Inl I Universitatea

Transilvania
II din Bragw

HABILITATION THESIS

Title: Distributed Applications for Ambient Assisted Living

Domain: Computers and Information Technology

Author: assoc. prof. dr. eng. KRISTALY Dominic Mircea

University: Transilvania University of Brasov

BRASOV, 2024

Habilitation Thesis KRISTALY Dominic Mircea

CONTENTS

LIST OF ABBREVIATIONS 5
(A) REZUMAT 7
(A-1) SUMMARY 12

(B) SCIENTIFIC AND PROFESSIONAL ACHIEVEMENTS AND THE EVOLUTION AND DEVELOPMENT 17

(B-1) SCIENTIFIC AND PROFESSIONAL ACHIEVEMENTS 17
1. INTRODUCTION TO DISTRIBUTED APPLICATIONS FOR AMBIENT ASSISTED LIVING 17
1.1. FUNDAMENTALS OF DISTRIBUTED APPLICATIONS 18
1.2. ARCHITECTURAL MODELS FOR DISTRIBUTED SYSTEMS 19
1.2.1. CLIENT-SERVER MODEL 19
1.2.2. PEER-TO-PEER MODEL 20
1.2.3. MULTI-TIER ARCHITECTURE 20
1.2.4. SERVICE-ORIENTED ARCHITECTURE 20
1.2.5. MICROSERVICES ARCHITECTURE 20
1.2.6. SPACE-BASED ARCHITECTURE 20
1.3. MAIN TECHNOLOGIES SUPPORTING DISTRIBUTED APPLICATIONS 21
1.3.1. COMMUNICATION MIDDLEWARE 21
1.3.2. RELATIONAL DATABASES IN CLOUD ENVIRONMENTS 21
1.3.3. DISTRIBUTED DATABASES 21
1.3.4. CONSENSUS PROTOCOLS 22
1.3.5. LOAD BALANCING AND SCALABILITY TOOLS 22
1.3.6. VIRTUALIZATION AND CLOUD SERVICES 22
1.3.7. SECURITY MECHANISMS 22
1.3.8. MONITORING AND MANAGEMENT TOOLS 22
1.4. AAL PROJECTS FOR CASE STUDIES 23
1.4.1. FOOD PRrOJECT 23
1.4.2. NOAH PROJECT 24
1.4.3. HELICOPTER PROJECT 26
1.4.4. SAVE PROJECT 27

Habilitation Thesis

KRISTALY Dominic Mircea

2. SERVICE-ORIENTED ARCHITECTURE 29
2.1. WEB SERVICES 30
2.2. FOOD SYSTEM ARCHITECTURE 31
2.2.1. DATA FLOW AND WEB SERVICES IN THE FOOD SYSTEM 34
3. MICROSERVICES ARCHITECTURE 42
3.1. SAVE SYSTEM ARCHITECTURE 43
3.1.1. THE SAVE DATA COLLECTING SYSTEM — THE DATA COLLECTOR MICROSERVICE 46
3.1.2. DEPLOYMENT ENVIRONMENT 49
4. INTERNET OF THINGS AND ITS IMPLICATIONS FOR AAL 49
4.1. SENSOR TYPES 50
4.2. SENSOR NETWORKS 51
4.2.1. WIRELESS SENSOR NETWORKS 51
4.2.2. CHALLENGES IN SENSOR NETWORK DEPLOYMENT 51
4.3. FUTURE DIRECTIONS 52
4.4. HELICOPTER HOME SYSTEM 52
4.4.1. SYSTEM SELF-CHECK 54
4.4.2. SYSTEM INITIALIZATION 54
4.4.3. AUTOMATIC UPDATES 54
4.4.4. DATA COLLECTING AND PROCESSING 55
4.4.5. CLIENT INTERFACE 55
4.4.6. HOME SYSTEM START-UP 55
4.4.7. LOGGERuUTILITY 57
4.4.8. USB UPDATER UTILITY 57
4.4.9. GW UPDATER UTILITY 58
4.4.10. DEPLOYER UTILITY 59
4.4.11. DuMmPAPP 59
4.4.12. TRANSFERBACKUPAPPCLIENT AND TRANSFERBACKUPAPPSERVER 60
4.5. THE SAVE SENSOR ADAPTER 61
4.5.1. COMPONENTS 62
4.5.2. THE CASE 63
4.5.3. ELECTRICAL SCHEMATIC 64
4.5.4. SOFTWARE 65
4.5.5. THE MENU 66
4.5.6. FINAL VERSION OF THE DEVICE 67
5. DATABASES 67
5.1. RELATIONAL DATABASE MANAGEMENT SYSTEMS 69

Habilitation Thesis

KRISTALY Dominic Mircea

5.2. FOOD SYSTEM DATABASES 70
5.2.1. LOW LEVEL DATABASE FOR THE SENSORS NETWORK 70
5.2.2. HIGH LEVEL DATABASE FOR THE WEB SERVICES 71
5.2.3. THE DATABASE STRUCTURE OF THE FOOD PLATFORM 72
5.3. SAVE SOLUTION DATABASE 75
6. HUMAN-COMPUTER INTERACTION 76
6.1. USER INTERFACE DESIGN AND DEVELOPMENT REQUIREMENTS 76
6.2. Ul DESIGN AND DEVELOPMENT REQUIREMENTS FOR ELDERLY 78
6.3. PLANNING OF SERVICES AND USER INTERFACES 79
6.4. END-USERS’ FOOD USER INTERFACE 79
6.4.1. OVEN INTERFACE FUNCTIONALITY 84
6.4.2. USER INTERFACE INTERNATIONALIZATION 86
6.4.3. AUTOMATIC UPDATE OF THE TABLET APPLICATION 86
6.4.4. CROSS-ORIGIN RESOURCE SHARING 88
7. CLOUD COMPUTING IN AAL 90
7.1. APPLICATIONS OF CLOUD COMPUTING IN AAL 90
7.1.1. HEALTH MONITORING 90
7.1.2. EMERGENCY RESPONSE SYSTEMS 90
7.1.3. SMART HOME INTEGRATION 90
7.2. BENEFITS OF CLOUD COMPUTING IN AAL 20
7.2.1. DATA MANAGEMENT AND ANALYTICS 90
7.2.2. SCALABILITY AND FLEXIBILITY 91
7.2.3. COST EFFICIENCY 91
7.3. CHALLENGES AND CONSIDERATIONS 91
7.3.1. PRIVACY AND SECURITY 91
7.3.2. RELIABILITY AND CONNECTIVITY 91
7.3.3. INTEGRATION AND STANDARDIZATION 91
7.4. FLOW-BASED PROGRAMMING IN IBM CLouD WITH NODE-RED 92
7.4.1. FLOW-BASED PROGRAMMING 92
7.4.2. NODE-RED 92
7.5. NOAH SERVER CLOUD APPLICATION 92
7.5.1. MAIN FLOWS 94
7.5.2. DATA COLLECTING 95
7.5.3. DATA PROCESSING 97
7.5.4. NOTIFICATIONS 98
7.5.5. ALERTS 99
7.5.6. SIMULATION AND TESTING 100
7.5.7. COMMUNICATION WITH SENSORS 101
(B-11) THE EVOLUTION AND DEVELOPMENT PLANS FOR CAREER DEVELOPMENT 103

Habilitation Thesis

KRISTALY Dominic Mircea

DIDACTIC ACTIVITY
RESEARCH ACTIVITY
SUPPORT AND ADMINISTRATIVE ACTIVITIES

(B-1il) BIBLIOGRAPHY

103
105
109

110

Habilitation Thesis

KRISTALY Dominic Mircea

List of abbreviations

JAX-WS
JNDI
JSON
MQTT
OAuth
REST
SOA
SOAP
SSL/TLS
uDDI

ul

WoS
WSDL
WSN
XML

Ambient Assisted Living

Application Programming Interface
Cross-origin resource sharing

Cascading Style Sheets

GDPR - The EU general data protection regulation
Hypertext Markup Language

Hypertext Markup Language Secured

Internet of Things

Infrared

Information technology

Java API for XML — Web services

Java Naming and Directory Interface

Javascript Object Notation

Message Queuing Telemetry Transport

Open Authorization

Representational State Transfer
Service-Oriented Architecture

Simple Object Access Protocol

Secure Sockets Layer / Transport Layer Security
Universal Description, Discovery, and Integration
User interface

Web of Science

Web Services Description Language

Wireless Sensor Networks

eXtensible Markup Language

Habilitation Thesis KRISTALY Dominic Mircea

Habilitation Thesis KRISTALY Dominic Mircea

(A) Rezumat

Prezenta lucrare prezintd succint si selectiv cercetarile si realizarile autorului din domeniul vast al
aplicatiilor distribuite. Studiile de caz transpuse in tematica domeniului se limiteaza la aplicatii realizate

in contextul sistemelor de tip AAL (Ambient Assisted Living).

Ambient Assisted Living este un domeniu inovator care utilizeaza aplicatii distribuite pentru a
imbundtati independenta si calitatea vietii persoanelor in varsta si cu dizabilitati. Prin utilizarea
tehnologiilor de tip cloud, a retelelor de senzori si a dispozitivelor Internet of Things (loT), AAL oferd un
suport cuprinzator, care poate fi integrat in activitatile zilnice. Aceste tehnologii permit monitorizarea
continuad si prelucrarea datelor in timp real, asigurand asistentad eficienta si promovand un mediu de

autonomie si siguranta pentru utilizatorii sai.

Capitolul 1 al lucrarii prezinta fundamente teoretice ale aplicatiilor distribuite siinclude scurte descrieri
ale proiectelor utilizate ca studii de caz in lucrarea de fata. Astfel, sunt prezentate modelele
arhitecturale principale utilizate in proiectarea aplicatiilor distribuite si tehnologiile care faciliteaza

dezvoltarea acestora.

Arhitectura aplicatiei distribuite este foarte importanta pentru implementarea unor sisteme eficiente
siscalabile. Printre arhitecturile elementare se numara modelul client-server, care implica interactiunea
mai multor clienti cu un server central, si retelele peer-to-peer (P2P), unde nodurile functioneaza atat
ca clienti cat si ca servere, imbunatatind rezilienta si distributia resurselor. Modelele arhitecturale mai
complexe, cum ar fi arhitecturile multi-strat si microservicii, permit separarea preocupadrilor pe diferite

straturi, facilitand intretinerea mai usoara si o scalabilitate mai buna.

Aplicatiile distribuite pentru AAL integreaza o varietate de tehnologii avansate pentru a gestiona si
analiza datele colectate din diverse surse. Platformele de cloud computingjoaca un rol vital in stocarea

si prelucrarea datelor, permitand scalabilitatea si accesibilitatea pe diferite dispozitive.

Capitolul 2 dezvoltd subiectul arhitecturii bazate pe servicii (Service Oriented Architecture - SOA), care
reprezintd o abordare de proiectare ce faciliteaza dezvoltarea si integrarea sistemelor prin definirea
serviciilor ca functionalitati bine definite, accesibile printr-o retea. Aceste servicii permit organizatiilor
sa construiasca aplicatii flexibile capabile sa interactioneze cu alte aplicatii in diverse retele printr-un
protocol stabilit. Arhitectura bazata pe servicii subliniaza principii precum reutilizabilitatea,
modularitatea si interoperabilitatea, care ajuta la reducerea costurilor de dezvoltare prin minimizarea
redundantei si permitand serviciilor sa fie slab cuplate (loosely-coupled) pentru modificdri si inlocuiri

mai usoare.

Habilitation Thesis KRISTALY Dominic Mircea

Capitolul evidentiaza modul in care acest tip de arhitectura a fost folosit in realizarea proiectului FOOD
(Framework for Optimizing the prOcess of FeeDing). Sunt prezentate servicile web dezvoltate si

structura datelor consumate/generate.

Capitolul 3 trateaza arhitectura bazata pe microservicii ce reprezintd o schimbare strategica fata de
arhitecturile traditionale de aplicatii monolitice, oferind o abordare modulara prin impartirea aplicatiilor
in unitati mai mici, care pot fi rulate independent. Aceasta arhitectura imbunatateste flexibilitatea si
usurinta intretinerii, ceea ce este deosebit de avantajos in medii cloud, facilitand o scalabilitate si
gestionare mai bune. Structura segmentata a microserviciilor permite actualizari si modificari mai

eficiente, deoarece schimbarile intr-un serviciu nu necesita modificari in altele.

Arhitectura bazatd pe microservicii nu doar ca sustine o disponibilitate ridicata si o gestionare eficientd,
dar permite, de asemenea, fiecarei echipe din cadrul unei organizatii sa lucreze independent pe diferite
servicii, sporind productivitatea generald. Fiecare microserviciu poate fi scalat/multiplicat independent
in functie de cerere, si in cazul unei defectiuni, doar serviciul afectat este intrerupt, lasand restul
sistemului operational. Acest stil arhitectural permite utilizarea unor tehnologii diverse, imbunatatind
adaptabilitatea si robustetea sistemului in timp. Astfel, microserviciile sunt extrem de eficiente pentru
aplicatii care necesita actualizari frecvente si scalabilitate, oferind un cadru fiabil care sustine integrarea

si desfdsurarea continua.

Implementarea microserviciilor in sisteme precum SAVE (SAfety of elderly people and Vicinity Ensuring)
ilustreaza beneficiile practice ale acestei abordari, incluzand capacitati de gestionare imbunatatite si
flexibilitate sporita pentru adaptare la cerinte in schimbare. Microserviciile in astfel de contexte
comunica prin interfete standardizate, folosind adesea protocoale HTTP sau HTTPS, cu JSON pentru
schimbul de date, asigurand interactiuni facile intre servicii. Aceastd arhitectura nu doar ca simplifica
dezvoltarea siaccelereaza desfasurarea de noi functionalitati, dar profitd si de avantajele infrastructurii
cloud, facand-o ideala pentru aplicatii dinamice, scalabile care necesita solutii robuste, tolerante la

erori.

in Capitolul 4 sunt prezentate modul de utilizare si avantajele utilizarii dispozitivelor de tip Internet of
Things (loT) in cadrul sistemelor AAL. Internet of Things transforma sistemele AAL prin integrarea
obiectelor cotidiene cu internetul, permitandu-le sa trimita si sa primeasca date. Aceasta tehnologie
sprijina persoanele in varstad si pe cele cu dizabilitati, imbunatatindu-le calitatea vietii prin intermediul
sistemelor de suport inteligente. loT in AAL utilizeaza senzori si actuatoare pentru a colecta si actiona
pe baza datelor, aceste componente fiind legate printr-o retea de comunicatii robusta. Aceasta
configuratie nu doar ca asigura un raspuns in timp util, dar faciliteaza si interactiuni personalizate,

esentiale pentru adaptarea serviciilor la nevoile individuale.

Habilitation Thesis KRISTALY Dominic Mircea

Aplicarea |oT in AAL acoperd mai multe domenii critice. in monitorizarea sanatatii, dispozitivele loT ofera
supraveghere continua a parametrilor vitali, oferind feedback in timp real, crucial pentru gestionarea
proactivd a sdnatatii. Pentru sigurantd, aceste tehnologii detecteaza anomalii precum caderile,

declansand raspunsuri de urgenta necesare.

Capitolulinclude doua studii de caz. Primul este preluat din proiectul HELICOPTER (Healthy Life support
through Comprehensive Tracking of individual and Environmental Behaviors) si prezinta ecosistemul
software necesar conectarii la o aplicatie server, prin internet, a unei retele de senzorilocald (bazatd pe

protocolul Zigbee) folosind un mini-sistem de calcul de tip Gateway.

Al doilea studiu de caz, preluat din proiectul SAVE, detaliaza realizarea hardware si software a unui
dispozitiv de preluare a datelor colectate de un sistem de monitorizare si transmiterea lor, prin internet,

la serviciile sistemului SAVE.

Capitolul 5 oferd o scurta introducere in subiectul bazelor de date si a sistemelor de gestiune a bazelor
de date.

Bazele de date sunt componente integrale ale sistemelor informatice moderne, servind ca depozite
critice de date pentru diverse sectoare, inclusiv afaceri, sandtate si educatie. Acestea au evoluat de la
modele ierarhice si de retea in anii 1960 la bazele de date relationale mai flexibile si, mai recent, la

modelele NoSQL si NewSQL pentru a raspunde nevoilor erei internetului si a volumelor de date mari.

Sistemele de gestiune al bazelor de date relationale se bazeaza pe un model structurat care
organizeazd datele in tabele. Acest format sprijina manipularea si recuperarea eficienta a datelor,
esentiale pentru multe aplicatii de afaceri. De la crearea sa de catre Edgar F. Codd in 1970, aceste
sisteme au crescut pentru a sprijini sisteme distribuite si procesarea analitica online, printre alte functii
avansate. In ciuda provocirilor cu gestionarea volumelor mari de date si a datelor nestructurate,
sistemul relational ramane crucial in gestionarea datelor, cu o evolutie continua pentru o adaptabilitate

si functionalitate mai bune.

in aplicatii specifice, cum ar fi sistemul FOOD, bazele de date joac& un rol esential in gestionarea datelor
din retelele de senzori. Acest lucru implica o structura ierarhica in care datele de nivel scdzut de la
senzori sunt stocate si gestionate intr-o baza de date MySQL, permitand controlul operational in timp
real si analiza datelor istorice. Gestionarea de nivel Tnalt a acestor date foloseste o baza de date
relationald sincronizata pentru servicile web pentru a facilita interactiunea utilizatorilor si
monitorizarea sistemului. Astfel de arhitecturi evidentiaza natura dinamica si scalabila a bazelor de
date moderne in sprijinirea sistemelor si aplicatiilor complexe, subliniind integrarea continua a

tehnologiei bazelor de date cu alte inovatii pentru a satisface cerintele tehnologice in schimbare.

Habilitation Thesis KRISTALY Dominic Mircea

Capitolul 6 trateaza subiectul interfetei om-masina (interfete utilizator). Interactiunea om-calculator
in proiectarea interfetei utilizator se concentreaza pe optimizarea interactiunii intre utilizatori si
dispozitive, avand ca scop simplificarea, eficienta si usurinta in utilizare. Un design bun al interfetei
utilizator asigura ca utilizatorii pot finaliza sarcinile eficient fara complicatii inutile, sprijinit de designul
grafic pentru a imbunatati utilizabilitatea. Procesele de proiectare Ul echilibreaza functionalitatea

tehnica cu elementele estetice pentru a satisface eficient nevoile utilizatorilor in schimbare.

Pentru utilizatorii in varsta, consideratiile de proiectare se ajusteaza pentru a se adapta la declinurile
tipice legate de varsta in ceea ce priveste vederea, memoria, atentia si abilitatile motorii. De exemplu,
interfetele pot folosi fonturi mai mari, fara corpuri de literd de tip serif si scheme de culori cu contrast
ridicat pentru a ajuta la lizibilitate, simplifica sarcinile pentru a minimiza incarcatura cognitiva si proiecta
alerte audibile in gamele de frecvente inferioare pentru a se adapta sensibilitatilor auditive. Aceste
adaptari ajuta la mentinerea utilizabilitdtii dispozitivelor si aplicatiilor printre adultii mai in varsta,

imbunatatind experienta lor de interactiune fara a-i coplesi cu functionalitati complexe.

Mai mult, planificarea interfetelor utilizator implica conceptualizarea modului in care serviciile sunt
prezentate si accesate prin interfete, utilizand metode precum harti conceptuale, planuri detaliate si
machete pentru a alinia functionalitatile tehnice cu nevoile utilizatorilor. De exemplu, in aplicatii
specializate precum sistemul FOOD, interfata utilizator este adaptat pentru a asista varstnicii in
interactiunea fara probleme cu diverse functionalitati, cum ar fi ciclurile de gatit pe electrocasnice

inteligente, implementate in mai multe limbi pentru a deservi o baza diversa de utilizatori.

in Capitolul 7 este abordat subiectul Cloud computing, care este esential in imbunatdtirea sistemelor
AAL prin oferirea de resurse de calcul scalabile, flexibile si eficiente. Aceastd tehnologie sustine diverse
aplicatii AAL, inclusiv monitorizarea sén&titii, rispunsul la urgente si realizarea casei inteligente. in
monitorizarea sdnatdtii, platformele cloud colecteaza si analizeaza date de la dispozitive precum
ceasurile inteligente, permitand furnizorilor de servicii medicale sd intervina in timp util. in caz de
urgente, sistemele cloud notifica prompt ingrijitorii si serviciile de urgentd, furnizand informatii cruciale
despre starea utilizatorului. Pentru casele inteligente, cloud computing faciliteaza controlul sistemelor
casnice, cum ar fi iluminatul si incalzirea, imbunatatind confortul si siguranta pentru persoanele in

varsta.

Beneficiile utilizarii cloud computing in AAL includ capacitdti sofisticate de gestionare a datelor si
analize, scalabilitatea resurselor pentru a satisface cerintele variabile si eficienta costurilor prin
minimizarea cheltuielilor pentru intretinerea hardware-ului si software-ului. Aceste avantaje fac
tehnologiile AAL mai accesibile si eficiente, sprijinind gestionarea proactiva a sandtatii si imbunatatind

calitatea vietii utilizatorilor.

10

Habilitation Thesis KRISTALY Dominic Mircea

Cu toate acestea exista provocari, cum ar fi asigurarea confidentialitatii si securitatii datelor sensibile,
mentinerea unei conexiuni fiabile si realizarea unei integrari facile intre dispozitive si platforme diverse.
Aceste provocari subliniaza necesitatea unor masuri de securitate robuste, servicii internet fiabile si
protocoale standardizate pentru a asigura implementarea eficienta a sistemelor AAL bazate pe cloud.
in plus, unelte precum Node-RED ofera programare bazata pe fluxuri pentru a facilita dezvoltarea
aplicatiilor AAL, exemplificand astfel integrarea tehnicilor avansate de cloud computing in sustinerea si

scalarea serviciilor AAL.

In ultima parte a lucrdrii sunt prezentate realizarile academice si de cercetare ale autorului si

coordonatele viitoare de cercetare si implinire profesionala.

11

Habilitation Thesis KRISTALY Dominic Mircea

(A-i) Summary

This paper succinctly and selectively presents the author's research and achievements in the vast field
of distributed applications. The case studies framed into the domain's theme are limited to applications

made in the context of Ambient Assisted Living (AAL) systems.

Ambient Assisted Living is an innovative field that uses distributed applications to enhance the
independence and quality of life for elderly and disabled individuals. By leveraging cloud technologies,
sensor networks, and Internet of Things (loT) devices, AAL provides comprehensive support that can
be integrated into daily activities. These technologies enable continuous monitoring and real-time data
processing, ensuring effective assistance and promoting an environment of autonomy and safety for

its users.

Chapter 1 of the paper presents the theoretical foundations of distributed applications and includes
brief descriptions of the projects used as case studies in this work. Thus, the main architectural models
used in designing distributed applications and the technologies that facilitate their development are

presented.

The architecture of distributed applications is very important for implementing efficient and scalable
systems. Among the basic architectures are the client-server model, which involves the interaction of
multiple clients with a central server, and peer-to-peer (P2P) networks, where nodes function both as
clients and servers, improving resilience and resource distribution. More complex architectural models,
such as multi-tier and microservices architectures, allow for the separation of concerns across different

layers, facilitating easier maintenance and better scalability.

Distributed applications for AAL integrate a variety of advanced technologies to manage and analyse
data collected from various sources. Cloud computing platforms play a vital role in data storage and

processing, allowing scalability and accessibility across different devices.

Chapter 2 develops the topic of Service-Oriented Architecture (SOA), which is a design approach that
facilitates system development and integration by defining services as well-defined business
functionalities accessible through a network. These services allow organizations to build flexible
applications capable of interacting with other applications across various networks through a set
protocol. Service-Oriented Architecture emphasizes principles such as reusability, modularity, and
interoperability, which help in reducing development costs by minimizing redundancy and allowing

services to be loosely coupled for easier modifications and replacements.

12

Habilitation Thesis KRISTALY Dominic Mircea

The chapter highlights how this type of architecture was used in the implementation of the FOOD
project (Framework for Optimizing the prOcess of FeeDing). The web services developed, and the

structure of the consumed/generated data are presented.

Chapter 3 addresses the architecture based on microservices, which represents a strategic shift from
traditional monolithic application architectures, offering a modular approach by dividing applications
into smaller, independently runnable units. This architecture improves flexibility and ease of
maintenance, which is particularly advantageous in cloud environments, facilitating better scalability
and management. The segmented structure of microservices allows for more efficient updates and

modifications, as changes to one service do not require alterations to others.

Microservices architecture not only supports high availability and efficient management but also allows
each team within an organization to work independently on different services, boosting overall
productivity. Each microservice can independently scale based on demand, and in the event of a fault,
only the affected service is disrupted, leaving the rest of the system operational. This architectural style
allows the use of diverse technologies, improving the adaptability and robustness of the system over
time. Thus, microservices are highly effective for applications requiring frequent updates and

scalability, providing a reliable framework that supports continuous integration and deployment.

Implementing microservices in systems like SAVE (SAfety of elderly people and Vicinity Ensuring)
illustrates the practical benefits of this approach, including improved management capabilities and
increased flexibility to adapt to changing requirements. Microservices in such contexts communicate
through standardized interfaces, often using HTTP or HTTPS protocols, with JSON for data exchange,
ensuring seamless interactions between services. This architecture not only simplifies development
and accelerates the deployment of new functionalities but also leverages cloud infrastructure
advantages, making it ideal for dynamic, scalable applications that require robust, fault-tolerant

solutions.

In Chapter 4, the use and advantages of Internet of Things (loT) devices in AAL systems are presented.
The Internet of Things transforms AAL systems by integrating everyday objects with the internet,
allowing them to send and receive data. This technology supports the elderly and people with
disabilities, enhancing their quality of life through intelligent support systems. IoT in AAL employs
sensors and actuators to collect and act upon data, these components being connected through a
robust communication network. This setup not only ensures a timely response but also facilitates

personalized interactions, essential for adapting services to individual needs.

The chapter includes two case studies. The first is taken from the HELICOPTER project (Healthy Life

support through Comprehensive Tracking of individual and Environmental Behaviors) and showcases

13

Habilitation Thesis KRISTALY Dominic Mircea

the software ecosystem required to connect to a server application, via the internet, a local sensor

network (based on the Zigbee protocol) using a mini-computer Gateway system.

The second case study, taken from the SAVE project, details the hardware and software
implementation of a device for collecting data from a monitoring system and transmitting them, via

the internet, to the SAVE system services.
Chapter 5 offers a brief introduction to the topic of databases and database management systems.

Databases are integral components of modern information systems, serving as critical repositories of
data for various sectors, including business, health, and education. They have evolved from hierarchical
and network models in the 1960s to more flexible relational databases and, more recently, to NoSQL

and NewSQL models to meet the needs of the internet and big data era.

Relational database management systems are based on a structured model that organizes data in
tables. This format supports efficient data manipulation and retrieval, essential for many business
applications. Since its creation by Edgar F. Codd in 1970, these systems have grown to support
distributed systems and online analytical processing, among other advanced functions. Despite the
challenges with managing large volumes of data and unstructured data, the relational system remains

vital in data management, with ongoing evolution expected for better adaptability and functionality.

In specific applications, such as the FOOD system, databases play an essential role in managing data
from sensor networks. This involves a hierarchical structure where low-level data from sensors are
stored and managed in a MySQL database, allowing for real-time operational control and historical
data analysis. High-level management of this data uses a relational database synchronized with web
services to facilitate user interaction and system monitoring. Such architectures highlight the dynamic
and scalable nature of modern databases in supporting complex systems and applications,
underscoring the continuous integration of database technology with other innovations to meet

changing technological demands.

Chapter 6 addresses the topic of human-computer interaction (user interfaces). Human-computer
interaction in user interface design focuses on optimizing the interaction between users and devices,
aiming for simplicity, efficiency, and ease of use. Good user interface (Ul) design ensures that users can
complete tasks efficiently without unnecessary complications, supported by graphic design to enhance
usability. Ul design processes balance technical functionality with aesthetic elements to effectively

meet changing user needs.

For elderly users, design considerations adjust to accommodate typical age-related declines in vision,
memory, attention, and motor skills. For example, interfaces may use larger, sans-serif fonts and high-

contrast color schemes to aid readability, simplify tasks to minimize cognitive load, and design audible

14

Habilitation Thesis KRISTALY Dominic Mircea

alerts in lower frequency ranges to accommodate auditory sensitivities. These adaptations help
maintain the usability of devices and applications among older adults, enhancing their interaction

experience without overwhelming them with complex functionalities.

Moreover, user interface planning involves conceptualizing how services are presented and accessed
through interfaces, using methods such as conceptual maps, wireframes, and mock-ups to align
technical functionalities with user needs. For example, in specialized applications such as the FOOD
system, the user interface is tailored to assist the elderly in seamlessly interacting with various
functionalities, such as cooking cycles on smart appliances, implemented in multiple languages to serve

a diverse user base.

In Chapter 7, the topic of cloud computing is addressed, which is essential in enhancing AAL systems
by providing scalable, flexible, and efficient computing resources. This technology supports various AAL
applications, including health monitoring, emergency response, and smart home implementation. In
health monitoring, cloud platforms collect and analyse data from devices such as smartwatches,
allowing healthcare providers to intervene in a timely manner. In emergencies, cloud systems promptly
notify caregivers and emergency services, providing important information about the user's condition.
For smart homes, cloud computing facilitates the control of home systems, such as lighting and

heating, enhancing comfort and safety for the elderly.

The benefits of using cloud computing in AAL include sophisticated data management and analysis
capabilities, scalability of resources to meet varying demands, and cost efficiency by minimizing
expenses for hardware and software maintenance. These advantages make AAL technologies more
accessible and effective, supporting proactive health management and improving the quality of life for

users.

However, there are challenges, such as ensuring the confidentiality and security of sensitive data,
maintaining reliable connectivity, and achieving easy integration between diverse devices and
platforms. These challenges underscore the need for robust security measures, reliable internet
services, and standardized protocols to ensure the effective implementation of cloud-based AAL
systems. Additionally, tools such as Node-RED offer flow-based programming to facilitate the
development of AAL applications, exemplifying the integration of advanced cloud computing

techniques in supporting and scaling AAL services.

In the final part of the paper, the author's academic and research achievements and future research

and professional fulfilment coordinates are presented.

15

Habilitation Thesis KRISTALY Dominic Mircea

16

Habilitation Thesis KRISTALY Dominic Mircea

(B) Scientific and professional achievements and the evolution and

development
(B-i) Scientific and professional achievements

1. Introduction to distributed applications for Ambient Assisted Living

Ambient Assisted Living (AAL) is an emerging field that leverages technology to assist people, typically
the elderly or those with disabilities, in their daily activities, enhancing their quality of life and promoting

independent living.

Distributed applications, or distributed systems, refer to software systems whose components are
located on multiple networked computers which communicate and coordinate their actions by passing
messages to one another. The components interact with each other to achieve a common goal. This
architectural style allows for system scalability, reliability, and fault tolerance. Through such systems,
resources and workloads can be distributed across multiple machines, which can help enhance

performance and provide redundancy in case of system failures.

Distributed applications in AAL involve a wide range of subjects and technologies to create
comprehensive systems that support users in a seamless and integrated manner. The key subjects

linked to distributed applications in the AAL context are:

= Sensor Networks: Involves the deployment of various sensors (motion, temperature, health
monitors) to gather data about the user's environment and health status. Sensor data is used
to monitor activities, detect emergencies, and even predict potential health issues.

» Internet of Things (loT): loT technologies enable the connectivity of everyday objects to the
internet, allowing them to send and receive data. In AAL, loT devices can include smart home
devices, wearable technologies, and medical monitoring equipment.

= Data Analytics: Utilizes machine learning and data mining techniques to analyse the data
collected from sensors and devices to understand patterns, make predictions, and provide
actionable insights.

= (loud Computing: Provides the infrastructure for data storage and computing power. Cloud
platforms can host applications and manage data from multiple sources, ensuring that
information is available and scalable across different devices and locations.

= Mobile Computing: Involves the use of smartphones, tablets, and other portable devices to
access, monitor, and control AAL services. Mobile applications can provide interfaces for users,

caregivers, and healthcare providers to interact with the AAL system.

17

Habilitation Thesis KRISTALY Dominic Mircea

= Security and Privacy: Covers the methods and technologies used to protect data and preserve
the privacy of individuals. This includes encryption, secure data transmission, and compliance
with regulations like GDPR.

» Human-Computer Interaction (HCI): Focuses on designing user interfaces that are accessible
and easy to use for elderly or disabled users. HCl in AAL might involve adaptive interfaces, voice
recognition, and touchless interaction technologies.

» Ubiquitous and Pervasive Computing: Involves creating a computing environment where AAL
services are seamlessly integrated into everyday objects and activities. This subject area
explores the development of systems that are always available but unobtrusive.

* Robotics: Includes the use of robotic systems for physical assistance, such as mobility aids,
automated delivery systems, or robots that can perform tasks like cleaning or medication
management.

= Telemedicine and E-health: Involves the use of telecommunications technology to provide
remote health care. It includes the management of chronic conditions, remote consultations,
and remote monitoring.

= Network Communications: Studies the protocols and technologies for data transmission over
networks, ensuring reliable and timely communication between devices in an AAL system.

= Software Engineering: Focuses on the development methodologies, tools, and practices

necessary to design, implement, and maintain reliable AAL applications.

1.1. Fundamentals of distributed applications

Distributed application (also known as distributed systems) are complex networks of interconnected
computers that collaborate to achieve a common objective. These systems are fundamental to modern
computing and are essential for running large-scale applications across multiple physical locations. The
study of distributed systems involves understanding the principles and challenges associated with

designing, building, and maintaining systems that are both efficient and reliable.

The foundational theory of distributed systems revolves around data consistency, fault tolerance, and
scalability. Achieving consistency in distributed systems means ensuring that all nodes, or computers,
in the system agree on the data state at any given time. This is challenging because each node operates
independently and may not have immediate access to the state changes made by others. Techniques
such as consensus algorithms are pivotal in maintaining consistency. These algorithms help systems
agree on a single value in the presence of failures, ensuring that the system continues to operate

correctly even when some components fail. [1] [2]

18

Habilitation Thesis KRISTALY Dominic Mircea

Fault tolerance is another critical aspect of distributed systems, ensuring the system continues to
function in the face of hardware or software failures. Redundancy is a common approach, where critical
components are duplicated so that if one fails, another can take over. Another approach involves
implementing failover mechanisms to automatically transfer control to operational systems without

user intervention. [3]

Scalability in distributed systems can be achieved through load balancing and resource allocation
strategies. Systems must be designed to accommodate growth without performance degradation.
Techniques include horizontal scaling (adding more nodes to the system) and vertical scaling (adding

more resources to existing nodes). [4]

Moreover, distributed systems must address network issues such as latency and bandwidth
limitations. Latency can significantly affect system performance, especially in real-time applications.
Solutions involve optimizing communication protocols and data compression techniques to reduce the

amount of data transferred and improve response times. [5]

Finally, security concerns in distributed systems are paramount, especially as these systems often
handle sensitive data over potentially insecure networks. Security mechanisms must ensure data
integrity, confidentiality, and availability. Common practices include implementing cryptographic
protocols for secure data transmission and designing robust authentication and authorization

techniques. [6]

1.2. Architectural models for distributed systems

Architectural models for distributed systems delineate the structural layout that guides the
organization, interaction, and communication among system components distributed across multiple
hardware resources. These models are important for developing efficient, robust, and scalable

distributed systems.

1.2.1. Client-Server model

The client-server model is one of the most traditional and widely used architectures in distributed
systems. In this model, multiple clients request services from a server, and the server processes these
requests. This architecture is inherently asymmetrical, with servers providing resources and services
to clients that initiate communication sessions. The client-server model is scalable in terms of adding

more servers, but it can become a bottleneck if a single server must handle all requests. [5]

19

Habilitation Thesis KRISTALY Dominic Mircea

1.2.2. Peer-to-Peer model

In contrast to the client-server model, the peer-to-peer (P2P) architecture is characterized by the
distribution of tasks and services among multiple nodes that equally share the responsibilities of data
processing and service provision. Nodes in a P2P network both provide and consume resources, acting
simultaneously as clients and servers. This model enhances fault tolerance and reduces risks of
bottlenecking. However, managing data consistency and security can be challenging due to the

decentralized nature of the architecture. [4]

1.2.3. Multi-tier architecture

Multi-tier architectures, often seen in enterprise applications, involve dividing tasks into layers, each
responsible for a specific aspect of the application. Typically, these include a presentation layer, an
application logic layer, and a data management layer. This separation allows for independent scaling
and maintenance of each layer, enhancing the system's responsiveness and flexibility. This model is

particularly well-suited for web applications and services. [3]

1.2.4. Service-oriented architecture

Service-Oriented Architecture (SOA) is based on the concept of service providers and consumers
interacting through well-defined interfaces and contracts. Services are loosely coupled to ensure that
changes in one service do not require changes in others. SOA promotes interoperability and modularity,
enabling developers to build applications that combine services from various sources over a network.

This model supports reusability and can dynamically respond to changing business requirements. [7]

1.2.5. Microservices architecture

Emerging from SOA, the microservices architecture structures an application as a collection of small,
autonomous services modelled around a business domain. Each microservice runs in its own process
and communicates with other services through lightweight mechanisms, often an HTTP-based
application programming interface (API). Microservices allow for continuous delivery and deployment
of large, complex applications. However, they introduce challenges in coordinating services and

managing data consistency. [8]

1.2.6. Space-based architecture

Space-Based Architecture (SBA) addresses scalability issues in traditional architectures by eliminating
the central database and instead spreading data across the network, in memory, to improve

performance. It integrates the processing and storage into the same node, avoiding data access

20

Habilitation Thesis KRISTALY Dominic Mircea

bottlenecks. SBA is particularly useful for high-performance and real-time applications where

traditional data storage models might be a limiting factor. [9]

1.3. Main technologies supporting distributed applications

Distributed applications leverage a network of computers to achieve enhanced performance, reliability,
and scalability. These applications depend on a variety of underlying technologies that enable efficient
communication, data consistency, fault tolerance, and resource management across distributed
networks. This introduction explores the critical technologies that support the operation and
development of distributed applications, highlighting their importance and implementation in

contemporary systems.

1.3.1. Communication middleware

Communication middleware provides essential services and capabilities to handle data transmission
between distributed components. This includes message queuing systems, publish/subscribe
systems, and remote procedure calls (RPCs). Technologies such as Apache Kafka and RabbitMQ
facilitate robust message queuing mechanisms that support complex messaging patterns with high

throughput and fault tolerance. [10]

1.3.2. Relational databases in cloud environments

Relational databases in cloud environments represent a significant evolution in the architecture of
distributed applications, offering scalability, availability, and flexibility that are crucial for modern
software development. In distributed settings, these databases leverage cloud-specific features such
as automatic replication, load balancing, and on-demand scalability to ensure consistent performance
across geographically dispersed data centres. The integration of relational databases in the cloud
facilitates a more robust approach to data management, supporting complex transactions and
maintaining strong consistency models despite the inherent challenges of latency and partial failures

typical in distributed systems [11].

1.3.3. Distributed databases

Distributed databases manage data across multiple computing nodes to ensure high availability, fault
tolerance, and quick response times. NoSQL databases like Cassandra and MongoDB offer scalable
solutions for managing large volumes of data with eventual consistency models that are suitable for

distributed environments. [12]

21

Habilitation Thesis KRISTALY Dominic Mircea

1.3.4. Consensus protocols

Consensus protocols are critical for maintaining consistency across distributed processes. These
protocols ensure that all nodes in a distributed system agree on a single data value or a sequence of

operations, even in the presence of failures.

1.3.5. Load balancing and scalability tools

Load balancers distribute workloads across multiple computing resources to optimize resource use,
maximize throughput, and minimize response time. Technologies such as NGINX and hardware-based
load balancers play a crucial role in managing traffic and services in distributed architectures [13].
Scalability is further enhanced through containerization and orchestration platforms like Docker and

Kubernetes, which manage containerized applications in various environments [14].

1.3.6. Virtualization and cloud services

Virtualization technology, including hypervisors and virtual machines, along with cloud services, forms
the backbone of modern distributed applications by providing flexible, scalable, and efficient resources.
Cloud service providers such as AWS, Azure, and Google Cloud offer a range of services that support

distributed application deployment and management.

1.3.7. Security mechanisms

Security in distributed applications is enforced through cryptographic techniques, secure
communication protocols, and identity and access management systems. Technologies like SSL/TLS
for secure data transmission and OAuth for authorization are fundamental in protecting data and

ensuring trusted interactions among distributed components [15].

1.3.8. Monitoring and management tools

Monitoring and management tools are essential for maintaining the health and performance of
distributed systems. Tools such as Prometheus for monitoring and Ansible for configuration

management help administrators oversee and control distributed infrastructures effectively [16].

22

Habilitation Thesis KRISTALY Dominic Mircea

1.4. AAL projects for case studies

1.4.1. FOOD Project

The aim of FOOD project (Framework for Optimizing the prOcess of FeeDing) is the development of
specific AAL (Ambient Assisted Living) services, dedicated to the kitchen environment, to support
elderly people in carrying out food-related daily living activities and interacting with home appliances
in @ much simpler, safer, and rewarding way. The proposal addresses elderly people with a sufficient
level of autonomy for independent life, if suitably supported. It aims at preserving and enhancing
independence of elderly people in all aspects of daily life (addressing activities at home, security, health
care control), to guarantee them the possibility of taking active part in the “self-serve” society (ability
to access information and negotiate and or be supported for getting necessary items if mobility out of

the house is a problem), and to secure social contacts and/or support, when necessary.

The devised solution consists of a home-based system that enables elderly people to deal with feeding
and food-related tasks in a safe, effective, and rewarding way. It is based on the seamless integration
of sensors, intelligent appliances able to offer functionalities in the house and Internet based services
and applications, able to give access, through a natural interface, to information and communication in
different social environments. Its innovation lies in the integration and cooperation of Internet of
things, Semantic Web, and Web 2.0. The availability of relevant data from sensors on people and their
environment and the cooperation of artificial and human intelligence through the network will
contribute to support independence of people. Moreover, it is supposed that the quality of the end-
users' everyday life will improve not only due to the support in crucial activities in the house, but also
for the possibility of interaction with the outside world both for practical purposes (e.g. ecommerce, e-

government, etc.) and for socializing.

The FOOD system relies on a technical infrastructure, made of sensors, smart kitchen appliances and
user’s interaction tools (interfaces), thus building a kitchen networked environment. Communication
among kitchen devices exploits a wireless network, compliant with the IEEE 802.15.4-ZigBee standard.
On top of such network, a supervising system and a web server are built, which enable user’s
application, and manage exchanging of information through the internet. The kitchen is therefore
connected to external physical and digital networks (i.e., neighbourhood community, shops and to the
web), enabling service aimed at increasing safety, at providing help and guidance in food preparation
and at fostering exploitation of inherent social and cultural implication of feeding. End-users (which
include elderly people as well as their supporting network) are involved in system and service design

since its earlier phases, exploiting participatory design tools. [17]

23

Habilitation Thesis KRISTALY Dominic Mircea

1.4.2. NOAH Project

The NOAH system exploits an “Internet of Things” approach, with dedicated home sensors suitable for
capturing expressive features of daily living activities in a non-intrusive fashion. Specific attention is
paid at usability concerns, with emphasis on ease of deployment and low costs. Sensors connects
straightforwardly to the home Wi-Fi network, avoiding the need of dedicated sensor networking and
requiring no aggregator node. At the back end, a commercial cloud infrastructure is exploited to gather
data, allowing for scalability and lowing home installation costs. On the cloud, machine learning
techniques are exploited to transform raw data continuously flowing from sensors into meaningful
information: trends, anomalies, alerts. The system is inherently adaptive, not involving predefined
thresholds or ranges. By following a user-centric approach, specific apps are designed for the end-user
and caregivers. A control dashboard is made available to care systems, to allow for integration of NOAH

services into current care practices.

The NOAH project aims at developing innovative continuous monitoring techniques, based on non-

intrusive home sensors and on advanced data analytics techniques.

By monitoring behavioural features in daily living activities, user-specific activity profiles are worked
out. Changes (either abrupt or slowly developing), possibly related to health or wellness issues, can
thus be detected in a fully automatic fashion, relieving the caregiver from the sensor-data
interpretation burden. Differentiated feedback are given to the end-user, the caregiver, and the care

system. [18]

The NOAH system is built on the client-server architecture, making use of the cloud technologies, and
complying with the new trends in cloud application development. The system overview is represented

in Figure 1 and depicts its main components.

Sensor 7

Figure 1 - NOAH System architecture overview [19]

24

Habilitation Thesis KRISTALY Dominic Mircea

The system's server side is developed and hosted on the IBM Cloud (details in [20]). This implies a
continuously running cloud foundry application which uses two services: Internet of Things Service and

Compose for MySQL.

The Internet of Things Service communicates with the registered devices (sensors) and has the role to
collect data from the sensors and relay them to the server application, using the MQTT protocol,
secured by SSL/TLS.

Compose for MySQL provides the persistence for the sensor data and for all the other details that the
system requires to run. To improve the speed of access, the sensor data is partitioned based on groups
of sensors ("kits”), and is not directly linked to the end-user, keeping their anonymity. Also, the users’

details and system configuration are stored by the RDMS (MySQL).

The Behavioural Analysis Module (BAM) processes the sensors data to detect behaviour patterns that
can indicate the well-being state of the monitored person and sends the results to the server

application, which generates notifications for the system’s users.

The system'’s client side is represented by two applications: one for the caregivers and one for the end-
users. These are developed in native Android and can be used on a wide variety of devices, representing

the user interfaces for the NOAH system.

The NOAHCare application was developed to be used by the caregivers to monitor the daily activity of
the elderly persons they take care of. Through the application, they can view the state of the sensors
connected in the end-user home, they receive alerts and notifications regarding sensors and changes
in the behaviour of the end-user, and, also, they can view statistics on different time periods related to

the collected data.

The NOAH application was developed for the elderly people, to receive a series of alerts (e.g. when a
door is open). The elderly can register feedback about how they are feeling in a certain moment (a
“mood sensor”), so this information can be linked with the interpretations given by the BAM to the

elderly’s dataset. Also, the end-user can set two contact persons on speed-dial.

The communication between the application’s components, client, respectively the server side, is done
using REST APIs, over the HTTP protocol.

The server application provides the coordination of all other components, and it is a gateway to the
NOAH system's features. The cloud application is built using the Node-RED developing environment,
which runs over a Node.js server. The server application is responsible with collecting data from the
Internet of Things Service, persisting it into a relational database, generating alerts and notifications,

and serving the caregiver and end-user application through a REST API.

25

Habilitation Thesis KRISTALY Dominic Mircea

A series of optimizations were made to the server application to ensure a high availability of the system

and a low latency, by using several memory buffers and hash tables.

By running on a cloud environment, the NOAH System inherits all its advantages: dependability,

accessibility, availability, and scalability.

1.4.3. HELICOPTER Project

The HELICOPTER project (Healthy Life support through Comprehensive Tracking of individual and
Environmental Behaviors) exploits ambient-assisted living techniques to provide older adults and their
informal caregivers with support, motivation, and guidance in pursuing a healthy and safe lifestyle. The
project is targets 65+ adults, not suffering from major chronic diseases or severe disabilities, yet
possibly being affected by (or being at risk of) metabolic or circulatory malfunctioning (e.g.,
hypertension, mild diabetes) or by mild cognitive deficits. Behavioural analysis is exploited to make

health monitoring more effective and less invasive. [21]

—

ol

Mail Server

— b=

GSM Modem

ﬂELICOPTER Home System /HELICOPTER Server

DN
Q@;‘\ ;
V" o/

\\ T, .m (;E'A i i
\
-

LRS Server Other parties Relative / Caregiver /

(researchers, developers)

g
-
[\

N\

Physician

Figure 2 - Structure of the HELICOPTER system

A heterogeneous sensor network was designed and implemented, including environmental, wearable,
and clinical sensors (Figure 2). A global monitoring framework was developed, in which all data
converge toward a common database feeding a data analysis engine (based on a Bayesian network),

capable of inferring from logged data current activity and behavioural information.

26

Habilitation Thesis KRISTALY Dominic Mircea

For monitoring users and their behaviour, environmental sensors and three clinical measurement
devices (a scale, glucometer, and blood pressure monitor) are used, all located in their homes. Data
from the sensors and measurement devices are collected by a computing system (mini-PC), also

located inside the users' homes, equipped with dedicated software.

Data collection is performed in a relational database within the local system; this database is replicated
at the central server level, so that data can be processed in a centralized manner. Techniques based on
Bayesian probabilistic networks are used to identify aspects of user behaviour that may indicate certain
conditions. The necessary calculations are carried out by the HeliBrain component (Figure 3), which

evaluates several diagnostics daily based on an analysis of data collected from sensors.

o BBN1

Raw Data Anomaly ov BBN2
data preparation Detection
o k BEBNp

Qutliers Bayesian Beliefs Diagnostic
Networks suspicions

I

Figure 3 - Simplified diagram of the HeliBrain component

Data collected from sensors are filtered and processed by the Data preparation module to become
inputs for the Anomaly detection module, which detects changes in the behaviour of the monitored
subject. The anomalies detected are translated into truth values of hypotheses (outliers). These are
used as inputs for the Bayesian causal networks, which calculate the probabilities for the diagnostics

targeted by the Helicopter system.

By “poisoning” a dataset from a subject who did not present any of the diagnostics, the system's ability

to calculate a correct diagnosis was tested, this being intended to validate the results obtained.

1.4.4. SAVE Project

The SAVE (SAfety of elderly people and Vicinity Ensuring) project is dedicated to the elderly persons
suffering (or at risk) of age-related chronic illnesses and/or mild cognitive issues/disabilities. For these,
and a range of “not-so-fit” persons, SAVE aimed to avoid psychosocial exclusion by “restoring the

referential”. The unique goal of orientation in a supportive environment — in terms of position-location

27

Habilitation Thesis KRISTALY Dominic Mircea

and/or in terms of safety (in sensor-equipped intelligent houses) is also approached in a broader
cognitive and behavioural sense, task-oriented in the “personal cloud” of relatives, friends, and

caregivers. [22]

The SAVE system is a comprehensive and integrated solution dedicated to enhancing the well-being of
elderly individuals by facilitating their ability to remain in their familiar environments for an extended
period. The primary objective of SAVE is to ensure their safety and provide optimal care throughout
their aging journey. Additionally, this innovative system aims to support informal caregivers, such as
relatives, in offering the best possible care to their loved ones while effectively managing their personal

and professional commitments.

One of the core features of SAVE is its capability to empower professional caregivers in creating well-
structured support plans tailored to the specific needs of each elderly individual. By involving
volunteering associations, the system fosters a collaborative approach to caregiving, leveraging

collective efforts to maximize the quality of care provided.

The foundation of the SAVE solution lies in cutting-edge technologies, specifically designed to operate
efficiently within cloud environments, particularly in the context of Infrastructure as a Service (IAAS).
Utilizing the power of containerization, the system minimizes overhead, ensuring increased portability
and consistent operation across diverse platforms. This not only enhances scalability and speed but

also accelerates application development, allowing for timely updates and improved responsiveness.

Through its innovative approach and utilization of the latest technologies, the SAVE system addresses
the evolving needs of elderly individuals, informal caregivers, and professional caregiving organizations
alike. By promoting a harmonious balance between optimal care, safety, and the preservation of
familiar surroundings, SAVE strives to create a compassionate and sustainable caregiving ecosystem

for the elderly.

An overview of the SAVE solution is depicted synthetically in Figure 4. The sensors included in the SAVE
kit (wearable and ambient) provide raw data about the elderly (end-user) (his/her well-being, activity,
environment, location) by connecting through Internet to dedicated services of the SAVE cloud
application. The users of the SAVE solution have dedicated user interfaces, in form of responsive web

applications and mobile applications, for accessing its features:

= For the end-users: the SAVE smartwatch face and application and the SAVE web application.
» For the caregivers: the SAVE web application.
= For the SAVE solution maintenance staff and for the SAVE researchers: the SAVE Admin Centre

web application.

28

Habilitation Thesis

KRISTALY Dominic Mircea

Elderly habitat

GSM Network

(g)@

SAVE Solution Maintenance

3rd party services

(L]
2 versions of * Ambient

smartwatch sensors

6@ «

0 Biological signals 6 Fall detection
-

¥, GPS information

$.0.S. feature

[

=
%W

Caregivers

[sAVE webApp (U1) | [Admin centre (UI)

I

Data collector c

@

Microservices database
SAVE Cloud Application

SAVE

i/ 2
-

Figure 4 - SAVE solution overview

A Manager user profile has been introduced, whose role is to associate Caregiver users with primary
institutionalized users. In addition, the Manager user can view all data of primary users associated with

the Caregiver users they are responsible for.

All web applications are designed with responsiveness in mind, ensuring they can adapt and be
accessed seamlessly from a wide array of devices, including desktops, laptops, tablets, and

smartphones.

The user interfaces (the frontend) of the web applications are developed using the Angular framework
and the data is retrieved using the REST APIs of the backend (developed using the Spring Boot

framework).

The smartwatch face application and the smartwatch application are Tizen web application, developed
in HTML, CSS and JavaScript.

2. Service-oriented architecture

Service-Oriented Architecture is a flexible set of design principles used during the stages of systems
development and integration. Such architecture deploys services, which are well-defined business
functionalities, accessible over a network. This allows organizations to build applications that offer
services to other applications via a communication protocol over a network. The basic principles of SOA

include reusability, granularity, modularity, composability, componentization, and interoperability.

29

Habilitation Thesis KRISTALY Dominic Mircea

SOA is not a new concept; it has evolved significantly with the adoption of the Internet and enterprise
computing. SOA promotes the idea of service reuse, which can lead to reduced costs in development
by minimizing redundant coding efforts. Services in an SOA environment are often loosely coupled to
allow for greater flexibility in changing or replacing them with minimal impact on the consumer of those

services [7].

The architecture typically involves making software components network-accessible in a standardized

way. Key components of SOA include:

= Service Provider: Creates and provides access to services.

= Service Consumer: Uses or consumes services provided by the service provider.

= Service Registry: A directory where services are listed and described, and through which they
can be discovered by potential users.

= Service Contract: Defines the interface between the provider and consumer, specifying the

service's functionalities and the terms of use.
A variety of technologies support the deployment of SOA:

= Web Services: These are the predominant way of implementing SOA, using standards such as
SOAP, WSDL, and REST.

* Middleware: Technologies like Enterprise Service Bus facilitate the communication and
management of data between services.

= XML and JSON: These are used for data interchange between services.

The adoption of SOA can lead to enhanced agility, where businesses can respond more quickly to
changing requirements. SOA also supports integration across different platforms and languages, which

facilitates legacy system integration and new service deployment [23].
While SOA offers numerous benefits, there are challenges in its implementation:

» Complexity: Managing a large number of services and their interactions can become complex.

= Security: Ensuring secure service interactions is critical, especially as services can be exposed
over public networks.

= Governance: Effective governance practices are necessary to ensure that services adhere to

organizational standards and policies.

2.1. Web services

Web services, within the context of Service-Oriented Architecture, play a pivotal role in enabling

modular and interoperable software applications across diverse platforms and networks. As distinct

30

Habilitation Thesis KRISTALY Dominic Mircea

components of SOA, web services allow different applications to communicate with each other without

requiring user intervention or changes to the underlying software infrastructure. This capability is

fundamental to achieving the flexibility and scalability that SOA aims to provide.

Web services in SOA are built around key standards that ensure interoperability and accessibility, like:

SOAP: A protocol that defines a uniform way of passing XML-encoded data.

WSDL: An XML-based language used to describe the services a business offers and to provide
a way for individuals and other businesses to access those services electronically.

UDDI: A platform-independent framework for describing services, discovering businesses, and
integrating business services using the Internet.

REST: An architectural style that uses existing protocols, typically HTTP, and treats data and

functionality as resources that can be read or manipulated using a stateless set of operations.

The implementation of web services in SOA frameworks provides several benefits:

Interoperability: By adhering to standard protocols, web services ensure that different
systems can work together, regardless of the platform or programming language used [24].
Reusability: Services can be designed for reuse across multiple applications, reducing the need
for duplication of effort.

Scalability: Services can be scaled up or down based on demand without affecting the end user
or requiring major changes to the architecture.

Flexibility: Organizations can add or modify services without disrupting existing systems,

allowing for rapid adaptation to changing business needs.

Web services are used in a variety of applications, from simple information requests to complex

business processes. They are particularly valuable in integrating disparate systems within and across

organizational boundaries. However, the adoption of web services also presents challenges:

2.2.

Security: Ensuring data security and safe transactions over the internet is crucial and complex.
Performance: Handling high volumes of web service requests can lead to performance
bottlenecks.

Complexity in management: As the number of web services within an organization grows,

managing them becomes more complex.

FOOD system architecture

The Service Oriented Architecture is an approach to organizing IT resources in which data, logic and

infrastructure resources are accessed by routing messages between networked devices.

31

Habilitation Thesis

KRISTALY Dominic Mircea

Basic values of SOA in the FOOD project [25]:

* Reusability of services: developed services can be combined in countless ways to obtain new

facilities (achievable using different user interfaces - Uls).

= Distributed architecture: services can be located anywhere.

= QOpenness:

o new services can be built using already developed facilities through standardized

interfaces.

o use of open standards and protocols (XML, SOAP etc.).

= Incremental development / implementation: at any point in time, we can have a functional

version of a service.

The FOOD system is built according to the principles of service-oriented architecture (SOA). Figure 5

below contains an overview of the architecture elements.

PILOT SITE

OCAL

/ Application Server \

QT

User’s PC

Tablet PC

i\\

Wireless
sensors

A

=
s

Smart oven

plug

Smart prigge (PM)

Local web Local
services FOOD]
Platform |
== l ——
E RoutLr
v 3\
N
Local =
\ databases
Home System
——

A

Figure 5 - FOOD system architecture [25]

MAIN SERVER

f Application Server

v

Remote Remote
FOOD web
\ Platform services /

Remote

k database J

(\ﬂl ‘ web services

The technology stack on the server-side employed to implement the services are:

» Operating system: Ubuntu 11.10 64b

= Runtime environment; Oracle Java 1.6

32

Habilitation Thesis

KRISTALY Dominic Mircea

= Database management system: MySQL 5.7

= Application server: Glassfish 3.1

= Webservice technologies: JAX-WS

= XML for formalizing data

The software components are located on the Local system and the Main server. Both systems run an

application server (Glassfish) that offers webservices.

From the point of view of the communication resources involved in providing services for the system'’s

users, there are:

» [ocal services: are accessible only inside the Home system; they don't need outside
communication (e.g. temperature readings).

» Remote/External services: are served by an outside system; are accessed directly from the

Internet, without the intervention of the Home system.

» Mixed services: are provided by the Home system, but they require additional data from the

Main server (e.g. internal messaging, updates).

Gateway
(Home system)

Main Server

PILOT SITE - MAIN SERVER
LOCAL SYSTEM User interfaces) Application Server
Application Server @ |
Remote
a ig 5 Users PC Tablet PC osond -t
e
Local web Local I W\ Platform services
services FOOD = ‘ ==
Platform ‘ | J[’ b
E E‘\ﬂ ' {
& A A
Router A ~
' D)) : -
B ——y Remote
Local \ database /
databases
Home System
-
/N
Wireless -
(g web services
sensors (o))‘
Smart oven Smart grgge (PM) “
\ L plug

Sensors network

Other service providers

Figure 6 - FOOD system zones

There can be identified 5 zones on the general architecture diagram (Figure 6):

33

Habilitation Thesis KRISTALY Dominic Mircea

= Sensor network: comprised in all the wireless sensors (including appliances).

= Gateway: a heterogeneous software component that runs on the home system machine; it
contains the databases, the application server and the local webservices.

= User interfaces: contains the software used for human-machine communication.
= Main server: offers external and mixed services.

= Other service providers: offers external services (e.g. Skype).

Webservices are one possible way of realizing the technical aspects of SOA. The FOOD services are
implemented as web services. The technology used is JAX-WS; the web services reside in a Glassfish

server.

The communication between client (e.g. web application) and webservice is encoded as SOAP

messages. The transfer of SOAP messages is achieved through the HTTP protocol.

2.2.1. Data flow and web services in the FOOD system
Figure 7 shows how the data from sensors are collected and employed by the FOOD system.
The elements of this architecture fulfil the following [25]:

= Sensor Controller collects the data from the smart devices using over-the-air technologies and
protocols.

= (Current Status table maintains the current status (the state) of the sensors.

» (Commands table keeps temporarily the commands to be executed; when a command is
executed, it is eliminated from the list.

» [og values table stores the historical data, needed for statistical analysis.

» Smart objects table and Smart objects properties table stores the information about the smart
devices.

» Measure types table keeps the information about the measurement units used by the
properties of the devices (e.g. temperature - degC).

» Measure data table stores the historical data.

= Smart object controller adapter copies all the data from the current status into the historical
data table and stores in the Java Directory (inside the volatile memory) the current status:
reduces the load of the database and reduces access time to the current status.

» Datall/S (SensorsWW/S) offers a communication interface to retrieve data from the current
status.

= HistoryWS offers a communication interface to retrieve historical data under a graphical form.

34

Habilitation Thesis KRISTALY Dominic Mircea

= CommandsWS offers a communication interface that allows sending of commands to smart

devices.
T
HOME SYSTEM - Gateway machine
l\ ‘
=7 E::;gi"es /“Sensors Database ™ HS WS Database
i‘“ . — Detects
Writes data L changes Stores data
- — — -
Wireless c - Smart
sensors s‘::tem object Updates Measures Smart
b:"5 controller Current . data table objects
table adapter status Eetrelye!: properties
_ Writes data d's‘t"”ca table
[dommands ata
- | < —
| - / Java Directory (JNDI) ‘\
¥ - -
Sensors ‘ Current status data n]]
Smart oven controller co'-"r‘:;?:ds
Measure Smart
Reads data types Objects
‘F’)) ; table
4 K
fLE a— ertescata Y =
Q Retieives \
Data / Sens 4
Smart conjmands L°9t \;::Iues History /
plug \ e / Commands Data WS Graphics
\- ws | e J
Relrewes data Retreives
historical
information
Sends and generates
commands graphics
-———
Tablet PC

(runs Ul)

Figure 7 - Information flow in the Home system [25]

At the lowest level, the Sensors controller developed by Parma University (partner in the project)
communicates directly with the sensors using various wireless protocols. The data is stored in the

tables previously described.

The Smart object controller adapter acts as a middleware between the sensor network and the
Data/Sensors webservice and the webservices' database. This is developed as a module inside the
Glassfish application server. The main purpose of this adapter is to detect changes in the database of
sensors and to write them inside the webservices’ database. Also, for improved performance of the
system, the current status of sensors is stored in the JNDI space, so the requests for it are resolved

using the data found in memory and not querying the MySQL database.

At the highest level, the webservices provide an abstract interface (based on XML) for the user
applications, which can be developed using a large variety of technologies. There are 3 main

webservices for working with the sensors’ data, each of them providing a specialized service.

35

Habilitation Thesis KRISTALY Dominic Mircea

Because webservices only offer abstract interfaces, they are not suitable for direct use. To offer

services to the end-user the system must have define a user interface that will interact with the

webservices and present the result in a user-friendly, meaningful way.

SensorsWS

This webservice provides operation for working with real-time data coming from different sensors. The

data is stored using the setData operation and retrieve data with getData or getAllDataForDevice

operations.

The web service is implemented using JAX-WS technology and resides in the Glassfish application

server.

Main operations are:

Name: getData
Purpose: Retrieves the current value of a specific property of a device.
Parameters: String deviceId: a unique code that identifies each device
String devicePropertyId: a wunique code that identifies each device
property
Request <?xml version="1.0" encoding="UTF-8"?>
example: <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header/>
<S:Body>
<ns2:getData
xmlns:ns2="http://webservice.sensors.ws.vision.ro/">
<deviceId>1000</deviceId>
<devicePropertyId>1000</devicePropertyId>
</ns2:getData>
</S:Body>
</S:Envelope>
Results <?xml version="1.0" encoding="UTF-8"?>
example: <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<ns2:getDataResponse
xmlns:ns2="http://webservice.sensors.ws.vision.ro/">

<return>
<datavalue/>
<deviceId/>
<devicePropertyId/>
<id>0</id>
<measurementId/>
<tstamp/>

</return>

<return>
<dataValue>35</datavValue>
<deviceId>1000</deviceId>
<devicePropertyId>1000</devicePropertyId>

36

Habilitation Thesis KRISTALY Dominic Mircea

<id>0</id>
<measurementId>2013/02/14 8:14:37.000000
</measurementId>
<tstamp>2013/02/14 08:14:37.000000</tstamp>
</return>

</ns2:getDataResponse>
</S:Body>
</S:Envelope>

First return node contains the result of the operation; on success the
id node is 0; on error, this wvalue is -1. The following nodes, if they
exists, contain the requested data.

Name:

setData

Purpose:

Stores data in the database and in the current status object in the JNDI.
Typically is called by the smart object adapter.

Parameters:

String deviceId: a unique code that identifies each device

String devicePropertyId: a wunique code that identifies each device
property

String tstamp: (timestamp) date and time of day

String dataValue: the value of the property

String measurementId: a unique code that identifies each type of
measurement

Request
example:

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header/>
<S:Body>
<ns2:setData
xmlns:ns2="http://webservice.sensors.ws.vision.ro/">
<deviceId>1005</deviceId>
<devicePropertyId>1000</devicePropertyId>
<tstamp>2013-04-23 16:55:10</tstamp>
<dataValue>25</dataValue>
<measurementId>2013-04-23 16:55:10 </measurementId>
</ns2:setData>
</S:Body>
</S:Envelope>

Results
example:

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:setDataResponse
xmlns:ns2="http://webservice.sensors.ws.vision.ro/">
<return>1234</return>
</ns2:setDataResponse>
</S:Body>
</S:Envelope>

The return node contains the result of the operation; on success the node
contains the unique id of the row in the database (the wvalue of the
primary key field); on error, this value is -1.

37

Habilitation Thesis KRISTALY Dominic Mircea

Name: getAllDataForDevice
Purpose: Retrieves the current values of a all properties of a device.
Parameters: String devicelId: a unique code that identifies each device
Request <?xml version="1.0" encoding="UTF-8"?>
example: <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header/>
<S:Body>
<ns2:getAllDataForDevice
xmlns:ns2="http://webservice.sensors.ws.vision.ro/">
<deviceId>1000</deviceId>
</ns2:getAllDataForDevice>
</S:Body>
</S:Envelope>
Results <?xml version="1.0" encoding="UTF-8"?>
example: <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<ns2:getAllDataForDeviceResponse
xmlns:ns2="http://webservice.sensors.ws.vision.ro/">

<return>
<datavValue/>
<deviceId/>
<devicePropertyId/>
<id>0</id>
<measurementId/>
<tstamp/>

</return>

<return>
<dataValue>1l</dataValue>
<deviceId>1000</deviceId>
<devicePropertyId>0</devicePropertyId>

<id>0</id>
<measurementId>2013/02/20 13:46:13.000000
</measurementId>
<tstamp>2013/02/20 13:46:13.000000</tstamp>
</return>
<return>

<dataValue>35</dataValue>
<deviceId>1000</deviceId>
<devicePropertyId>1000</devicePropertyId>

<id>0</id>
<measurementId>2013/02/14 08:14:37.000000
</measurementId>
<tstamp>2013/02/14 08:14:37.000000</tstamp>
</return>
<return>

<dataValue>l</dataValue>
<deviceId>1000</deviceId>
<devicePropertyId>1001</devicePropertyId>

<id>0</id>
<measurementId>2013/02/14 08:14:37.000000
</measurementId>
<tstamp>2013/02/14 08:14:37.000000</tstamp>
</return>

</ns2:getAllDataForDeviceResponse>
</S:Body>

38

Habilitation Thesis KRISTALY Dominic Mircea

</S:Envelope>

First return node contains the result of the operation; on success the
id node is 0; on error, this wvalue is -1. The following nodes, if they
exists, contain the requested data.

HistoryWs

This web service provides a history of data read from the sensors in the form of a graph. A special

feature of this chart is that autoscale itself according to the number of values read and according to

their value.

The web service is implemented using JAX-WS technology and resides in the Glassfish application

server.

Main operations are:

Name: getHistoryMeasuresData

Purpose:

Parameters: String devicelId: a unique code that identifies each device
String devicePropertyId: a wunique code that identifies each device
property
String timeStart: begin date of the interval for measurements
String timeStop: end date of the interval for measurements
String yUnit: unit of measurement on the y axis
String title: title of measurement

Request <?xml version="1.0" encoding="UTF-8"?>

example: <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header/>
<S:Body>
<ns2:getHistoryMeasuresData
xmlns:ns2="http://webservice.history.ws.vision.ro/">
<deviceId>1005</deviceId>
<devicePropertyId>1000</devicePropertyId>
<timeStart>2013-04-19 00:05:00</timeStart>
<timeStop>2013-04-19 02:10:00</timeStop>
<yUnit>C</yUnit>
<title>Temperature</title>
</ns2:getHistoryMeasuresData>
</S:Body>
</S:Envelope>

39

Habilitation Thesis KRISTALY Dominic Mircea

Result
example:

ic

BC

5C

4C

4C

3C

2C

19-04-13 00:05 Temperature 190413 02:10

The result is encoded as a Baseb64 image resource that can be displayed
in HTML using an img element (tag).

CommandsWS

Send commands

to the devices control subsystem. If the return value is greater than O that means the

command was successfully sent.

The web service

server.

is implemented using JAX-WS technology and resides in the Glassfish application

Main operations are:

Name : setCommand

Purpose:

Parameters: |int objId: a unique code that identifies each device
int wvarId: a unique code that identifies each monitored device
parameter
short flag: specifies the type of the wvalue (integer, float,
string)
String value: the values sent to the command

Request <?xml version="1.0" encoding="UTF-8"?>

example: <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header/>
<S:Body>
<ns2:setCommand
xmlns:ns2="http://webservice.commands.ws.vision.ro/">
<0bjId>1001</0bjId>
<varId>10000</varId>
<flag>1l</flag>
<value>25</value>
</ns2:setCommand>
</S:Body>
</S:Envelope>

40

Habilitation Thesis KRISTALY Dominic Mircea

Result <?xml version="1.0" encoding="UTF-8"?2>
example: <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>

<ns?2:setCommandResponse
xmlns:ns2="http://webservice.commands.ws.vision.ro/">
<return>1l4</return>
</ns2:setCommandResponse>
</S:Body>
</S:Envelope>

Initial value of the "retval" is 0;
If the returned value is wrong then "retVal" is -1;

CookingCyclesWS

The smart oven allows the user to upload new cooking cycles. This webservice facilitates this operation.
The cooking cycles are described by the sensors subsystem through a XML file. The webservice offers
interfaces for fetching the current cooking cycles and creating new ones. The communication between

the upper and lower level of the system is made through the XML files.

The web service is implemented using JAX-WS technology and resides in the Glassfish application

server.

Main operations are:

Name : getAllCookingCycles
Purpose: Returns all the cooking cycles in a settings XML file (extension “.eep”)
Parameters: String inputStringVal: the name of the current CookingCycle file
Request <?xml version="1.0" encoding="UTF-8"?><S:Envelope
example: xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Header/>

<S:Body>

<ns2:getAllCookingCycles
xmlns:ns2="http://webservice.cookingcycles.ws.vision.ro/">
<settingFile>Father.eep</settingFile>
</ns2:getAllCookingCycles>
</S:Body>
</S:Envelope>

Result <?xml version="1.0" encoding="UTF-8"?><S:Envelope
example: xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>

<ns2:getAllCookingCyclesResponse
xmlns:ns2="http://webservice.cookingcycles.ws.vision.ro/">

<return>
<File>
<Name>Father.eep</Name>
<Cycles>

41

Habilitation Thesis KRISTALY Dominic Mircea

<Cycle><SelectorLabel>Multilevel</SelectorLabel>
<SelectorId>1l</SelectorId></Cycle>
<Cycle><SelectorLabel>Barbecue</SelectorLabel>
<SelectorId>2</SelectorId></Cycle>
<Cycle><SelectorLabel>Gratin</SelectorLabel>
<SelectorId>3</SelectorId></Cycle>
<Cycle><SelectorLabel>Rotisserie</SelectorLabel>
<SelectorId>4</SelectorId></Cycle>
<Cycle><SelectorLabel>Fish</SelectorLabel>
<SelectorId>5</SelectorId></Cycle>
<Cycle><SelectorLabel>Pizza</SelectorLabel>
<SelectorId>6</SelectorId></Cycle>
</Cycles>
</File></return>
</ns2:getAllCookingCyclesResponse>
</S:Body>
</S:Envelope>

The node name contains the name of the XML file on the harddrive.

3. Microservices architecture

Microservices serve as a strategic alternative to monolithic application development. In contrast to
monolithic applications, where all components are tightly interconnected, microservices offer greater
flexibility and ease of maintenance. By breaking down the application into smaller, independent units,
modifications and updates can be implemented more efficiently. Additionally, the microservices
architecture facilitates migration to cloud environments, enabling better scalability and management

(Figure 8).
Advantages of using microservices for applications:

* Implementation - there is more agility in delivering new versions of services due to shorter
times required for building and testing processes, and consequently shorter application
delivery times.

» Availability — most often, delivering a new version of an application that uses the monolithic
system requires restarting the entire system, whereas a microservices-based system requires
very little downtime.

= Efficient management — because microservices act as small portions of a whole, software
developers on the team will have the ability to work independently and with higher productivity,
with the team also being divided into smaller parts.

= (apability for modification and adaptation — greater flexibility in using different frameworks,
data sources, and libraries will allow the application to be adapted as it develops.

= Reliability — in the event of a fault, only a single module is affected. Conversely, faults in a

monolithic system can cause the entire system to stop.

42

Habilitation Thesis KRISTALY Dominic Mircea

= Scalability — microservices allow the independent scaling of each component.

Monolithic Microservices Architecture
Architecture
User Interface
User Interface
Microservice
‘ Business Logic ‘ \
Data Interface Microservice Microservice Microservice Microservice
DB DB DB DB DB
N b b N S

Figure 8 - Monolithic architectures vs. microservices [26]

3.1. SAVE System architecture

From an architectural standpoint, the SAVE solution adopts a service-based architecture, employing
microservices as independent and smaller software components that fulfil specific tasks. These
microservices communicate with each other through a standardized interface, using HTTP or HTTPS
protocols for message-based interactions. Typically, JSON format is used for the messages exchanged

between services, providing flexibility and interoperability.

The adoption of a microservice-based architecture for the SAVE system offers a multitude of technical
and implementation advantages, streamlining application development in a cloud environment. This
approach considers crucial factors such as implementation efficiency, availability, effective

management, adaptability, reliability, and scalability.

The microservices approach also facilitates rapid development of new features and functionalities. By
breaking down the application into smaller, self-contained units, each microservice can be developed

and updated independently. This accelerates the development process, as teams can focus on specific

43

Habilitation Thesis KRISTALY Dominic Mircea

functionalities without disrupting other parts of the system. Consequently, new facilities can be rolled

out more quickly, enhancing the system's capabilities and responsiveness to user needs.

One of the primary benefits of employing a microservices-based architecture in the SAVE system is its
compatibility with cloud infrastructure. This allows the system to leverage the scalability and flexibility
offered by cloud environments, enabling efficient resource allocation and distribution of workloads. As
aresult, the system can seamlessly accommodate growing demands and handle increased user traffic,

ensuring optimal performance.

The SAVE system's architecture is designed to harness the power of cloud hosting, allowing various
components to be hosted in the cloud. Each of these components is dedicated to specific tasks and
functionalities, ensuring a streamlined and efficient system. Moreover, the microservices-based
structure permits seamless integration with external systems provided by third parties. These external
systems may include sensors, mobile devices, or web applications that contribute essential data to the
SAVE system. The ability to interact with and process data from these external sources enhances the
system's overall functionality and empowers it to deliver comprehensive monitoring and analysis

capabilities.

The general architecture of the SAVE system (as depicted in Figure 9) is structured around several
independent components, which collaborate and communicate with each other to fulfil specific

functionalities.

SAVE Cloud App |

Data SAVE
Int t]
nterne [collector Database

User Information
Sensors f--—---- HTTPS -| Data adapters Centre

L]

REY.

Internet ~[Gati?way]

| | : |
N

User | HITPS
Interfaces

Figure 9 - General architecture of the SAVE system

44

Habilitation Thesis KRISTALY Dominic Mircea

The SAVE cloud application employs a modular approach, dividing its functionalities into distinct
functional units (microservices). Each of these microservices is responsible for handling specific

aspects of the business logic:

= Data Collector: This microservice gathers data from various sensors and efficiently stores it in
the database. It also provides a communication interface through a REST API, enabling easy
retrieval of the stored data.

= Sensor Adapters: These arrays of microservices establish direct connections with sensing
devices and relay the collected data to the Data Collector in a standardized format, ensuring
smooth and consistent data exchange.

= User Information Centre: This microservice is dedicated to handling authentication and
authorization operations, offering REST APIs for seamless access control.

= SAVE Web App: Serving as the web-based user interface, this microservice caters to end-users
and caregivers, providing a user-friendly experience for managing and monitoring the SAVE
system.

= SAVE Admin Centre: As another web-based user interface, this microservice is designed for
maintenance staff and researchers, facilitating administrative tasks and research-related

activities.

For data storage, the SAVE solution utilizes a relational database management system, specifically
Oracle's MySQL. To ensure rapid access to the data, a partitioning algorithm has been implemented at

the cloud application level, leveraging the kit identifier to optimize data retrieval.

The SAVE system is intentionally designed to be inclusive, enabling the incorporation of other sensor
kits developed by third-party providers, as long as they don't require permanent maintenance and
configuration. Successful piloting has been conducted with the Xiaomi Agara Smart Home Set,
demonstrating compatibility and integration with good results. Also, the SAVE solution included a
smartwatch as a wearable sensor for monitoring the activity and location of the end-users; a
smartphone application connects to the cloud app and feeds the database. Additionally, the Data
Collector service offers an inclusive REST API, facilitating easy connection with any other sensor
systems to be integrated into the SAVE solution. Such an example is the link with the Technological
Club device (eHealth and CRT — Choice Reaction Time).

Figure 10 shows the communication connections between microservices, sensors and user interfaces

for the SAVE solutions.

The implementation of these components was done using the Java programming language and the
Spring Boot framework. This combination offers numerous advantages for developing microservices

applications, ensuring their smooth operation and straightforward maintenance over time.

45

Habilitation Thesis KRISTALY Dominic Mircea

Additionally, the Spring Boot framework simplifies the process of updating individual microservices
independently without causing any disruptions to other components, enhancing overall system

flexibility and efficiency.

SAVE cloud app
SAVE web app |
> Gateway Notfifications
SAVE Admin Centre < |
Smartwatch 1 Smartwatch User Information
device Data adapter Centre
eHealth eHealth Track location
—
device Data adapter
5 Data collector
CRT . CRT
device Data adapter
Mood Ring S N Mood Ring Data database
device Data adapter

Figure 10 - Communication connections between microservices

For intercommunication between microservices, REST communication interfaces are utilized,
employing the HTTP or HTTPS protocols. Standardizing the messages exchanged between
microservices using the JSON format ensures seamless and straightforward communication, both
among internal components and with external systems. This setup simplifies the integration of various

services and external devices into the SAVE system, promoting easy data exchange and interaction.

SAVE CLOUD APPLICATION
SPRING BOOT
SPRING SPRING S T DAO
SECURITY | WEB-MVC | BERNATE ‘ e
TOMCAT SERVER JDBC
JAVA VIRTUAL MACHINE ‘ DATABASE DRIVER
OPERATING SYSTEM

Figure 11 - SAVE microservices technology stack [27]

The simplified technology stack for the microservices included in the SAVE cloud application is depicted

in Figure 11.

3.1.1. The SAVE Data collecting system — the Data collector microservice

One of the most important components of the SAVE system is the data collection service.

46

Habilitation Thesis KRISTALY Dominic Mircea

This service is implemented as a microservice, to be easily scalable with the increase of number of

sensors.

The communication interface is a REST API (over HTTPS), that accepts JSON formatted data coming

from devices that are registered inside SAVE's database.

The minimal structure of the JSON message accepted by the data collecting APl is:

{
“kdDevId”: <integer value>,
“kdvValue”: <string value>

}

When the sensors cannot provide the data in the accepted format, a data adapter must be
implemented, so it will wrap the sensor’s native format (binary, text, JSON, XML, etc) into the accepted
structure. The eHealth, Mood rings and CRT devices have a data adapter running inside the SAVE cloud

application that intermediates between the devices and the Data collecting system (Data collector).

Asillustrated in Figure 12, the devices connect via the HTTPS protocol to a device type-specific adapter

interface that transmits the data to the collection system, which will persist it in the database.

The data adapter interface is a software module that is developed specifically for each type of device
recognized by the system. Its role is to expose a communication interface with external devices and to
convert the format of the received data into a standard format recognized by the data collection

component and to send it to the latter.

Save Server/ Cloud

-
. HTTPS protocol

Device] Interface data adapter W

Secrel key)

authentication T

HTTPS

Data collecting system]

Figure 12 - SAVE data collecting system - communication model [27]

The adapter streamlines communication between devices and system, abstracting the data format and

providing it to be persisted. In this sense, the adapter is specific to the type of device with which it

47

Habilitation Thesis KRISTALY Dominic Mircea

interacts and can be developed using any technology; it must, however, maintain the standard of

communicating with the central system.

The adapter streamlines communication between devices and system, abstracting the data format and
providing it to be persisted. In this sense, the adapter is specific to the type of device with which it
interacts and can be developed using any technology; it must, however, maintain the standard of

communicating with the central system.

The communication between the adapter and the Data collector is done via the HTTPS protocol,

doubled by an authentication based on a secret key (API Key) [27].

SAVE KIT

has

Devices his Device type
¥

nes
—

{ values)

Figure 13 - Data organization in the SAVE system [27]

The adapters are implemented as microservices, using the Java language and the Spring Boot

framework.

Once in the system and transposed into a standard format, data from the devices are organized (Figure

13) and stored.

A device must be registered in advance; it is associated with a device type (which defines the

corresponding adaptation interface). This device will receive a name so that users can easily identify it.

The collected data are stored in tables in the database. To optimize the speed of data access, kits
partition them, so that the data from a kit is stored in the same table. The data storage mode is a

general one, allowing the saving of any data structure.

48

Habilitation Thesis KRISTALY Dominic Mircea

3.1.2. Deployment environment

The SAVE cloud application, designed on the microservices architecture and built using the Spring Boot
framework, can be deployed on a vast number of infrastructures. The microservices can run
independently of a servlet engine/web server (e.g. Tomcat) or can be deployed as a classic Java web
application. Also, the microservices can be deployed using the Docker containerization engine,

Kubernetes being employed for the orchestration [27].

4. Internet of Things and its implications for AAL

The Internet of Things (loT) represents a paradigm in which the internet extends into the physical world,
encompassing a wide array of devices and objects that communicate and interact with each other. In
the context of Ambient Assisted Living, loT technologies offer promising opportunities to enhance the
quality of life for the elderly and individuals with disabilities by providing intelligent support systems

within home environments.

loT in AAL relies on several key components: sensors, actuators, communication networks, and data
analytics platforms. Sensors collect data about the environment or the user (e.g., motion sensors,
wearables monitoring vital signs), while actuators perform actions based on processed data (e.g.,
automated lighting, emergency alerts). These components are interconnected through a

communication network that supports data transfer and integration [28].

The architecture of loT in AAL systems must support interoperability, scalability, and security. Common
frameworks include cloud-based models, where data is processed and stored on remote servers, and
edge computing models, where data processing occurs closer to the source of data [29]. These
frameworks help manage the vast amount of data generated by IoT devices, ensuring timely responses

and personalized interactions.
The main fields of applications of loT in AAL are:

= Health monitoring: IoT devices can continuously monitor health parameters such as heart rate,
blood pressure, and glucose levels, providing real-time feedback to both users and healthcare
providers. This enables proactive management of health conditions, potentially reducing
hospital visits and improving medical outcomes [30].

= Safety and security: IoT systems enhance the safety of the elderly by detecting anomalies such
as falls or unusual inactivity, and by providing systems for emergency communication.
Technologies like smart floors and wearable devices are pivotal in fall detection and prevention
[31].

49

Habilitation Thesis KRISTALY Dominic Mircea

Lifestyle enhancement: Smart home technologies contribute to a more comfortable and
convenient lifestyle, enabling control of lighting, heating, and entertainment systems through
simple voice commands or mobile applications, thus aiding those with limited mobility or

cognitive impairments [32].

Some of the benefits of loT in AAL:

4.1.

Enhanced independence: loT technologies allow individuals to live independently for longer,
reducing the need for constant human assistance and thereby improving their quality of life
and self-esteem [25].

Cost reduction: By reducing the frequency of in-person healthcare visits and enabling early
detection of health issues, loT can significantly decrease healthcare costs associated with

elderly care [26].

Sensor types

Ambient Assisted Living (AAL) systems represent a technological advancement in enhancing the quality

of life for the elderly and individuals with disabilities. These systems integrate a variety of sensors and

devices to provide support and improve safety in home environments. A core component of AAL

systems' effectiveness is their ability to gather and process data from distributed sensor networks

seamlessly.

The sensors employed by AAL systems can be grouped in 3 categories:

Wearable sensors: are integrated into items such as wristbands, watches, and clothing. These
sensors monitor physiological parameters like heart rate, blood pressure, and body
temperature. Such devices are crucial for continuous health monitoring and emergency
detection in AAL environments [33].

Environmental sensors: are deployed within living spaces to monitor conditions such as
temperature, light, and air quality. These sensors also include motion detectors and fall
detection systems, which are essential for ensuring the safety and well-being of AAL users
[34].

Multimedia sensors: including cameras and microphones, are used for more complex
monitoring needs such as activity recognition and anomaly detection. They provide audio-
visual streams that can be analysed to detect emergencies or changes in routine behaviour
[35].

50

Habilitation Thesis KRISTALY Dominic Mircea

Effective deployment of sensor networks in AAL requires consideration of user privacy, sensor
coverage, energy consumption, and data reliability. Strategic placement of sensors is vital to ensure

comprehensive monitoring without intruding on personal space or privacy [36].

4.2. Sensor networks

Sensor networks play a pivotal role in the infrastructure of Ambient Assisted Living (AAL) systems,
enabling the collection of data necessary for monitoring, assistance, and health management of

individuals, particularly the elderly.

Sensor networks in AAL must be scalable to adapt to varying user needs and flexible enough to
integrate new technologies. Scalability involves not only physical network expansion but also the

capability to handle increasing data volumes and processing demands [20].

Choosing the right network topology - star, tree, or mesh - impacts the network's efficiency and
reliability. Mesh networks are particularly valued in AAL applications for their robustness and fault

tolerance, as they provide multiple paths for data transmission, reducing the risk of system failure [36].

Ensuring interoperability among different sensor networks and integration platforms is critical.
Standards such as Zigbee, Bluetooth LE, and Z-Wave facilitate communication among devices from

different manufacturers [39].

4.2.1. Wireless Sensor Networks

WSNs are used in AAL environments for collecting data from various sensors placed around the living
environment or worn by users. Technologies like Zigbee, which supports low-power mesh networking,

are commonly used due to their reliability and extendibility [37].

4.2.2. Challenges in sensor network deployment

Privacy and Security

Protecting sensitive data collected by sensor networks is paramount. Robust encryption and strict

access controls are necessary to safeguard user privacy and prevent unauthorized data access [38].

Ethical implications

The dependence on technology for critical care and daily activities poses ethical questions concerning

autonomy, consent, and the potential for over-surveillance [39].

51

Habilitation Thesis KRISTALY Dominic Mircea

Interoperability

The diversity of devices and protocols in loT can lead to issues with interoperability. Developing
universal standards and protocols is essential for the seamless integration of technologies from

different manufacturers [40].

Reliability and maintenance

Sensor networks must be reliable to ensure continuous monitoring. Regular maintenance, self-healing
mechanisms, and redundancy are strategies used to enhance reliability [41].

Data overload and management

Handling the vast amount of data generated by sensor networks poses significant challenges. Efficient
data management strategies are essential to prevent overload and ensure the system remains

responsive and effective [42].

4.3. Future directions

Integrating artificial intelligence with loT can enhance decision-making processes, providing more
adaptive and responsive AAL systems that can predict individual needs and adjust services accordingly

[43].

Developing intuitive user interfaces that cater to the elderly, particularly those with sensory or

cognitive impairments, is critical for the widespread adoption of loT in AAL [44].

4.4. HELICOPTER Home system
The Helicopter system is composed from two parts:

= Helicopter Home Systems: a mini-PC placed inside users’ homes

= Helicopter Central Server
The HELICOPTER Home Systems structure contains (Figure 14):

* Sensors:
o Musa sensor (for person identification)
o Fridge_box with ID (light sensor, to detect when the fridge light is on)
o Magnetic contact with ID
o Chair sensor with ID

o Bedsensor(noID)

52

Habilitation Thesis KRISTALY Dominic Mircea

o Cardea_ID for clinical sensor ID
o Toilet sensor with ID

= Blood Pressure Monitor

= Precision Health Scale

= Blood Glucose Monitoring System

= Micro-server (mini-PC)

= Mobile device (tablet)

= Router

Ambient sensors

O O 0 0 R () (] @

Musa Fridge_bax with 1D Magnetic contact with ID Chair sensor with 1D Bod Sensorino D) Cardea_ID for clinical sensor I Toilet sensor with 1D

.
2 -
&l - |
— = Intemet)= -

Blood Ghucose Monitonng System r - - —
FORA-Comlort-Advance-G31 N =—

. Sarver

|

w
2
[~
o
i=1
g Router 1
]
H — _/ Desktop Lenovo Thinkcentre MS3 Tiny
= I |
g Procision Health Scaks UC-351PBT-Ci
o,
. = 4
Blocd Pressurs Mgt - MODEL UA-TET Plus -dl
Mail Serves
Carogrer
€3 Bluetooth

Figure 14 - HELICOPTER system structure

These sensors communicate with the micro-server through the ZigBee protocol. The Blood glucose
monitoring system, Precision Health Scale and the Blood Pressure Monitor communicates with the

tablet through Bluetooth.

For the HELICOPTER Home Systems software applications were created to ensure the wellbeing of the

system (Figure 15):

= System self-check

= Dynamic DNS Service

= Systeminitialization

= Automatic updates

= Data collecting and processing

= (lient Interface

53

Habilitation Thesis KRISTALY Dominic Mircea

4.4.1. System self-check

This feature is responsible for the good functionality of the systems. It has to verify if the sensors work
and transmit data to the desktop, verify if the batteries of the sensors are running low and transmit

mails to specific technical persons with the sensors’ status.

HELICOPTER HOME SYSTEM
System Dynamic
Self DNS
Check Service
System Automatic
Initialization Updates
Data
Collecting Client
And Interface
Processing

Figure 15 - HELICOPTER Home System software

4.4.2. System Initialization

System Initialization is the process of locating and using the defined values for variable data that is
used by a computer program/system. In this case the System Initialization does the next steps when

the mini-PC is started (as show also in the figure below):

» Checks for updated information about the network configuration (if any) on USB stick (if
present)

= (lears the helicopter Glassfish domain

= Prepares initialization files and scripts

= Redeploys web-based applications

» Starts the application server (Glassfish)

4.4.3. Automatic Updates

Considering that in the Helicopter project the system software will be constantly modified for both the

home and central server systems in order to improve and supplement the system’s features and

54

Habilitation Thesis KRISTALY Dominic Mircea

capabilities, an automatic update system was devised. Update packages containing, the instructions
and software modules, can be installed on the mini-PCs either by using an USB stick or uploading it in
a pre-determined directory on the Main Server. The automatic update software component will check
periodically for these packages and, if found, will copy them to the mini-PC's storage and by restarting

the machine will install them.

4.4.4. Data collecting and processing

A ZigBee connection between the sensors and the home system is open all the time. Each sensor has
its own rate of transmitting data; some of the sensors transmit data only when they are used (e.g. Chair
sensor with ID). The communication with the other devices (Blood Pressure Monitor, Precision Health
Scale, Blood Glucose Monitoring System) is made using Bluetooth. These devices transmit the data

after every use. All the data is stored in a database on the mini-PC.

Periodically, all new data will be transferred to the Main Server, where it is processed to reveal

behavioral patterns or anomalies.

4.4.5. C(lientinterface

The users are able to interact with the system using a tablet. The most important information that the
users receive from the system, using the user interface, is about their wellbeing and the activities that

they must do more/less. The user is also able to check the status of the sensors and sensors' batteries.

HELICOPTER Application

[aaodos
B —

Figure 16 - HELICOPTER tablet client interface architecture

The tablets are using Android OS. The application is being created using PhoneGap, HTML5, CSS3 and
JavaScript and different plugins (for interacting directly with the Android 0S).

4.4.6. Home system start-up

The Home System (also named Gateway) life-cycle is presented in Figure 17.

55

Habilitation Thesis KRISTALY Dominic Mircea

Hardware , . o
installation Configuration Exploitation

Figure 17 - Home system life-cycle [25]

The configuration consists of a file containing identification data, network data
(e.g. IP address), interface information and customer information. This file is obtained from the
Helicopter Server (through a dedicated service). The configuration file is read from USB stick at system

startup.

The root folder (directory) of the gateway software is /opt/gwrepository. This is the folder that contains

all other files and sub-folders relevant to the project.
The listing of all files and sub-folders along with their description is presented below:

» /backups/db/ - contains the zipped dump files generated by DumpApp.

» /backups/db/old/ - contains the zipped dump files generated by DumpApp after
TransferBackupAppClient successfully transferred them on the HELICOPTER Server.

» /logs/ - contains raw log files (in serialized object in odb format used by the ObjectDB
database).

» /gwupdate/ - contains Gateway updates received from the HELICOPTER Server.

» /gwtmp/upd/ - contains temporary files used in the Gateway update process (files used by
GWUpdater and GWUSBUpdater).

= /wars/ - contains the web archives of the HELCOPTER applications.

= config.properties

* dumpapp.properties

= gw.properties

» DumpApp.jar - dumps the database specified in dumpapp.properties (if there are any table
names specified in the same file, only those tables will be dumped).

» GWUpdater,jar - brings update packages from the server (for on-line updates).

= GWUSBUpdaterjar - brings update packages from connected USB drives.

= StartDeployerjar - deploys the HELICOPTER services on the Gateway.

» TransferBackupAppClient.jar - initiates communication with the HELICOPTER Server. This pair
of applications has the role of exchanging dump and update files between the Gateway and the
Server

= vslogger_1.1jar - offers a server application for collecting logs from all HELICOPTER software.

The boot sequence of the Home system software is illustrated in Figure 18.

56

Habilitation Thesis KRISTALY Dominic Mircea

Local HELICOPTER Launch of the Launch of the Deployment of Start
machine support services local machine HELICOPTER the local web- normal
boot initialization watchdog support services services operation

Figure 18 - Booting process of Home System software applications

Figure 19 shows the stages of the gateway start-up.

GW UPDATE

\ \

USB _ UPDATER UPDATER

BM LOGGER H Updater H INIT }—' DEPLOY }—'DEPLOYER

oot |) 1k _
\ \

Figure 19 - Gateway start-up block diagram [25]

4.4.7. LOGGER utility

The LOGGER is in charge of collecting logging information from the rest of the start-up components

(USBUpdater, GWUpdate and Deployer) and sending them to the Server.

This utility is designed as a server application that listens on port 4000 for requests from other
applications. The requests are serialized Java objects and are stored in an ObjectDB database (more

details on DB4object in [45]).

The LOGGER uses database partition, so every month is stored in its own database. The database files

are stored inside /etc/opt/gwrepository/logs/db<YYYY><MM>.odb.

The events are transferred periodically, if an external connection is available, to the Server, by calling
the dedicated LogService webservice. This service stores the events into a MySQL table of the Server's

database, attaching to them the id of the Gateway to which they belong [25].

The application resides in: /etc/opt/gwrepository/vslogger-1.1.jar.

4.4.8. USB Updater utility

The USB Updater application first checks if any USB media device is connected to the computer. If so,
it further seeks for a directory called GWCONFIG in the root directory of the USB media. Inside this
directory, a ZIP archive file should be found and, if so, copied into the local UPDTMP
(etc/opt/gwrepository/gwtmp/upd) directory [25].

Figure 20 presents the flowchart for this utility.

The application resides in: /etc/opt/gwrepository/GWUSBUpdater jar.

57

Habilitation Thesis KRISTALY Dominic Mircea

START

E/i/s USB Media .Y

. present?
. N
AN
y . N
AN
y_ - N\
N ~Exists GWCONFIG Y
Directory
\ 4
4
N /
N
N One single file Y
< present)
“inside GWCONFIG
Copy zip file into
UPDTMP
Y)

l

Figure 20 - Flowchart for USB Updater utility

4.4.9. GW Updater utility
This utility can be split in two sub-utilities [25]:

» Updater Init: checks if any archive is available in the UPDTMP folder. If so, it unpacks the
content of the archive in the UPDATE folder. Finally, the UPDTMP directory is emptied.

= Updater deploy: first, the application checks if a file named config.properties is available in the
UPDATE (/etc/opt/gwrepository/gwupdate/) directory. If present, using the information
provided by this file, it updates the gw.properties file. Secondly, it checks for any “war” files
located in the UPDATE directory. The “war” files found are copied into the WARS
(/etc/opt/gwrepository/wars/) directory. Then, the application verifies if the gwconfig.xml file
is present in the UPDATE directory. The gwconfig.xml file is copied inside the WARS directory.
Next, the available “sql” files from the UPDATE directory are imported into the local MySQL
server. Finally, the UPDATE directory is emptied.

Figure 21 presents the flowchart of this utility.

The GW Updater application resides in: /etc/opt/gwrepository/GWUpdater.jar.

58

Habilitation Thesis KRISTALY Dominic Mircea

4.4.10. Deployer utility

The Deployer application’s purpose is to start the Glassfish server (or restart it, if it is already started)

and to deploy some specified connection pools and applications on the server.

The Deployer application reads from the gwconfig.xml file the information about the server and it

writes the asadmin.txt file, containing security related information about the Glassfish server.

Next, the connection pool information is read. Afterwards, the server's domain.xml file is modified as

follows:

1) all application nodes and other application references from the file are deleted (all applications
are undeployed).

2) alljdbc-resources and resource references are also deleted (all jdbc resources are undeployed).

3) alljdb-connection-pool are deleted from the file (all jdbc connections are undeployed).

4) the connection pools information is written to the file (the specified connection pools -

previously read - are deployed).
Another task of the application consists of starting/restarting the server.

Next, the .war files, located in the WARS directory, are deployed on the server (in command line, using

the asadmin.txt password file).
Finally, the asadmin.txt file is deleted.
The flowchart for this application is presented in Figure 22 [25].

The application resides in: /etc/opt/gwrepository/StartDeployer.jar .

4.4.11. DumpApp

This application has the role of creating backups of the database (dumps) for later transfer on the

Server. The application is set to run every 24 hours using the standard Linux task scheduler (cron).

The output of the application is a ZIP archive containing the dump file. The ZIP archive is named after
the following pattern: <GWId>_<yyyy-MM-dd>_<HH-mm-ss>.zip and is stored in
/opt/gwrepository/backups/db/.

Information regarding execution status is logged on the Server using the VSLogger client [25].

59

Habilitation Thesis KRISTALY Dominic Mircea

START
S —_R EAD gw.properties

L A NO_~ gweonfig.xmi™. YES
. EXISTS —l
UPDATE GET SERVER INFORMATION

WRITE ASADMIN PASS FILE

l

Empty directory UPDTMP GET CONNECTION POOL
INFORMATION

MODIFY GLASSFISH

onfig.properties”™
- domain.xml

~_file inUPDATE

Update config information in file
"etc/opt/gwrepository/gw.properties”

UNDEPLOY ALL APPLICATIONS
(DELETE ,APPLICATIONS” NODES
OTHER APP PREFERENCES)

l

[‘

,war” files .
N “present .Y UNDEPLOY JDBC RESOURCES
in UPDATE (DELETE ,JDBC-RESOURCES”
~_directory? + ,RESOURCES-REF”)
v

Copy ,*.war” into WARS
directory

UNDEPLOY CONNECTION POOLS
(DELETE ,JDBC_CONNECTION-POOL")

7 Exists
N_ ,gwconfig.xml” .Y
“_file in UPDATE DEPLOY CONNECTION POOLS
" directory (WRITE CONN-POOL INFO TO
\j domain.xml)
\ ’ Copy ,gwconfig.xml” in e]
WARS directory +
O\
- PN
) s is \\
}\ NO " server YES
2N i STARTED
RN < >
N files presentsin Y
_ UPDATE o
~_directory? i
v
’ Execute ,*.sql” files on GET war FILES
local MySQL server ‘ FROM WAR DIRECTORY ‘
l DEPLOY APPLICATIONS (.war FILES)
(IN COMMAND LINE)
Empty UPDATE ¢
directory
777777777777777 GWUpdate Deployer ‘DELETE ASADMIN PASSWORD FILE‘
STOP STOP
Figure 21 - Flowchart for GW Updater utility Figure 22 - Flowchart for Depoyer utility

4.4.12. TransferBackupAppClient and TransferBackupAppServer

These two applications work in pair and have the role of exchanging files (dumps and updates) between

the gateway and the main server. The client side is responsible for initiating communication with the

60

Habilitation Thesis KRISTALY Dominic Mircea

server and the server side is responsible of responding to client requests. The server can handle

multiple client connections simultaneously.

The TransferBackupAppClientis set to run every 6 hours using the standard Linux task scheduler (cron),

whilst TransferBackupAppServeris running permanently.

In order to function properly, TransferBackupAppClient retrieves the Server IP address from the

“config.properties” file. Both TransferBackupAppClient and TransferBackupAppServer listens port 95.

The correctness of the file transfer is checked in both directions by comparing the file sizes and an MD5

checksums.

Information regarding execution status is logged on the Server using the VSLogger client [25].

4.5. The SAVE Sensor Adapter

The solution adopted within the SAVE project for collecting and analysing user data consists of the

following components:

= Smartwatch
= Data capturing sensors

= Web-based graphical interface for displaying and analysing collected data

Figure 23 - Sensors included in the SAVE solution

The sensors included into the SAVE solution are (Figure 23):

» Flood detection sensor (2 pieces - for the kitchen, bathroom)

» Presence (human) sensor (2 pieces)

61

Habilitation Thesis KRISTALY Dominic Mircea

= Contact sensor (1 piece - for the entrance door)

= Centralization device (1 piece)

To collect data from sensors for the purpose of connecting them to the acquired devices, a “sensor

adapter” was designed and developed.

000

000000000000000
00000000000000009
00000000000000000
00000000000000000
000000000000
000000000000000

o
o
o
°
°
o°
=
o
©
©
°
°
=
o
°©
[
o
o

]

000000

000000
000000
000000
000000

L
®
®0

®000000000000000000000000
@ 000000000000000000000000

® 0000000000000
® 000000000000
¢ 000000000

®o0
®o0

Figure 24 - SAVE Sensor Adapter components

The purpose of the SAVE Sensors Adapter is to read, indirectly, the status of the sensors included in
the provided sensor kit. The Agara Hub 2 is capable of relaying events through IR (infrared) codes. The
SAVE Sensors Adapter reads the IR codes emitted by the Agara Hub and sends them to the SAVE cloud
application, through Wi-Fi. The configuration of the Wi-Fi link is done using WPS' or through a direct

USB connection.

4.5.1. Components

The SAVE Sensors Adapter is built around an 2-cores ESP32 development board, readily available on
the market (the NodeMCU 325 and LOLIN32 variants) (). It also includes:

= amonochrome OLED graphic display, with 12C communication
= 2 push-buttons are used for the user interface

= the VS1838B IR sensor is employed to read the IR codes

L WPS - Wireless Protected Setup

62

Habilitation Thesis

KRISTALY Dominic Mircea

2h

—1 —1
0%o0 :l
ogo
OOO
oJo
OOO

—1 —1
——]
@] O

45.2. Thecase

30

24

10
O

80

Figure 25 - SAVE Sensor Adapter case - main dimension of the case

The case is built from black and transparent plexiglass sheets, 3mm thick, for maximum sturdiness

(Figure 25). The case is held together by M3 screws.

Figure 26 shows the physical aspect of the case parts.

63

Habilitation Thesis KRISTALY Dominic Mircea

Figure 26 - SAVE Sensor Adapter case parts

4.5.3. Electrical schematic

Figure 27shows the electrical schematic:

U1
LOLIN32_V1.0.0 U2
OLED Display 128x32

— ‘3* GND
_ L 2 lvee
_ L | 2 1SDA
- __l scL
p— Q .
— — [< o~ <t
- — R1 - PB1 R2 |+ pB2
- — 10k | o LBTN 10k | o RBTN
- — U3
— VS18388
Jout
— 24 GND
VCC

Figure 27 - SAVE Sensor Adapter schematic
The SAVE Sensor Adapteris powered from the USB port of the Agara Hub 2.

Figure 28 presents the electronics of the device. The construction is modular, so if any part of the device

malfunctions, it can quickly be replaced.

64

Habilitation Thesis KRISTALY Dominic Mircea

Figure 28 - The electronic of the SAVE Sensors Adapter

45.4. Software

The SAVE Sensor Adapter is programmed using Arduino and runs over Free RTOS OS. The software
application makes use of the dual-core feature of the ESP32 microcontroller, separating the collection

of data (through IR) from the user interface (Figure 29).

ESP32 - WROOM

e PROCESSOR

Task1code() Task2code()

X A

Figure 29 - Microcontroller software organization

65

Habilitation Thesis KRISTALY Dominic Mircea

455. The menu

The SAVE Sensor Adapter offers a user interface based on 2 buttons (left and right). The left button

chooses an option, and the right button executes or confirms.

Figure 30 presents the structure of the user interface, as a menu. The blue screens only report

information, the yellow ones allow the user to change the settings of the device.
The Native ID is the unique code by which the device is recognized by the SAVE solution.

The WiFi credentials can be set by WPS or by using an USB connection to a computer running the SAVE
SWS (Serial Wireless Setup) software, developed as a Windows application especially for this device

(Figure 31).

The Reset option erases all configuration data of the device (i.e. WiFi credentials).

l

(Home screen) MEM DEBUG 1
y Connaction stalus Mamory Task 1, Mamaory Task 2
I
SSID
WiFi 551D)
r IP ™y

ANN.ARD,AAR.ARR
L

!

NATIVE ID

nnnnn

, :
WPS ***

Wireless Pralected Satup

l

SWS kEF

Serial Wireless Setup
L

}

[RESET ***

L Clears all settings

!

" FW VERSION

Firmware version n
bS

Figure 30 - Menu structure for the user interface

66

Habilitation Thesis KRISTALY Dominic Mircea

0¥ SAVE Sensor Adapter WiFi Setup — O x

COM port: ~ | Update
SSID:
Password:

Transfer

Figure 31 - SAVE Sensors Adapter Configuration application [46]

4.5.6. Final version of the device

Figure 32 shows the SAVE Sensor Adapter final device.

Figure 32 - SAVE Sensors Adapter [46]

5. Databases

Databases are foundational components of modern information systems, serving as repositories for
storing, organizing, and retrieving data. They play a vital role in various domains, including business,

healthcare, finance, education, and research. A database is essentially a structured collection of data,

67

Habilitation Thesis KRISTALY Dominic Mircea

typically organized in tables or other structures, with built-in mechanisms for accessing and managing
that data efficiently.

The evolution of databases can be traced back to the 1960s, with the advent of hierarchical and
network models. Since then, relational databases emerged as the dominant paradigm, offering a
flexible and powerful way to organize data into tables with rows and columns. With the rise of the
internet and big data, newer database models such as NoSQL and NewSQL have emerged to handle

diverse data types and scale-out requirements.
Databases can be categorized based on their data model, scalability, and use case:

* Relational Databases: Organize data into tables with predefined schema and support SQL for
querying.

= NoSQL Databases: Designed to handle unstructured or semi-structured data and offer
flexibility and scalability.

= NewSQL Databases: Combine the benefits of relational and NoSQL databases, offering
scalability and ACID compliance.

* In-memory Databases: Store data in main memory for faster access and lower latency.

= Distributed Databases: Span multiple nodes or servers to handle large volumes of data and

provide fault tolerance.
Key concepts in database management include:

= Data Models: Define the structure of the data in the database. Common models include the
relational model, hierarchical model, network model, and object-oriented model.

» Database Management System (DBMS): Software that enables users to interact with the
database, performing tasks such as data insertion, retrieval, modification, and deletion. Popular
DBMSs include MySQL, Oracle Database, Microsoft SQL Server, PostgreSQL, MongoDB, and
Cassandra.

= Normalization: Process of organizing data to minimize redundancy and dependency, ensuring
data integrity, and reducing the likelihood of anomalies.

* Query Language: Structured Query Language (SQL) is the standard language for managing and
manipulating relational databases. NoSQL databases use various query languages tailored to
their specific data models.

» Transactions: Atomic units of work that ensure data consistency and integrity. ACID (Atomicity,

Consistency, Isolation, Durability) properties govern transactional behaviour.

68

Habilitation Thesis KRISTALY Dominic Mircea

5.1. Relational Database Management Systems

Relational Database Management Systems (RDBMS) represent a cornerstone of modern data
management and serve as the backbone for numerous applications across various industries. RDBMSs
are predicated on the relational model of data, which organizes data into tables (relations) that are
composed of rows and columns. This structure facilitates efficient data retrieval, management, and

manipulation, making RDBMS an essential tool for businesses and organizations.

The concept of RDBMS was first introduced by Edgar F. Codd at IBM in 1970. Codd's seminal paper, "A
Relational Model of Data for Large Shared Data Banks," revolutionized the approach to database
management by advocating for a table-based format rather than the then-common hierarchical or
network models. This model emphasized the use of a structured query language (SQL) for data access,

which became a standard due to its effectiveness and simplicity [47].
The key features of RDBMS are:

= Data integrity and security: RDBMS provides comprehensive tools for maintaining data
integrity and security through constraints, views, and transactional control.

= Data consistency: Use of transactions in RDBMS, governed by ACID properties (Atomicity,
Consistency, Isolation, Durability), ensures that the database remains in a consistent state even
in cases of system failure or concurrent data access scenarios.

= Normalization: RDBMS employs normalization procedures to minimize redundancy and
dependency, optimizing the schema for efficiency and maintenance.

= SQL support: SQL is used for creating, retrieving, updating, and deleting data, making it a

powerful tool for managing relational databases.

Over the decades, RDBMS technology has evolved to incorporate distributed database systems, data
warehousing, and online analytical processing (OLAP) capabilities. These enhancements have improved
performance, scalability, and flexibility, catering to the growing demands of large-scale and complex

applications [48].

RDBMSs are widely used in business applications ranging from financial services to e-commerce and
healthcare. Despite their extensive use, modern RDBMS face challenges such as handling big data and
unstructured data, requiring integration with newer database technologies like NoSQL for more flexible
data handling [49].

The future of RDBMS likely involves converging with other database technologies to handle diverse
data types and massive data volumes efficiently. Innovations in cloud computing and machine learning

integration also point towards an adaptive, more intelligent approach to database management [50].

69

Habilitation Thesis KRISTALY Dominic Mircea

5.2. FOOD System databases

5.2.1. Low level database for the sensors network

The sensors network is built from wireless sensors, most of them off-the-shelf. The communication

protocols used by the sensors are ZigBee and the IEEE 802.11 protocols family.

As the general architecture shows (Figure 5), the sensors communicate with the Home System that

stores the data in a relational database (managed by the MySQL database management system).

Each object in the system (e.g. sensor, appliance etc.) has a corresponding object ID code. Each object
has a variable number of properties, each identified by a variable ID code. The value of each property
(variable) is represented either as integer (64 bit signed integer), float (single precision floating point)
or string (variable length character string). These values are written only by the field management

system (FMS).

The database employed by the lowest level of the system contains 3 tables:

State Table

This table stored the newest data of the field elements of the system. It is used to supply information

about field read values to other systems.

Table name: current_status

Field Type Null | Key | Default | Description

timestamp | datetime no date and time of last value update, UTC
obj_id intunsigned |no |PK | O object ID

var_id intunsigned |no |PK | O variable ID in the object

int_value bigint yes null if not null, value of variable*
float_value | float yes null if not null, value of variable*
string_value | varchar(4096) | yes null if not null, value of variable*

* Only one of the three value field can be not null.

Log Table
This table stores all values, as registered by the system.

Table name: log_values

Field Type Null | Key | Default | Description
id bigint no |pri |O primary key to distinguish events, auto
increment

70

Habilitation Thesis

KRISTALY Dominic Mircea

timestamp | datetime no date and time of last value update, UTC
obj_id intunsigned | no 0 objectID

var_id intunsigned | no 0 variable ID in the object

int_value bigint yes null if not null, value of variable*
float_value | float yes null if not null, value of variable*
string_value | varchar(4096) | yes null if not null, value of variable*

* Only one of the three value field can be not null.

Commands Table

The commands to be sent to the system are written to the commands table that is periodically polled

for changes.

Table name: commands

Field Type Null | Key | Default | Description

id int no [PK |O primary key to distinguish commands,
auto_increment

timestamp | datetime no date and time of command, UTC

obj_id intunsigned | no 0 objectID

var_id intunsigned | no 0 variable ID in the object

int_value bigint yes null if not null, value of variable to be written

float_value | float yes null if not null, value of variable to be written

string_value | varchar(4096) | ves null if not null, value of variable to be written

As commands are executed by system, they are removed from the table.

5.2.2. High level database for the web services

At a higher level, the web services use a second relational database (also managed by the MySQL
RDBMS) that is synchronized periodically with the sensors (low-level) database. The main tables are

presented in Figure 33.

The devices table contains a list of all the devices in the smart kitchen (sensors, appliances, etc); this

information can be used when developing user interfaces.

Each device can have one or more properties (equivalent to the variables from the lower level), stored
in the devices_properties table. A meaning can be attached to each property (e.g. oven temperature,
air humidity inside the kitchen). Also, the measure_type_idfield is used to retain what type of data the

property stores (e.g. humidity, measured in %).

The measures_data table stores the actual data read from sensors. The device_id and

device_property_idfields are used to link the data with the device and the property of the device. Each

71

Habilitation Thesis KRISTALY Dominic Mircea

row in this table has a timestamp attached (the tsstampfield); this information is provided by the lower
level. The data is stored in the data_ value field, as a string. The measurement_id field is used to link
data that must be interpreted together (e.g. if a sensor reads the blood pressure of a person, then we
must link the high blood pressure and the low blood pressure for the same measurement, so it can be

interpreted correctly); the value of this field is the timestamp of the measurement.

—| devices ¥ —_| measures_data ¥
id YARCHAR(SD) id BIGINT (20
description Y ARCHAR{Z00) device_id YARCHAR(SO)
detdls TERT device_properky_id YARHAR(SO)
- tstamp DATETIME
data_wvalue Y ARCHAR{4096)
measurement_id YARHAR(SD)
—| devices _properties ¥ [

id VARCHAR(SO)

devdce_jd YARCHARCSD)
measure_kype_jd BIGINT(20)
meaning Y ARCHARI200)

Figure 33 - Tables for storing the FOOD sensors’ data

The commands are written directly to the lower-level database, for performance purposes.

5.2.3. The database structure of the FOOD platform

The FOOD framework is the base for the interaction of the users with the system for reporting and
configuration. Also, through its modules and functions facilitates the access to the FOOD web services.
The platform will be accessed not only by ordinary users, but also by the administrators, so it must

offer options to manage the access rights to its functionalities.

The platform must support multiple languages so it can be used with the same ease, independent of

the language spoken by the user.

Figure 34 presents the conceptual schematic of the core database. Module dependent tables will be

added as the work on the specific facilities is progressing.

FUNCTIONS table

Functions are the units that implement atomic functionalities. These functions are related to code that

fulfils a specific task. For an easier management, the functions are grouped into modules. For

72

Habilitation Thesis KRISTALY Dominic Mircea

traceability purposes, a function can be monitored, so every access to it is recorded into the monitoring
table.

MODULES table

Modules group functions that work with the same entities (for example, user management, menu

management etc.) Modules have a name and a description.

USERS table

The users table records all data about the users (name, surname contact data, username, password
etc.) For the password an expiry date can be set. The is_admin flag makes the difference between the

ordinary users and administrators.

Administrators can access all the facilities of the platform.

PROFILES table

For the management of the access right to the platform'’s facilities, profiles define levels of access. The
access rights are granted at function level. All the functions accessible at each level are stored into the

profile_ functions table.

To each user can be assigned profiles and implicitly access rights. These assignments are recorded into

the users_ profiles table.

MONITORING table

This table records all calls to monitored functions. It stores the user and time information. Based on

the information from this table the platform will be able to display user and functions related statistics.

SESSIONS table

This table is used to keep track of all active sessions in order to authenticate and authorize

on-line users. This table will be visible only for the administrators of the platform.

MENU_ITEMS table

The facilities of the platform will be accessible through a menu. The structure of this menu will be
stored into the menu_items table in a recursive manner. The action field indicates what happens when
the menu option is clicked. The actions can be of two types: internal actions — clicking on the option

calls a function of the platform, and external actions — opens a URL address. It is possible to open the

73

Habilitation Thesis

KRISTALY Dominic Mircea

new facility in a new window by using the flag open_in_new_window. Also, it is possible to send

additional parameters by using the param field.

ﬂ £ foodivk foodfwk_sessions
2 id - bigint(20} unsigned
g session_id : varchar(50)

C user_id : bigint(20) unsigned

ﬂ £+ foodfvk foodfwk_monitoring

2 id - bigint(20) unsigned

function_id : bigint{20} unsigned
C user_id : bigint(20) unsigned

m data : datetime

ﬂ o fondfn: foodfwk_users

username : varchar(50)

password - varchar(50)

name : varchar(50)

surname - varchar(50)
password_creation - datetime
password_wvalidity - smallint(5) unsigned
active : smallint(5) unsigned

expire_date : datetime

B # H# B m m oW W e

is_admin : tinyint(4)

n £+ foodivk foodfwk_menu_items
g id - bigint(20)]
@ label - varchar(250)
i@ action : text
@ param : text

id - bigint(20) unsigned I

open_in_new_window : tinyint(4)
parent_id - bigint{20}

visibility : tinyint(4)

ordering - int(11)

—

n & foodivl: foodfwk_functions

2 id - bigint{20) unsigned

g name : varchar(255)

g description : varchar(255)

@ package - varchar(1000}

module_id : bigint(20) unsigned ;

monitored : smallint(5) unsigned

¥ © fwodiv foodfwk_modules
2 id : bigint{20} unsigned
& name - varchar(255)

2 description : varchar(255)

.ﬂ £ foodfvlk foodfwk_profile_functions
2 id : bigint{20) unsigned

profile_id - bigint(20) unsigned

function_id - bigint{20) unsigned

ﬂ £+ foodfn: foodfwk_users_profiles
2 id : bigint{20) unsigned

Oy user_id : bigint(20) unsigned
profile_id : bigint(20) unsigned

ﬂ i foodfelk foodfwlk_profiles
¢ id - bigint{20) unsigned

i name - varchar(255)

@ description : varchar(255)

n £ foodinl foodfwk_menu_translations
@ id : bigint{20})

menu_item_id - bigint{20)

@ lang : varchar(2)

@ translation : varchar{250)

Figure 34 - FOOD platform database schematic

Habilitation Thesis KRISTALY Dominic Mircea

MENU_TRANSLATIONS table

To implement multiple languages into the platform, the menu option must be dynamically selected
according to the platform'’s language. The menu_translations table stores translations for all options

of the menu. If a translation is not found for an option, then the label of the menu item will be used.

5.3. SAVE solution database

To manage data persistence, the SAVE system relies on a relational database management system,
Oracle's MySQL. This choice provides an efficient solution for organizing and storing the system's
information. The database structure includes tables for kits, device types, and devices (Figure 35). Kits
are registered in the kits table and receive user-friendly names for easy identification. Device types are
stored in the device_ types table, receiving acronyms and default descriptions. The acronyms help user
interfaces identify the relevant components for handling data from specific types of devices. Devices
are registered in the devices table, associated with a particular kit (of devices) and linked to a device
type. Short and long descriptions provided by end-users facilitate identification and differentiation of
multiple sensors of the same type.
o kits
— =g kt_id : bigint(20)

m kt_add_date . datetime
u kt_is_deleted : int(11) -
kt_name : varchar(255) v k't—dﬂ‘—mm
- @ kd_id - bigint(20
—=g kd_dev_id : bigint(20)
kd value = text

v device_types o devices .
= m kd_timest datet
@ dt_id : bigint{20) — ¢ dev_id : bigint(20) —_ | _timestamp - datetime
dt_acronym : varchar(255) Ly dev_kit_id : bigint(20)
dt_description : varchar(255 dev_long_desc : varchar(255)

dev_short_desc : varchar(255)
L« dev_device_type : bigint(20)

Figure 35 - Tables for the data collecting system [27]

The values read from the sensors (the ,data”) are persisted, partitioned at kit level, in the kit_data_*
tables. There is one table for each kit. The kd_ value field contains the sensor data, as transmitted by

the sensors itself or a sensor adapter.

Figure 36 presents the structure of users table and several other tables used by the microservices that
implement the user interfaces and the link to the smartwatch applications. The password is not kept

in clear text, but only the SHA-1 hash is stored.

75

Habilitation Thesis KRISTALY Dominic Mircea

The not_data table stores the scheduled notifications of the end-users. These are transferred
periodically (every 10 minutes or soon as the smartwatch connects to the SAVE cloud application) to

the smartwatch. The SAVE web application user interface manages these records.

It must be highlighted that the data coming from the sensors are not linked directly to the end-users,

but to the kits. Accessing only this data does not reveal anything about the users' identities.

The temporary GPS data is collected in the gps_data table. The maximum duration for which the

records are kept is 10 days.

& s=vegps_data
g id - bigint(20)

user_id : bigint(20)
latitude - double

longitude : double
m tstamp : timestamp

1 © =ave config_packages

v Ve USers @ id : bigint(20)

g usr_id : bigint(20) +———— user_id : bigint(20)
usr_username : varchar(255) pin : varchar(10)
usr_password : varchar(255) 2 config_values - text

usr_role - varchar(10)
usr_name : varchar({255)

usr_surname : varchar(255) o save not_data
usr_email : varchar(255) @ id : bigint(20)
m usr_last_login : datetime # user_id : bigint(20)

u usr_is_deleted - int(11) message : varchar(150)
m tstamp : timestamp
icon : varchar(20)
check_every_day : tinyint(1)
every_day_time : text
check_days : tinyint(1)
days ' text
() days_time - varchar(255)
check_date : tinyint(1)
m date : date
date_time - varchar{255)

Figure 36 - Tables for the users, notifications, smartwatch app configuration, GPS data [27]

6. Human-computer interaction

6.1. User interface design and development requirements

User interface design or user interface engineering is the design of websites, computers, appliances,

machines, mobile communication devices, and software applications with the focus on the user's

76

Habilitation Thesis KRISTALY Dominic Mircea

experience and interaction. The goal of user interface design is to make the user's interaction as simple
and efficient as possible, in terms of accomplishing user goals—what is often called user-centered
design. Good user interface design facilitates finishing the task at hand without drawing unnecessary
attention to itself. Graphic design may be utilized to support its usability. The design process must
balance technical functionality and visual elements (e.g., mental model) to create a system that is not

only operational but also usable and adaptable to changing user needs.

Interface design is involved in a wide range of projects from computer systems to cars, to commercial
planes; all these projects involve many of the same basic human interactions yet also require some
unique skills and knowledge. As a result, designers tend to specialize in certain types of projects and
have skills centered around their expertise, whether that is software design, user research, web design,

or industrial design.
A device pixel (or physical pixel) is the smallest physical unit in a display.

Screen density refers to the number of device pixels on a physical surface. It is often measured in pixels
per inch (PPI).

A CSS pixel (or a device-independent pixel) is an abstract unit used by browsers to draw content

precisely and consistently on Web pages (Figure 37).

Standard Retina
CSS height: 2px I height: 2px
width: 2px o width: 2px

pixels

Device pixels

Device .. @ ====
~ v gl © e

Figure 37 - Device pixel

Pixel ratio is the ratio between the number of device pixels needed to draw a CSS pixel on a tablet
screen and the number of device pixels needed to write a CSS pixel on a standard screen. For the Xperia
Tablet Z this ratio is 0.(6):

= An image of size 1920 x 1080 pixels would use 1920 x 1080 device pixels to be drawn on
screen. On Xperia Tablet Z display, the same image would use 1280 x 720 device pixels to keep

the same physical size.

To be compatible with devices having different pixel ratios, the Uls must define different CSS for each

supported pixel ratio (implemented in sensors Uls) [51].

77

Habilitation Thesis KRISTALY Dominic Mircea

6.2. Ul design and development requirements for elderly
Possible implication in software design according to cognitive decline in the elders:

= Vision: one of the most appropriate texts for information display is sans-serif fonts with the
size between 12 and 14 points - the width of the visual field of elderly people is reduced.

= (olor: older people have less sensitivity to color contrast especially in the blue green range
[52]; designers should not use colors to communicate meaning but should use for supporting
information presentation.

= Memory: the average of the related items to be shown in the display panel used for the older
people should be around 5.5 items [53] - for older people, use of long-term memory is much
more effective than short term memory.

= Sound: the devices that require sound as alarm, instruction or any activity that require attention
from the elderly users should use the lower range of frequency (between 500 and 1000 Hz) -
high pitched sounds with peaks over 2500 Hz are mostly missed by the elderly [54].

= Attention and Simplicity: the use of relevant graphics and pictures are more significant than
the use of detailed decorations; multitasking operations should not be applied as well - older
adults have problems maintaining attention over long periods of time [55].

* Motor decline: small screens on mobile devices may limit usage of elderly users, but a tablet
device still has mobility and is still not compromised with screen size - physical decline is one
of the general problems for the elders.

* Reduction of complexity: the design of the interaction should avoid complexities, for example
using short and long press, using combination keys, using multi fingers, using multi touch, etc.
- simpler is more useable for elderly users.

= C(Clear structure of tasks: clearly separated task is the factor that may increase usage
performance for elderly - single task per page reduces attention load for older users.

» (Consistency of information: navigation bars, labeling or any interface components should be
used to communicate exactly where the users are in the application - elderly users are easier
to recognize information than to recall memory.

» Rapid and distinct Feedback: feedback of every action should be provided within a certain
time, and it should indicate the result or response of each action — due to limitation of short-
term memory of older adults.

= On screen help: on screen help within the operation page should be used - older people have
anxiety about using new products.

= User support: reduce usage of error messages to become as low as possible; in case that error
messages must be shown, error messages should be simple, precise, polite, and

understandable - elderly users are sensitive for errors from their actions.

78

Habilitation Thesis KRISTALY Dominic Mircea

Interface optimization (according to the limitation of motor skills and cognitive abilities of the elderly

people) [51]:

= Make use of proper size interface components:
o Touch sensitive area/Size of button should be 16.5 mm to 19.05 mm
o Spacing size between button/touch sensitive 3.15 mm to 12.7 mm
= Avoid using scroll bar
= Keep operation area in the center of working page
= Make use of multi model communication
= Make use of real object-liked interface
= Present text the simplest way:
o Size 14 (~5mm on 72 dpi screen) or higher
o Make use of sans-serif fonts
o Make use of black font on white background

o Avoid using fancy text (moving, non-horizontal orientation, splash etc.)

6.3. Planning of services and user interfaces
Several methods of describing the services were employed in the project:

= conceptual maps: employed for identifying relations between services, their touch points and
required facilities (which later imposes interface elements) (Figure 38).

= blueprints: used to express the customer journeys (Figure 39).

» mockups and screen flows: for showing how the interface will look (Figure 40).

= wireframes: combines blueprints and mockups to express the look-and-feel of the user

interface.

6.4. End-users’ FOOD user interface
The technologies employed to implement the user interface as a tablet app are:

= Android OS (version 4.x)

PhoneGap as framework for developing mobile applications for Android
= HTMLS5 for layout &

= (SS3 for styles (look)

= JavaScript

= jQuery library for AJAX calls to services

= jQuery Mobile library for form elements and transitions

79

Habilitation Thesis KRISTALY Dominic Mircea

= XML for data structuring

Environmental control
. — hs—
I services cluster

Service

|
¥ \ has / \
updates
Tatal energy Blackouts
has indicator indicator -

k__ has
)
G T ()

n;s » Safety
v

Recipes categories

N %
-

-
4—7 "'IS ——————| Ingredients
(@)

receives

is receives

related to

Commentary

. Ingredients
-
= Is categories

~ Home Insert Page Layout Formulas Data Review View PDF
D14 il

@ - =

¥

S | Presents the main menu, containing the "SHOPPING LIST" icon.
A B c

FOOD MANAGEMENT
SERVICE BLUEPRINT TEAM MEMBERS: INDESIT, ANMIL, BRAINPORT DEVELOPMENT, DS$SB, VSRO, CIID

«

D E F

I

SCENARIO N° 003 OPPORTUNITY AREA
TEAM PARTNER: VSRO THAT THIS PARTICULAR SCENAR,

An elderly woman with reduced mobil
the nearest available store, to receivy

GIVE A DESCRIPTIVE TITLE TO THIS SCENARIO:
Shopping groceries from a nearby home delivery store

USER 1

The elderly

USER 2

The caregiver

USER 3

The family

LISFR 4
4 4 » M| Sheet 1 - recipe database .~ %0 / o il
Ready

Figure 39 - Blueprint example [56]

80

Habilitation Thesis KRISTALY Dominic Mircea

Food management

: 4y
Recipes Inventory
—_— Food manageme

Consumption -
Environment control

<7 —

&
| Shopping Ii_st

Figure 40 - Mockup example

The stack of technologies used to develop client applications (mobile applications) is shown in Figure
41.

The PhoneGap framework offers a JavaScript API that hides the Android API.

The jQuery Mobile library implements graphic controls useful for mobile applications.

FOOD Application

(Domotic Resources Gateway Library

[jQuery Mobile }
‘I’ PhoneGap ‘
[MOBILE OS (ANDROID) J
[TABLET HARDWARE J

Figure 41 - FOOD mobile application technology stack

The Domotic Resources Gateway library is a Javascript library developed to offer an API to access the
FOOD webservices. This API manages the creation of SOAP calls and the management of the response

(Figure 42). Also, this API manages the selection of the right language for the application.

81

Habilitation Thesis

KRISTALY Dominic Mircea

ry wmins:m

Bbmvedoge

Figure 42 - SOAP request-response [57]

MITLEE LT

The flow chart in Figure 43 illustrates the way that the application for the tablet starts and initiates

contact with the GATEWAY (GW) and the MAIN SERVER (MS) every time.

On every launch the tablet app searches for the configuration file, which is the one that indicates

whether an account has been created on the device (if found, the app starts to establish connection

with the MS and with the GW) or if the app is at its first launch (if it isn't found, the app lets the user

create a new account).

After the first verification, the tablet app verifies the external connection (with the MS) and the internal

connection (with the GW). At this stage, the app can perform in four different ways:

» |f the app establishes only a local connection (with the GW): the tablet app has limited

functionality (only pages with offline functionality are active, such as 'Home;, ‘Oven’ and

‘Settings’).

= |f the app establishes only an external connection (with the MS): the tablet app has limited

functionality (only pages with online functionality are active, such as 'Home' and ‘Messages').

» |f the app establishes a local and an external connection (with the GW and the MS): the tablet

app launches with full functionality.

= |ftheapp doesn'tsucceed in establishing neither a local nor an external connection: the tablet

app remains on the ‘LOGIN’ page and verifies connection periodically to see if any of the servers

are available for connection.

82

Habilitation Thesis

KRISTALY Dominic Mircea

YES

START

Tablet app configuration
file exists?

NO

TABLET APP START - V.2.0

v

Select language ID
guag Delete configuration

file

v

A
Create

configuration file

v

Write the default
MS IP, a blank
GW IP and the

language ID

v

Read MS IP, GW IP and
language ID from tablet
app configuration file

NO

YES

v

externalConnection = true

Is device registered on
MS DB?

Isthere GW IP

information available?

Connection to MS works?

NO

Settings corrupted

YES

or missing

(I’'m online WS on MS)

Connection to GW works?
(I’'m online WS on GW)

Show error message
“Cannot connect to
Home system”

localConnection = true

A

localConnection = false

¢—1

Yl

v

v

externalConnection = false

Isthere GW IP
information available?

ES

Connection to GW works?
(I'm online WS on GW)

Sync GW DB
with MS DB

localConnection = true

A 4
Open error page

YES

A
Open Home
page

GW DB?

Is device authorized on

“This application
requires at least one
active connection”

NO

User chooses to
reconfigure app,

v

Open Login
page

Figure 43 - Flow chart of the initialization and login of the FOOD app

83

Habilitation Thesis KRISTALY Dominic Mircea

6.4.1. Oven interface functionality

The "Oven" interface displays all the cooking cycles that are currently available on the oven. Cooking

cycles are separated into three categories: manual, automatic and downloaded.

Users may switch between cycle types by tapping their respective tabs. Since the oven has a limited
available memory, it can hold a predefined number of cooking cycles. It has been decided that the oven

will hold all the manual and automatic cycles along with as many downloadable cycles as possible.

After tests and discussions with the manufacturer (Indesit), it has been determined that the ideal
number of downloadable cooking cycles to be registered on the oven at any given time should be 5. As
a result, users may need to delete older downloaded cooking cycles if they want the oven to be
reprogrammed with newer ones. By using the AAL Food tablet application users have easy access to
this functionality.

o m O o o Jg=EN 7

Acasd Retete Favorite Lista de cumparaturi Mesaje Setdri

Cicluri manuale de gatire | cjcjurl automate de gatire | Ciclurl descarcate de gatire

B 3 | Multinivel Multinivel
- - Co
Grill _
i Temperatura [200°
w Gratinare
&3 Rotisor Durata B o045
=D Peste Gatala 14:44
®) Pizza g

| Crestere

Aceasta functie este ideala pentru gatire oricarei
€ Patiserie mancari folosind pana la trei nivele in acelasi
tmp.

7 45% &1 13:59

Figure 44 - Screenshot of the FOOD Application showing the Oven interface [57]

The application uses a JSON file which describes all the characteristics of the cooking cycles that are
currently installed on the oven (names, descriptions, durations, etc.). The JSON file is split into three

areas that describe the three cooking cycle categories (Figure 45).

"cooking cycles":{
"manual cooking cycles": [
{
"id" H "w H’
"icon": "",

84

Habilitation Thesis

KRISTALY Dominic Mircea

1,

"nameﬂ : nmn ,

"photo": "",

"graph": [{HmH:H"’ Ht":""},
"description": "",
"temperature": "",
"temperature min": "",
"temperature max": "",
"duration": ""

by

"automatic cooking cycles": [

{

"id": "",
"iconﬂ . nmnn
. ’
"name": "",
"photo": " "’
"graph". [{llmll.ll" llt".ll"}
: HAA : ,
"description": "",
"duration": "",
"duration min": "",
"duration max": "",
"consumption": ""
by
I
"downloaded cooking cycles": [
{
"idll: " ll,
"lcon": ""’
“setting code” : “”
"name": " "’
"photoﬂ: " ",
"graph": [{"m":"", "t":""}’
"description": "",

“temp default” : %7,
\\temp min// : A\WZ4
“temp max” : “7
"duration": "",

Figure 45 - Cooking cycles JSON file prototype

iy

-1

The JSON file is stored locally, on the gateway system. In the future, this will allow the user to access

oven functionality even without being connected to the main Food System.

Building a new JSON file is done upon installing a new cooking cycle on the oven. The information in the

JSON file is obtained by using cooking cycle characteristics from a local database. The database holds

all the required information about any possible cooking cycle, registered in every one of the project's

languages.

Updating the available cooking cycles on the oven is done by installing a new binary file on this smart

device. The binary file stores all the required information about the cooking cycles in a way that the

oven can understand. Encrypting the binary file is done through an external system, the Indesit File

Composer. The File Composer is accessed through a C# based webservice from the local gateway

machine. The local Food System uses WSDL to implement the methods required by the Indesit System.

The following diagram describes the composition process that takes place on the Indesit System.

85

Habilitation Thesis KRISTALY Dominic Mircea

L 4

~ Parent File I—* Binary File

Children Files:

/ |
(@fp]][e] Child Child Child
File File File File

Figure 46 - Indesit file composition diagram

At the beginning of the composition process, the Food System supplies a base (parent) setting code.
This code will be used to uniquely identify the parent file that needs to be used in the composition
process. Along with the parent code, the Indesit System also requires an array of codes that represent
each one of the child files. The final file is then the result of composing the parent file with all the child

files.

The newly created binary file is then sent to the Food System as a streamed byte array which is written
to a fixed location on the gateway machine. This will ensure that the oven can read it from a pre-

established location and update itself, as required.

6.4.2. Userinterface internationalization
The FOOD Ul is available in 4 languages: Romanian, Dutch, Italian and English.

Figure 47 shows the Romanian version of the application and the Diets filter along with its sub-filters.

This type of filter may only be supplied for recipes added by the FOOD System.

Figure 48 and Figure 49 show pages from the Dutch and Italian versions of the application.

6.4.3. Automatic update of the tablet application

An automatic delivery of new versions of the application was developed, that requires a minimal
involvement from the user. In this way, the newest features are available on all the tablets from the

pilot sites.

86

Habilitation Thesis

KRISTALY Dominic Mircea

&,

o Bl © %9

fcasé Favorite Lista de camparanur Mesae

e
Cauta dupa Vegetarian
| Diete > Vegan
[Eara > Continut scazut de

grasimi
E
| Feluri b Continut scazul de sare
[Speaﬂ. > Continut scazut de zahar
[Ingrediente principale > | ~Continut scazutde

carbohidrati

Canrinur ricdicar do fibre

¢

Seian

Cupior

Figure 47 - FOOD Ul in Romanian

o o EEE

Suwstpaginag

M o

Appeltaart

Crootmoeders

Recepten DBoodschappenlipst

Cake met
yoght

Figure 48 - FOOD Ul in Dutch

23

Berichten

4

Instelingen

Cevulde pa

e

Lasagne

87

Habilitation Thesis KRISTALY Dominic Mircea

Bl © ¥ o

Ricete Prefesiti Lista dela spesa essaggi Fornu mpusiazoni

Benvenuta Food Farno EABRIAND

=R :

Figure 49 - FOOD Ul in Italian

Every time the user accesses the Home page, the system checks for the latest application version. If it
finds a new version of the application, it will begin to automatically update (Figure 50). The user may

not stop the update, since a new update may introduce critical modifications that can make older

versions unusable.

A new version is available and the application is
currently being updated

Figure 50 - FOOD App automatic update interface

6.4.4. Cross-origin resource sharing

Cross-origin resource sharing is a mechanism that allows JavaScript on a web page to make

XMLHttpRequests to another domain, not the domain the JavaScript originated from.

88

Habilitation Thesis KRISTALY Dominic Mircea

Such "cross-domain” requests would otherwise be forbidden by web browsers, per the same origin
security policy. CORS defines a way in which the browser and the server can interact to determine
whether to allow the cross-origin request. It is more powerful than only allowing same-origin requests,

but it is more secure than simply allowing all such cross-origin requests.

The CORS standard works by adding new HTTP headers that allow servers to serve resources to
permitted origin domains. Browsers support these headers and enforce the restrictions they establish.
Additionally, for HTTP request methods that can cause side-effects on user data (in particular, for HTTP
methods other than GET, or for POST usage with certain MIME types), the specification mandates that
browsers “preflight” the request, soliciting supported methods from the server with an HTTP OPTIONS
request header, and then, upon “approval” from the server, sending the actual request with the actual
HTTP request method. Servers can also notify clients whether “credentials” (including Cookies and

HTTP Authentication data) should be sent with requests.

The webservices developed in the framework of the FOOD project use the HTTP protocol to transfer
the SOAP messages, so the CORS restrictions apply. To resolve this issue, a filter was developed that

scans all the requests and grants access rights to the webservices’ operations [25].

A fragment of this filter is listed below. Modifying the response headers allows the filter to authorize

the requests coming from AJAX calls.

@WebFilter (filterName = "CORSFilter", urlPatterns = {"/*"})
public class FiltruCORS implements Filter
{
@Override
public void doFilter (ServletRequest request, ServletResponse response,
FilterChain chain)
throws IOException, ServletException

HttpServletResponse sResp = (HttpServletResponse) response;
HttpServletRequest sReq = (HttpServletRequest)request;
if (sResp.getHeader ("Access-Control-Allow-Origin")==null)
{
sResp.addHeader ("Access-Control-Allow-Origin", "*");
sResp.addHeader ("Access-Control-Allow-Headers", "Origin, " +
"X-Requested-With, Content-Type, Accept, " +

"Access-Control-Allow-Headers") ;

89

Habilitation Thesis KRISTALY Dominic Mircea

7. Cloud Computing in AAL

Cloud computing plays an important role in enabling AAL's objectives by providing scalable computing

resources, storage, and advanced data processing capabilities.

Cloud computing offers on-demand computing services - from applications to storage and processing
power - over the internet on a pay-as-you-go basis. In the context of AAL, cloud services provide
several advantages, including scalability, flexibility, and the ability to handle large volumes of data while

ensuring high availability and reliability [58].

7.1. Applications of Cloud Computing in AAL

7.1.1. Health monitoring

Cloud computing facilitates continuous health monitoring by collecting data from various sensors and
devices worn by users or embedded in their living environment. For example, smartwatches measuring
heart rate and mobile apps tracking daily activities can have their data stored and analysed in the cloud.

This setup allows healthcare providers to access real-time data, enabling timely interventions [59].

7.1.2. Emergency response systems

In the event of an emergency, such as a fall or medical crisis, cloud-based systems can immediately
notify caregivers and emergency services, providing them with necessary data about the user's

condition and location. This rapid response can be crucial in preventing severe health outcomes [60].

7.1.3. Smart home integration

Cloud computing powers smart home technologies that automate and control lighting, heating, and
security systems to adapt to the needs of the elderly, thereby enhancing their comfort and safety. For
example, voice-controlled systems can adjust settings in the home based on voice commands

processed in the cloud [61].

7.2. Benefits of cloud computing in AAL

7.2.1. Data management and analytics

Cloud platforms offer advanced data analytics tools that help in deciphering complex patterns from the

vast amount of data generated by AAL systems. These insights can lead to personalized care plans and

90

Habilitation Thesis KRISTALY Dominic Mircea

proactive health management. IBM Watson Health is an example of a cloud-based analytics tool used

in healthcare to analyse and interpret large datasets from various sources [62].

7.2.2. Scalability and flexibility

The cloud provides AAL systems with the ability to scale resources up or down as needed without the
need for significant initial investment. This flexibility is vital for accommodating an increasing number

of users or handling varying loads of data traffic [28].

7.2.3. Cost efficiency

By utilizing cloud services, AAL providers can reduce costs associated with the purchase and
maintenance of hardware and software. This reduction can make AAL technologies more accessible
and affordable [63].

7.3. Challenges and considerations

7.3.1. Privacy and security

Data security and privacy are paramount, as AAL systems handle sensitive personal and health
information. Ensuring data encryption, secure access, and compliance with regulations like GDPR are

critical challenges that must be addressed [38].

7.3.2. Reliability and connectivity

The dependency on internet connectivity makes cloud-based AAL systems vulnerable to downtimes
and connectivity issues. Ensuring robust and reliable internet access is crucial, especially in remote
areas [64].

7.3.3. Integration and standardization

Integrating various devices and technologies into a cohesive cloud-based system requires robust
interoperability standards and protocols, which are often lacking in the rapidly evolving loT and

healthcare technology landscape [41].

91

Habilitation Thesis KRISTALY Dominic Mircea

7.4. Flow-based programming in IBM Cloud with Node-RED

7.4.1. Flow-based programming

Invented by J. Paul Morrison in the 1970s, flow-based programming is a way of describing an
application’s behaviour as a network of black-boxes, “nodes” as they are called in Node-RED. Each node
has a well-defined purpose; it is given some data, it does something with that data and then it passes
that data on. The network is responsible for the flow of data between the nodes. It is a model that lends
itself very well to a visual representation and makes it more accessible to a wider range of users. If
someone can break down a problem into discrete steps, they can look at a flow and get a sense of what

itis doing; without having to understand the individual lines of code within each node [65].

7.4.2. Node-RED

Node-RED started life in early 2013 as a side-project by Nick O'Leary and Dave Conway-Jones of IBM's

Emerging Technology Services group.

What began as a proof-of-concept for visualising and manipulating mappings between MQTT topics,

quickly became a much more general tool that could be easily extended in any direction.

It was open-sourced in September 2013 and has been developed in the open ever since, culminating

in it being one of the founding projects of the JS Foundation in October 2016.

Node-RED consists of a Node.js based runtime that you point a web browser at to access the flow
editor. Within the browser you create your application by dragging nodes from your palette into a
workspace and start to wire them together. With a single click, the application is deployed back to the

runtime where it is run.

The palette of nodes can be easily extended by installing new nodes created by the community and the

flows you create can be easily shared as JSON files [65].

7.5. NOAH Server cloud application

The NOAH system is supported by a server application that constitutes a Rest APl and is hosted on the
IBM Cloud platform (formerly known as IBM Bluemix).

For development, the Node-RED tool was used, which runs a Node.js server and presents a visual
programming environment. The programmer consists of several predefined or customized nodes,

organized in flows.

92

Habilitation Thesis KRISTALY Dominic Mircea

This server application deals with data collection from sensors (using MQTT), alert generation, and

serving applications for caregiver-type users and end users.

The NOAH server application is scalable; it runs in a single instance using 512MB of RAM. The

application can be scaled according to needs or financial plans.
Predefined or custom nodes are used, organized across multiple flows to implement the application
logic.

The graphical interface provided by Node-RED offers two options for configuring the nodes: one by
filling in properties in predefined nodes (Figure 51), and another through the implementation of custom

JavaScript code (Figure 52).

Edit http in node

= Method POST M
Q@ URL /register
% Name reqregister

Figure 51 - Sample of predefined Node-RED nodes

Edit function node

W Name preVerifyUniqueUser &~
Function
1 TODO: business logic

2)
3 return msg;

Figure 52 - Sample of custom Node-RED nodes

For the REST API, each function follows a pattern that involves an HTTP request type, a body that
processes the request and generates the response, and an HTTP response type. An example is shown

in Figure 53.

f HTTPResponse
reqlLogineu (=) reqLoginEUParser [—_ () resParser E.
\ @ connected 1 o .

@ connected

Figure 53 - Sample of Node-RED flow

93

Habilitation Thesis KRISTALY Dominic Mircea

7.5.1. Main Flows
The application is logically organized into several workflows, respectively different modules [66].

= User Management flow - encompasses the functions necessary for managing users in both
mobile applications: one intended for caregiver users and the other for end-users. This flow
implements the requisite functions for a caregiver user, including registration, authentication,
automatic login, associating end-users under care, and modifying personal information as
needed. For the end-user, functions are implemented for authentication and managing two
contact points.

» Data Processing flow - contains the necessary functions for data processing, whether data
are collected from sensors or generated by the system. This section includes functions that
provide notifications, alerts, and the sensor statuses for the caregiver application. Also, from
this workflow, alerts for the end-user application are formulated, as well as the latest available
version of the application.

= Data Collection flow - includes the functions necessary for collecting information from
connected devices (sensors) at pilot locations and compiling this data in a MySQL database. In
other words, methods are implemented here that monitor the IoT service, which receives and
transmits data from sensors. Furthermore, there is a mechanism that generates alerts in
accordance with the sensors' statuses and makes them available to the mobile applications.
The most recent sensor status is updated to keep track of sensor performance in case of
malfunctions for various reasons.

* Simulation and Testing flow - contains functions for data collection and on-demand alert
generation and implements facilities for the development and testing of the server application.
This implies that methods are implemented to simulate input to the loT service, reset data for

certain functionalities, test database connectivity, and visualize stored data (Figure 54).

Q Q
showActiveAlerts = —— —— msg.payload E

Q Q

showShareSensorsSiatus —— —_— msg.payload E

Q Q
resetActiveAlerts

Q Q
resetSensorsStatus
Q Q
true et testConySQL —_— e msg
@ connected

Figure 54 - Simulation and testing flow

94

Habilitation Thesis KRISTALY Dominic Mircea

Each flow includes a mechanism to catch all exceptions thrown and logs them in the server console.

Catch Flow Errors

generalErrors T resParser p— HTTPResponse
msg ‘

Figure 55 - Error handling flow
Regardless of its nature, data processing can have one or more of three types of results:

= Alerts - warnings related to technical or non-technical aspects of the devices. Alerts provide
details about the status of the sensors, the connection with the system or the battery level,
situations in which the sensors are in a certain position, which is unusual for a person's routine.
For example, situations can be considered where the entrance door or the refrigerator door has
been open for too long.

= Notifications - warnings related to changes in the behaviour of the monitored person. These
are generated by the behavioural analysis module (BAM) integrated into the system and
represent an aspect of the person's lifestyle, which needs to be analysed and intervened in an
appropriate manner.

= Statistical data - a logging of the evolution of the data taken from the set of sensors. over a

certain period, which may be relevant for an analysis performed by competent persons.

From the perspective that the system is modular and interacts with other components, it presents an

input interface and an output interface.

The application's input interface consists of nodes that represent the loT service, through which
messages are received from sensors and nodes the ways in which requests are received using the
HTTP protocol. The application's output interface consists of response nodes from an HTTP request

and message logging nodes to the server's standard output (console).

7.5.2. Data collecting

Data collection begins with the IBM loT Watson service, to which connected devices send captured
information. In essence, data collection involves listening to events that are generated when loT devices
transmit a message to the system. Events are generated by sensors following a specific protocol,
where a message is sent to the server when their status changes or a predetermined time interval has
passed. In other words, an event is generated when a sensor is triggered, its state changes, or a certain

amount of time has elapsed since the last message [67].

95

Habilitation Thesis KRISTALY Dominic Mircea

This rule covers important aspects of the system's operational continuity. Events are generated only in
the case of changes optimizes sensor autonomy and reduces message traffic. Events generated after
a delay from the last reading are treated as an “online” signal, meaning that if the pre-set period has

expired, the system considers the device disconnected for some reasons.

The system's operational continuity is also ensured by compatibility with multiple versions of
registered sensors. Thus, the system can capture events generated by sensors and interpret the

information received from them appropriately.

All messages received by the system have the same format regardless of the type of sensor used and
what it measures, and they also contain the data necessary for device authentication and

authorization, namely the identifier and type of the sensor and the security code.

In all cases, the message is authorized and interpreted for the purpose of storing the values measured

by sensors, which may then be transformed, if necessary, into notifications and alerts.

_— SaveDAtaINFlow | — GOINOAHKIT (i ' NOA

—_— N3sNOAHKITID
S — saveCrtStatusSensors

o
nsertBedData
L]
e / insertToletData
g wnatDeviceType P ———t

nserthagneticContactData
\ ;i
insenPIRData
(-]
inseriChairData
Figure 56 - Data collecting flow [19]

Firstly, when processing a message it is saved in a buffer memory area available at the processing flow

level.

The sensors connected to the developed system are grouped into kits corresponding to a pilot site
location. In this way, it is distinguished that each elderly person using the system has a set of sensors

of different types, as specified above.

Secondly, it is checked whether the device that transmitted the current message is registered and
belongs to a kit. If it is associated with a set of sensors, data processing continues; otherwise, the event

is ignored.

At this point, if the scenario is complete, several operations are carried out simultaneously and

asynchronously:

= The current status of the sensor is saved.

96

Habilitation Thesis KRISTALY Dominic Mircea

= The measurement taken is stored in the database table corresponding to the respective
sensors kit.

= Alerts are generated if necessary.

To keep track of the current states of the sensors, the latest value is stored in a buffer area, available
across the entire application. This is due to the need to access this information in other processes from
other flows. A flow to rebuild the current status is available and it is called when the app restarts (Figure
57).

At the same time, the information from the current message is saved in the database, in the
corresponding table, considering the type of device. Thus, all values measured by sensors are stored
for a relevant period, which constitutes the data source used by the behavioral analysis module to

provide relevant results.

A [- 1
Gefl atestStafus ' | ——— etExistingSensors
[] 1 ¢ < j—

@ connected !

(:: repopulateSensorsStatus

)
j—
B connected _...---"‘

< : repopulateCriSensorsStatus : — m (]

Figure 57 - Rebuilding the current status flow

Also, the necessity of generating an alert is checked. In this regard, there are two methods of generating
these alerts: they can be transmitted by sensors (low battery, cable disconnection) or can be generated

by the system (loss of connection with the loT service).

Both the alerts generated directly by sensors and those generated by the system are represented in a

standardized form as follows [67]:

{
“alert id”: alertID,
“user id”: userlID,
“alert type”: alertType,
“checked”: wvalue,
“tstamp”: tstamp

7.5.3. Data processing

The flow responsible for data processing consists of methods that process data either upon arrival in

the system or upon request.

97

Habilitation Thesis KRISTALY Dominic Mircea

When an event is generated in the loT Watson service, the information received from sensors is

processed for storage in the database and to construct notifications or alerts for the targeted users.

On-demand data processing is built on the basis of the HTTP request-response pattern (Figure 58).
Briefly, at the time a request is made, data are processed in accordance with the desired aspect and
served as a response.

Request Data

HTTE/GET

bussiness logic

HTTF Response

Figure 58 - Typical HTPP request-response in Node-RED [67]

All responses to HTTP requests are also standardized, thereby ensuring uniformity in interactions with

other internal or external modules:

{
"errorCode": O,
"response": { ... }
}
As per the example above, any response is generated over the HTTP protocol, in the form of a JSON

object consisting of two properties:

» errorCode — The encoding is binary; the value "0" signifies that the operation was successful,
while the value "1" indicates that errors occurred during the request processing,.

» response — This is the actual message that the system returns as a response. Depending on
the scenario and requirements, this property can take various forms and therefore must be

appropriately handled in accordance with the requested path.

The REST API provides other modules of the application, or external ones, with resources such as
notifications, alerts, sensor statuses, and unprocessed data for further processing or interpretation in

the form of graphs [67].

7.5.4. Notifications

The behavioural analysis module interprets stored data and generates notifications, which are also

saved in the database. The notifications are dependent on a system user.

In the example below, the structure of such a notification provided to users by the system is
exemplified. It follows a standard format and contains a random number of such alerts depending on

their occurrence, within a predefined period [67]:

98

Habilitation Thesis KRISTALY Dominic Mircea

"notification id": 1,
"behaviour type": nt,
"tstamp": ts,

"user id": uid

"notification id": 2,
"behaviour type": nt,
"tstamp": ts,

"user id": uid

]

The content of the response message consists of a list of objects describing the notifications. Details

are divided into four properties [67]:

= potification_id which is a numeric identifier for the notification.

= behavior_type which is a numeric value representing the type of notification, i.e., a pattern
found in the monitored person's behaviour or a change therein.

= tstamp specifies the date and time the notification was produced.

= user_idis the identifier of the user targeted by the notification.

7.5.5. Alerts

Like the current measurements, notifications and alerts are stored in the database, but they are also
keptin a buffer area at the application level. This is because alerts are generated in another processing
flow, and through the volatile memory area, they are accessed much more quickly, and also because

alerts have a validity term.

There are two different scenarios in which alerts are provided, but in both cases, the result is similar.
Alerts can be provided depending on the desired number of them and can be accessed in different ways.
If only one alert is desired, it is provided immediately from the application's buffer area, but if multiple
alerts are desired simultaneously, they are retrieved from the database in a limited number based on a

pre-established period that assumes the alerts are active.

In the example below, the standard model according to which alerts are constructed is illustrated [67].
[

“alert id”: alertID,
“user id”: userlID,
“alert type”: alertType,
“checked”: value,
“tstamp”: tstamp

99

Habilitation Thesis KRISTALY Dominic Mircea

FoA
“alert id”: alertlID,

“user id”: userlID,
“alert type”: alertType,
“checked”: wvalue,
“tstamp”: tstamp

]

The content of the message consists of a list of alert type objects which are described by:

= alert_id - the unique identifier of the respective alert.

= user_id - the identifier of the user targeted by the produced alert.
= alert_type — type of alert, describing the reason for its generation.
= checked - validator for acknowledging it.

» tstamp - the date and time at which it was generated.

7.5.6. Simulation and testing

The system's server application also presents a testing and simulation mechanism to facilitate the
development process and to identify potential problems. Each type of communication between devices
and the system has testing methods for developers and simulation but presenting different

implementation in accordance with the requirements.

This mechanism targets predominantly technical aspects, offering methods to verify the
communication between connected sensors and the data collection system, the storage of information
in a persistent database in a set format, the processing of collected data to generate alerts and

notifications, etc.

For verifying and simulating the connection to the system's loT service, templates are used. In addition,
nodes are used that offer the possibility to inject certain messages at the developer's request or at

configurable periods of time.

In Figure 59 the method for verifying the data collection process recorded by sensors is presented.

Bed1 -1 BED ST DISCONMNECTED \

Bedi 0 BED ST NOT TRIGGERED pr—
/ @ connected

Bedi 1 BED ST TRIGGERED

Figure 59 - Sensor status testing flow

100

Habilitation Thesis KRISTALY Dominic Mircea

In this case, the three states in which a sensor can be are verified, namely: connected/disconnected,
triggered or untriggered. Similarly, the battery level can also be tested by assigning values to the

corresponding property, which are on either side of a pre-established threshold.

On the other hand, the logic of generating alerts can be tested. The following listing includes the

method for generating alerts, which is also implemented on the main flow but fed with constant data.

Once the data collection events and the generation of alerts have been tested, they can be visualized
by developers and, if necessary, be reset (Figure 60) [67].
}

. showActiveAlerts

L

getActiveAlers

Jp—

. showShareSensorsStatus — getSensorsStatus

LS = |

.. resetActiveAlerts = ————— doResetAlerts

—

resetSensorsStatus =~ —— doResetSensorsStatuses —

Figure 60 - Viewing and resetting alerts and statuses

7.5.7. Communication with sensors

Messages are sent to an agent via the MQTT protocol which involves a level of protection through SSL
security certificates and a level of authentication through a username and password.
The format of messages received by the system is JSON and has the following structure:

{

"sid": <text>,

"rtc _send" : <number>,
"battery" : <number>,
"msg_ type" : <text>,
"payload"

{1

= sid—is the device identifier and consists of two characters representing the type of sensor and
12 characters representing the MAC address.

= rtc_send - is the numeric value of the timestamp of the message sending and represents the
number of seconds elapsed since the date of 1/1/2000 00:00:00.

= battery — is the numeric value, in mV, indicating the battery level at the time of sending the
message.

= msg_type—isakeyterm that differentiates data transmission messages from alert messages.

101

Habilitation Thesis KRISTALY Dominic Mircea

» payload - is the content of the message and has a different structure depending on its type. It
may contain a variable list of pairs of numerical values, for the state of the sensor and the
timestamp of the measurement or a variable list of parameters that describe the generated

alert.

Messages are transmitted once an hour, which means that each message timestamp must be

interpreted, thus there are two cases:

= If the timestamp value of the message falls within a certain error margin from the server's
timestamp at the time of reception, then it is considered to have been transmitted correctly
and is used as such.

= |If the timestamp value exceeds the error margin relative to the server's, the timestamp is
considered relative and must be interpreted. Thus, the gap is calculated by the difference
between the message sending date and the receiving date, which is then subtracted from the

server date to obtain the exact moment of measurement.

102

Habilitation Thesis KRISTALY Dominic Mircea

(B-ii) The evolution and development plans for career development

Didactic activity

The author started his academic career in 2005 in the Automation Department of Transilvania
University of Brasov (part of the Electrical Engineering and Computer Science Faculty), right after
graduating the Automation and Industrial Informatics program study at the same university. He
continued with a MSc program at the same university — Information and Communication Systems and
Technologies, which he graduated in 2007. He was awarded the PhD title in 2011.

The author's academic interests gravitate towards the Information Technology field, which is
highlighted by the courses he supports in the Department. At present, the author gives lectures for the

following courses:

» Computer Programming and Programming Languages — 2" Module (Java Programming
Language) — 1=t year for AIA?, TI° and RO* program studies

» Object Oriented Programming (with applications in C# language) — 2™ year for AIA and TI
students

» Data acquisition and processing — 3" year Tl

» (Cryptography — 4™ year Tl

» Video signal capture and image processing — 1 year of the SAATI> MSc program

» Fundamentals of Cryptography in Applied Scenarios — 1% year of the CS® MSc program (in
English)

» Web application — 2™ Module — 2™ year of the TIN” MSc program (in English)

Also, he serves the practical applications activities for:

» Data structures and Algorithms — 2" year for Tl students

» Object Oriented Programming (with applications in C# language) — 2™ year for AIA and TI
students

» Web programming — 3" year for Tl program study

» (Cryptography — 4™ year Tl

» Video signal capture and image processing — 1°t year of the SAATI® MSc program

2 AIA — Automation and Applied Informatics

3 TI - Information Technology

4 RO - Robotics

5 SAATI — Advanced systems in automation and information technology
6 CS — Cyber Security

7 TIN — Internet Technologies

8 SAATI — Advanced systems in automation and information technology

103

Habilitation Thesis KRISTALY Dominic Mircea

» Web application — 2" Module — 2™ year of the TIN® MSc program (in English)

In the past, the author also supported other disciplines, like: Computer Programming and Programming
Languages — 1" Module (Programming in C/C++) (both in Romanian and English), Graphic processing,

Reliability and diagnosis, Information security and Integrated Software Systems.

The author published 5 volumes to support these teaching subjects. The volumes are updated

periodically, to keep up with the technological changes and available tools.

To support actively the evolution and of education and to help increase the quality of teaching the

author participated in several POSDRU projects:

= Stagii moderne de practica in domeniul electrotehnic, 2009 - 2012

» FlexFORM - program de formare profesionala flexibila pe platforme mecatronice, 2010 - 2013

= Jnvatd automaticg, 2010 — 2013

* Program Strategic pentru Promovarea Inovarii in Servicii prin Educatie Deschisa, Continua
(INSEED), 2010 — 2013

In his career, the author coordinated over 100 Diploma projects and Dissertation thesis with subjects

from the fields of Information Technology and Automation.

The author has always been supporting the students and has been involved in their academic
endeavours, encouraging them to expand their knowledge beyond the subjects treated in the typical
courses and to participate in conferences or competitions, such as the Student Scientific Circles Session
that is organized every year by the University (the author coordinated tens of projects in this event).
Also, the author coordinated teams of students for internal projects and competitions, such as AFCO™
or "My Faculty” In 2017, a team coordinated by the author won 2" place in the 2nd edition of the “Java

Competition for Universities” organized by ADFABER and sponsored by Oracle Academy.

Some of the research efforts of the author were directed to subjects related to education (such as tools

and methods for vocational education or ITC tools for a more efficient education process).

The author will continue to support students’ activities and initiatives in the future and maintain a
truthful relationship with them, to help them achieve their potential. In the near future the author plans

to organize a club for students with passion for the IT domain (/T Guild).

To the extent that legal and economic circumstances allow, and provided that the author’s performance

and results meet the criteria for advancement in the academic hierarchy, he will pursue this path.

9 TIN — Internet Technologies
10 AFCO - Absolventii in fata companiilor

104

Habilitation Thesis KRISTALY Dominic Mircea

Research activity

The author has been involved in international and national research projects since 2005, as a member

or as the coordinator for the Romanian partner.

In 2006 he enrolled in the PhD program offered by Transilvania University of Brasov. In 2011 he was
awarded the title of PhD in the Electrical Engineering domain, based on the thesis “Contributions on

the unified treatment of capture equipment in video surveillance systems"”.

All the author’s research efforts have been focused on the Technology Information field. Both the PhD
thesis and the author’s publications reflect his attraction to this dynamic field, with a particular interest
in distributed applications and the use of programming languages and modern technologies for
creating platforms that can serve as the basis for complex systems, useful in multiple fields and for

integrating different systems.

The author published over 50 research papers, with more than 70 citations, covering broad subjects
like software architecture, AAL systems, IoT, complex energy monitoring system, green energy, ICT

tools for e-learning, smart houses:

= 2 book chapters
= 23 articles and conference papers, included in WoS (4 in Q1 and Q2)
» 13 conference papers indexed in recognized international databases (such as Scopus or IEEE)

= 15 conference papers indexed in other databases

The author has been collaborating since 2005 with several entities in international projects coordinated

by the author (for the Romanian partner), such as:

= Framework for Optimizing the prOcess of FeeDing (FOOD), AAL Program, 2011 — 2014

= Not Alone at Home (NOAH), AAL Program, 2016 — 2020

= SAfety of elderly people and Vicinity Ensuring (SAVE), AAL Program, 2019 — 2023

» Increase sEIf Management and counteract social IsoLatlOn using a vocal assistant enabled

virtual concierge (EMILIO), AAL Program, 2022-present

Also, the author was involved, as member of the team, in many other international research projects,
like:

= DB2IMS - An Information Management System Increasing Reliability in Data Transfer Using
XML Technology, IBM Faculty Awards Cycle 3 CEMA , 2005

= Portale della Conoscenza per Mobile Object Learning strutturate (OLECOLE), LdV Program,
2005 - 2007

105

Habilitation Thesis KRISTALY Dominic Mircea

Vocational Education Training to PROFessionals for a European Solid Space of collaboratiON
And Learning (VET PROF.E.S.S.ION.A.L.), LdV Program, 2005-2007

ELMSET — Using Eclipse to Develop a Learning Management System, a SCO Editor, and a Test
Tool for Evaluation SCOs’ Compatibility with SCORM Standards, IBM Innovation Award, 2006
Individualized Learning Enhanced By Virtual Reality (IDENTITY), Minerva Program, 2006 — 2008
Organizazione delle ceRtificazioni con Smart cArd nei Mestleri e nelle inNOvazioni del maRE
(0.R.S.A. MI.NO.RE.), LdV Program, 2006 — 2008

Valorization of an experiment-based training system through a transnational education
network development (VETTREND), LdV Program, 2006 — 2008

Testing and Implementing EQF - and ECVET-Principles in Trade Organizations and Education
(TipToe) — LdV Program, 2008 — 2010

WEEGEN- Smarter Buildings: Intelligent Distributed Workspace for Energy Efficiency in the
GENIUS Campus, Share University Research — IBM, 2009 — 2011

NEW employees Development And Learning: technological methods and tools in favour of the
professional development of new employees (NEW DEAL) — LdV program, 2012 — 2014

Using IBM CloudBurst and rational Application Developer toDevelop Mobile Applications for
Remote Healthcare Monitoring with Feedback Functions MHMON, IBM Faculty Award, 2012
Healthy Life support through Comprehensive Tracking of individual and Environmental
Behaviors (HELICOPTER), 2013 - 2016

The author was also involved in national grants/contracts, as a team member in:

Tehnici si tehnologii de realitate virtuald aplicate in inginerie, medicina si arta (TRIMA), CNCSIS,
2006 - 2008

Sistem Integrat de Gestiune, control al accesului si de comUnicare intranet si inteRnet in
caminele studentesti — S..G.U.R extins - Complex Memorandului si Complexul Colina
Universitatii - 2006 — 2007

Sistem complex pentru securitatea fizica a PRO-DD (alarma intruziuni, incendiu, control acces
si supraveghere video), 2009 — 2011

Solutii GREEN pentru managementul energiei din Centrul de Date in contextul functionarii unui
sistem distribuit de management al resurselor si documentelor din PRODD. Proiect pilot pentru
Mini Centrul de Date care deserveste echipele de proiectare si management ale PRO-DD, 2009
- 2010

Program strategic de CD pentru crestere si inovare in domeniul serviciilor - CRIS, 2010 — 2011
Realizarea unei strategii pentru implementarea unui pilot de retea electrica inteligenta in cadrul
SCELECTRICA SA, SCELECTRICA SA, 2011 - 2012

106

Habilitation Thesis KRISTALY Dominic Mircea

Cresterea competitivitatii economiei romanesti prin cercetare, dezvoltare si inovare - Transfer
la operatorul economic- Masurarea consolidata si transmiterea parametrilor energetici spre
punctele de colectare (CON-INTEL), 2016 — 2018

Cercetari privind identificarea si proiectarea solutiilor optime de modernizare a atelierelor de
Vopsitorie, Mase plastice si a instalatiilor de compensare cu aer proaspat preincalzit la atelierul
Tratamente de suprafata, 2017

Cercetari privind testarea sistemelor de calcul si de comunicatie, 2017

He has been also involved in organizing international conferences, such as:

The 11th International Conference on Optimization of Electrical and Electronic Equipment
OPTIM'08, 2008

The 12th International Conference on Optimization of Electrical and Electronic Equipment
OPTIM"0, 2010

The 6th Conference on Speech Technology and Human-Computer Dialogue (SpeD), 2011

The 13th International Conference on Optimization of Electrical and Electronic Equipment
OPTIM"12, 2012

The 14th International Conference on Optimization of Electrical and Electronic Equipment
OPTIM"4, 2014

New Trends on Sensing - Monitoring - Telediagnosis for Life Sciences, 2015

10th International Conference on Photoexcited Processes and Applications, 2016

2nd International Conference on Nuclear Photonics, 2018

The author has been taking part in the coordinating team for several PhD students:

Nr. | Doctorand / Doctor | Titlul tezei Teze
crt. finalizate (TF)
sau in stagiu
(TS)
1 | Costin GRIGORESCU | Cercetari privind monitorizarea si controlul consumatorilor TF - 2012
energetice
2 | Florian NEUKART System Applying High Order Computational Intelligence in TF - 2013
Data Mining and Quantum Computational Considerations
Concerning the Future of Artificial Intelligence
Inteligenta computationald in data mining si calculul cuantic,
precum si consideratii privind viitorul inteligentei artificiale
3 | Peter SZAKACS- Monitorizarea persoanelor intr-un mediu inteligent TF - 2013
SIMON
4 | MUHAMMAD Manar | Application of Fuzzy Logic in Electrical Power Network, TF - 2013
Ahmad Sabry Industry and Safety

107

Habilitation Thesis

KRISTALY Dominic Mircea

Mahmoud Saeed Aplicarea logicii FUZZY in retelele electrice de distributie,
Ahmad Salih industrie si securitatea muncii
5 | Valentin GHISA Cercetari privind modalitati de echilibrare si optimizare a TF - 2015
transferului informational
6 | Milian BADEA Cercetari privind sisteme de comutare si pozitionare pentru TF - 2018
surse de energie regenerabild - 2013
7 | Florin OGIGAU- Cercetari privind securitatea informatiei in sistemele cloud TF - 2018
NEAMTIU computing
8 | Adrian MANEA Cercetari privind securitatea datelor in sistemele informatice TF - 2018
9 | Ligia Georgeta Integrarea serviciilor de tip cloud computing in centrele de TF - 2019
GUSEILA prelucrare a informatiei
10 | Dragos Vasile Inteligenta Artificiald i~ n sprijinul persoanelor cu nevoi TF - 2023
BRATU speciale
11 | Ovidiu PASCUTOIU Cercetari privind performanta securitatii retelelor TS
12 | Liviu Doru DOGAR Provocari de securitate cibernetica la gestionarea in cloud a TS
inregistrarilor video
13 | Cristian VIZITIU Abordadri sistemice ale etapelor ciclului de viatd al solutiilor TS
integrate si/sau conectate in domeniul performantei umane
14 | Denis SINANA]J User Interaction for device software update TS
15 | Maria Alexandra Inteligenta Artificiald in domeniul medical TS
ZOLYA
16 | Edel Abreu Scholarly Knowledge Graph relation extraction TS
HERNANDEZ
17 | Reyder Cruz de la Improvements of the associative classifier accuracy TS
0OSA
18 | Asday Savon Systems for Storage and Interhospital Transmission of TS
BERENGUER Medical Images

The author can outline several directions of interest that he is intending to pursue in the future:

» Using information and communication technologies (ICT) to optimize the education process
(e.g. using gamification to stir the interest of the novel student)

» Software platforms for distributed computing (e.g. developing and assessing a software
platform designed to improve the efficiency and scalability of distributed computing tasks in
various scientific domains.)

*» Hardware and software systems to assist elderly or disabled people (e.g. creating and
evaluating a series of integrated hardware and software solutions tailored to assist disabled or
elderly individuals in their daily activities.)

» Industrial process automation applications (e.g. investigate the implementation of loT and real-
time data analytics to enhance automation and efficiency in manufacturing processes.)

» The use of Machine Learning in tools for day-to-day use (e.g. developing machine learning
models that can be integrated into daily use tools such as personal assistants,
recommendation systems, and health monitors.)

108

Habilitation Thesis KRISTALY Dominic Mircea

Also, one of the main concerns in the future will be to raise funds for the research activities, by applying
for grants, searching for contracts with local and national industrial partners, and participating in
project competitions.

The results of these studies, that align with his personal interests and those of the department. will be
published in articles and papers, particularly targeting top rated journals (mainly from Q1 and Q2).

Support and administrative activities

Besides the didactic and research activities, the author has been actively involved in the Department's,
Faculty's, and University's day-to-day activities. He is responsible for coordinating the team in charge
of organizing the schedule of the Electrical Engineering and Computer Science Faculty, which thought
him the importance of maintaining an atmosphere of understanding and balance among the members
of a group to achieve positive outcomes. The author is also in charge of updating the Faculty's website

and official Facebook page (created together with the students).

He also has been involved in the accreditation and reaccreditations processes for the Technology

Information study program.

The author is a member of the Permanent Admission Office for the Faculty, member of the Bachelor's
Degree Committees for the Tl and AIA study programs, the Quality Assurance Committee of the
Department, member of the GDPR committee of the Faculty. From 2024 the author is member in the

Faculty Council (previously was an alternate member).

The author will continue to be involved in all activities of the Department, Faculty and University.

109

Habilitation Thesis KRISTALY Dominic Mircea

(B-iii) Bibliography

[1]

[2]

3]

[4]

[5]

(6]

[7]

8]

[9]

L. Lamport, "The Part-Time Parliament," in ACM Transactions on Computer Systems, 1998.

D. Ongaro and J. Ousterhout, "In Search of an Understandable Consensus Algorithm," in
USENIX Annual Technical Conference, 2014.

C. Cachin, R. Guerraoui and L. Rodrigues, in Introduction to Reliable and Secure Distributed
Programming, Springer, 2011.

A. Tanenbaum and M. Van Steen, in Distributed Systems: Principles and Paradigms.,
Pearson, 2017.

G. Coulouris, J. Dollimore, T. Kindberg and G. Blair, in Distributed Systems: Concepts and
Design, Addison-Wesley, 2011.

W. Stallings, in Cryptography and Network Security: Principles and Practice, Pearson
Education, 2006.

T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall,
2005.

S. Newman, Building Microservices: Designing Fine-Grained Systems, O'Reilly Media, 2015.

G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions, Addison-Wesley Professional, 2003.

[10] N. Narkhede, G. Shapira and T. Palino, Kafka: The Definitive Guide, O'Reilly Media, 2017.

[11] D. Agrawal, S. Das and A. E. Abbadi, "Big data and cloud computing: Current state and future

opportunities,” in Proceedings of the 14th International Conference on Extending Database
Technology, 2012.

[12] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of

Polyglot Persistence, Addison-Wesley, 2012.

[13] B. Nedelcu, Beginner's Guide to NGINX: Application Deployment and Security, Packt

Publishing, 2019.

[14] J. Turnbull, The Docker Book: Containerization is the new virtualization, James Turnbull,

2016.

110

Habilitation Thesis KRISTALY Dominic Mircea

[15] E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446," 2018.

[16] B. Beyer, C. Jones, J. Petoff and N. R. Murphy, "Site Reliability Engineering: How Google
Runs Production Systems," O'Reilly Media, 2016.

[17] FOOD Consortium, "AAL FOOD Project," [Online]. Available: https://www.aal-
europe.eu/projects/food/. [Accessed 29 04 2024].

[18) NOAH Consortium, “NOAH Project,” [Online]. Available: https://www.aal-
europe.eu/projects/noah/. [Accessed 29 04 2024].

[19] S. Moraru, A. Mosoi, D. D.M. Kristaly, M. I., V. Petre, D. Ungureanu, L. R. D. Perniu and M.
Cocuz, "Using loT assistive technologies for older people non-invasive monitoring and living
support in their homes," International Journal Of Environmental Research And Public
Health, vol. 19, no. 10, 2022.

[20] S. Moraru, L. Perniu, D. Ungureanu, A. Mosoi, D. Kristaly, F. Sandu and A. Manea, "Home
assisted living of elderly people using wireless sensors networks in a cloud system," in
International Symposium in Sensing and Instrumentation in loT Era (1SSl), Shanghai, People's
Republic of China, 2018.

[21] HELICOPTER Consortium, "HELICOPTER AAL project," [Online]. Available: https://www.aal-
europe.eu/projects/helicopter/. [Accessed 29 04 2024].

[22] SAVE Consortium, "SAVE AAL Project," [Online]. Available: https://save-aal.eu/en/.
[Accessed 29 04 2024].

[23] M. Papazoglou, Web Services: Principles and Technology, Pearson Education, 2008.

[24] G. Alonso, F. Casati, H. Kuno and V. Machiraju, Web Services: Concepts, Architectures and
Applications, Springer-Verlag, 2004.

[25] D. Kristaly, S. Moraru, F. Neamtiu and D. Ungureanu, "Assistive monitoring system inside a
smart house," in International Symposium in Sensing and Instrumentation in loT Era (ISSl),
Shanghai, People's Republic of China, 2018.

[26] NYX Wolves, "Implementing Micro Frontend Architecture in the Web App," [Online].
Available: https://nyxwolves.com/implementing-micro-frontend-architecture-in-the-web-
app. [Accessed 02 05 2024].

111

Habilitation Thesis KRISTALY Dominic Mircea

[27] D. Kristaly and S. Moraru, "An incorporated solution to support elder people in staying in
their familiar surroundings," in International Congress on Information and Communication
Technology (ICICT), London, United Kingdom, 2022.

[28] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, "Internet of Things (loT): A vision,
architectural elements, and future directions," Future Generation Computer Systems, vol.
29, no. 7, pp. 1645-1660, 2013.

[29] A. Botta, W. de Donato, V. Persico and A. Pescapé, "Integration of Cloud computing and
Internet of Things: A survey," Future Generation Computer Systems, vol. 56, pp. 684-700,
2016.

[30] H. Alemdar and C. Ersoy, "Wireless sensor networks for healthcare: A survey," Computer
Networks, vol. 54, no. 15, pp. 2688-2710, 2010.

[31] C. Lord, J. H. Colvin and A. Mihailidis, "An analysis of the technology acceptance model in
understanding university students' behavioral intention to use e-learning," Educational
Technology & Society, vol. 21, no. 3, pp. 25-47, 2018.

[32] D.J. Cook, J. C. Augusto and V. R. Jakkula, "Ambient intelligence: Technologies, applications,
and opportunities," Pervasive and Mobile Computing, vol. 5, no. 4, pp. 277-298, 2009.

[33] S. Patel, H. Park, P. Bonato, L. Chan and M. Rodgers, "A review of wearable sensors and
systems with application in rehabilitation," Journal of NeuroEngineering and Rehabilitation,
vol. 9, no. 1, p. 21, 2012.

[34] D.J. Cook, J. C. Augusto and V. R. Jakkula, "Ambient intelligence: Technologies, applications,
and opportunities," Pervasive and Mobile Computing, vol. 5, no. 4, pp. 277-298, 2009.

[35] B. Allen, K. Dresner and H. Wallach, "Surveillance and Security. Technological Challenges,"
vol. 12, pp. 445-456, 2005.

[36] G. Lopez, L. Quesada and L. A. Guerrero, "Ubiquitous computing: Applications, challenges
and future trends," Smart Computing Review, vol. 1, no. 4, pp. 299-308, 2011.

[37] V. C. Gungor and G. P. Hancke, "Industrial wireless sensor networks: Challenges, design
principles, and technical approaches," IEEE Transactions on Industrial Electronics, vol. 56,
no. 10, pp. 4258-4265, 2009.

[38] R. H. Weber, "Internet of Things — New security and privacy challenges," Computer Law &
Security Review, vol. 26, no. 1, pp. 23-30, 2010.

112

Habilitation Thesis KRISTALY Dominic Mircea

[39] B. Mittelstadt, "Ethics of the Health-Related Internet of Things: A narrative review," Ethics
and Information Technology, vol. 19, no. 3, pp. 157-175, 2017.

[40] L. D. Xu, W. He and S. Li, "Internet of Things in industries: A survey," IEEE Transactions on
Industrial Informatics, vol. 10, no. 4, pp. 2233-2243, 2014.

[41] J. A. Stankovic, "Research directions for the internet of things," IEEE Internet of Things
Journal, vol. 1, no. 1, pp. 3-9, 2014.

[42] R. Khan, S. U. Khan, R. Zaheer and S. Khan, "Future internet: The internet of things
architecture, possible applications and key challenges," Frontiers in Artificial Intelligence
and Applications, vol. 10, no. 2, pp. 256-270, 2012.

[43] M. Zeng, P. H. Pathak and P. Mohapatra, "Analyzing shopper's behavior through WiFi
signals," in Proceedings of the 2nd workshop on Workshop on Physical Analytics, 2017.

[44] V. Rialle, C. llivet, C. Guigui and C. Hervé, "What do family caregivers of Alzheimer's disease
patients desire in smart home technologies?," Gerontechnology, vol. 7, no. 2, pp. 96-100,
2008.

[45] C. Grigorescu, S. Moraru, D. Kristaly and M. Badea, "DB40bjects based buffering application
for use in software monitoring systems," in International Danube-Adria-Association-for-
Automation-and-Manufacturing Symposium (DAAM), 2011.

[46] V. Stara, M. Rampioni, A. Mosoi, D. Kristaly, S. Moraru, L. Paciaroni, S. Paolini, A. Raccichini,
E. Felici, L. Rossi, C. Vizitiu, A. Nistorescu, M. Marin, G. Tonay, A. Toth, T. Pilissy and G.
Fazekas, "A technology-based intervention to support older adults in living independently:
protocol for a cross-national feasibility pilot," International Journal Of Environmental
Research And Public Health, vol. 19, no. 24, 2022.

[47] E. Codd, "A Relational Model of Data for Large Shared Data Banks," Communications of the
ACM, 1970.

[48] C. Date, An Introduction to Database Systems, Addison-Wesley, 2004.

[49] T. Harder and E. Rahm, "Database Systems for New Applications," ACM Computing Surveys,
2012.

[50] M. Stonebraker and R. Cattell, "10 Rules for Scalable Performance in 'Simple Operation'
Datastores," Communications of the ACM, 2012.

[51] S. Moraru, A. Mosoi, D. Kristaly, F. Sandu, D. Floroian, D. Ungureanu and L. Perniu, "“Save”
- An integrated approach of personal and home safety for active assisted living," in IFIP WG

113

Habilitation Thesis KRISTALY Dominic Mircea

12.5 International Conference on Artificial Intelligence Applications and Innovations (AlAl),
Hersonissos, Greece, 2021.

[52] C. Owsley, R. Sekuler and S. D., "Contrast sensitivity throughout adulthood," Vision
Research, vol. 23, no. 7, pp. 689-699, 1983.

[53] J. Botwinick and M. Storandt, Memory, related functions and age, 1974.

[54] J. Berkowitz and S. Casali, "Influence of Age on the Ability to Hear Telephone Ringers of
Different Spectral Content," Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, vol. 34, no. 2, pp. 132-136, 1990.

[55] M. Vercruyssen, "Aging and Technology: A Developmental View," Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, vol. 40, no. 3, pp. 138-140, 1996.

[56] L. Burzagli, L. Di Fonzo, P. Emiliani, L. Boffi, J. Bak, C. Arvidsson, D. Kristaly, L. Arteconi, G.
Matrella, I. De Munari and P. Ciampolini, "The FOOD project: Interacting with distributed
intelligence in the kitchen environment," in International Conference on Universal Access in
Human-Computer Interaction (UAHCI), Heraklion, Greece, 2014.

[57] C. Cristoiu, S. Moraru, D. Kristaly, D. Ungureanu and I. Moraru, "Home-based System for
Elderly Assisted Living," in International conference on research and innovation in computer
engineering and computer sciences, 2017.

[58] P. Mell and T. Grance, The NIST Definition of Cloud Computing. National Institute of
Standards and Technology, 2011.

[59] A. Kulkarni and S. Sathe, "Healthcare Applications of the Internet of Things: A Review,"
International Journal of Computer Science and Information Technologies, vol. 5, no. 5, pp.
6221-6225, 2014.

[60] A. J. Jara, M. A. Zamora and A. F. G. Skarmeta, "An Internet of Things-based personal device
for diabetes therapy management in Ambient Assisted Living (AAL)," Personal and
Ubiquitous Computing, vol. 18, no. 4, pp. 1017-1028, 2014.

[61] M. R. Alam, M. B. |. Reaz and M. A. M. Ali, "A Review of Smart Homes—Past, Present, and
Future," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 42, no. 6, pp. 1190-1203, 2012.

[62] "Watson Health," IBM, 2021. [Online]. Available: https://www.ibm.com/watson-health.

114

Habilitation Thesis KRISTALY Dominic Mircea

[63] X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai and S. Wang, "A review of industrial wireless
networks in the context of Industry 4.0," Wireless Networks, vol. 23, no. 1, pp. 23-41, 2013.

[64] S. Zeadally and N. Jabeur, "Privacy in Internet of Things (loT) technologies," Procedia
Computer Science, vol. 98, pp. 461-466, 2016.

[65] OpenlS Foundation & Contributors, "Node-RED," [Online]. Available: https://nodered.org/.
[Accessed 02 05 2024].

[66] D. Kristaly, S. Moraru, V. Petre, C. Parvan, D. Ungureanu and A. Mosoi, "A solution for
mobile computing in a cloud environment for ambient assisted living," in Mediterranean
Conference on Control and Automation (MED), Zadar, Croatia, 2018.

[67] D. Kristaly, V. Petre and S. Moraru, "Using loT and cloud technologies in monitoring systems
for elderly," in International Conference on Sensing and Instrumentation in loT Era - ISSI,
Lisbon, Portugal, 2019.

115

