 72], [Sp; 78]. Ones of the most
important finite rings in the coding theory are: the finite field I, and the ring
Z,, where ¢ = p", for some prime number p and r € N—{0}. The class of cyclic
codes is an important class of linear codes with a big interest in coding theory.
Described as ideals in certain polynomial rings, they have a good algebraic
structure and the cyclic codes over some special finite rings were recently
described (see [Ab, Si; 07], [Al, Ha; 10], [Gr; 97], [Qi, Zh, Zhu; 05], etc). Two
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classes of these main rings are: Galois rings and rings of the form F,[u]/(u?)
or generalization of these, where ¢ = p” for some prime number p and r € N
—{0}. In paper [F1; 13(1)], were investigated the structure of cyclic codes of
arbitrary length over the rings: Fy[u]/(u?), Fylu1, ..., u;]/(u?, u3, ..., u?, ujus —
UQUL, ooy Ul — UjU, ... ),

Fylu,v]/ (v, 07, uv — vu), ¢ = p", where p is a prime number, r € N — {0}

and I, is a field with ¢ elements. The ranks and minimum Hamming distance

of these codes were studied. Since the rings with Hamming weight cannot
produce always better codes, a more relevant weights on the above mentioned
rings can be studied. The remark above can constitute the starting point for
further research.

Regarding a finite field as a residue field modulo a prime element from V,
where V is a subset of a real algebra obtained by the Cayley-Dickson process
with a commutative ring structure, in [F1; 16], we obtained an algorithm,
called the Main Algorithm, which allows us to find codes with a good rate.
This algorithm offers more flexibility than other methods known until now.

As a further research, we intend to improve this algorithm and to adapt it
to all prime numbers.

Many people claim that we live in the so-called information age. With the
Internet, the massive distribution of any kind of information became possible.
These new flows of information need new technologies to expedite them. There
are two problems that may occur: first is to provide secure transmission of
messages, in the sense that errors that appeared during the transmission can be
corrected and the second is that two or more persons can communicate safely,
in the sense that confidentiality is guaranteed, data integrity, authentication
and non-repudiation. Reliable high rate of transmission can be obtained using
Space-Time coding. Space—time block coding is a technique used in wireless
communications. With this technique, we can transmit multiple copies of a
data stream across a number of antennas. In the same time, we can improve
the reliability of data-transfer. For constructing Space-Time codes, division
algebras were chosen as a new tool. Their algebraic properties can be used to
improve the design of good codes and justify their intensive study.

One example is the Alamouti code, given in [Al; 98] which can be built

from a quaternions division algebra. This code construction is used for a
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wireless system with two transmit antennas. For this, we consider z; and zo
two complex numbers which represent the information symbols which will be
send ( see [Be, Og; 13]). The code C is given as follows:

2

c:{<zl z2> / #1,22 € C}. (1.)
zZ Z1
This code has the following property

det (Z —Y)=|z1 —n|* + |22 —9a|* >0

(fully diversity).
From relation (1), we can remark that the code C can be done as the left
representation of H over C

A H =M, (C), A (q) = ( “ _22>

z1 —Z2

where ¢ = 21 + 29j. For Z = ,We remark that det Z = n (¢) and

z9 Z1
n(q) = 0 implies ¢ = 0. Therefore the fully diversity is equivalent with the
division property of the algebra H. (see [Be, Og; 13])
In [Be, Re; 03], this code was generalised over a division generalised quater-
nion algebra H (a, §) over a number field K ,namely

c ¢ a+b/B a(c—dyB)
e T e dvB a—byB
In [Pu, St; 15], the above code was generalized to quaternion nonassociative

algebras. For other details the reader is referred to [Ho; 08], : [Og, Be, Vi;
07], : [Og, Vi; 04], [Un, Ma; 10], [Pu, Un; 10].

) / a,b,c,d € K}.

Other directions

BCK-algebras were first introduced in mathematics in 1966 by Y. Imai and
K. Iseki, through the paper [Im, Is; 66], as a generalization of the concept of
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set-theoretic difference and propositional calculi. The class of BCK-algebras
is a proper subclass of the class of BCI-algebras and there exist several gen-
eralizations of BCK-algebras as for example generalized BCK-algebras [Ho,
Ju; 03]. These algebras form an important class of logical algebras and have
many applications to various domains of mathematics, such as: group theory,
functional analysis, fuzzy sets theory, probability theory, topology, etc. For
other details about BCK-algebras and about some new applications of them,
the reader is referred to [Ho, Ju; 03] .

One of the recent applications of BCK-algebras was given in the Coding
Theory. In Coding Theory, a block code is an error-correcting code which
encode data in blocks. In the paper [Ju, So; 11], the authors constructed a
finite binary block-codes associated to a finite BCK-algebra. At the end of
the paper, they put the question if the converse of this statement is also true.

The results presented below were found by the author in the papers [FI;
15(2)] and [B,Fa, Fl, Ku; 15].

Definition 1.1. An algebra (X, *,0) of type (2,0) is called a BCI-algebra
if the following conditions are fulfilled:

1) ((z*xy)*x(xx2))*(zxy) =0, for all z,y,z € X;

2) (zx(zxy))xy =20, forall z,y € X;

3)xxx =0, forall z € X;

4) For all z,y,z € X such that x xy = 0,y xx = 0, it results x = y.

If a BCl-algebra X satisfies the following identity:

5) 0xx =40, for all x € X, then X is called a BCK-algebra.

A BCK-algebra X is called commutative if x % (x x y) =y * (y x x), for all
xz,y € X and implicative if x x (y x x) = x, for all z,y € X.

The partial order relation on a BCK-algebra is defined such that x <y if
and only if x xy = 6.

If (X, %,0) and (Y, 0,0) are two BCK-algebras, a map f: X — Y with the
property f(xxy) = f(z)o f(y), for all z,y € X, is called a BCK-algebras
morphism. If f is a bijective map, then f is an isomorphism of BCK-algebras.

In the following, we will use some notations and results given in the paper
[Ju, So; 11] .
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From now on, all considered BCK-algebras are finite.
Let A be a nonempty set and let X be a BCK-algebra.

Definition 1.2. A mapping f: A — X is called a BCK-function on A.
A cut function of fisamap f.: A — {0,1},r € X, such that

fr(x)=1, if and only if r* f(x) =0,Vx € A.

A cut subset of A is the following subset of A

A, ={zeA:r«f(z)=0}

Remark 1.3. Let f: A — X be a BCK-function on A. We define on X
the following binary relation

Vr,s € X,r ~ s if and only if A, = A;.

This relation is an equivalence relation on X and we denote with 7 the equiv-
alence class of the element r € X.

Remark 1.4. ([Ju, So; 11] ) Let A be a set with n elements. We consider
A=1{1,2,...,n} and let X be a BCK-algebra. For each BCK-function f : A —
X, we can define a binary block-code of length n. For this purpose, to each
equivalence class 7,z € X, will correspond the codeword w, = x12s...7, with
x; = j, if and only if f, (i) = j,i € A, j € {0,1}.We denote this code with V.

Let V be a binary block-code and w, = z1x2...x, €V, wy = y1y2..yn €V
be two codewords. On V' we can define the following partial order relation:

wy 2wy if and only if y; < x;,4 € {1,2,...,n}. (1.1.)

In the paper [Ju, So; 11], the authors constructed binary block-codes gen-
erated by BCK-functions. At the end of the paper they put the following
question: for each binary block-code V', there is a BCK-function which deter-
mines V7 The answer of this question is partial affirmative, as we can see in
Theorem 2.2 and Theorem 2.9.
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2. Main results

Let (X, <) be a finite partial ordered set with the minimum element 6 .

We define the following binary relation ” *” on X :

Oxx=0and zxx =0 Vre X,
xxy=40,if <y, =zy€X; (2.1.)

T *y = x, otherwise.

Proposition 2.1. With the above notations, the algebra (X,*,0) is a

non-commutative and non-implicative BCK-algebra. [

If the above BCK-algebra has n elements, we will denote it with C,,.

Let V be a binary block-code with n codewords of length n. We consider
the matrix My = (m;;), je(1,2,..m} € M, ({0,1}) with the rows consisting of
the codewords of V. This matrix is called the matriz associated to the code V.

Theorem 2.2. With the above notations, if the codeword 11...1 isin V
n—time

and the matriz My is upper triangular with my; = 1, for all i € {1,2,...,n},
there are a set A with n elements, a BCK-algebra X and a BCK-function
f:A— X such that f determines V.

Proof. We consider on V the lexicographic order, denoted by <j... It
results that (V, <je,) is a totally ordered set. Let V' = {wy,wa,...,w,}, with
W1 Zlex W2 Zlex - Zler Wpn. From here, we obtain that w; = 11...1 and

n—time

wy, = 00..01 . On V we define a partial order < as in Remark 1.4. Now,
——

n—1)—time
vV, %) (is a)partial ordered set with wy =< w;,i € {1,2,...,n}. We remark that
wy = 6 is the "zero” in (V, <) and w, is a maximal element in (V, <). We
define on (V, =) a binary relation ” 7 as in Proposition 2.1. It results that
X = (V,%,w;) becomes a BCK-algebra and V is isomorphic to C,, as BCK-
algebras. We consider A =V and the identity map f: A —V, f(w) =w as a
BCK-function. The decomposition of f provides a family of maps Ve, = {f :
A—{0,1} / f.(z) =1, if and ounly if r« f(x) =6,Vz € A,r € X}. This

family is the binary block-code V relative to the order relation < . Indeed,
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let wy € V,1 <k <n, wp = 00..014, .75, 4.5, €{0,1}. If 25, =0, it

k—1
results that wy, < w;; and wg *x w;; = 0. If ;; =1, we obtain that w;, =< wg

or wj, and wy can’t be compared, therefore wy, * w;; = wy,.[

Remark 2.3. Using technique developed in [Ju, So; 11], we remark that a
BCK-algebra determines a unique binary block-code, but a binary block-code
as in Theorem 2.2 can be determined by two or more algebras(see Example
3.1). If two BCK-algebras, A;, Ay determine the same binary block-code, we
call them code-similar algebras, denoted by A; ~ As. We denote by €, the
set of the binary block-codes of the form given in the Theorem 2.2.

Remark 2.4. If we consider B, the set of all finite BCK-algebras with n
elements, then the relation code-similar is an equivalence relation on B,,. Let
£, be the quotient set. For V € €,,, an equivalent class in £, is V= {B € B,
/ B determines the binary block-code V'}.

Proposition 2.5. The quotient set Q,, has == elements, the same

cardinal as the set &,.

Proof. We will compute the cardinal of the set €,. For V € €, let My,
be its associated matrix. This matrix is upper triangular with m;; = 1, for
all i € {1,2,...,n}. We calculate in how many different ways the rows of such
a matrix can be written. The second row of the matrix My has the form
(0,1,as,...,a,), where ag, ...,a, € {0,1}. Therefore, the number of different
rows of this type is 2”2 and it is equal with the number of functions from
a set with n — 2 elements to the set {0,1}. The third row of the matrix My
has the form (0,0,1, a4, ..., a,), where ay,...,a, € {0,1}. In the same way, it
results that the number of different rows of this type is 27~2. Finally, we get
that the cardinal of the set ¢, is 277227732 = 9=

Remark 2.6. If 91, is the number of all finite non-isomorphic BCK-

. (n=1)(n=2)
algebras with n elements, then 91, > 2 Eaa

Remark 2.7. 1) Let V3, V2 € €,, and My, , My, be the associated matrices.
We denote by rjv a row in the matrix My,,i € {1,2}, j € {1,2,...,n}. On
¢,, we define the following totally order relation

Vi Ziea Vo if there is i € {2,3,...,n} such that rYl = TY",. rvll = rl-Vfl and 7"2/1 >lex T

s -

Vx

2
7
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where >, is the lexicographic order.
2) Let V1,V € €, and My, , My, be the associated matrices. We define a
partially order on €,

Vi « Vaif there is ¢ € {2,3,...,n} such that TYI = T’Y2,. rvll = rzyfl and 7-2/1 = 7"2/2,

s T

where < is the order relation given by the relation (1.1).

3) Let © = (035); jer10,. ny € M({0,1}) be a matrix such that 6;; = 1,
i < g, for all 4,5 € {1,2,...,n} and 6,; = O in the rest. It results that
the code 2, such that My = ©, is the minimum element in the partial or-
dered set (€,, <), where elements in €, are descending ordered relative

”

t0 »iex defined in 1). Using the multiplication ” * 7 given in relation (2.1)
and Proposition 2.1, we obtain that (€, *, Q) is a non-commutative and non-
implicative BCK-algebra. Due to the above remarks and relation (2.1), this

(n—1)(n—2)
2

BCK-algebra determines a binary block-code V¢, of length 2 . Obvi-

ously, Ve, € €2 (n—1)(n—2) -
2

Proposition 2.8. Let A= (a;;)ic{1,2,...n} € Munm({0,1}) be a matriz
je{1,2,....,m}
with rows lexicographic ordered in the descending sense. Starting from this

matriz, we can find a matriz B = (bi;); icq1 5 5 € Mq({0,1}), ¢ =n+m,
such that B is an upper triangular matriz, with b; = 1,Vi € {1,2,...,q} and

A becomes a submatriz of the matrix B.

Proof. We insert in the left side of the matrix A ( from the right to the left)
the following n new columns of the form 00...01,00...10, ..., 10...00. It results a
SN~ —~— N——

new matrix D with n rows and n +m columns. Now, we insert in the bottom
of the matrix D the following m rows: 00...010...00 , 00...001...00, ..., 000 1.
A= A~ —~~

n m n+l m—1 n+m—1

We obtained the asked matrix B.OO

Theorem 2.9. With the above notations, we consider V. a binary block-
code with m codewords of length m,n # m, or a block-code with n codewords
of length n such that the codeword 11...1 is not in V, or a block-code with

n—time
n codewords of length n such that the matriz My is not upper triangular.

There are a natural number q > max{m,n}, a set A with m elements and a



166 Cristina FLAUT

BCK-function f : A — C4 such that the obtained block-code Ve, contains the
block-code V as a subset.

Proof. Let V be a binary block-code, V' = {w; wa, ..., w, }, with codewords
of length m. We consider the codewords w; wa, ..., w, lexicographic ordered,
W1 Zleg W2 Zleg - Zlew Wn- Let M € M, ,,({0,1}) be the associated matrix
with the rows ws, ..., w, in this order. Using Proposition 2.8, we can extend
the matrix M to a square matrix M’ € M,({0,1}),¢ = m + n, such that
M = (m;xj)i,je{l,l...,q} is an upper triangular matrix with my; = 1, for all
i € {1,2,...,q}. Since the first line of the matrix M’ is not &,_l, then we

q
insert the row 11...1 as a first row and the column 10...0 as a first column
—— ~~

q+1 q
. Applying Theorem 2.2 for the matrix M’, we obtain a BCK-algebra C, =

{z1,...,2q},with 21 = 6 the zero of the algebra C, and a binary block-code
Ve, - Assuming that the initial columns of the matrix M have in the new matrix
M’ positions i, ,%jy, -y 45,, € {1,2,...,q}, let A={z;,,xj,,...,xj,} CCq. The
BCK-function f : A — Cy, f (z;,) = xj,, i € {1,2,...,m}, determines the
binary block-code V¢, such that V C V¢ .0

3. Examples

Example 3.1. Let V = {0110,0010,1111,0001} be a binary block code.
Using the lexicographic order, the code V can be written
V ={1111,0110,0010,0001} = {w1, w2, ws,ws}. From Theorem 2.2, defining
the partial order < on V| we remark that w; < w;, i € {2,3,4},wy < w3, wsy

can’t be compared with w, and w3 can’t be compared with wy. The operation

2 2

%7 on V is given in the following table:

* w1 wao ws w4

wp | wp wp wp Wi
w2 | w2 wp w1 W2 -

w3 | w3 w3 w1 W3

Wq | Wy Wqg Wqg W1
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Obviously, V' with the operation ” x” is a BCK-algebra.

We remark that the same binary block code V' can be obtained from the
BCK-algebra (A, o, 0)

o|f a b c
016 6 6 6
ala 6 60 a
b|lb a 6 b
cle ¢ ¢ 6

with BCK-function, f : V — V, f(x) = z.(see [Ju, So; 11] , Example 4.2).
From the associated Cayley multiplication tables, it is obvious that the al-
gebras (A,0,0) and (V,*,w;) are not isomorphic. From here, we obtain that
BCK-algebra associated to a binary block-code as in Theorem 2.2 is not unique
up to an isomorphism. We remark that the BCK-algebra (A4, o,0) is commu-
tative and non implicative and BCK-algebra (V,*,w;) is non commutative
and non implicative. Therefore, if we start from commutative BCK-algebra
(A,0,0) to obtain the code V; as in [Ju, So; 11], and then we construct the
BCK-algebra (V| *,w), as in Theorem 2.2, the last obtained algebra lost the

commutative property even that these two algebras are code-similar.

Example 3.2. Let X be a non empty set and § = {f : X — {0,1} / f
function}. On § is defined the following multiplication

(fog)(z)=f(x) —min{f(z),g(z)}, Vo e X.

(§,0,0), where 0 (z) = 0,Vz € X, is an implicative BCK-algebra([Sa, Az;
11], Theorem 3.3 and Example 1).

If X is a set with three elements, we can consider § = {000, 001,010,011, 100, 101,110,111}
the set of binary block-codes of length 3. We have the following multiplication
table.
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O 000 001 010 011 100 101 110 111 The obtained binary code-words

000 | 000 | 00O | 000 | 000 | 000 | OOO | 00O | 000 | 11111111

001 | 001 | 000 | 001 | 000 | 001 | 00O | 0O1 | 00O | 01010101

010 | 010 | 010 | 000 | 000 | 010 | 010 | 00O | 000 | 00110011

011 | 011 | 010 | 001 | 000 | 011 | 010 | 001 | 00O | 00010001

100 | 100 | 100 | 100 | 100 | 000 | 000 | 000 | 000 | 00001111

101 | 101 | 100 | 101 | 100 | 001 | 000 | 001 | 000 | 00000101

110 | 110 | 110 | 100 | 100 | 010 | 010 | 000 | 000 | 00000011

111 | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 00O | 00000001

We obtain the following binary block-code
V = {11111111, 01010101, 00110011, 00010001,
00001111,00000101, 00000011, 00000001}, with the elements lexicographic or-
dered in the descending sense. From Theorem 2.2, defining the partial order
=< on V and the multiplication ” *”, we have that (V,*,11111111) is a non-
implicative BCK-algebra and the algebras (V,#,11111111) and (§,0,0) are

code-similar.

Example 3.3. Let V = {11110, 10010,10011,00000} be a binary block
code. Using the lexicographic order, the code V can be written
V' = {11110, 10011, 10010,00000} = {w1, we, w3, w4 }. Let My € My5 ({0,1})
1 1 1 1 0
1 0 0 1 1
be the associated matrix, My = L oo 1 0 | Using Proposition

0 0 0O 0 O
2.8, we construct an upper triangular matrix, starting from the matrix My .

It results the following matrices:
1 0 0 01 1

D= and

o o o
©C O O =
=
o O = O

1 0 0 1 O
01 0 1 O
0 01 0 O
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100 011110
01 0010011
001 01 00 10
0 001 00 0 O0TUPO
B=]100001°0000
000001 O0O0O
0 000 0 O0T1TO0TO0
0 000 0O O0OO0OT1SFO
0000 O0O0O0OO0 1

Since the first row is not 11...1; using Theorem 2.8, we insert a new row

9
11...1 as a first row and a new column 10...0 as a first column. We obtain the
SN~ S~~~
10 10

following matrix: B’ =

O O O O O = O O
O O O O = O O O =
S O O O Mo
o =R O O O O O = =

OO0 00 o000 o0 o R
[ I e B e B e B e S e Bl S e B S =Y
O 000 00O RO
O 0O O OO0 0O M K
—_ O O O O M
— 0O 0 00 00 KO M

0 0O 0 0
The binary block-code W = {wy, ..., w10}, whose codewords are the rows of the

matrix B’, determines a BCK-algebra (X, *, w1 ). Let A = {wg, w7, ws, wg, wio}
and f: A — X, f(w;) = w;,i € {6,7,8,9,10} be a BCK-function which de-
termines the binary block-code

U = {11111, 11110, 10011, 10010, 00000, 10000, 01000, 00100, 00010, 00001}. The
code V is a subset of the code U.

In the results presented above, we proved that to each binary block-code V/
we can associate a BCK-algebra X such that the binary block-code generated
by X, Vx, contains the code V as a subset. In some particular case, we have
Vx =V.

From Example 3.1 and 3.2, we remark that two code-similar BCK-algebras

can’t have the same properties. For example, some algebras from the same



170 Cristina FLAUT

equivalence class can be commutative and other non-commutative or some
algebras from the same equivalence class can be implicative and other non-
implicative. As a further research, will be very interesting to study what

common properties can have two code-similar BCK-algebras.

Due to this connection of BCK-algebras with Coding Theory, we can con-
sider the above results as a starting point in the study of new applications of

these algebras in the Coding Theory.
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ANNEX 1

Lemma 7.3, [Sch; 85], p.133

Let Py be a g—preordering, that is
Py+ Py, C Py,K*Py, C Py,P,N—PFPy =0.

Then there exists a q—ordering P with Py C P or —Py C P. (It is not
necessary that 1 € Py)
Theorem 3.7 from [O’ Sh; 10]

For n = m+ 1+ [2],s(Q(n)) € [m+ 1,n], where Q(n) = (%) ®p
F(<1>1nxTp), F a field of characteristic different from two.

Lemma from [Sch; 85], p.151

Let n = 2F and aq, as, ..., an, B1, Ba, ..., Bn € K. Then there are v, ..., 7, €
K such that

(@@ a2+..+a2) (B4 82+ ..+ 52) = (b + oo + anBn) 73+ 72

Proposition 2.2. from [La,Ma; 01]

Let k > 1 be an integer, F = Fy(x) be the rational function field in one
variable over the formally real field Fy. Then the quadratic forms

(2" +1)x<1>L2"x<a> and 2"x <1,-x >

stay anisotropic over Fy () (a), where ap = (2F + 1)x < 1, —x > .
Lemma 2.5, [Hoff; 08]

Let ¢ be a quadratic form over a formally real field F', dimp > 2, and let
P be an ordering on F. Then P extends to F () if and only if ¢ is indefinite
at P. In this situation, if 3c8 is another form over F, then dim(3c8p(p))an >
|sgnp(3c8)].

Theorem 4.1, [Ka, Me; 03]
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Let X and Y be anisotropic quadrics over a field F and suppose that Y is
isotropic over F(X). Then

i) dimes(X) < dimes(Y);

i1) Moreover, the equality dim.s(X) = dimes(Y) holds if and only if X is
isotropic over F(Y).

Theorem 3.8. from [0’ Sh; 10]

i) s (O (n)) € [n— [5],n], for all n.
i) s(Q (n)) € [n — [2F2],n], for all n.

iii) (O (n)) € [n—["£%],n], for all n, where O(n) = (2L2)@pF (<1>Lnx Tp).

Theorem 65, [Sm; 04]

Let n < 3. Any univariate 2™ —onic polynomial P (x) having a unique
monomial of highest degree n > 0, has at least one root.

Theorem 1, [Ei, Ni; 44]

Let f(x) = apraiz...xa, + ¢ (x) be a polynomial with x,a; real quater-
nions, a; # 0, and ¢ (x) be a polynomial as a sum of a finite number of similar
monomials with degree < n. Therefore the equation f (x) =0 has at least one
solution.
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ANNEX 2

Lenstra’s elliptic curves algorithm

The following presentation use ideas from the beautiful book Rational
Points on Elliptic Curves of Silverman and Tate, [Si, Ta; 92].

For a polynomial of the form f = ag+box + b1y + cox? 4+ 2c12y + coy® + ...,
plain algebraic curve is the set {(z,y) € R? / f(x,y) = 0}. This curve is
nonsingular or regular in a point (xg,yo) on f if at least one of the partial
derivatives of f in this point is non-zero, that means % (z0,y0) # 0 or/and
% (z0,90) # 0.

An elliptic curve is considered a plane algebraic curve defined by an equa-

tion of the form (Weierstrass normal form)
v =a34+ar+b

which is nonsingular. On such a curve, we consider a point O, the point at
infinity.

For an elliptic curve, if we consider the discriminant A = —16 (4@3 + 27 b2) ,
the curve is considered regular if and only if A # 0.

We remark that an elliptic curve is symmetric about the axis x, therefore
for any given point P, we can take — P, the opposite point. We will consider
—O to be just O.

If P and @) are two points on the curve, we can uniquely find a third point,
P+ @, as follows. In this way, we define a law and a group structure:

- We draw the line between P and (). This line will intersect the curves in
a third point, R. We consider P + ) to be —R, its opposite.

-When one of the points is O, we define P+ O = P = O + P, therefore O
becomes the identity of the group.

We consider an elliptic curve C : y?> = 2% — pz — ¢ on the Q. The rational

points of C are these points on C whose all coordinates Q, including the point
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at infinity. We will denote this points with C(Q) and with the above law forms
we obtain a group structure.
Therefore, if P and @ are two points on C and R = P+ Q = (xr,—Yr),

we have

(yr —yq)?
Tp = —5 —Tp—1xQ,
(zp —2q)* ¢
v = yp+ LY (),
rp —IQ
for xp # xq.
If xp = g, we have yp = —y¢g and we include here the situation when
yp =yq = 0.
If yp = yg # 0, it results R = 2P = (xg, —yr) and we have
(323 —p)?
TR = W — 2(1}'}3,
3z% —
Yr = yP+%p($R*$P)~
yp

Pollard’s p — 1 Algorithm. Let n > 2 be a non prime integer. We want
find its prime factors.

Step 1. We choose a number k such that k = lem[1,2,3,..., K], K a fixed
integer, therefore k is a product of small prime numbers at small powers.
Step 2. We choose an arbitrary integer a such that 1 < a < n.

Step 3. We compute d = ged(a,n). If d > 1, therefore d is a nontrivial factor
of the number n. Otherwise, we go to the Step 4.

Step 4. We compute d = ged(a® — 1,n). If 1 < d < n, then d is a nontrivial
factor of n and the algorithm stops here. If d = 1, we go to the Step 1 and we
chose a big integer k by increasing the value of K. If d = n, we go to the Step
2 and we choose another number a.

Complexity: O(n'/?%¢).

The Pollard’s algorithm uses the fact that the nonzero elements from Z,
forms a group of p—1 order. Therefore, if (p—1) | k, then a* = 1 in this group.
Lenstra had the idea to replace the group Z, with the rational points on an
elliptic curve, C(Z,), and to replace the integer a with a point P € C(Z,). As

in the Pollard’s algorithm, we choose an integer k such that & is a product of
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small primes at small powers. If the cardinal of the set C(Z,), denoted |C(Z,)|,
if |C(Z,)| | k, we have kP = O in C(Z,) and the fact that kP = O in C(Z,) is
used to find a nontrivial divisor of n.

The Lenstra’s algorithm for elliptic curves. Let n > 2 be a integer.

We want find the prime factors of the number n.
Step 1. We check if ged(n,6) = 1 and if is not on the form m” for r > 1.
Step 2. We choose the integers 1 < b, z1,y1 < n.

Step 3. We consider ¢ = y? — 23 — bz; mod n and let C the elliptic curve
C:y>=a+bz+c

with P = (1‘1,y1) eC.

Step 4. We check if D = ged(4b3 + 27¢%,n) = 1. If D = n, we choose a
new b. If 1 < b < n, then D | n.

Step 5. We search a number & such that k is a product of small primes

at small powers, k = lem[1,2,3,..., K], K a fixed integer.

Step 6. We compute
ar bk
o (B.1).
di’ dy

Step 7. We compute D' = ged(dg,n). If 1 < D' < n, then D’ is a
nontrivial factor of n. If D =1, we go to the Step 5 and increase k or we go
to Step 2 and we choose another curve. If D = n, then we go to Step 5 and

decrease k.

With Pollard’s p — 1 algorithm we use the groups of the form Zj, which p
is a prime divisor of the number n. For a fixed n the group Z; is fixed. If we
use the Lenstra’s algorithm on elliptic curves on the field Z, we have various
groups which can be utilized depending on the chosen curves and the chances
to find a group whose order is not divisible with a big prime or with a power
of big prime. With a Lenstra’s algorithm we have a kind of flexibility which

allow us to find another elliptic curve and we can restart the algorithm.
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ANNEX 3

QAM-constelation

For the following presentation, we use Wikipedia.org. A constellation di-
agram is considered a representation for a signal modulated using a digital
modulation scheme, as for example quadrature amplitude modulation, QAM.
The signal is represented in a diagram in a two-dimensional complex plane
with axes X —Y. Such a diagram represents as points in the complex plane a
possible symbols which can be selected from a given modulation scheme. With
such a diagram, we can recognize which type of interference and distortion for
a signal we have.

The constellation diagram is useful for QAM, in which the constellation
points can be usually arranged in a geometric figure as for example a square
grid in which the vertical and horizontal spacing are equal. The number of
points in the grid is usually a power of 2 since in digital telecommunications
the data are usually binary. Therefore, we have 16-QAM, 64-QAM, etc. We
must remark that, by moving to a higher-order constellation, it is possible to
obtain a good advantage: to transmit more bits per symbol.

When a signal is received, the decoder examines the received symbol. This
signal can be corrupted by the channel or the receiver. The decoder can
estimate and select the closet point from the constellation diagram, using
usually an Euclidean distance or another defined distances. Therefore it will
decode incorrectly if the corruption has caused that the received symbol can
be moved closer to another constellation point than the transmitted one. In
this sense, the constellation diagram give us a straightforward visualization of
this process.

See two constellations: Z[i], for m = 2+ ¢ and for 16—QAM.
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Fig. 1:(From [Hu; 09]) Z[i]; for 1 =2+

0000 0100 1100 1000

0001 0101 1101 1001

0011 o1 1111 1011

0010 0110 1110 1010

Fig. 2: 16-QAM, from Wikipedia.org
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