The use of lightweight structures and optimization methods – a need for a more effective engineering

Habilitation Thesis

Assoc. Prof. Dr. Eng. Marian Nicolae VELEA

Mechanical Engineering Department marian.velea@unitbv.ro

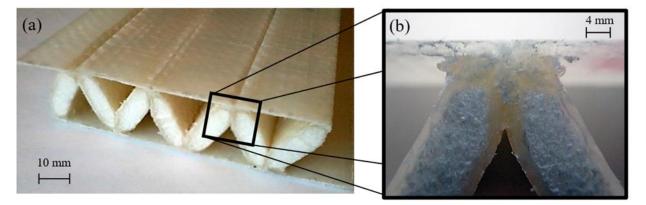
Universitatea Transilvania din Brașov FACULTATEA DE INGINERIE MECANICĂ

Content

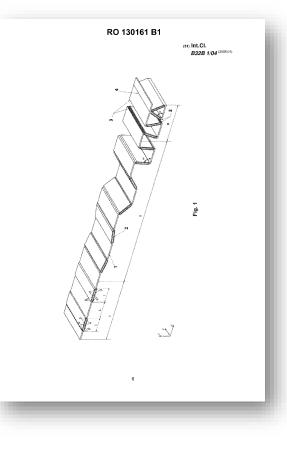
- 1. Scientific and professional achievements (2012 up to date)
 - Hierarchical sandwich structures
 - Hybrid structures
 - Parametric optimization
 - Non-parametric optimization
 - Multi-objective optimization
- 2. The evolution and development plans for career development

٠

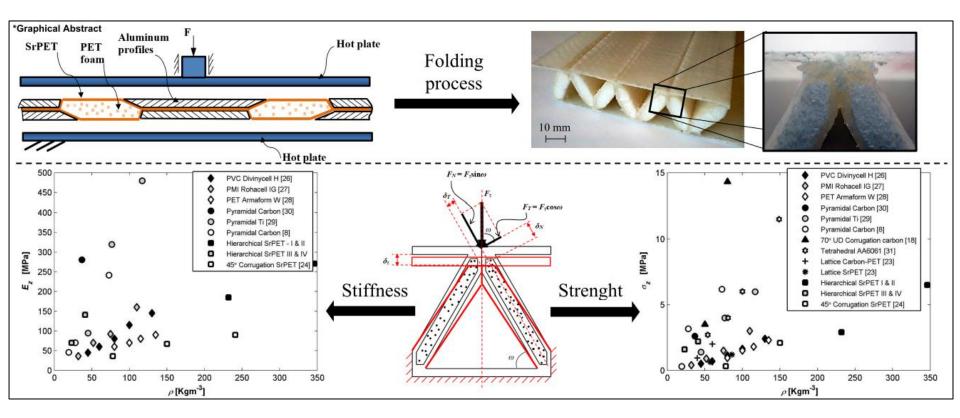
Hierarchical sandwich structures



Hierarchical sandwich structures


Granted patent

Trifold – hierarchical sandwich structure

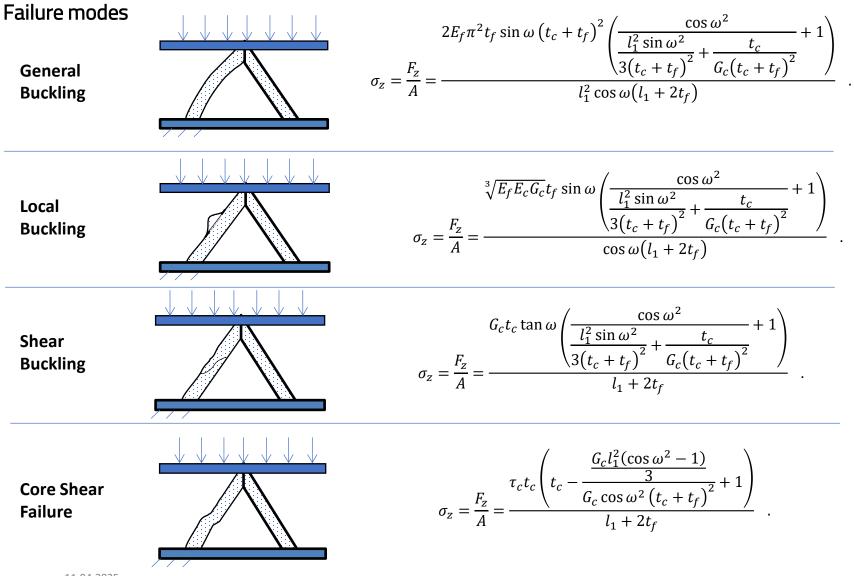

- (a) The resulted hierarchical sandwich structure
 - (b) Cross section within the joining area

Hierarchical sandwich structures

Trifold – hierarchical sandwich structure

Analytical models for stiffness and strength evaluation in out-of plane compression

Hierarchical sandwich structures

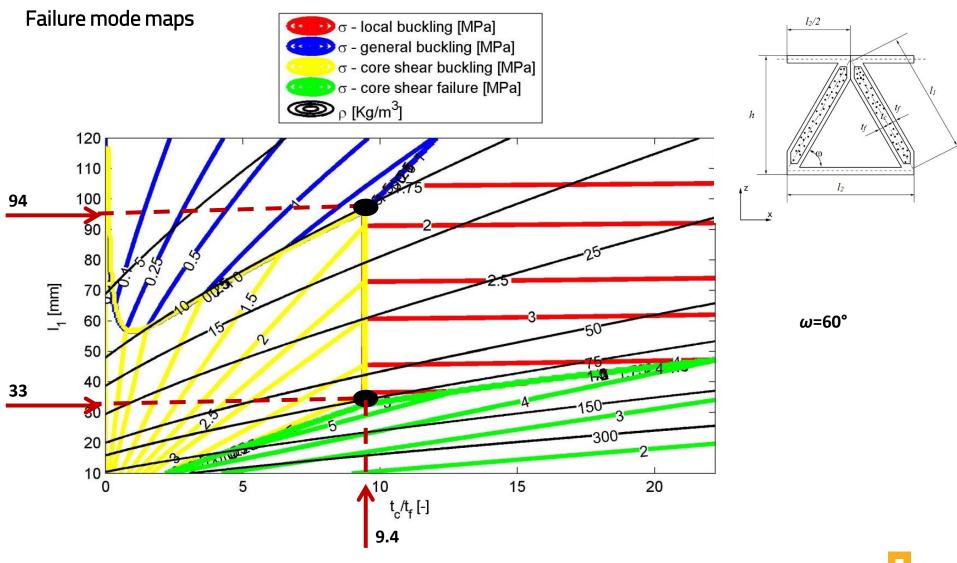

Analytical results vs. Experiments in quasi-static out-of-plane compression

		Exper	imental results		An	alytical predictions
Config	<i>Ez</i> [MPa]	σ₂[MPa] / Failure mode	<i>E_z/ρ</i> [MPa / kg m ⁻³]	σ₂⁄ρ [MPa / kg m⁻ ³]	<i>Ez</i> [MPa]	σ _z [MPa] / Failure mode
I	185	2.9 / Local buckling	0.79	0.012	236.9	6.2 / Local buckling 419/ General buckling 10.3 / Shear buckling 24.6 / Core shear
II	271	6.5 / Shear buckling	0.78	0.019	455	11.4 / Local buckling 336/ General buckling 8.3 / Shear buckling 20 / Core shear
111	70	1.6 / Local buckling	3.02	0.069	73	1.9 / Local buckling 11.8/ General buckling 3.1 / Shear buckling 7.5 / Core shear
IV	141	2.2 / Shear buckling	3.42	0.054	142	3.7 / Local buckling 11/ General buckling 2.6 / Shear buckling 6.4/ Core shear

Hierarchical sandwich structures

11.04.2025

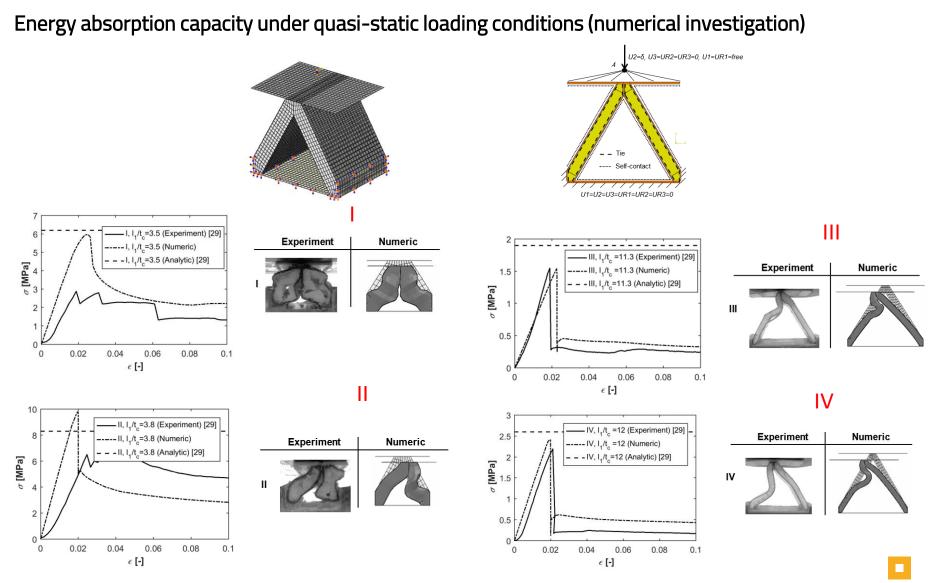
Hierarchical sandwich structures


Failure modes

- Maps are generated by using MATLAB scripts
- The strength values are calculated based on the equations of the considered failure modes.
- The lowest calculated value for peak strength give the failure mode.

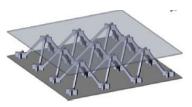
```
for omega=15:0.5:75;
                                                                                     Calculation sequence
     j=j+1;
     i=0:
     for tc=0:0.05:10;
         i=i+1:
 Dsand=(Ef.*tf.*(tf+tc).^2.*b)./2; % the bending stiffness of sandwich elements
 Ssand=(Gc.*(tf+tc).^2.*b)./tc; % the shear stiffness of sandwich elements
 Asand=2.*Ef.*tf.*b;
                                % the compressive stiffness of foam core
 % Constants
 RR=1 + (cosd(omega)^2) ./ (sind(omega)^2.*Asand * (l1.^2./(l2.*Dsand)) +1./Ssand);
 TT=1 + (sind(omega)^2.*Asand * (l1.^2./(l2.*Dsand)) +1./Ssand) ./ (cosd(omega)^2) ;
 8...
 %Face Wrinkling (local buckling)
 Fa wrinkling=(Ef*Ec*Gc)^(1/3).*b.*tf;
 sigma wrinkling=((Fa wrinkling.*sind(omega))./A).*RR;
 §...
         if sigma wrinkling<sigma euler sigma wrinkling<sigma shear foam sigma wrinkling<sigma core shear buckling;
             failuremode=1;
             generalbuckling(i,j)=0;
             core shear failure(i,j)=0;
             lokalbuckling(i,j)=sigma wrinkling;
             core shear buckling(i,j)=0;
         end
 §...
     end
 end
```

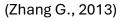

Hierarchical sandwich structures

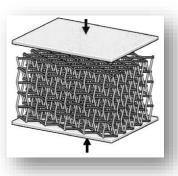


11.04.2025

Failure modes maps for the investigated 2^{nd} order hierarchical sandwich structure made from SrPET material and PET foam by assuming ω =60°

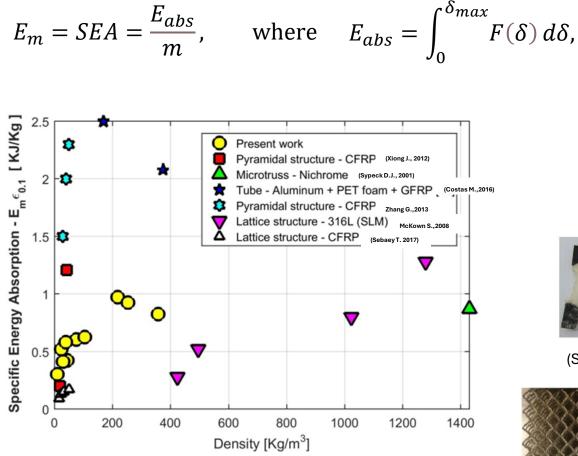

Hierarchical sandwich structures





Hierarchical sandwich structures

Energy absorption capacity under quasi-static loading conditions



(Xiong J., 2012)

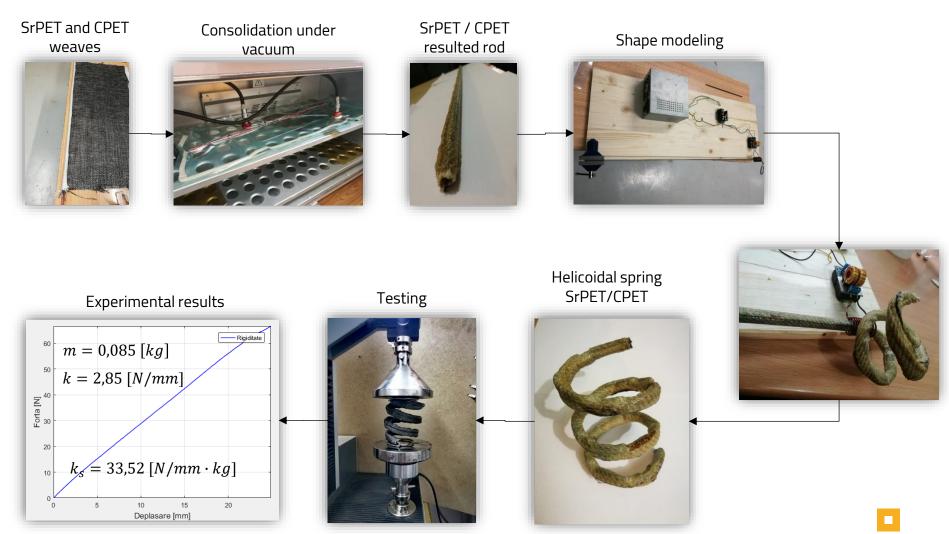
Comparison of the specific energy absorption for different proposed cellular structures for $\epsilon = 0.1$

(Costas M., 2016)

(Sebaey T., 2017)

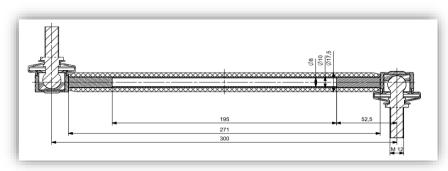
(McKown S., 2008)

٠


Hybrid Structures

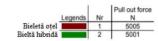
٠

Hybrid structures

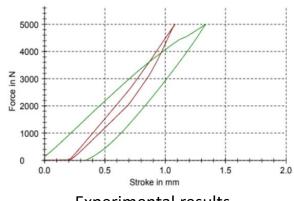

Chassis elements - springs

Hybrid structures

Chassis elements – anti-roll rod


Hybrid concept for an anti-roll rod

Prototype



Hybrid connecting rod in the vacuum bag prepared for the thermal consolidation process

Results:

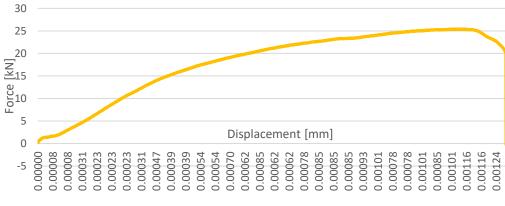
Experimental results

17% mass reduction compared to the steel one, for the same strength

Hybrid structures

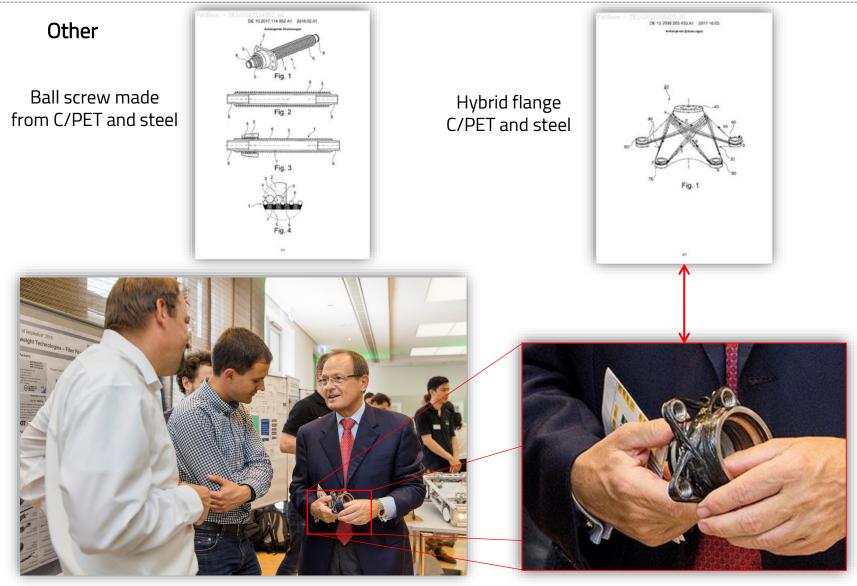
Hybrid joints

Metallic inserts within C/PET weaves



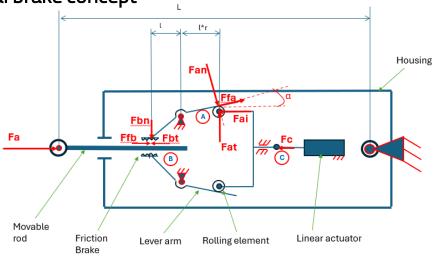
Consolidation under vacuum at 200°C

Resulted hard connection points


Experimental results

Failure mode

Hybrid structures


٠

Parametric Optimization

٠

Axial brake concept

<u>"</u>]+	Bounds	Modes	h Dist	ributions	P	Links		Constra	ints	88
+	Add Input Va	riable 🔻	🕅 Remove In	nput Variable						
	Active	Label	Varname	Lower Be	ound	Nomina	ł	Upper Bo	und	Comment
1	Z	d	var_1	15.000000		20.000000		30.000000		
2	~	i_pads	var_2	1.0000000		2.0000000		4.0000000		
3		I_lever	var_3	10.000000		40.000000		50.000000		
4	~	r_lever	var_4	1.0000000		3.0000000		5.0000000		
5		alpha	var_5	0.5000000		1.8000000		10.000000		
6		mu	var_6	0.3000000		0.5000000		0.5500000		

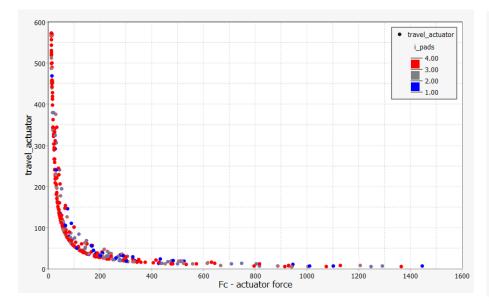
1	Define Output Responses Data Sources				🎯 Obje	ctives/Constraints - G	ioals $ abla$ Gr	abla Gradients		
+ Add Output Response 🔹 🕅 Remove Output Response					File A	ssistant 🤝 Evalu	ate from Fit Model 👻			
	Active	Label	Varname	Expression	Value	Value 💕 Goals		Data Type		
1	~	p	r_1	m_1.row_26.col_4.C06_V2	2.3873241	<= 1.000000	f() Expression	Numeric 🔻		
2		travel_actuator	r_2	m_1.row_53.col_4.C06_V2	95.461548	Minimize	f() Expression	Numeric 👻		
3	Image: A start and a start	Fc - actuator f	r_3	m_1.row_59.col_4.C06_V2	66.386968	Minimize	f() Expression	Numeric 🔹		

Scientific and professional achievements

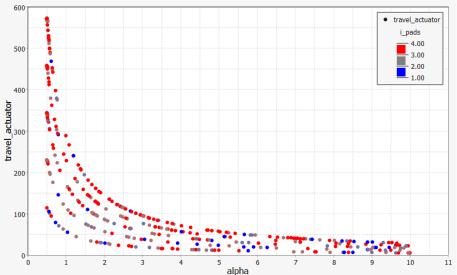
Parametric optimization

Movable rod			
Inputs			
Geometry			
Diameter	d	29.1142	mm
Loads			
Axial force	Fa	1000.0	N
safety factor	beta	1.5	
Calculation force	Fa	1500	N
Brake			
Inputs			
Geometry			
Friction surfaces (two pair pads)	i_pads	4	-
Friction radius	Rmed	14.5571	mm
Width of the pads	I_pads	40	mm
angle	alpha	90	deg
Friction area	А	3659	mm^2
Distance required to unlock the system	du	1	mm
Friction coefficient	mu	0.55	-
Loads			
Axial Force	Fbt	1500	N
<u>Outputs</u>			
Force needed to brake	Fbn	2727.3	Ν
Specific pressure	р	0.745	MPa

Lever arm			
Inputs			
Geometry			
Length I	l_lever	49.9935	mm
Ratio	r_lever	5	-
Loads			
Force at point B required to lock	Fbn	2727.3	N
Outputs			
displacemnt of point A	delta_A	5	mm
Force at point A required to brake	Fa	545.5	N


Rolling elements and connical part

nputs			
Geometry			
Angle	alpha	0.50	deg
Friction coefficient	mu	0.002	
No of arms - rollers		2	
Loads			
Force	Fa	545.46	N
<u>Dutputs</u>			
Bending force on the arm	Fat	545.409	N
ravel distance	travel_actuator	572.943	mm
Required force to brake	Fai	5.74	N
Actuator			
inputs			
Axial force	Fc - actuator force	11.5	N

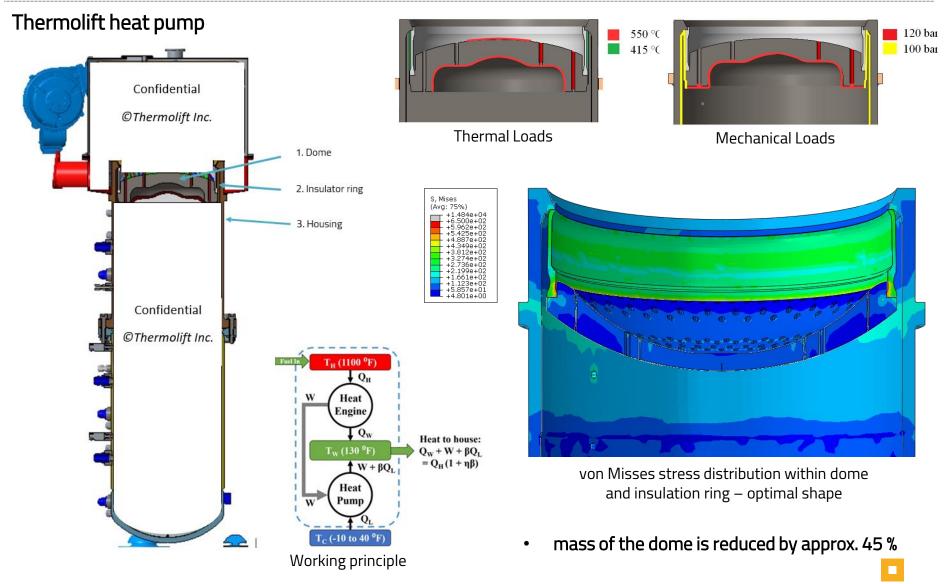


Parametric optimization

Axial brake concept

Trade-off between actuator force and the required travel distance while indicating the number of friction pads

All calculated solutions. Trade-off between alpha and the required travel distance

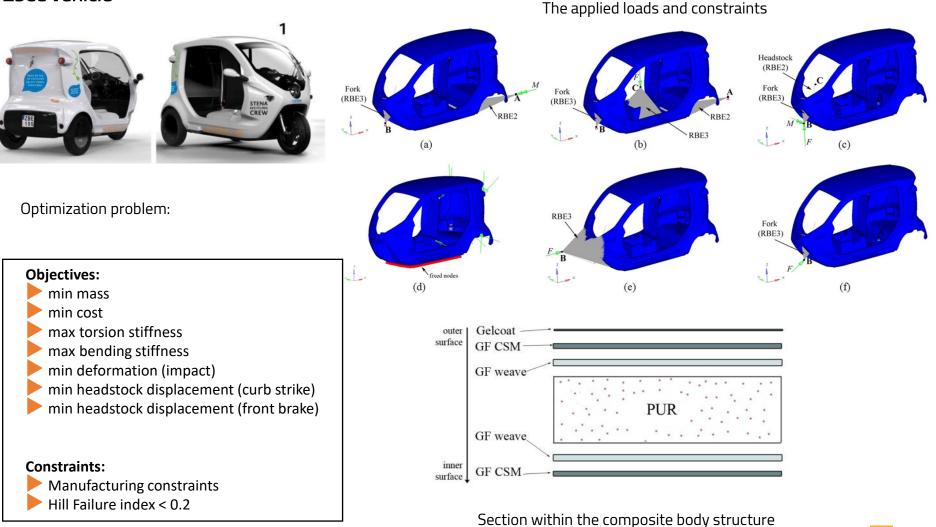


.

Non-parametric Optimization

Non-parametric optimization

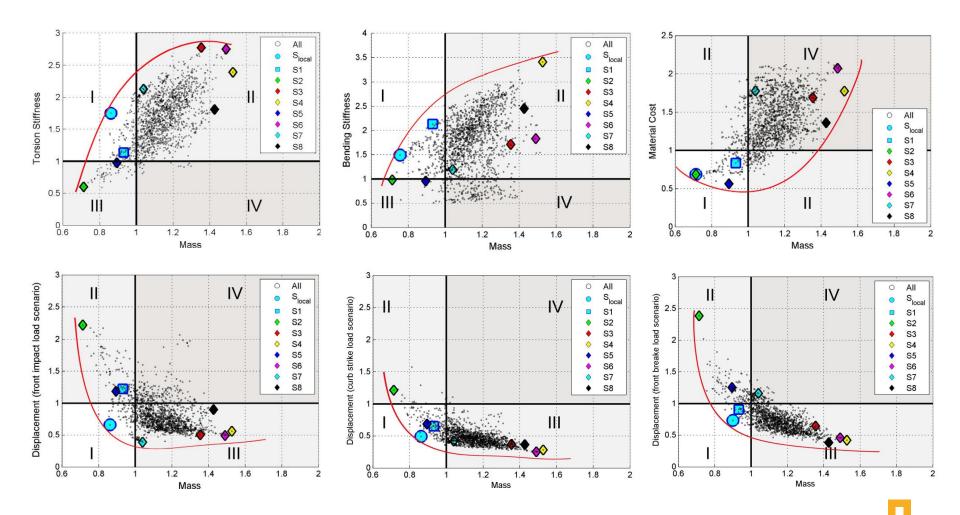
.


Multi-objective Optimization

٠

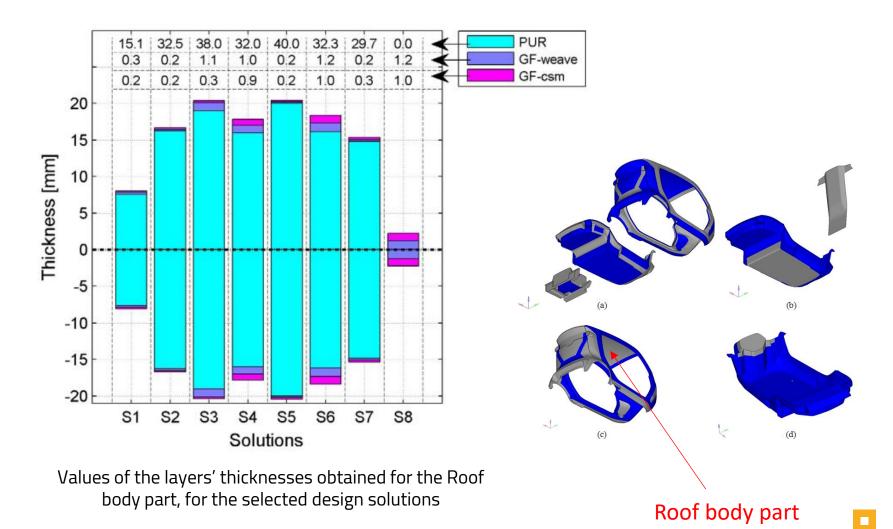
Multi-objective optimization

Zbee vehicle

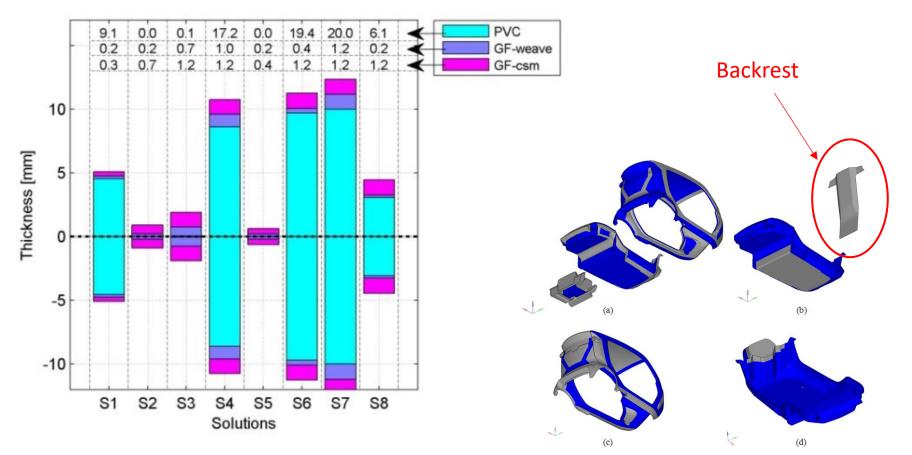

Multi-objective optimization

Zbee vehicle outer Gelco PUR Thickness [mm] 6.000E+01 surface GF CSM -5.333E+01 GF wea -4.667E+01 -4.000E+01 Optimization methodology applied on the composite body -3.333E+01 PUR -2.667E+01 -2.000E+01 GF wear Action: Results: Step: -1.333E+01 -6.667E+00 inne GF CSM -0.000E+00 Free Size optimization (A) Single-objective problem Load paths definition Possible to manufacture **Interpretation of patches** distribution of each **(B)** (the area covered by each of layer; reinforcement the layers is redefined) patches Thickness distribution Size optimization (C) Multi-objective problem for each layer relative to multi-objectives definition 15.1 32.5 38.0 32.0 40.0 32.3 29.7 0.3 0.2 1.1 1.0 0.2 1.2 0.2 PUR 0.0 1.2 GF-weave GF-csm 1.0 0.3 0.2 0.2 0.3 0.9 0.2 1.0 20 15 Thickness [mm] 10 5 0 -5 -10 -15 (a) -20 S2 **S**5 **S6 S1 S**3 **S4** S7 S8 Interpretation of the layers' distribution within the Solutions composite body following the free size results Thickness distribution of the selected patch 11.04.2025

Multi-objective optimization


Zbee vehicle

Multi-objective optimization


Zbee vehicle

Multi-objective optimization

Zbee vehicle

Values of the layers' thicknesses obtained for the Backrest body part, for the selected design solutions

Multi-objective optimization

The evolution and development plans for career development

Scopus

This author profile is generated b	oy Scopus ⊅			L3 Co-authors				
					luthor Name 🗸		Co-authored Documents ↑	
Velea, Marian	Nicolae		ache, Simona	13				
Universitatea Transilvania dir	<u>n Brașov</u> , Brasov •	Scopus ID: 3712	Vennhage, Per	3				
Show all information					ftimiciuc, Mihaela A.		3	
193	16 7				'enkert, Dan		2	
Citations by 169 documents	Documents <u>h-index</u>				chneider, C.	2		
					. (azemahvazi, Sohrab		1	
					Jitarașu, Octavian		1	
e range: 2012 🗸 to 2025 🗸 🔳	Exclude self citation author	ns of selected	Exclude self citatio authors		Jitaraşu, Octavian	Hide documents with citations	-	
e range: 2012 🗸 to 2025 🗸 🔳		ns of selected	1		Exclude book		10	
·		ns of selected	1		Exclude book		10 🕕 🗗 Expo	

The evolution and development plans for career development

Google Scholar

	-	Marian Nicolae VELEA 🛛		FO 🌄	LLOWING	Cited by	/	VIEW	ALL
1	00	<u>Transilvania University of Brașov</u> Verified email at unitbv.ro - <u>Homepage</u>					All	Since 2	
	10	Lightweight structures Optimisation Methods Hybrid structures	;			Citations h-index i10-index	8		134 7 4
	TITLE 🕒	:	CITED	BY	YEAR	1.1	_		36
	terephthalate C Schneider, MN	properties of novel thermoplastic carbon fibre and poly-ethylene fibre composite lattice structures Velea, S Kazemahvazi, D Zenkert gn (1980-2015) 65, 1110-1120		66	2015	h	hil	r.	18
		e optimisation of vehicle bodies made of FRP sandwich structure inhage, D Zenkert tures 111, 75-84	9S	52	2014	2018 201	9 2020 2021 2022 2023	2024 2025	0
			s by means	24	2016	Co-auth	ors		EDIT
	MN Velea, S Lac	tive elastic properties of a novel cellular core for sandwich struct he terials 43 (7), 377-388	ures	24	2011		Simona Lache Professor, Transilvania	a Universit	. >
	Numerical sim sandwich pan MN Velea, S Lac		cores for	21	2011	8 k	Per Wennhage (TH Royal Institute of	Tehcnology	, >
	Procedia Engine	oring 10, 287-292 offective shear elastic properties of a novel cellular core for sand	wich	14	2012		Dan Zenkert (TH Sohrab Kazemahvazi		>
	structures MN Velea, P Wer Materials & Desig	nnhage, S Lache jn (1980-2015) 36, 679-686				🦉 ເ	Jniversity of Cambridg	je	>
	MN Velea, S Lac	nsion of composite laminates he ansilvania University of Brasov. Series I-Engineering		11	2015		Siemens Industry Soft		>
	static loading MN Velea, S Lac		r quasi-	9	2019		Professor, Transilvania Marius Cristian Lucule Transilvania University	scu	>
	M Iftimiciuc, S La	rmance of a sandwich beam with sheet metal pyramidal core che, D Vandepitte, MN Velea Communications 31, 103490		6	2022				

Portofolio

Published Articles - selection

- Jitărașu O., Lache S., Velea M.N., 2025, Mechanical characterization of hyper-elastic rubber materials used as protective layers for structures operating under high dynamic loading conditions, submitted for publication to Journal of Composite Materials, FI 2.3.
- 2. Jitărașu O., Lache S., **Velea M.N.**, 2023, <u>Impact performance analysis of a novel rubber-composite combat helmet</u>, Proceedings of the Institution of Mechanical Engineers, Part C, 237(7), SAGE Journals, **FI 1.9**.
- 3. Iftimiciuc M., Lache, S., Vandepitte, D., **Velea, M.N.**, 2022, <u>Bending performance of a sandwich beam with sheet metal</u> <u>pyramidal core</u>, Materials Today Communications 31, 103490, **FI 3.7**.
- 4. Iftimiciuc M., Lache, S., Wennhage, P., **Velea, M.N.**, 2020, <u>Structural performance analysis of a novel pyramidal cellular</u> <u>core obtained through a mechanical expansion process</u>, Materials, Vol. 13, ISSN 1996-1944, Elsevier, **FI 3.057**.
- 5. Velea, M.N., Lache, S., 2019, Energy absorption of all-PET 2nd order hierarchical sandwich structures under quasi-static loading conditions, Thin-Walled Structures, Vol. 138, pp. 117-123, ISSN 0263-8231, Elsevier, FI 5.7.
- 6. Velea, M.N., Schneider, C., Lache, S., 2016, <u>Second-order hierarchical sandwich structure made of self-reinforced</u> polymers by means of a continuous folding process, Materials & Design, Vol. 102, pp. 313-320, ISSN 0261-3069, Elsevier, FI 7.6.
- Schneider, C., Velea, M.N., Kazemahvazi, S., Zenkert, D., 2015, <u>Compression properties of novel thermoplastic carbon fibre</u> and poly-ethylene terephthalate fibre composite lattice structures, Materials & Design, Vol. 65, pp.1110-1120, ISSN 0261-3069, Elsevier, FI 7.6.
- 8. Velea, M.N., Wennhage, P., Zenkert, D., 2014. <u>Multi-objective optimisation of vehicle bodies made of FRP sandwich structures</u>. Composite Structures, Vol. 111, pp.75-84, ISSN 0263-8223, Elsevier, FI 6.3.

Granted Patents

- 1. Velea, M.N., 2012, Panou cu miez cellular expandat, UNIVERSITATEA TRANSILVANIA DIN BRASOV, R0123427 (B1) 2012-04-30;
- Velea, M.N., Lache, S. 2015, Structura celulara stratificata fermata pe baza unei structure celulare expandate mechanic si procedeu de realizare a acesteia, UNIVERSITATEA TRANSILVANIA DIN BRASOV, R0127038 B1— 2015-03-30;
- **3.** Velea, M.N., Lache, S., Frincu D., 2015, Structură Sandwich ierarhică de ordinul doi cu miez primar prismatic triunghiular și procedeu de obținere al acestuia, UNIVERSITATEA TRANSILVANIA DIN BRASOV, R0130161 B1— 2018-11-29;
- 4. Costache, M.C., Velea, M.N., Husu, A., Achim, M., Kovacs M., 2024, Steering wheel unit for detecting steering movement of steering wheel of electromechanical steering system, CN112537365 B, 2024-10-18;
- 5. Costache, M.C., Husu, A., Achim, M., Kovacs M., **Velea, M.N.,** 2024, Steering wheel unit for detecting steering movement of steering wheel of electromechanical steering system, CN112537367 B, 2024-10-13;
- 6. Achim, M., Dima, D. G.; Costache, M.C., Kovacs M., Husu, A., **Velea, M.N.,** Steering wheel unit for generating feedback force on steering wheel of electromechanical steering system, CN112537368 B, 2024-05-31;

Patent Applications

- 1. Velea, M.N., Dima, G.D., 2015, Verbundbauteil und Verfahren zur Herstellung des Verbundbauteils, SCHAEFFLER TECHNOLOGIES AG & CO.KG, DE102015222405 (A1) — 2017-05-18;
- 2. Dima, G.D., Tohanean, M.I., **Velea, M.N.,** 2015, Reduced-Mass Non-Pressurized Wheel With Integrated Rim And Tyre AndMethod For Manufacturing The Same, SCHAEFFLER TECHNOLOGIES AG & CO.KG, R0131960 (A2) 2017-06-30;
- 3. Dima, G.D., Velea, M.N., Tohanean, M.I., 2015, Radflansch und Radlageranordnung mit Radflansch, SCHAEFFLER TECHNOLOGIES AG & CO.KG, DE102016201751 (A1) 2017-08-10;
- 4. Dima, G.D., **Velea, M.N.,** Tohanean, M.I., 2015, Manufacturing method for fiber reinforced plastic flange, SCHAEFFLER TECHNOLOGIES AG & CO.KG, DE102015225180A1 2015-12-15;
- 5. Dima, G.D., Velea, M.N., 2016, Radflansch und Verfahren zur Herstellung des Radflansches, SCHAEFFLER TECHNOLOGIES AG & CO.KG, DE102016205493 (A1) 2017-10-05;
- 6. Velea, M.N., Dima, G.D., 2016, Ball screw, SCHAEFFLER TECHNOLOGIES AG & CO.KG, R0132354 (A2) 2018-01-30;
- 7. Dima, G.D., Dinu, P., Velea, M.N., 2016, Flansch mit angeformter Welle, SCHAEFFLER TECHNOLOGIES AG & CO.KG, DE102015225180 (A1) 2017-06-22;
- 8. Velea, M.N., Dima, G.D., 2016, Lightweight variable torsion stiffness mechanism and its manufacturing process, SCHAEFFLER TECHNOLOGIES AG & CO.KG, DE102016220321 A1 2018-04-19;

Conferences - selection

- 1. Băicoianu, A., Stănoiu, P., **Velea, M.N**., Husar, C., 2022, A Machine Learning Proposal for Condition Monitoring of Vehicle Suspension, International Conference on INnovations in Intelligent SysTems and Applications (INISTA), IEEE
- 2. Velea, M.N., Lache, S., 2018, Failure mode maps of a hierarchical sandwich structure made of self-reinforced PET, AIP Conference Proceedings 1932, 030022
- 3. Ciolan, M.A., Lache, S., **Velea, M.N.,** 2018, The auxetic behavior of an expanded periodic cellular structure, AIP Conference Proceedings 1932, 030021
- 4. Velea, M.N., Lache, S., 2011. Numerical simulations of the mechanical behavior of various periodic cellular cores for sandwich panels, Procedia Engineering Vol. 10, pp. 287-292, ISSN 1877-7058. Presented within ICM11, June 5-9, Lake Como, Italy.

Books

- 1. Velea, M.N., 2022, Matlab Instrument de calcul în inginerie, Editura Universității Transilvania din Brașov.
- 2. Dima, G.D., Velea, M.N., 2016, CATIA V5 Proiectare de Produs, Editura Universității Transilvania din Brașov
- **3.** Velea, M.N., 2011, Structuri celulare uşoare Concepție, Modelare și Analiză, Editura Universității Transilvania din Brașov.

Research perspective – intentions for the future would be:

- to enlarge the existing research group with scientific interests and objectives in the field of lightweight structures and optimization methods;
- to create and maintain **professional links** with researchers from other European countries; attracting funds from research grants;
- **to collaborate with the economic entities** in order to raise their interests in collaborating with the Romanian academic sphere, and to provide success collaboration stories regarding transfer of knowledge to industry;
- to capitalize the research results by publishing **scientific papers in international journals**;
- to protect and exploit the results of research with economic potential by obtaining **invention patents** and to carry out **technological transfer to the industrial environmen**t.

Plans

Didactic perspective – intentions for the near future would be:

- to affiliate to the doctoral school of Unitbv
- to coordinate Ph.D students in the field of lightweight structures and optimization techniques
- to motivate and attract students by **highlighting the practical implications of the taught subjects**;
- to present an **interdisciplinary approach**, facilitating the creation of connections between the knowledge accumulated by students in other disciplines and those to be acquired;
- **to invite external specialists** from the research or industry environment in the course/seminar/laboratory hours to reinforce and demonstrate the use of the concepts presented in the taught subjects, through practical, real examples;

Plans

Management perspective

- The **involvement in management activities will be carried on** (currently I am coordinating the master program **Simulation and Testing in Mechanical Engineering**)
- Other management responsibilities will be assumed if / when those are needed within the appropriate context.

Thank you!

۰.

•