Summary

The main goal of this thesis is to develop a general geometric apparatus allowing for mathemat-
ically rigorous Lagrangian field theories based on Finsler geometry. But, as some of the new tools
can be used in basically any field theory, I will also explore some of these applications.

This effort is motivated by one of the main quests of modern physics: extending general relativity
so as to address the problems arising at either the largest, or the smallest scales - and which gave
rise to the so-called dark phenomenology and to tensions with quantum mechanics, [204].

Finsler geometry is the most general geometry admitting a well defined notion of arc length, thus
including Riemannian geometry as a subcase. In gravitational physics, it arises as a natural model in
at least two situations: modified dispersion relations occurring in quantum gravity phenomenology,
[4] [159], [166], and the kinetic description of gases, [94], [95] (which allows one to describe the
gravitational field generated by multiple sources, moving with different velocities).

Yet, even from a purely mathematical point of view, Lorentz-Finsler geometry is a still very little
explored, strikingly different realm from its positive definite counterpart, with sometimes beautiful
applications to other areas of mathematics, see, e.g., Section 2.4..

The work is structured as follows. Chapter 1 presents a general geometric toolkit for the calculus
of variations; Chapter 2 introduces Finsler spacetimes and discusses the arising subtleties and
challenges. Finally, Chapter 3 combines the tools in the previous chapters to create a general
framework for Finsler-based Lagrangian field theories and introduces, within this framework, a
concrete model for the gravitational field generated by a kinetic gas, [93], [94].

In a modern language, the natural stage for the calculus of variations are jet bundles of fibered
manifolds. Thus, physical fields are treated as sections, Lagrangians are seen as differential forms
and variations, as Lie derivatives. Going a step further and using the notion of Lepage equivalent of a
Lagrangian, one can describe Euler-Lagrange equations, Noether currents and Hamilton equations
in a concise, coordinate-free manner, solely in terms of operations with differential forms. This
formalism is briefly reviewed in Section 1.1.

Adopting this standpoint, Section 1.2 introduces the notion of canonical variational completion,
[202], which is a way of turning an arbitrary system of differential equations into a variational
one, by adding a correction term built via the so-called Vainberg-Tonti Lagrangian. When applied
to the Ricci tensor of a Riemannian manifold, this method provides the Einstein tensor; another
application presented here is in Gauss-Bonnet gravity theory, [98].

Section 1.3. explores energy-momentum tensors in Lagrangian field theories and shows that,
on arbitrary natural bundles of index 1, any natural Lagrangian leads to an energy-momentum
balance law, [201], which generalizes the energy-momentum conservation law known from metric field
theories. The algorithm is then applied to obtain a simple, explicitly covariant energy-momentum
balance law in the case of general metric-affine gravity theories.



Section 1.4. discusses the so-called closure property of Lepage equivalents of Lagrangians, which
ensures that, passing to a the Lepage form-based Hamiltonian formalism, one obtains a unique set
of Hamilton equations for all Lagrangians sharing the same dynamics. For general higher order
Lagrangians, Lepage equivalents with this property were determined for the first time in my joint
paper with former students S. Garoiu and B. Vasian, [198].

The first two sections of Chapter 2 present the notion of Finsler spacetime as introduced in
[97] and the associated structures. A special attention is paid to the homogeneous dependence on
tangent vectors to spacetime, of the typical Finslerian geometric objects - which is key to ensuring
the existence of a well defined arc length. Section 2.3. makes a brief comparison between Finsler
spacetimes and positive definitely Finsler spaces, respectively, Lorentzian spacetimes, [76], [200].
Section 2.4. shows an application of Lorentz-Finsler geometry to inequalities on R™, [140].

Sections 3.1-3.2 introduce the general framework for variational problems whose dynamical
variables depend homogeneously on tangent vectors of spacetime, [97]. The configuration bundles
introduced here, which admit these objects as sections and allow one to consistently apply the tools
of the calculus of variations, sit over the positively projectivized tangent bundle of spacetime. On
such spaces, general covariance of Lagrangians leads to the novel, direction-dependent notion of
energy-momentum distribution tensor, obeying an averaged conservation law.

A concrete model for the gravitational field is then constructed in Section 3.3 as follows. A
vacuum action is built, [93], using Pirani’s idea that, in vacuum, the trace of the geodesic deviation
operator should vanish, together with the variation completion technique; then, assuming that
matter is described as a kinetic gas, we deduce the resulting field equation and energy-momentum
distribution tensor, [94].

In Section 3.4, [96], we find the generators of Finslerian cosmological symmetry, starting from
an axiomatic definition. Then, the resulting most general form of cosmologically symmetric Finsler
spacetimes is used to obtain a complete classification in the particular case of Berwald spacetimes.

The thesis is based on several papers I have published as an author or a coauthor, after my
Ph.D. defense: [76], [93]-[98], [140], [198]-[204]. Older results, such as: [205]-[208], respectively,
[13]-[19], [22]-][25], [39]-[44],[167], [209]-[218], have been left aside, though they all contributed to
my scientific evolution.

Except for Section 1.1 and unless elsewhere specified, the presented results are original ones, to
which my contribution was essential.



