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Rezumat

Lucrarea are ca scop principal dezvoltarea unui aparat geometric unitar şi riguros pentru teoriile
câmpurilor �zice bazate pe geometria Finsler. Îns¼a, deoarece o parte din metodele nou introduse
sunt utile în teoriile generale de câmp, aplicaţiile prezentate nu se vor limita la geometria Finsler.
Studiul a fost motivat de una din provoc¼arile majore ale �zicii moderne: obţinerea unei extinderi

a teoriei generale a relativit¼atii, care s¼a abordeze problemele acesteia la scar¼a foarte mare sau foarte
mic¼a - probleme ce au dat naştere noţiunilor de materie/energie întunecat¼a, respectiv, tensiunii cu
mecanica cuantic¼a, [204].
Geometria Finsler este cea mai general¼a geometrie ce admite o noţiune bine de�nit¼a de lungime

de arc, ea incluzând drept caz particular, geometria riemannian¼a. În �zica gravitaţional¼a, ea apare
ca model natural în cel puţin dou¼a situaţii: fenomenologia cuantic¼a a gravitaţiei (relaţiile de disper-
sie modi�cate, [4] [159], [166]), respectiv, în teoria cinetic¼a a gazelor, [94], [95] (ce permite descrierea
câmpului gravitaţional generat de surse multiple, ce se mi̧sc¼a cu viteze diferite).
În plus, din punct de vedere pur matematic, geometria Lorentz-Finsler este un domeniu puţin

explorat, surprinz¼ator de diferit de geometria Finsler pozitiv de�nit¼a şi cu aplicaţii uneori specta-
culoase, v. Sec. 2.4.

Teza este structurat¼a astfel. Cap. 1 este dedicat metodelor geometrice în calculul variaţional;
Cap. 2 discut¼a noţiunea de spaţiu-timp Finsler şi problemele asociate, iar Cap. 3 introduce un
cadru geometric general pentru teoriile de câmp �nsleriene, împreun¼a cu o aplicaţie: un model
concret pentru câmpul gravitaţional.

Limbajul modern pentru calculul variaţional, utilizat în lucrare, este bazat pe �bratele de jeturi
asociate variet¼aţilor �brate. Câmpurile �zice sunt tratate ca seçtiuni, lagrangienii - ca forme dife-
renţiale, iar variaţiile, ca derivate Lie. Mai mult, noţiunea de echivalent Lepage al unui lagrangian
permite o descriere geometric¼a concis¼a, bazat¼a exclusiv pe operaţii cu forme diferenţiale, a întregului
aparat al calculului variaţional. Sec. 1.1. prezint¼a pe scurt acest formalism.
Sec. 1.2 introduce noţiunea de completare variaţional¼a canonic¼a, [202], ce transform¼a un sistem

arbitrar de ecuaţii diferenţiale într-unul variaţional, prin ad¼augarea unui termen coreçtie. Acest
termen, construit cu ajutorul aşa-numitului lagrangian Vainberg-Tonti, "corecteaz¼a", de exemplu,
tensorul Ricci al unei variet¼aţi riemanniene, în tensorul Einstein; o alt¼a aplicaţie prezentat¼a aici
este in teoria Gauss-Bonnet a gravitaţiei, [98].
În Sec. 1.3, dedicat¼a tensorilor energie-impuls, demonstr¼am c¼a, pe �brate naturale arbitrare de

index 1, orice lagrangian natural conduce la o lege de echilibru, [201], ce extinde legea de conservare
covariant¼a a tensorului energie-impuls din cazul teoriilor metrice ale gravitaţiei. Ca aplicaţie, în
teoriile metric-a�ne generale ale gravitaţiei, am obţinut o lege de echilibru simpl¼a, invariant¼a la
transform¼ari de coordonate.

vii



viii REZUMAT

Sec. 1.4. discut¼a o proprietate a echivalenţilor Lepage ai lagrangienilor, numit¼a proprietatea
închiderii; aceasta asigur¼a c¼a, trecând la formalismul hamiltonian bazat pe forme Lepage, lagrangi-
enii ce conduc la aceleaşi ecuaţii Euler-Lagrange vor conduce şi la aceleaşi ecuaţii Hamilton. Pentru
lagrangienii de ordin superior, un echivalent Lepage cu proprietatea închiderii a fost de�nit pentru
prima dat¼a în [198].

Seçtiunile 2.1. şi 2.2 prezint¼a noţiunea de spaţiu-timp Finsler introdus¼a în [97] şi structurile
geometrice asociate. O atenţie special¼a o acord¼am noţiunii de dependenţ¼a omogen¼a de vectorii
tangenţi la varietatea spaţiu-timp a obiectelor geometrice �nsleriene - noţiune esenţial¼a în a asigura
existenţa unei lungimi de arc corect de�nite. Sec. 2.3. face o scurt¼a comparaţie între spaţiile-timp
Finsler şi spaţiile Finsler pozitiv de�nite, respectiv, variet¼aţile lorentziene, [76], [200]. Sec. 2.4.
discut¼a o aplicaţie a geometriei Lorentz-Finsler în obţinerea de inegalit¼aţi pe Rn, [140].

Sec. 3.1-3.2 introduc un cadru geometric general pentru problemele variaţionale ale c¼aror vari-
abile dinamice au o dependenţ¼a omogen¼a de direçtie, [97]. Spaţiile con�guraţiilor construite aici,
ce admit obiectele geometrice omogene drept seçtiuni şi totodat¼a, permit aplicarea corect¼a a tehni-
cilor calculului variaţional, au ca varietate baz¼a �bratul tangent proiectivizat pozitiv (�bratul sfer¼a
proiectiv) asociat variet¼aţii spaţiu-timp. Lagrangienii naturali conduc, în acest caz, la un tensor
de distribuţie a energiei şi impulsului dependent de direçtie, ce respect¼a o lege de conservare sub
form¼a integral¼a.
Un model �nslerian concret pentru câmpul gravitaţional este construit în Sec. 3.3. Ecuaţiile în

cazul vidului, [93], sunt obţinute prin completare variaţional¼a, pornind de la ideea (apaŗtinând lui
Pirani) c¼a, în vid, urma operatorului de deviaţie a geodezicelor trebuie s¼a se anuleze. Apoi, pentru
materia descris¼a ca un gaz cinetic, deducem ecuaţiile de câmp şi tensorul de distribuţie a energiei
şi impusului, [94].
În Sec. 3.4, [96], pornind de la o de�ni̧tie axiomatic¼a a simetriei cosmologice, determin¼am ge-

neratorii acesteia în cazul �nslerian. Forma general¼a rezultat¼a pentru metricile Finsler cu simetrie
cosmologic¼a este folosit¼a apoi pentru a obţine o clasi�care complet¼a, în cazul spaţiilor-timp Berwald.

Teza se bazeaz¼a pe câteva lucr¼ari ce le-am publicat ca autor sau coautor, dupa sustinerea tezei
de doctorat: [76], [93]-[98], [140], [198]-[204]. Rezultate mai vechi, ca: [205]-[208], respectiv, [13]-
[19], [22]-[25], [39]-[44],[167], [209]-[218], au fost l¼asate la o parte, îns¼a au contribuit la evoluţia mea
ştiinţi�c¼a.
Cu excepţia Sec. 1.1, rezultatele prezentate în tez¼a sunt, în absenţa altor speci�caţii, rezultate

originale, la care contribuţia mea a fost una esenţial¼a.



Summary

The main goal of this thesis is to develop a general geometric apparatus allowing for mathematically
rigorous Lagrangian �eld theories based on Finsler geometry. But, as some of the new tools can be
used in basically any �eld theory, I will also explore some of these applications.

This e¤ort is motivated by one of the main quests of modern physics: extending general relativity
so as to address the problems arising at either the largest, or the smallest scales - and which gave
rise to the so-called dark phenomenology and to tensions with quantum mechanics, [204].
Finsler geometry is the most general geometry admitting a well de�ned notion of arc length, thus

including Riemannian geometry as a subcase. In gravitational physics, it arises as a natural model in
at least two situations: modi�ed dispersion relations occurring in quantum gravity phenomenology,
[4] [159], [166], and the kinetic description of gases, [94], [95] (which allows one to describe the
gravitational �eld generated by multiple sources, moving with di¤erent velocities).
Yet, even from a purely mathematical point of view, Lorentz-Finsler geometry is a still very little

explored, strikingly di¤erent realm from its positive de�nite counterpart, with sometimes beautiful
applications to other areas of mathematics, see, e.g., Section 2.4.

The work is structured as follows. Chapter 1 presents a general geometric toolkit for the calculus
of variations; Chapter 2 introduces Finsler spacetimes and discusses the arising subtleties and
challenges. Finally, Chapter 3 combines the tools in the previous chapters to create a general
framework for Finsler-based Lagrangian �eld theories and introduces, within this framework, a
concrete model for the gravitational �eld generated by a kinetic gas, [93], [94].

In a modern language, the natural stage for the calculus of variations are jet bundles of �bered
manifolds. Thus, physical �elds are treated as sections, Lagrangians are seen as di¤erential forms
and variations, as Lie derivatives. Going a step further and using the notion of Lepage equivalent of a
Lagrangian, one can describe Euler-Lagrange equations, Noether currents and Hamilton equations
in a concise, coordinate-free manner, solely in terms of operations with di¤erential forms. This
formalism is brie�y reviewed in Section 1.1.
Adopting this standpoint, Section 1.2 introduces the notion of canonical variational completion,

[202], which is a way of turning an arbitrary system of di¤erential equations into a variational
one, by adding a correction term built via the so-called Vainberg-Tonti Lagrangian. When applied
to the Ricci tensor of a Riemannian manifold, this method provides the Einstein tensor; another
application presented here is in Gauss-Bonnet gravity theory, [98].
Section 1.3. explores energy-momentum tensors in Lagrangian �eld theories and shows that,

on arbitrary natural bundles of index 1, any natural Lagrangian leads to an energy-momentum
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x SUMMARY

balance law, [201], which generalizes the energy-momentum conservation law known from metric �eld
theories. The algorithm is then applied to obtain a simple, explicitly covariant energy-momentum
balance law in the case of general metric-a¢ ne gravity theories.
Section 1.4. discusses the so-called closure property of Lepage equivalents of Lagrangians, which

ensures that, passing to a the Lepage form-based Hamiltonian formalism, one obtains a unique set
of Hamilton equations for all Lagrangians sharing the same dynamics. For general higher order
Lagrangians, Lepage equivalents with this property were determined for the �rst time in my joint
paper with former students S. Garoiu and B. Vasian, [198].

The �rst two sections of Chapter 2 present the notion of Finsler spacetime as introduced in
[97] and the associated structures. A special attention is paid to the homogeneous dependence on
tangent vectors to spacetime, of the typical Finslerian geometric objects - which is key to ensuring
the existence of a well de�ned arc length. Section 2.3. makes a brief comparison between Finsler
spacetimes and positive de�nitely Finsler spaces, respectively, Lorentzian spacetimes, [76], [200].
Section 2.4. shows an application of Lorentz-Finsler geometry to inequalities on Rn, [140].

Sections 3.1-3.2 introduce the general framework for variational problems whose dynamical
variables depend homogeneously on tangent vectors of spacetime, [97]. The con�guration bundles
introduced here, which admit these objects as sections and allow one to consistently apply the tools
of the calculus of variations, sit over the positively projectivized tangent bundle of spacetime. On
such spaces, general covariance of Lagrangians leads to the novel, direction-dependent notion of
energy-momentum distribution tensor, obeying an averaged conservation law.
A concrete model for the gravitational �eld is then constructed in Section 3.3 as follows. A

vacuum action is built, [93] using Pirani�s idea that, in vacuum, the trace of the geodesic deviation
operator should vanish, together with the variation completion technique; then, assuming that
matter is described as a kinetic gas, we deduce the resulting �eld equation and energy-momentum
distribution tensor, [94].
In Section 3.4, [96], we �nd the generators of Finslerian cosmological symmetry, starting from

an axiomatic de�nition. Then, the resulting most general form of cosmologically symmetric Finsler
spacetimes is used to obtain a complete classi�cation in the particular case of Berwald spacetimes.

The thesis is based on several papers I have published as an author or a coauthor, after my
Ph.D. defense: [76], [93]-[98], [140], [198]-[204]. Older results, such as: [205]-[208], respectively,
[13]-[19], [22]-[25], [39]-[44],[167], [209]-[218], have been left aside, though they all contributed to
my scienti�c evolution.
Except for Section 1.1 and unless elsewhere speci�ed, the presented results are original ones, to

which my contribution was essential.



Chapter 1

A geometric toolkit for the
calculus of variations

1.1 Preliminaries

The language of di¤erential forms allows a concise, coordinate-free formulation of variational cal-
culus on arbitrary manifolds. In this approach, Lagrangians are regarded as di¤erential forms
on certain jet bundles, rather than as functions; this allows their variations to be understood as
Lie derivatives and, accordingly, Euler-Lagrange expressions and Noether currents to be described
solely in terms of operations with di¤erential forms.
This section, which combines parts of our papers [97] and [198], brie�y reviews the known results

in the literature that are necessary for a further understanding of the text; for a more complete and
in-depth exposition, we refer to the monographs by D. Krupka [114] and, respectively, Giachetta,
Mangiarotti and Sardanashvili, [79].

1.1.1 Fibered manifolds and their jet prolongations

A �bered manifold is a triple (Y; �;X) ; where X;Y are C1-smooth manifolds with dimX = n;
dimY = n+m and � : Y ! X is a surjective submersion; in the following, we will always assume
that the base manifold X is connected. The level sets Yx = ��1(x) are called the �bers of Y:
Any �bered manifold admits an atlas consisting of �bered charts. A local chart (V;  );  =

(xA; y�); (A = 0; :::; n � 1; � = 1; :::;m) on Y is called a �bered chart if there exists a local chart
(U;'); ' = (xA) on X, with �(V ) = U; in which � has the coordinate representation (' � � �
 �1)

�
xA; y�

�
=
�
xA
�
: In the following, if the coordinate charts are �xed, we will typically omit '

and  and designate by a colon " : " the coordinate representations of mappings between manifolds;
e.g., the above relation will be simply written as: � : (xA; y�) 7! (xA).
Local sections 
 : U ! Y (with U � X open) of a �bered manifold (Y; �;X) ; which will be

called, brie�y, sections, are smooth maps such that � � 
 = idX ; in a �bered chart, they will have a
representation of the form 
 : (xA) 7! (xA; y�(xA)): The set of sections of (Y; �;X) will be denoted
by �(Y ):
Here are some more notations and conventions to be used throughout the thesis:

1



2 CHAPTER 1. A GEOMETRIC TOOLKIT FOR THE CALCULUS OF VARIATIONS

- 
k(Y ) and 
(Y ); will mean the set of di¤erential k-forms, respectively, the set of all di¤erential
forms de�ned over open subsets W � Y ; the symbol i will denote interior product.
- By F(Y ); we mean the set of all smooth functions f :W ! R de�ned on open subsetsW � Y .
- X (Y ) denotes the F(Y )-module of vector �elds on Y .
- Commas ;A will designate partial di¤erentiation with respect to xA:
Also, by "smooth", unless elsewhere speci�ed, we will mean C1-smooth.

Physical interpretations.

1. In �eld theory, the base manifold X is usually (but not always, see Chapter 3) interpreted as
spacetime manifold and the manifold Y is called the con�guration space. Sections 
 : U ! Y
are interpreted as �elds.

For instance: in metric theories of gravity, Y = Met(X) is the bundle of symmetric nonde-
generate tensors of type (0,2) over X; whereas in classical electromagnetic �eld theory (whose
fundamental variable is the 4-potential 1-form A 2 
1(X)), one has Y = T �X etc..

In the cases when X is interpreted as spacetime, we will typically re-denote it as M and the
local coordinates xA on M will be labeled by lowercase Latin indices i; j; k etc..

2. Mechanics is characterized by X � R; that is, dimX = 1; in this case, the (unique) coordinate
x0 =: t is interpreted as time and y� =: q�; as generalized coordinates; local sections of the
con�guration space Y are identi�ed with curves on Y:

Most examples of �bered manifolds used in physics actually belong to the more restrictive class
of �ber bundles. By a �ber bundle (in a broad sense), we will understand, as in [155], a �bered
manifold that is smoothly locally trivial, i.e., in the above, each �bered chart domain V is equal
to ��1(U) and is di¤eomorphic to a Cartesian product U � F ; where F is a manifold called the
typical �ber1 . Yet, unless elsewhere speci�ed, we will prefer to keep full generality, i.e., work in the
wider class of �bered manifolds.

The natural setting for all applications involving partial derivatives of �eld variables are jet
bundles of �bered manifolds (Y; �;X).
Two local sections 
; ~
 : U ! Y (where U � X is open) are said to have a contact of order

r � 0 at a point x0 2 U if 
(x0) = ~
(x0) and there exists a �bered chart (V;  ) around ��1(x0); in
which the coordinate representations

�
xA
�
7! (xA; f�(xA));

�
xA
�
7! (xA; ~f�(xA)) of 
 and ~
 have

the property that all the partial derivatives of the functions f� and ~f�; up to order r; agree at the
coordinate representation

�
xA0
�
of x0: The notion of contact of order r at x0 is actually independent

of the choice of �bered charts and provides an equivalence relation on the set of sections de�ned
on U: The equivalence class Jrx0
 of 
 2 �(Y ) at x0; called the r-jet of 
 at x0; is thus uniquely

determined by the values (xA0 ; f
�(xA0 );

@f�

@xC
(xA0 ); :::;

@rf�

@xCi1 :::@xCir
(xA0 )); with Ci1 � Ci2 � ::: � Cir .

The jet bundle JrY is de�ned as the set of r-jets Jrx
 of local sections 
 2 �(Y ) of class at least
Cr; at points x 2 X; i.e.,

JrY = fJrx
 j 
 2 �(Y ); x 2 Xg :
1That is, we will not a priori impose any structural group (apart from the automatic one, which is, [155], the

group Diff(F) of di¤eomorphisms of the typical �ber).
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The set JrY is naturally equipped with a manifold structure; an atlas consisting of �bered charts
(V r;  r) on JrY; where V r = JrV and the coordinate map  r = (xA; y�; y�C ; y

�
C1C2

; :::; y�C1C2:::Cr )
(with Ci1 � Ci2 � ::: � Cir ) is induced by the �bered charts (V;  ) on Y; as follows. If the section 

is represented in coordinates as 
 :

�
xA
�
7!
�
xA; y�

�
xA
��
; then the value of the coordinate function

y�C1C2:::Ck at the point J
r
x
 2 JrY is de�ned as the partial derivative:

y�C1:::Ck(J
r
x
) =

@ky�

@xC1 :::@xCk
(xA): (1.1)

In the following, by charts on JrY , we will always mean induced �bered charts (V r;  r) as above.
Any section 
 2 �(Y ) is naturally prolonged into a section Jr
 2 �(JrY ), by the rule: Jr
(x) :=

Jrx
: That is, in any �bered chart,

Jr
 : (xA) 7!
�
xA; y�(xA);

@y�

@xA
(xB); ::::;

@ry�

@xA1 :::@xAr
(xB)

�
:

The jet bundle JrY is a �bered manifold over all lower order jet bundles JsY; 0 � s < r (where
J0Y := Y ) and over X; with canonical projections:

�r;s : JrY ! JsY; Jrx
 7! Jsx
; �r : JrY ! X; Jrx
 7! x;

in �bered coordinates, these are given by

�r;s : (xA; y�; y�C1 ; :::; y
�
C1C2:::Cr ) 7! (xA; y�; y�C1 ; :::; y

�
C1C2:::Cs);

�r : (xA; y�; y�C1 ; :::; y
�
C1C2:::Cr ) 7! (xA):

1.1.2 Horizontal and contact forms

In the following, we discuss di¤erential forms on jet bundles JrY: For the simplicity of writing, if
there is no risk of confusion, we will sometimes identify forms � with their pullbacks (�s;r)� �; s � r;
that is, instead of (�s;r)� � = �; we may simply write � = �:
Horizontal forms and horizontalization. A di¤erential form � 2 
k(JrY ) is said to be

�r-horizontal (semi-basic with respect to �r, [45], or simply, horizontal) if i�� = 0 whenever
� 2 X (JrY ) is �r-vertical - i.e., whenever d�r(�) = 0. In a �bered chart, any �r-horizontal form
is expressed as:

� =
1

k!
�A1A2:::Ak

dxA1 ^ dxA2 ^ ::: ^ dxAk ; (1.2)

where �A1A2:::Ak
are smooth functions of the local coordinates xA; y�; y�C1 ; :::; y

�
C1C2:::Cr

on JrY .
Also, for a more compact writing, it is advantageous to use the following locally de�ned forms:

dnx := dx1 ^ ::: ^ dxn; (1.3)

!A := i@Ad
nx = (�1)A�1 dx1 ^ ::: ^ddxA ^ ::: ^ dxn; (1.4)

!A1:::Ak
:= i@Ak i@Ak�1 :::i@A1d

nx: (1.5)

This way, any �r-horizontal k-form on JrY (k < n) will have a coordinate expression:

� =
1

k!
~�A1:::An�k!A1:::An�k ; (1.6)
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where ~�A1:::An�k are smooth functions of xA; y�; y�C1 ; :::; y
�
C1C2:::Cr

: The set of all �r-horizontal
k-forms on JrY will be denoted by 
k;X(JrY ):
Similarly, �r;s-horizontal forms, 0 � s � r; are locally generated by dxA; dy�; :::; dy�C1:::Cs .

Any di¤erential form � 2 
(JrY ) of order r can be transformed into a horizontal one, of order
r+1. This is achieved via the horizontalization operator, which is the unique morphism of exterior
algebras h : 
r(Y )! 
r+1(Y ) obeying, in any �bered chart:

hf = f � �r+1;r; hdf = dAfdx
A; (1.7)

for all f 2 F(JrY ); here, dAf := @Af+
@f

@y�
y�A+:::

@f

@y�C1:::Cr
y�C1:::CrA denotes the total derivative

(of order r + 1) with respect to xA:
For instance, on the natural basis 1-forms, h acts as:

hdxA := dxA; hdy� = y�Adx
A; :::; hdy�C1:::Ck = y�C1:::CkAdx

A; k = 1; :::; r: (1.8)

Another useful property is the following. For any f 2 F(JrY ) and any 
 2 �(Y ) :

@A(f � Jr
) = Jr+1
�dAf: (1.9)

Contact forms. A di¤erential form � 2 
(JrY ) is a contact form if it vanishes whenever
pulled back by prolonged sections: Jr
�� = 0; 8
 2 �(Y ). For example,

�� = dy� � y�CdxC ; ��A1
= dy�A1

� y�A1Cdx
C ; :::; (1.10)

��A1A2:::Ar�1 = dy�A1A2:::Ar�1 � y
�
A1A2:::Ar�1Cdx

C ;

are contact forms on a given chart domain V r � JrY ; they are elements of a local basis
fdxA; ��; ::::; ��A1:::Ar�1 ; dy

�
A1:::Ar

g of 
1(JrY ); called the contact basis.
The wedge product between a contact form and any other form � 2 
(JrY ) is a contact form.

Raising to the next "�oor" Jr+1Y; any di¤erential form � 2 
k(JrY ) can be uniquely split into
a horizontal part h� and a contact one p�:�

�r+1;r
��
� = h�+ p�: (1.11)

Intuitively, the horizontal component h� 2 
k(Jr+1Y ) is what will survive of � when pulled back
to X by prolonged sections Jr
; where 
 2 �(Y ); while p� 2 
k(Jr+1Y ) vanishes:

Jr+1
�(h�) = Jr
��; Jr+1
�(p�) = 0: (1.12)

In its turn, the contact component p� is split as:

p� = p1�+ ::::+ pk�; (1.13)

where the l-th contact component pl (l � k) has the property that the interior product i�1 :::i�l�
with any l vertical vector �elds �1; :::;�l 2 X (Y ); is horizontal; in the contact basis, an l-contact
k-form is written as linear combination of wedge products of k basis elements, each such wedge
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product containing precisely l of the contact forms ��; ::::; ��A1:::Ar�1 ; �
�
A1:::Ar

and k � l of the
forms dxA.
Exterior di¤erentiation of forms does not decrease the degree of contactness, i.e., if � is k-contact,

then d� is at least k-contact (where p0 := h).

Divergence expressions. In particular, if � 2 
n�1(J
rY ) is an (n � 1)-form, then hd�

is obtained by di¤erentiation of h� only, as the contact component p� will not contribute to it.
Denoting, in any �bered chart h� = �i!i 2 
n;X(Jr+1Y ); then:

hd� = (di�
i)dnx; (1.14)

is given by a divergence expression (of order r + 2). The latter relation will be extremely useful in
discussing both Noether currents and trivial Lagrangians.

Source forms. A �r;0-horizontal, 1-contact (n + 1)-form � 2 
n+1(JrY ) is called a source
form or a dynamical form. In local coordinates, any source form is expressed as:

� = ���
� ^ dnx; (1.15)

where �� = ��(x
A; y�; ::::y�A1:::Ar

). A prominent example of source forms are Euler-Lagrange forms
of Lagrangians, to be discussed in the next subsection.

Behavior under coordinate changes. Denoting by
�
xA; y�

�
and (xA

0
; y�

0
) the coordinates

in two overlapping �bered charts on Y; the coordinate transformation rule is always of the form:

xA = xA(xB
0
); y� = y�(xB

0
; y�

0
):

Here are some direct consequences (see, e.g., Section 2.1 of [114]), to be used in the following:

dxA =
@xA

@xB0 dx
B0
; �� =

@y�

@y�0
��

0
; (1.16)

dnx = det

�
@xA

@xB0

�
dnx0: (1.17)

For the components of a source form � 2 
n+1(JrY ), we get:

��0 =
@y�

@y�0
det

�
@xA

@xB0

�
�� (1.18)

1.1.3 Fibered automorphisms and deformations of sections

In variational calculus, deformations, or variations, of sections are given by 1-parameter groups of
�bered automorphisms of the con�guration manifold.
A �bered morphism is a di¤eomorphism � : Y ! ~Y between the total spaces of two �bered

manifolds (Y; �;X) ; ( ~Y ; ~�; ~X) such that exists a di¤eomorphism � : X ! ~X; with � � � = � � �,
i.e., the following diagram is commutative:

Y
�����! ~Y

�

??y ??y~�
X

�����! ~X

:
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In this case, � is said to cover �: In �bered coordinates, any �bered morphism is represented
as:

� : (xA) 7! ~xA(xB) (1.19)

� : (xA; y�) 7! (~xA(xB); ~y�(xB ; y�)): (1.20)

A �bered morphism with (Y; �;X) = ( ~Y ; ~�; ~X) is called an automorphism of the �bered manifold
(Y; �;X); or brie�y, an automorphism of Y ; the group of automorphisms of (Y; �;X) will be denoted
by Aut(Y ):
In particular, an automorphism � 2 Aut(Y ) is called strict, or vertical, if � = idX : The set

Auts(Y ) consisting of strict automorphisms is a subgroup of Aut(Y ).
Given � 2 Aut(Y ) as above, any section 
 2 �(Y ) will be deformed by � into another section

~
 2 �(Y ); by the rule:
~
 := � � 
 � ��1: (1.21)

On a diagram (where, we have speci�ed for simplicity, X as the domain of de�nition of 
; of course,

 may in principle be de�ned on an open subset U � X only), this is:

Y
�����! Y




x?? x??~

X

��1 ���� X

:

Automorphisms � 2 Aut(Y ) are prolonged into automorphisms Jr� of JrY by the rule:

Jr�(Jrx
) := Jr�(x)(� � 
 � �
�1): (1.22)

A di¤erential form � 2 
(JrY ) is called �-invariant, if it is invariant under the jet prolongation
Jr�; i.e.,

Jr��� = �: (1.23)

Passing to the in�nitesimal level, any generator � 2 X (Y ) of a 1-parameter group f�"g of
automorphisms of Y is a �-projectable vector �eld, i.e., the pushforward ��� is a well de�ned
vector �eld on X. In any �bered chart, projectable vector �elds are represented as:

� = �A(xB)@A + �
�(xB ; y�)@�; (1.24)

where @� is a shorthand notation for @=@y�: In particular, 1-parameter groups of strict automor-
phisms are generated by �-vertical vector �elds, i.e., d�(�) = 0; in coordinates:

� = ��(xB ; y�)@�: (1.25)

The generator of the 1-parameter group fJr�"g is called the r-th prolongation of the vector �eld
� and denoted by Jr�: For instance, the �rst jet prolongation is expressed in the natural local basis
of X (J1Y ) as:

J1� = �A@A + �
�@� + �

�
A

@

@y�A
; ��A = dA�

� � y�B�B;A; (1.26)
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or, equivalently, in terms of the �rst order total derivative d(1)A := @A + y
�
A

@

@y�
:

J1� = �Ad
(1)
A + ~��@� + �

�
A

@

@y�A
; ~�� = �� � y�A�A: (1.27)

The role of the local components ~�� is seen as follows. The 1-parameter group f�"g generated
by � deforms any section 
 2 �(Y ) into a section 
" 2 �(Y ); by the rule (1.28); denoting the
coordinate representations of 
 and, respectively, of 
" as: 
 :

�
xA
�
7! (xA; y�

�
xA
�
); 
" :

�
xA
�
7!

(xA; ~y�
�
xA
�
); the �rst order approximation in " of ~y�(xA) is then given by:

~y�
�
xA
�
= y�

�
xA
�
+ "(~�� � J1
)

�
xA
�
+O("2): (1.28)

The functions ~�� � J1
 are typically denoted in the literature (though, in a bit imprecise way), by
�y� and called the variations of the �eld components y� � 
:

1.1.4 Lagrangians, Lepage equivalents and �rst variation formula

Lagrangians, action and �rst variation formula.

Let, again, (Y; �;X) denote a �bered manifold.

De�nition 1 [114]: A Lagrangian of order r on Y is a �r-horizontal form � 2 
n;X(JrY ) of top
degree n = dimX.

In �bered coordinates, Lagrangians are described as:

� = Ldnx; L = L(xA; y�; :::; y�A1:::Ar
): (1.29)

The action attached to the Lagrangian (1.29) and to a piece D � X is the function:

SD : �(Y )! R; SD(
) =

Z
D

Jr
��; (1.30)

by a piece D � X; we understand, [114], a compact n-dimensional submanifold with boundary of
X. In coordinates, (1.30) reduces to the familiar expression

SD(
) =

Z
D

L
�
xA; y�

�
xB
�
; :::; y�;A1:::Ar

(xB)
�
dnx;

where commas denote partial di¤erentiation.
Consider an arbitrary 1-parameter group f�"g � Aut(Y ); with generator � 2 X (Y ) and denote

by 
" = �" � 
 � ��1" the corresponding deformations of sections 
 2 �(Y ): The variation of the
action SD (
) under f�"g is de�ned as:

��SD(
) :=

�
d

d"
S�"(D)(
")

�
j"=0: (1.31)

A brief computation ([114], Ch. 4) leads to
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Lemma 2 [114], [79]: The variation ��SD(
) is expressed as the Lie derivative:

��SD(
) =

Z
D

Jr
�LJr��: (1.32)

A section 
 2 �(Y ) is called a critical section for S; if for any piece D � X and for any � 2 X (Y )
such that supp(� � 
) � D, there holds: �SD(
) = 0:

Using the above Lemma, one �nds:

Theorem 3 (First variation formula, [114], [79]): For any Lagrangian � 2 
n;X(JrY );
there exists a unique source form E (�) 2 
n+1(Js+1Y ) of order s + 1 � 2r and an (n� 1)-form
J � 2 
n�1(JsY ) such that, for any � 2 X (Y ):

Jr
�(LJr��) = Js+1
�iJs+1�E(�)� Js
�dJ �: (1.33)

The interpretation of these two forms is the following:

� The source form2 E (�) 2 
n+1(Js+1Y ) is called the Euler-Lagrange form of �; in coordinates,
if � = Ldnx; then:

E(�) = E��� ^ dnx;

with:

E� =
�L
�y�

=
@L
@y�
� dA

@L
@y�A

+ :::+ (�1)rdA1
:::dAr

@L
@y�A1:::Ar

: (1.34)

The section 
 2 �(Y ) is critical for � if and only if E� � Js+1
 = 0:

� The (n� 1)-form J � is called the Noether current associated to � and to the vector �eld �:
If � is a symmetry generator for �; i.e., if LJr�� = 0; then, Noether�s �rst theorem states that
the Noether current is conserved along critical sections:

Js
�dJ � � 0; (1.35)

where � denotes equality on-shell, i.e., along critical sections 
:

In integral form, the �rst variation formula reads:Z
D

Jr
�(LJr��) =

Z
D

Js+1
�iJs+1�E(�)�
Z
@D

Js
�J �: (1.36)

Remark.

1. The fact that E(�) = E��� ^ dnx is a source form implies that locally, only the zeroth order
components �i and ��of Jr� will appear in the expression iJs�E(�):

iJs�E(�) = (~��E�)dnx; ~�� = �� � y�C�C : (1.37)

2The notation s+ 1 for the order of E (�) will be explained below, in the paragraph discussing Lepage forms.
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2. In order to identify the Euler-Lagrange form, it is su¢ cient to use �-vertical variation vec-
tor �elds � 2 X (Y ): Yet, general variation vector �elds � are needed in discussing general
covariance and its consequence, energy-momentum conservation.

Here is one more property which will be very useful in the following.

Proposition 4 (Symmetries of the Euler-Lagrange form, [114], p. 118): For any automor-
phism � 2 Aut(Y ) and any Lagrangian � 2 
n;X(JrY );

Js+1��E(�) = E(Jr���); (1.38)

in particular, if � is �-invariant, then so is its Euler-Lagrange form E(�):

Identi�cation of E(�) and J�. Lepage equivalents.

Identi�cation of the Euler-Lagrange form E(�) and of Noether currents J � can be of course, done
via integration by parts, which is the straightforward, elementary method - but requires the explicit
use of coordinates. In the following, we will brie�y present an alternative method, which allows one
to write Euler-Lagrange forms, Noether currents (and further on, Hamiltonians) in a coordinate-free
manner, solely in terms of operations with di¤erential forms. This method is based on the notion
of Lepage equivalent of a Lagrangian de�ned by D. Krupka, [115], [114], which is a higher order,
�eld-theoretical generalization of the notion of Poincaré-Cartan form from mechanics.

De�nition 5 A Lepage equivalent of a Lagrangian � 2 
n;X(JrY ) is an n-form �� on some jet
prolongation JsY; with the following properties:
(i) h�� = � (where the equality should be understood up to the corresponding jet projections);
(ii) p1d�� is a source form.

The �rst property above implies: Js
��� = Jr
��; for any 
 2 �(Y ); which means that we can
substitute �� for � into the action SD(
): Then, from Cartan�s formula LJs��� = iJs�d��+d(iJs���)
one �nds:

Jr
�(LJr��) = Js
�(iJs�d��) + J
s
�d(iJs���): (1.39)

The only component which produces a nonzero result in the term Js
�(iJs�d��) is the horizontal
one hiJs�d��. But, since the degree of �� is n = dimX; we have hd�� = 0; i.e., d�� 2 
n+1(JsY )
is at least 1-contact; that is, hiJs�d�� = iJs+1�(p1d��); which gives:

Jr
�(LJr��) = Js+1
�iJs+1�(p1d��) + J
s
�d(iJs���): (1.40)

Setting:
p1d�� =: E(�) 2 
n+1(Js+1Y ); (1.41)

a direct computation using (ii), see [114], shows that, for any ��; E(�) is given in coordinates by
the Euler-Lagrange expressions (1.34). Thus, a local section 
 2 �(Y ) is critical for the Lagrangian
� if and only if, for any �-vertical vector �eld � 2 X (Y ); there holds:

Js+1
�(iJs+1�E(�)) = 0; (1.42)

which in coordinates, becomes equivalent to the Euler-Lagrange equations E�(�) � Js+1
 = 0:
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The remaining (boundary) term is, up to a sign, the Noether current:

iJs��� = �J �: (1.43)

Example: The principal (Poincaré-Cartan) Lepage equivalent. Denote by (V;  ) a
�bered coordinate chart on Y and by (V r;  r); V r = JrV; the induced �bered chart on JrY: Then,
every Lagrangian de�ned on V r admits Lepage equivalents. The most frequently used one, called
the principal Lepage equivalent, is a 1-contact form of order � 2r� 1 and it is given, in the �bered
coordinate chart (V 2r�1;  2r�1), by:

�� = Ldnx+ (
r�1P
k=0

fAB1:::Bk
� ��B1:::Bk

) ^ i@Adnx;

fB1:::Br+1 = 0; fB1:::Bk
� =

@L
@y�B1:::Bk

� dAfAB1:::Bk
� :

(1.44)

Generally, the principal Lepage equivalent �� is de�ned only locally ; yet, for �rst and second order
Lagrangians, it is globally de�ned on J2r�1Y whenever � itself is globally de�ned on JrY , [114],
[170].

Here are some particular cases:

� In the case of �rst order mechanics (n = 1; r = 1), this reduces to the famous Poincaré-Cartan
form:

�� = Ldt+
@L
@ _q�

��: (1.45)

� For second order Lagrangians � = L(xi; y�; y�i; y�ij)dnx; (1.44) gives:

�� = Ldnx+BA��� ^ !A +BAC� ��C ^ !A; (1.46)

where:

BA� =
@L
@y�A

� dC(
@L

@y�AC
); BAC� =

@L
@y�AC

: (1.47)

Proposition 6 , [198]: If � = Ldnx 2 
n;X(V r) is a¢ ne in the highest order variables y�A1:::Ar
;

then the order of �� is actually, at most 2r � 2.

Proof. The statement follows immediately by inspecting the highest order term

dC1 :::dCl
@L

@y�B1:::BkC1:::ClA

of ��:

Local decomposition of Lepage equivalents. Any Lepage equivalent �� of a Lagrangian �
can be locally decomposed, [114], as:

�� = �� + d� + �; (1.48)

where � is at least 1-contact and � is at least 2-contact. In particular, any 1-contact Lepage
equivalent of � can be expressed, [170], up to the corresponding jet projections, as:

�� = �� + p1d�: (1.49)

Relation (1.48) makes it clear that the Euler-Lagrange form E(�) = p1d�� is unique, whereas
Noether currents (1.43) will depend on the choice of ��:
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1.1.5 Natural bundles and natural Lagrangians

This subsection is a very brief introduction to the topic of natural (generally covariant) Lagrangians
and sets the stage for discussing, later, in Sections 1.3 and 3.2, a core concept in �eld theory: the
energy-momentum tensor. As, for energy-momentum tensors, the relevant base manifold X is
interpreted as spacetime, we will denote it throughout the subsection as M:

LetMn denote the category of smooth n-dimensional manifolds, with smooth embeddings3 as
morphisms and FB; the category of smooth �ber bundles, whose morphisms are smooth �bered
morphisms.
A natural bundle functor over n-manifolds is, [155], a functor F :Mn ! FB; such that:

1. For each M 2 Ob(Mn); F(M) is a �ber bundle over M ;

2. For each embedding �0 : M ! M 0 2 Morf(Mn); the �bered manifold morphism F(�0) :
F(M)! F(M 0) covers �0:

Natural lifts of di¤eomorphisms. Fix M 2 Ob(Mn) and denote Y := F(M): Then, any
di¤eomorphism � of M admits a canonical (or natural) lift � := F(�) to Y . These natural lifts
encode the transformations of �elds - more precisely, their local expressions are similar to transition
functions on the �bers of Y; [79], [70].
For example, if Y = T pq (M) is the bundle of tensors of type (p; q) over M , di¤eomorphisms

� 2 Diff(M) are canonically lifted into automorphisms � of T pq (M) by pushforward/pullback; in
natural �bered coordinates (xi; yi1:::ipj1:::jq

) on T pq (M) (obtained by decomposing elements of T
p
qM with

respect to the natural local basis dxj1 
 :::
 dxjq 
 @i1 
 ::::
 @ip), we get:

� : ~xi = ~xi(xj); ~y
i1:::ip
j1:::jq

=
@~xi1

@xk1
:::
@~xip

@xkp
@xl1

@~xj1
:::
@xlq

@~xjq
y
k1:::kp
l1:::lq

; (1.50)

Passing to in�nitesimal generators, any vector �eld � 2 X (M) admits a canonical lift � := l(�) 2
X (Y ), expressed in a �bered chart as:

� = �i(xj)
@

@xi
+ ��(xj ; y�)

@

@y�
; (1.51)

where the components �� can always be expressed in terms of the components �i of � and a �nite
number k 2 N of partial derivatives thereof. The number k (which is assumed to be minimal with
this property) is called the index, [84], or the order, [155], of the lifting.

Liftings of index 1. Tensor lifting. For k = 1, the components of the lifted vector �eld
(1.51) can be written in any �bered chart, as:

�� = C�i�
i + C�ji �

i
;j ;

3A smooth embedding between two manifolds M;N 2 Mn is, [128], p. 85, a smooth immersion f :M ! N which
is also a topological embedding, i.e., a homeomorphism onto its image f(M) � N (where f(M) is equipped with the
subspace topology).
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for some functions C�i ; C
�j
i of (x

k; y�) only. A direct calculation shows that, with respect to �bered
coordinate changes xi = xi(xi

0
); y� = y�(xi

0
; y�

0
), the top degree coe¢ cients C�ji = C�ji (x

k; y�)
transform by the rule:

C�
0j0

i0 =
@y�

0

@y�
@xj

0

@xj
@xi

@xi0
C�ji : (1.52)

The most common example of natural lifting of index 1 is obtained for the bundle of tensors
T pqM: In this case, the lifting of vector �elds

� = �i@i 2 X (M) 7! � = �i@i + �
i1:::ip
j1:::jq

@

@y
i1:::ip
j1:::jq

2 X (T pqM)

corresponding to (1.50) is given, [80], by:

�
i1:::ip
j1:::jq

= �i1;l y
li2:::ip
j1:::jq

+ :::+ �
ip
;l y

i1:::ip�1l
j1:::jq

� �l;j1y
i1:::ip
lj2:::jq

� :::� �l;jqy
i1:::ip
j1:::jq�1l

: (1.53)

Natural (generally covariant) Lagrangians. A globally de�ned Lagrangian � on JrF(M)
is called natural, or generally covariant, [70], if it is invariant under canonical lifts of arbitrary
di¤eomorphisms of spacetime, i.e.,

JrF(�)�� = �; 8� 2 Diff(M):

Using the formal similarity between lifts F(�) of (a priori, active) di¤eomorphisms � 2 Diff(M)
and �bered coordinate transformations on F(M) induced by � regarded as a coordinate transforma-
tion on M , naturality amounts to the fact that � must be invariant to any such coordinate changes
on F(M) - for any possible base manifold M 2 Ob(Mn):

In coordinates, this is translated as: in the writing � = Ldnx; L transforms as a density of weight
1 or, equivalently, in the writing � = LdV in terms of an invariant volume form dV , L is invariant
under any coordinate transformations on Y = F(M) induced by coordinate transformations on M
(such a function L is called an invariant scalar, or a di¤erential invariant).
In terms of in�nitesimal generators, � is generally covariant if and only if:

LJr�� = 0; (1.54)

for canonical lifts � = l(�) of all vector �elds � 2 X (M):

1.2 Variational completion of di¤erential equations

This section presents the concept of canonical variational completion of a system of di¤erential
equations, which was �rst introduced in my joint paper with D. Krupka, [202]. An application
to the so-called 4-dimensional Einstein-Gauss-Bonnet theory of gravity, presented in the Examples
section, is a shortened version of my paper with M. Hohmann and C. Pfeifer, [98].
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1.2.1 Introduction

The inverse problem of the calculus of variations consists in deciding whether a given system of
di¤erential equations is variational, i.e., if it arises, locally or globally, as the Euler-Lagrange system
associated to a Lagrangian - and, in the negative case, transforming it into a variational one.
Typically, local variationality of a given system of equations is established by checking the so-

called Helmholtz conditions, which are a PDE system to be satis�ed by the coe¢ cients of the original
system; in the case the system is not variational, the most well-known method of transforming it
into a variational one are the so-called variational multipliers, see, e.g., [35].

Another possibility of transforming an arbitrary PDE or ODE system into a variational one, is to
simply add a correction term, [202]. This idea was motivated by the following example. Historically,
the �rst variant of gravitational �eld equations proposed by Einstein was:

Rij = 8��Tij ; (1.55)

where: Rij is the Ricci tensor of a 4-dimensional Lorentzian manifold (M; g); Tij is the energy-
momentum tensor and � is a constant, [126]. This variant correctly predicted some physical facts,
but was inconsistent with local energy-momentum conservation. Therefore, by a reasoning based

on contracted Bianchi identities, Einstein added the "correction term" �1
2
Rgij , which led to the

nowadays famous:

Rij �
1

2
Rgij = 8��Tij : (1.56)

On the other hand, the variational deduction of (1.56), due to Hilbert, relies on a heuristic argu-
ment: simplicity. Hilbert chose to construct the action for the left hand side using the simplest
invariant scalar which can be constructed from the metric tensor and its derivatives alone, which is
the scalar curvature R; the Euler-Lagrange expressions resulting from this simplest scalar coincide
with the left hand side of (1.56).
Yet, knowing that contracted Bianchi identities can be understood, [126], as a direct result

of the existence of a generally covariant Lagrangian for the left hand side of (1.56), the natural
question that arises is: Does there exist a systematic algorithm that would determine the correction

term �1
2
Rgij on variationality grounds? If so, such an algorithm should be able to correct in a

meaningful way, basically any intuitively found system of di¤erential equations, into a variational
one.
The answer to the above question is a¢ rmative. Any ordinary or partial di¤erential system can

be expressed as the vanishing of some source form " along sections of an appropriate jet bundle.
Further, to this source form and to each vertically star-shaped local chart domain on which " is
de�ned, one can naturally attach a Lagrangian �", called the Vainberg-Tonti Lagrangian of "; [188],
[114]; this Lagrangian has the property that the di¤erence

� := E(�")� " (1.57)

between its Euler-Lagrange form E(�") and " gives a measure of the non-variationality of "; to be
more precise, the form � is expressed in terms of the coe¢ cients of the so-called Helmholtz form of "
- whose vanishing is equivalent to the Helmholtz conditions. In particular, if " is locally variational,
then " = E(�"):
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We will call the correction term � ; the canonical variational completion of ".

Apart from the above example, this method has already been proven to have some interesting
applications:
1) Energy-momentum tensors, [202], [199]. Knowing a term of an energy-momentum tensor,

one can recover both the corresponding Lagrangian and the full expression of the respective energy-
momentum tensor, by canonical variational completion. In particular, symmetrization of canonical
(Noether) energy-momentum tensors in the special relativistic limit can be understood this way.
2) Extended gravity theories. Applications to Einstein-Gauss-Bonnet gravity, [98] and Finsler

gravity, [93], will be discussed in the next sections.
3) In classical mechanics, equations of damped small oscillations are known to be non-variational;

in the case of linear damping, the correction term E(�")� " is, up to a sign, the friction force, [202].

1.2.2 Source forms and the inverse problem of the calculus of variations

Local variationality. The Helmholtz conditions in �eld theory

Let, in the following, (Y; �;X) denote a �bered manifold with dimX = n: We recall that a source
form (or dynamical form) of order r is a �r;0-horizontal, 1-contact (n + 1)-form " on JrY ; in the
local contact basis (1.10) of 
(JrY ); this gives:

" = "��
� ^ dnx; "� = "�(x

A; y�; y�A; :::; y
�
B1:::Br

): (1.58)

The set of source forms of order at most r over Y is closed under addition and under multiplication
with functions f 2 F(JrY ):
The most notable example of a source form is the Euler-Lagrange form E(�) of a Lagrangian �:

A source form " 2 
n+1(JrY ) is called:
a) locally variational if corresponding to any �bered chart (V;  ) of Y; there exists a Lagrangian

�V 2 
n;X(JsV ) (of some order s) such that, on the respective domain, " = E(�V );
b) globally variational if there exists a Lagrangian � over the whole manifold Y such that

" = E(�):
Local variationality of a source form " = "��

� ^ dnx of order r is equivalent to a generalization
of classical Helmholtz conditions, [114], [199]:

H B1:::Bk
�� (") = 0; k = 0; :::; r; (1.59)

where the local functions:

H B1:::Bk
�� (") =

@"�
@y�B1:::Bk

� (�1)k @"�
@y�B1:::Bk

� (1.60)

�
rX

l=k+1

(�1)l(lk)dAk+1
dAk+2

:::dAl

@"�
@y�B1:::BkAk+1:::Al

are the local coe¢ cients of an (n + 2)-form H(") =
rP

k=0

H B1:::Bk
�� (")!�B1:::Bk

^ !� ^ dx on J2rY;

called the Helmholtz form of ":
In the following, by "variationality", we will always mean local variationality.
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The Vainberg-Tonti Lagrangian.

Given a source form " de�ned on some �bered chart domain V r � JrY , one can attach to " and to
the respective chart a Lagrangian called the Vainberg-Tonti Lagrangian, with the following property:
if the source form " is locally variational, then the Vainberg-Tonti Lagrangian is a Lagrangian for
". The results in this preliminary paragraph can be found in more detail in Sections 4.9 and 2.7 of
the book by Krupka [114].
Consider an arbitrary source form " = "��

�^dnx, de�ned over a �bered chart domain V r � JrY
where V r = JrV for some �bered chart domain V � Y . In the following, we assume that the set
 r(V r) is vertically star-shaped with center

�
xA; 0

�
, i.e. if (xA; y�; y�A; :::; y

�
A1:::Ar

) 2  r(V r);

then the whole segment (xA; uy�; uy�A; :::; uy
�
A1:::Ar

); u 2 [0; 1]; remains in  r(V r): Under this
assumption4 , the correspondence

((xA; y�; y�A; :::; y
�
A1:::Ar

); u) 7! (xA; uy�; uy�A; :::; uy
�
A1:::Ar

) (1.61)

is the coordinate expression of a well de�ned mapping:

� : V r � [0; 1]! V r; �((Jrx
); u) =: �u(J
r
x
): (1.62)

Further, for any � 2 
k(V r); set:

I� :=

1Z
0

�(0)(u)du; (1.63)

where �(0)(u) 2 
k�1(V r) is obtained from the decomposition:

��� = du ^ �(0)(u) + �0(u) (1.64)

into a du-term and a term �0(u) which does not contain du. The obtained mapping I : 
k(V r)!

k�1(V

r); called the �bered homotopy operator, is R-linear and obeys:

� = Id�+ dI�+ (�r)
�
�0; (1.65)

where
�0 := 0

�� (1.66)

and 0 denotes the zero section 0 :
�
xi
�
7!
�
xi; 0; 0; :::; 0

�
of V r: The k-form �0 is de�ned over

�(V ) � X:
The following properties will be used in the following sections:

Ih� = 0; Ipk� = pk�1I�; 1 � k � q: (1.67)

Applying the above operator I to a source form " = "��
� ^ dnx 2 
n+1(V r); the obtained

n-form
�" := I" (1.68)

4The construction can also be extended to cases when  (V ) is not vertically star-shaped, see, e.g., [98].
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is a Lagrangian on V r; called the Vainberg-Tonti Lagrangian attached to ": In coordinates:

�" = L"dnx; L" = y�
1Z
0

"�(x
A; uy�; uy�A; :::uy

�
A1:::Ar

)du: (1.69)

If the source form " admits a Lagrangian on V , then: E�" = ":
Remark. The Vainberg-Tonti Lagrangian �" of a source form " is of the same order as "; in

particular, for a second order source form, �" is also of second order. That is, very often (e.g., in
classical mechanics), �" can be order-reduced, i.e., it is equivalent to a lower order Lagrangian.

1.2.3 Canonical variational completion of a source form

By variational completion of a given source form " on Y; one could in principle understand any
source form � on Y with the property that " + � is locally variational. But, clearly, every source
form has in�nitely many variational completions, since any Lagrangian � gives rise to a variational
completion of " by the rule � := E(�) � ". Thus, the question is whether it is possible to choose
this Lagrangian � in a meaningful, "canonical" way.

An answer is given, as we will see below, by the Vainberg-Tonti Lagrangian. The key property
that justi�es this choice is the following.
The Euler-Lagrange form E(�") = E��� ^ dnx of the Vainberg-Tonti Lagrangian �" is given,

[117], by:

E� = "� �
1Z
0

ufy�(H�� � �u) + y�B(H B
�� � �u) + :::+ y�B1:::Br

(H B1:::Br
�� � �u)gdu; (1.70)

where the coe¢ cients H B1:::Bk
�� are the Helmholtz coe¢ cients (1.59).

From (1.59), it follows that the coe¢ cients H B1:::Bk
�� above have the meaning of "obstructions

from variationality" of the source form ": In particular, if the source form " is variational, then
E(�") = ":

Pick a vertically star-shaped �bered coordinate chart domain V r = JrV � Y as above. Then,
it makes sense:

De�nition 7 , [202]: The canonical variational completion of a source form " 2 
n+1(JrV );
is the source form �(") given by the di¤erence between the Euler-Lagrange form of the Vainberg�
Tonti Lagrangian of " and " itself:

�(") = E(�")� ": (1.71)

The local coe¢ cients �� of the canonical variational completion �(") = ���
� ^ dnx can thus be

directly expressed in terms of the Helmholtz form coe¢ cients H B1:::Bk
�� :

�� = �
1Z
0

ufy�(H�� � �u) + y�B(H B
�� � �u) + :::+ y�B1:::Br

(H B1:::Br
�� � �u)gdu:
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Generally, the Vainberg-Tonti Lagrangian and, accordingly, the canonical variational completion
of a source form of order r; are of order 2r:

Remarks.

1. Tensor equations: In the case when Y = T pqX is a bundle of tensors of type (p; q) over
X and the functions "� behave as components of a tensor (respectively, as components of a
tensor density) of type (q; p) under arbitrary coordinate changes, then their Vainberg-Tonti
Lagrangian function (1.69), whenever de�ned, is an invariant scalar (respectively, a scalar
density). That is, if some globally de�ned tensor equations are locally variational, then their
Vainberg-Tonti Lagrangian is natural; in particular, it is globally well de�ned.

2. Applicability of the algorithm. As constructed above, the Vainberg-Tonti Lagrangian is
quite widely, but not universally applicable (or at least, not without modi�cation). Limita-
tions of its applicability come from the assumption of vertical star-shapedness with center
(xA; 0; :::; 0) of the coordinate chart (V r;  r): An immediate counterexample in this sense are
metric theories of gravity, where the dynamical variables are the metric components gij or the
inverse metric components gij ; in this case, the coordinate neighborhood V r is not vertically
star-shaped with center

�
xi; 0; 0:::; 0

�
as neither gij = 0; nor gij = 0 can de�ne a metric tensor.

A simple �x that solves the problem in most such cases, is to consider the lower integration
endpoint 0 as a limit, [98] (which will be done in all the examples below), or to replace 0 with
a di¤erent value a 2 �R:

1.2.4 Examples

Einstein tensor obtained from canonical variational completion of Ricci tensor, [202].

In general relativity, gravity is encoded in a Lorentzian metric on a 4-dimensional manifoldM inter-
preted as spacetime. Hence, let in the following (M; g) denote a 4-dimensional manifold equipped
with local charts (U; �), � = (xi)i=0;3 and a metric of Lorentzian signature (+;�;�;�). We denote
by r the Levi-Civita connection of g; by Rij the Ricci tensor of r and by R = gijRij ; the scalar
curvature. Indices of tensors will be lowered or raised by means of the metric gij and its inverse gij .

Einstein �eld equations (1.56) arise by varying with respect to the metric tensor the Lagrangian
� = �g + �m; where:
i) �g = R

p
jdet gjd4x is the Hilbert Lagrangian5 ;

ii) the matter Lagrangian �m = Lm
p
jdet gjd4x; is given by an invariant scalar Lm =

Lm(gij ; gij;h; yI ; yIj ; :::; yIj1:::jr ) depending on the metric tensor components and their derivatives
up to order 1 and on the r-jet of some other �eld with coordinates yI .

In the following, we will focus on the vacuum Einstein �eld equations

Rij �
1

2
Rgij = 0: (1.72)

5Here, we have omitted the constant � = � 1

16��
in front of �g (which is present in the paper [202]), as this

constant, on the one hand, plays no role in determining the vacuum �eld equations and, on the other hand, it is
not to be �xed by variationality reasonings, but by further considerations (imposing that the Newtonian limit of the
obtained �eld equations - i.e., the Einstein �eld equations - coincides with the Poisson equation).
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In this case, the dynamical variables are the metric tensor components gij , meaning that our
con�guration manifold (Y; �;M) is the bundle of metrics

(Met(M); �;M) ;

whereMet(M) � T 02M is de�ned as the set of symmetric nondegenerate tensors of type (0,2) onM
and � is the restriction to Met(M) of the canonical projection of T 02M: On the other hand, since
both Rij and R are of second order in gij , the space we actually have to work on is J2Met(M).

We denote the local charts on Met(M) by (V;  ); with  = (xi; gjk) and the induced �bered
chart on J2Met(M); by (V 2;  2); with  2 = (xi; gjk; gjk;i; gjk;il): We will also use the notations
�� =: �jk, �

�
i =: �jk;i for the local contact basis forms on J

2Met(M); more precisely:

�jk = dgjk � gjk;idxi; �jk;l = dgjk;l � gjk;lidxi:

The Riemann tensor components R i
j kl = dl�

i
jk � dk�ijl + �hjk�ihl � �hjl�ihk, the Ricci tensor

components Rjk = R i
j ki and Ricci scalar R = gjkRjk thus become objects on J2Met(M): We will

refer to these objects as formal ones, meaning that they are constructed by means of the usual
relations, but, in their expressions, gij ; gij;k and gij;kl are the coordinate functions on J2Met(M).
Only when evaluated along sections g 2 �(Met(M)); g :

�
xi
�
7! gjk

�
xi
�
; these become the usual

geometric objects, de�ned on M ; in other words, the base manifold quantities introduced in the
�rst paragraphs of this section (e.g., in (1.72) are, in the new notations, Rjk � J2g and R � J2g:

Fix a �bered chart on J2Met(M) and consider the following source form:

" := Rij
p
jdet gj�ij ^ dnx; (1.73)

with components "ij = "ij(gkl; gkl;h; gkl;hm) given by

"ij = Rij
p
jdet gj:

The Vainberg-Tonti Lagrangian �" = L"dnx is:

L" = gij

1Z
0

"ij(ugkl;ugkl;h; ugkl;hm)du;

where the lower integration endpoint u = 0 will be considered as a limit (since gkl = 0 cannot be,
properly speaking, the local components of any metric tensor).
Let us study the behavior of the integrand with respect to homotheties �u :

(xi; gkl; gkl;h; gkl;hm) 7! (xi;ugkl;ugkl;h;ugkl;hm): These homotheties induce the transformation
gkl 7! u�1gkl of the inverse metric tensor components. The Christo¤el symbols

�ijk =
1

2
gih(ghj;k + ghk;j � gjk;h)

are invariant with respect to �u and hence the curvature tensor components R
i
j kl are also invariant.

The Ricci tensor Rjk is obtained just by a summation process from R i
j kl, which means that it is

also insensitive to �u: That is,

Rij � �u = (gihgjlRhl) � �u = u�2Rij :
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It remains to compute the contribution of �u; u 2 [0; 1], to the factor
p
jdet gj. Since each line of

the matrix (gjk) is multiplied by u; we getp
jdet(g � �u)j =

p
u4 jdet gj = u2

p
jdet gj:

Substituting into the expression of L"; we get this way,

L" = gij

1Z
0

u0Rij
p
jdet gjdu = gijR

ij
p
jdet gj

1Z
0

u0du = R
p
jdet gj;

i.e., the Vainberg-Tonti Lagrangian �" = L"dnx is nothing but the Hilbert Lagrangian �g :

�" = �g = R
p
jdet gjd4x; (1.74)

leading to the vacuum Einstein �eld equations (1.72).

Variational completion and 4-dimensional Einstein-Gauss-Bonnet gravity, [98].

The so-called renormalized, or truncated 4-dimensional Einstein-Gauss-Bonnet gravity is a theory
which recently received a lot of attention - but also some criticism. One of the main criticisms, [9],
is based on the fact that the resulting �eld equations cannot be obtained as the Euler�Lagrange
equations from a generally covariant Lagrangian. In the following, we show by means of the canon-
ical variational completion algorithm that, also in dimension n 6= 4; the renormalized truncated
Gauss�Bonnet source form cannot be obtained from any Lagrangian at all ; moreover, its canonical
variational completion is still ill-de�ned in dimension 4.

Consider, in the following, n = dimM � 4:
The original (non-truncated) Einstein-Gauss-Bonnet theory is based on the Lagrangian � =

�g + �m; where �m denotes the matter Lagrangian and the vacuum Lagrangian �g = Lgdnx 2
J2Met(M) is given by:

Lg =
�
M2
P

2
R� �0 +

�

n� 4G
�p
jdet gj ; (1.75)

where MP ; �0 and � are real constants and G denotes the Gauss-Bonnet scalar, see, e.g., [50]:

G = 6Rij [ijRklkl] = R2 � 4RijRij +RijklRijkl : (1.76)

Variation of � with respect to the metric is known to lead to the �eld equations:

Eij =M2
PGij + �0gij �

2�

n� 4Gij = Tij ; (1.77)

where Gij = Rij � 1
2Rgij are the components of the Einstein tensor and the term:

Gij := 15gi[jRklklRhmhm] =
1

2
Ggij � 2RihklRjhkl + 4RikjlRkl + 4RikRjk � 2RRij ; (1.78)

originating from the Gauss-Bonnet scalar, is still of second order. �0 is physically interpreted as
the cosmological constant.
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The truncated equations. Due to the n� 4 denominator in the last term of (1.75), neither
the Einstein-Gauss-Bonnet Lagrangian �g; nor the resulting �eld equations (1.77) make any sense
for n = 4: One idea to overcome this drawback was to truncate these equations, [83], as follows.
Noticing that

�Gij = (n� 4)Aij +Wij ; (1.79)

where:

Aij =
n� 3
(n� 2)2

�
2n

n� 1RRij � 4
n� 2
n� 3R

khCikjh � 4RikRjk + 2RkhRkhgij �
1

2

n+ 2

n� 1R
2gij

�
(1.80)

and Wij is a combination of the Weyl tensor components of (M; g); from which no factor (n� 4)
can be extracted6 , the idea in [83] was to discard the W -term, i.e., to consider instead of (1.77),
the truncated equations:

M2
PGij + �0gij + 2�Aij = �Tij ; (1.81)

where � 2 R is a constant.

But, as noted in [9], the left hand side of the above (more precisely, the term Aij) cannot
originate from the variation of any generally covariant Lagrangian. This is consistent, in the case
n = 4; with an old result by Lovelock, [133], stating that the only second order PDE system that
can be obtained as the Euler-Lagrange system of a generally covariant Lagrangian on Met(M), is
given by the Einstein equations with a cosmological constant: M2

PGij + �0gij = Tij :
In the following, we will show that the variationally completed equations for (1.81) are of fourth

order and still diverge in the case n = 4: We present here the discussion in the case n � 4; the case
n � 4 was discussed, with similar conclusions, in the paper [98].
In order to correctly use gij as our dynamical variables in (1.81), we must �rst raise the indices

in equation (1.81). The relevant source form, obtained by truncating the Euler-Lagrange form of
(1.75) is ~" := ~"ij�ij ^ dnx given by:

~"ij := �1
2
(M2

PG
ij + �0g

ij + 2�Aij)
p
jdet gj; (1.82)

the factor �1
2
arises from the de�nition of the energy-momentum tensor, see [126] or Section 1.3

below.
Under a rescaling gij ! ugij , the terms in the �eld equations (1.82) transform as Gij !

Gij ; Aij ! u�1Aij and
p
jdet gj ! u

n
2

p
jdet gj; taking into account gij ! u�1gij ; this gives:

Gij ! u�2Gij ; Aij ! u�3Aij : (1.83)

For n > 4; the resulting Vainberg-Tonti Lagrangian integral is �nite:

L~" = �
1

2
gij

Z 1

0

un=2
p
jdet gj

�
u�2M2

PG
ij + u�1�0g

ij + 2u�3�Aij
�
du

= �1
2

p
jdet gjgij

�
2M2

P

n� 2G
ij +

2�0
n
gij +

4�

n� 4A
ij

�
=
p
jdet gj

�
M2
P

2
R� �0 �

2�

n� 4A
i
i

�
;

(1.84)

6The term Wij does indeed, vanish in n = 4 dimensions, but, for combinatorial reasons.
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where we used gijgij = n as well as

gijG
ij = gij

�
Rij � 1

2
Rgij

�
=
�
1� n

2

�
R: (1.85)

The �rst two terms in the last line of (1.84) give us the Einstein-Hilbert Lagrangian density plus
the (densitized) cosmological constant, as one would have expected.
Varying the obtained Vainberg-Tonti Lagrangian with respect to gij leads to the variationally

completed �eld equations, [98], which, after lowering the indices, read:

~Eij :=M2
PGij + �0gij +

4�(n� 3)
(n� 1)(n� 2)(n� 4)

�
gij

�
�R� n

4
R2 + (n� 1)RklRkl

�
� 2(n� 1)�Rij + (n� 2)r@ir@jR+ nRRij � 4(n� 1)RklRikjl

�
= Tij ; (1.86)

where � = gijr@ir@j denotes the d�Alembert operator.
These equations are, as announced, of fourth order (and this will not change if we choose, e.g., to

"densitize" the original source form by a di¤erent power of jdet gj). In particular, they cannot not
coincide with the original equations (1.81), which means, using (1.70) that the considered source
form is not locally variational7 . Also, due to the presence of (n� 4) in the denominator of the
last term, its canonical variational completion (which is the "closest" variational source form to the
given one) does not make any sense for n = 4.

1.3 Energy-momentum tensor and energy-momentum bal-
ance law

1.3.1 Introduction

This section, which is based on our paper [201], tries to bring a bit more clarity to the long and
intricate history of the topic of energy-momentum tensors in Lagrangian �eld theories. Essentially,
it does two things:
1. It points out, for arbitrary Lagrangian �eld theories, a generalized "Hilbert-type" de�nition of

the energy-momentum tensor based on Euler-Lagrange forms, which agrees along critical sections,
with the one based on corrected Noether currents introduced by Gotay and Marsden, [84].
2. It �nds, for these theories, an energy-momentum balance8 law, that generalizes to arbi-

trary �eld theories based on natural Lagrangians, the covariant energy-momentum conservation
law known in metric theories. Whereas point 1. above is not really - or not completely - new,
but just done using a somewhat di¤erent framework (a similar expression of the energy-momentum
tensor can be found, e.g., in [72]), to the best of our knowledge, the latter result was found for the
�rst time in full generality, in [201].

7 In [98], the statement on the non-variationality of equations (1.81) was justi�ed using Corrollary 1, Section 4.11
of the book [114], which apparently (as pointed out by Bence Racsko in a private talk) has a gap in the proof. Yet,
this does not a¤ect our result, which can be justi�ed directly using the Vainberg-Tonti Lagrangian.

8We preferred the term balance law to the one of conservation law, as this law does not imply, for arbitrary
�eld theories, that the energy-momentum tensor has zero divergence (or not even zero "covariant divergence" - which
would anyway make sense only provided that a notion of covariant derivative exists in the given theory), which would
be required by a true conservation law.
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As a �rst application, we �nd an explicitly covariant generalized energy-momentum conservation
law for general metric-tensor (in particular, for general metric-a¢ ne) theories of gravity, with a
much simpler expression compared to the known ones in the literature, e.g., [152], [132].

The main motivation for using a generalized Hilbert-type formula for the energy-momentum
tensor, over a Noether-type one, is its computational simplicity. Yet, such a formula has at least
two other advantages: it is based on a uniquely de�ned di¤erential form (the Euler-Lagrange
form), whereas Noether currents are not uniquely de�ned; also, it opens up the possibility of using
results of the inverse problem of variational calculus, such as: the classi�cation of �rst-order energy-
momentum source forms, [116], or the notion of variational completion discussed above.

A brief history. Before passing to the technical details, let us present in brief the main episodes
in the history of energy-momentum tensors (see also [74], [84]).

� In special relativity, whose spacetime manifold is R4 equipped with the Minkowski metric � =
diag(1;�1;�1;�1); the canonical (Noether) energy-momentum tensor is de�ned by means
of the Noether currents due to the invariance of the Lagrangian to the group of spacetime
translations. It is conserved on-shell and its time-time and time-space components give the
correct energy and momentum densities of the described physical system. Still, as it fails
to ful�l two basic requirements for physical applications - symmetry and gauge invariance -
it requires an "improvement" procedure; the classical special-relativistic improvement recipe
(Belinfante&Rosenfeld, 1940) is based on enlarging the group of translations to the whole
Poincaré group.

� General relativity, based on a manifold M with a dynamical Lorentzian metric g 2
�(Met(M)), came with a completely di¤erent toolkit. The Hilbert, or metric energy-
momentum tensor, obtained as the variational derivative of the matter Lagrangian with re-
spect to the metric, has the desired properties - symmetry, gauge invariance and vanishing
covariant divergence on�shell. Hence, it does not require any improvement procedure. But,
on the other hand, [84], it is not obvious at all that it gives the correct energy and momentum
densities of the physical system under discussion.

� It thus appeared the idea of obtaining the energy-momentum tensor of any natural Lagrangian
�eld theory as a kind of "improved Noether current" which, in the case of general relativity,
coincides with the Hilbert one. This was done for �rst order Lagrangians by Gotay and
Marsden, [84] (with some re�nements brought by Forger and R½omer9 , [74]) and extended to
higher order ones by Fernández, García and Rodrigo, [72]. Here are the underlying ideas:

�General covariance of the Lagrangian: On a general spacetime manifold M; translations
(let alone the Poincaré group) make no sense. The natural choice in this case is the
group Diff(M) of di¤eomorphisms of M ; assuming that there exists a canonical lift of
di¤eomorphisms of M to the con�guration manifold Y and the Lagrangian of the theory
is invariant under lifts of arbitrary di¤eomorphisms, then any 1-parameter subgroup of
Diff(M) gives rise to a Noether current.

9The main advance brought in [74] resides in the fact that the energy-momentum tensor is built from the matter
Lagrangian �m only (while in [84], it is built from the total Lagrangian � - and thus vanishes on-shell). Also, the
energy-momentum tensor is regarded as a geometric object on a jet bundle of the con�guration manifold, rather than
on the spacetime manifold X - a standpoint which we will also adopt in the following.
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� Splitting of the variables into background and matter ones, and accordingly, of the La-
grangian into a background and a matter component: The problem with the above algo-
rithm based on the in�nite-dimensional group Diff(M) is that, when all the variables
are subject to Euler-Lagrange equations, the corresponding "Noether currents" are al-
ways zero [74], [84]. The way out of this impasse consists, [74], [80], in dividing the
variables of the theory into background ones (e.g., a metric and/or a connection, a tetrad
etc.) and dynamical (or matter) ones and, accordingly, in splitting the total Lagrangian
� into a sum

� = �b + �m;

where the background Lagrangian �b only depends on the background variables and
their derivatives, while the matter Lagrangian �m may depend on all the variables of the
theory. For the matter component �m taken separately, the background variables will
no longer be subject to any Euler-Lagrange equations (these are only supposed to obey
Euler-Lagrange equations for the total Lagrangian �). This way, one can obtain nonzero
Noether currents, leading to the energy-momentum tensor.

The original 1992 result by Gotay and Marsden, [84], states the following. Assume that, for
a �bered manifold Y �!M; there exists a canonical lifting of vector �elds l : X (M)! X (Y );
� 7! � of index 1. Then, for any �rst order Lagrangian � which is invariant under the
lifts of arbitrary vector �elds � 2 X (M) and for any critical section 
 2 �(Y ) for �, there
uniquely exists a (1,1)-tensor density T (
) = T ij(
)

@

@xi

dxj onM such that, for all compact

hypersurfaces � �M; Z
�

J1
�J � =
Z
�

T ij(
)�ji@idnx; (1.87)

where J � denotes the Noether current (1.33), (1.43), associated with �:
The "corrected Noether current map" T (
) is gauge invariant and given, in metric theories
(i.e., for Y = Met(M)), by a Hilbert-type formula. Moreover, relation (1.87) ensures that
T (
) is a "physically correct" energy-momentum tensor, in the following sense, [84]: if � is a
Cauchy hypersurface and the vector �eld � is transversal to �; then the energy corresponding
to the direction of evolution �; is H� = �

R
�

J1
�J �; i.e., it is given, again up to a sign, by

relation (1.87).

The latter remark points out that one could hardly overestimate the importance of having the
energy-momentum tensor related to Noether currents as in (1.87). But, instead of using this relation
as a de�nition, we will obtain it as a consequence of a general "Hilbert-type" de�nition.
This is based on noticing that the known algorithm for relating the Hilbert and Noether-type

energy-momentum tensors in the special-relativistic limit of general relativity, [127], can actually be
extended to almost completely arbitrary (not necessarily metric) �eld theories, as follows. Assuming
that the di¤erential index of the theory in the background variables is 1, and the matter Lagrangian
�m is generally covariant, in its Euler-Lagrange form E(b) with respect to the background variables,
we can isolate a divergence term - which thus couples to the Noether (boundary) term in the �rst
variation formula and gives the correct energy-momentum tensor. The remaining part of E(b) gives
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the energy-momentum balance law, which is obtained as an immediate consequence of the same
�rst variation formula (1.33).
These results hold true regardless of the order of the matter Lagrangian, in any of the (back-

ground or matter) variables, or of the index of the lifting with respect to the matter variables. We
will assume for simplicity, that Y is a natural bundle over M ; yet, all the results remain valid if we
assume, as in [84], that a canonical lift Diff(M)! Aut(Y ) somehow exists.

1.3.2 Energy-momentum tensor and energy-momentum balance function

The setting.

� Con�guration manifold: Assume, in the following, that the con�guration manifold
(Y; �;M) is a �bered product

Y = Y (b) �M Y (m);

over a spacetime manifold M; where both factors Y (b) and Y (m) are natural bundles over M .

We denote the coordinates in an arbitrary �bered chart on Y by (xi; y�; yI); the local coor-
dinates y� will be called background variables and yI ; matter variables. Accordingly, we will
denote the elements of the local contact basis (1.10) on JrY by:

�� = dy� � y�idxi; �I = dyI � yIidxi etc::

� Lagrangian. Consider, on Y a Lagrangian of order r :

� = �b + �m 2 
n;X(JrY ); (1.88)

where the background Lagrangian �b is projectable onto JrY (b); i.e., it depends only on
xi; y�; y�i; :::; y

�
i1:::ir

; while the matter Lagrangian

�m = Lm(xi; y�; :::; y�i1:::ir ; y
I ; yIi; :::; y

I
i1:::ir )d

nx

may depend on all the coordinates on JrY:

� Further assumptions. We suppose that:
A1. The natural lifting M ! Y (b) has index 1; in other words, the canonical lifting

l : X (M)! X (Y ); � := l(�) (1.89)

is of index 1 in the background variables y�: That is, in any �bered chart and for any � =
�i@i 2 X (M),

� = �i(xj)@i + �
�(xj ; y�)@� + �

I(xj ; yJ)@I ; (1.90)

where �� are expressed as
�� = C�i�

i + C�ji �
i
;j (1.91)

for some C�i = C�i
�
xj ; y�

�
; C�ji = C�ji

�
xj ; y�

�
. No restriction is imposed upon �I :

A2. The matter Lagrangian �m is natural (generally covariant), i.e.,

LJr��m = 0; 8� 2 X (M): (1.92)
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First variation formula revisited.

Under the above assumptions, the �rst variation formula (1.33) will have a peculiar form, which we
will investigate in the following.
Assume that �m admits a Lepage equivalent �� 2 
n(JsY ) of order s (where s � 2r � 1), i.e.,

the Euler-Lagrange form E (�m) = p1d�� is of order s+ 1 and the Noether current J
� = iJs��� is

of order s: The naturality condition (1.92), together with the �rst variation formula (1.33) imply:

Js+1
�iJs+1�E(�m)� Js
�dJ � = 0; (1.93)

for any section 
 := (
(b); 
(m)) 2 �(Y ); locally represented as (xi) 7! (xi; y�(xi); yI(xi)):

Further, the Euler-Lagrange source form E(�m) uniquely splits into a background component
E(b) 2 
n(Js+1Y ) and a matter one E(b) 2 
n(Js+1Y ):

E(�m) = E(b) + E(m); (1.94)

such that E(b) is �Y (m)-horizontal (i.e., in any �bered chart, it contains no �I -terms), whereas E(m)
is �Y (b)-horizontal (i.e., it contains, in any �bered chart, no ��-terms); in coordinates,

E(b) = �Lm
�y�

�� ^ dnx; E(m) = �Lm
�yI

�I ^ dnx:

On-shell for the matter component10 
(m) of 
 (i.e., for yI = yI(xj) subject to the Euler-
Lagrange equations), the E(m) part of (1.93) vanishes. So we remain with:

Js+1
�(iJs+1�E(b))� Js
�dJ � �
(m) 0; (1.95)

where �
(m) denotes equality on-shell for �
(m) : As in the following we will need horizontal forms,
it will be more convenient to rewrite this relation using (1.12), as:

Js+2
�(hiJs+1�E(b))� Js+1
�hdJ � �
(m) 0: (1.96)

De�nition of the energy-momentum tensor.

Under the assumption A1 above, we prove below that the surviving Euler-Lagrange term
hiJs+1�E(b) splits into a linear term in � and a divergence expression; the latter will provide the
energy-momentum tensor.

Lemma 8 If the canonical lifting l : X (M) ! X (Y ); � 7! �; is of index 1 in the background
variables y�; then there uniquely exist the F(M)-linear mappings B : X (M) ! 
n(J

s+2Y ) and
T : X (M)! 
n�1(J

s+1Y ) with horizontal values, satisfying:

hiJs+1�E(b) = B(�) + hd(T (�)); 8� 2 X (M): (1.97)

10For instance, in general relativity, if we take as the matter component 
(m); the electromagnetic 4-potential
A (which is a section of Y (m) = T �M), on-shell for the matter component means that F = dA is subject to the
Maxwell equations.
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Proof. We �rst de�ne B and T locally. In an arbitrary �bered chart (V s+2;  s+2) on Js+2Y , with
U = �s+2(V s+2); hiJs+1�E(b) is expressed as:

hiJs+1�E(b) = (~��E�)dnx; (1.98)

where ~�� = �� � y�i�
i; E� =

�L
�y�

: Substituting �� from (1.91), we �nd:

hiJs+1�E(b) = f(C�i�y�i)E��i+C
�j
i E��

i
;jgdnx = f[(C�i�y�i)E��dj(C

�j
i E�)]�

i+dj(C
�j
i E��

i)gdnx:
(1.99)

Then, denoting, for any 8� 2 X (U) :

B(�) = [(C�i � y�i)E� � dj(C
�j
i E�)]�

i dnx; (1.100)

T (�) : = (C�ji E��
i)i@jd

nx; (1.101)

we obtain two linear mappings B : X (U) 7! 
s+2n (Y ) and T : X (U) 7! 
s+1n�1(Y ); having horizontal
values and obeying (1.97).
Now, take two arbitrary, intersecting �bered chart domains V s+2; V s+2

0 � Js+2Y; with U =
�s+2(V s+2); U 0 = �s+2(V s+2

0
) and an arbitrary vector �eld � 2 X (U \ U 0): We denote by T and

T 0 the mappings corresponding by (1.101) to the two domains. Taking into account the rules of
transformation (1.18), (1.52), (1.17) of E�; C�ji and i@idnx, a brief calculation shows that:

T (�) = (C�ji E��
i)i@jd

nx = (C�
0j0

i0 E�0�
i0)i@j0d

nx0 = T 0(�) (1.102)

i.e., the mapping T can be de�ned globally on X (M). As hiJs+1�E(b) is globally well de�ned, we
�nd by (1.97) that B is also globally well de�ned.
Uniqueness of B and T can be established as follows. Assume that the mappings ~B : X (U) 7!


s+2n (Y ); ~T : X (U) 7! 
s+1n�1(Y ) also obey the above requirements. Then, for any � 2 X (M); we
have:

0 = (B � ~B)(�) + hd[(T � ~T )(�)]:
Since these mappings have horizontal values, they can be expressed as: B(�) = Bi�idnx, ~B(�) =
~Bi�idnx; T (�) = (T ji�

i)i@jd
nx; ~T (�) = ( ~T ji�

i)i@jd
nx; substituting into the above equality, we �nd:

0 = [(Bi� ~Bi) + dj(T ji� ~T
j

i)]�
i + (T ji� ~T

j

i)�
i
;j :

As this relation holds for any �; we obtain T ji� ~T
j

i = 0 and Bi� ~Bi = 0: Therefore, B = ~B and
T � ~T :

The above Lemma gives us the right to introduce

De�nition 9 The energy-momentum tensor of �m is the mapping:

T : X (M)! 
s+1n�1(Y ); � 7! T (�); (1.103)

uniquely de�ned by the splitting

hiJs+1�E(b) = B(�) + hd(T (�)); (1.104)

where the mappings T : X (M) ! 
s+1n�1(Y ); � 7! T (�) and B : X (M) ! 
s+2n (Y ); � 7! B(�) are
F(M)-linear and have �r-horizontal values.
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In the following, we will call the mapping B de�ned by (1.104), the balance function.

Remarks.

1. Coordinate expression of T : In coordinates, T is given by (1.101), i.e., T = T jidxi 

i@jd

nx, with:

T ji = C�ji
�Lm
�y�

; (1.105)

where, y� denote the background variables and the coe¢ cients C�ji are as in (1.91).

2. Relation (1.102) says that, with respect to �bered coordinate changes
�
xi; y�

�
7! (xi

0
; y�

0
) on

Js+1Y , the functions T ji obey the rule:

T ji =
@xj

@xh0
@xl

0

@xi
det(

@xk
0

@xk
)T h

0

l0 : (1.106)

Remark. The local expression (1.105) of T coincides, up to a minus sign and to a pullback by
sections of Js+1Y , to the one found by Gotay and Marsden, [84] and extended by Fernandez, Garcia
and Rodrigo [72] to higher order Lagrangians, as a result of a di¤erent, Noether-type construction.
In the following, we will go a step further and reveal more of its potential in the next subsection,
by getting a general energy-momentum balance law.

1.3.3 Properties of the energy-momentum tensor

The results below hold valid for any �eld theory obeying the assumptions A1, A2 in the beginning
of this subsection. Using De�nition 9, we will prove:

Theorem 10 (Coordinate-free energy-momentum balance law): For any piece D �M and
any � 2 X (M) with support contained in D; there holds:Z

D

Js+2
�B(�) �
(m) 0; (1.107)

where �
(m) means equality on-shell for the matter component 
(m) of the section 
 = (
(b); 
(m)) 2
�(Y ):

Proof. Consider an arbitrary vector �eld � 2X(M) and by denote � := l(�) its canonical lift to Y:
Using the splitting (1.104) together with the integral �rst variation formula (1.36), we get:

0 �
(m)

Z
D

Js+2
�B(�) +
Z
@D

Js+1
�(T (�)� J �): (1.108)

Equation (1.108) holds, in particular, for any vector �eld � with support contained in D; but, for
such vector �elds, the boundary term vanishes, which leads to the statement.

A direct consequence of the above is the main result of this section:
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Theorem 11 (i) (Coordinate expression of the energy-momentum balance law): Corre-
sponding to any �bered chart on the con�guration manifold Y = Y (b) �M Y (m), there holds:�

djT ji � (C�i � y�i)
�L
�y�

�
� Js+2
 �
(m) 0; i = 0; :::; n� 1; (1.109)

where C�i and T
j
i are given in (1.91) and (1.105).

(ii) (Energy-momentum tensor versus Noether currents): For any compact domain D �
M and any vector �eld � 2X(M) with support contained in D; there holds:Z

@D

Js+1
�T (�) �
(m)

Z
@D

Js+1
�J l(�); (1.110)

where l : X (M)! X (Y ) denotes the canonical lift.

Proof. (i) follows immediately from Theorem 11, taking into account the coordinate expression
(1.100) of B and the arbitrariness of �. Then, choosing � with �j@D 6= 0; and using (i), together
with the �rst variation formula (1.108), we �nd (ii).

Property (ii) above tells us that T (�) coincides on-shell with the "improved Noether current"
given by the general covariance of �m, i.e., it expresses the correct energy and momentum of the
described physical system.

The next result concerns the behavior of T with respect to gauge transformations of the matter
�elds, which will be understood as strict �bered automorphisms that only a¤ect these �elds.

Theorem 12 If a strict automorphism � 2 Auts(Y
(b) �M Y (m)) is a symmetry of �m acting

trivially on the background manifold Y (b); then:

Js+1��T (�) = T (�); 8� 2 X (M): (1.111)

Proof. According to the hypothesis � acts trivially on M and on the �bers of Y (b); i.e., in any
�bered chart, it is described as: � :

�
xi; y�; yI

�
7!
�
xi; y�; ~yI(xi; yJ

�
): Then, it is easily seen that in

the expression T (�) = (C�ji E��
i)i@j (d

nx); all the appearing terms are �-invariant (the invariance of
E� follows by noticing that Jr���m = �m implies, by (4): Jr��E(b) = E(b); but, as E(b) = E���^dnx
and �� is �-invariant, one gets the statement), meaning that T (�) itself is invariant.

1.3.4 The case of metric and tensor backgrounds. Metric-a¢ ne gravity
theories

The general case.

In the case when the background variables consist of a pseudo-Riemannian metric and, possibly,
some other tensor quantity - which includes, in particular, all metric-a¢ ne theories of gravity - we
will write the energy-momentum balance law (1.109) in a manifestly covariant form, using formal
Levi-Civita covariant derivatives.
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Denoting by Met(M) the bundle of metrics, understood here for convenience as the set of all
symmetric nondegenerate contravariant tensors of rank 2 onM , the background manifold becomes:

Y (b) =Met(M)�M T pq (M)

and, accordingly, Y =Met(M)�M T pq (M)�M Y (m):We will use on Y (b) natural �bered coordinates

y� 2 fgjk; yi1:::ipj1:::jq
g; obtained by decomposing the involved tensors with respect to the natural local

bases @i; dxi; also, by dVg =
p
jdet gjdnx; we will mean the (formal) invariant Riemannian volume

form.
Assume that the matter Lagrangian �m is generally covariant, i.e.,

�m = LmdVg;

where Lm = Lm(xi; yI ; gjk; yIi; g
jk
i; :::y

I
i1:::ir

; gjki1:::ir ) is an invariant scalar; with the notations in
the Section 1.1.5, we have: �m = Lmdnx; where:

Lm = Lm
p
jdet gj: (1.112)

� The background component E(b) of E(�m) can be also more conveniently expressed in terms
of the invariant volume form, as:

E(b) = T��� ^ dVg; (1.113)

where T� 2 fTij ;Tj1:::jqi1i2:::ip
g are given by:

T� =
E�p
jdet gj

=
1p
jdet gj

�Lm
�y�

: (1.114)

� Accordingly, the energy-momentum tensor T will be expressed as:

T (�) =: (T ji�
i)i@jdVg; 8� 2 X (M):

where the coe¢ cients
T ji = C�ji T� =

1p
jdet gj

T ji (1.115)

obey, with respect to arbitrary �bered coordinate changes, a tensor-type transformation rule:

T j
0

i0 =
@xj

0

@xj
@xi

@xi0
T ji; this rule as can be immediately checked using (1.106).

� In detail, the coe¢ cients C�ji 2 fC
(jk)h
i ; C

(i1:::ip)j

(j1::::jq)i
g (and C�i = 0) are given by the tensor

lifting rule (1.53), which leads to:

T ji = 2g
jhThi + (y

ji2:::ip
j1:::jq

T
j1:::jq
ii2:::ip

+ ::::� yi1:::ipj1:::jq�1i
T
j1:::jq�1j
i1i2:::ip

): (1.116)

A direct calculation using (1.109) and the relations dj
p
jdet gj = �iji

p
jdet gj; gjhi = �(�

jh
i +

�hji); (where �
i
jk denote the formal Christo¤el symbols of g) leads to the following result:
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Theorem 13 (energy-momentum balance law in general metric-tensor theories): If the
background manifold is

Y (b) =Met(M)�M T pq (M);

then, for any natural matter Lagrangian �m = Lmdnx 2 
rn;X(Y (b) �M Y (m)) and for any section

 :M ! Y :

(y�;iT� + T
j
i;j) � Js+2
 �
(m) 0; i = 1; :::; n; (1.117)

where: T� =
1p
jdet gj

�Lm
�y�

; y� = y
i1:::ip
j1:::jq

; semicolons denote Levi-Civita covariant derivatives and

�
(m)means equality on-shell for the matter �eld 
(m).

Note. Actually, since gjk;i = 0; in the above relation, the Met(M) part of the expression y�;iT�
vanishes, i.e., only its T pqM -component will have a nonzero contribution: y

�
;iT� = y

i1:::ip
j1:::jq ;i

T
j1:::jq
i1:::ip

:
Let us investigate, in the following, the particular cases of metric and metric-a¢ ne theories.

Metric-a¢ ne theories.

In a metric-a¢ ne theory, the background variables are, a priori, a metric and an independent linear
connection. Yet, once a metric is present, it comes automatically with its Levi-Civita connection;
hence, any other connection D can be expressed in terms of distortion tensors, whose coe¢ cients

N i
jk = Ki

jk � �ijk; (1.118)

give the di¤erence between the coe¢ cients Ki
jk of D and the Christo¤el symbols of the met-

ric. Thus, metric-a¢ ne theories are metric-tensor theories, with background manifold Y (b) =
Met(M) �M T 12 (M): In natural �bered coordinates by,

�
xi; y�

�
=: (xi; gij ; N i

jk), we �nd the

energy-momentum tensor components T ji by (1.116), as:

T ji = 2T
j
i + (T

hl
iN

j
hl � T

jl
mN

m
il � ThjmNm

hi); (1.119)

where:

Tij =
1p
jdet gj

�Lm
�gij

; Tjki =
1p
jdet gj

�Lm
�N i

jk

=
�Lm
�N j

kh

: (1.120)

We note that, in metric-a¢ ne theories, Tij := TkjT
k
i is generally non-symmetric.

Applying (1.117), we �nd:

Proposition 14 (Energy-momentum balance law in metric-a¢ ne theories): In any
metric-a¢ ne theory with generally covariant matter Lagrangian �m = Lm

p
jdet gjdnx of order

r, the energy-momentum tensor (1.119) obeys the balance law:

(T ji;j +N
j
kh;i

�Lm
�N j

kh

) � Js+2
 �
(m) 0; (1.121)

where semicolons denote Levi-Civita covariant derivatives.
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The above relation holds for any matter Lagrangian function Lm, of any order; also, the dimen-
sion of the spacetime manifold is irrelevant.

Particular case: purely metric theories. The case when the only background variable is a
metric, i.e., Y (b) = Met(M); y� = gjk and the connection is the Levi-Civita one, can be obtained
from the above with N i

jk = 0: This immediately leads to the following result.

Proposition 15 1. If the only background variable is a metric tensor gij, then the energy-
momentum tensor T has the lower-index local components:

Tij =
2p
jdet gj

�Lm
�gij

: (1.122)

2. The energy-momentum balance law (1.117) becomes the usual covariant conservation law:

T ji;j � Js+2
 �
(m) 0: (1.123)

Remark. Applying the same algorithm to the Hilbert Lagrangian �g = RdVg; the corresponding
"energy-momentum tensor" becomes the Einstein tensor G = Gji

p
jdet gjdxi
!j and the covariant

conservation law (1.123) gives the contracted Bianchi identities Gji;j � Js+2
 = 0:

1.4 A special property of Lepage equivalents of Lagrangians

This section reproduces with almost identically parts of my joint paper with S. Garoiu and B.
Vasian, [198].

1.4.1 Introduction

As already discussed above, Lepage equivalents of a Lagrangian are a higher-order, �eld theoretical
analogue of the Poincaré-Cartan form (1.45) known from mechanics and play the same role: they
give rise to a geometric formulation of the calculus of variations. But, whereas in mechanics, the
Poincaré-Cartan form is unique, in �eld theory, any given Lagrangian � admits multiple Lepage
equivalents ��, exhibiting di¤erent features. One of the most desirable such features is the so-called
closure property:

� is variationally trivial , d�� = 0.

Once the closure property is satis�ed, all Lagrangians producing the same Euler-Lagrange equa-
tions will be characterized by one and the same d��: This property, which was initially motivated
by the study of symmetries of the Euler-Lagrange form, see [33], [34], is a very promising one in at
least two other directions:
- Geometric formulation of Hamiltonian �eld theory: given a Lagrangian form �, a Hamiltonian

form H� is constructed via the exterior derivative d�� - and generally, it is not guaranteed that
Lagrangians that produce the same Euler-Lagrange equations will also lead to the same Hamilton
equations. This drawback is eliminated if the mapping � 7! �� is R-linear and satis�es the closure
property.
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- Variational sequences (e.g., [114]), where it o¤ers an elegant characterization of the kernel of
the Euler-Lagrange mapping.

The closure property is notoriously obeyed in mechanics by the Poincaré-Cartan form ��, both
in the �rst order case (1.45) and for higher order Lagrangians. But, in �eld theory, �nding Lepage
equivalents with the closure property has been for many years an open problem. Actually, to the
best of our knowledge, mappings � 7! �� obeying it were only known, prior to the paper [198], in
some very speci�c situations:
- First order Lagrangians. In this case, a globally de�ned Lepage equivalent with the desired

feature, called the fundamental Lepage equivalent ��, was introduced by Krupka, [119] and rediscov-
ered by Bethounes, [33]; for �rst order homogeneous Lagrangians, a similar notion was introduced
by Urban and Brajercik, [194].
- Homogeneous Lagrangians with two independent variables; in this case, an extension of the

fundamental form �� was constructed by Saunders and Crampin, [177].

In [198], we proposed a general procedure which solves this problem, at least, locally, for general
Lagrangians �; of any order r � 1. Our construction relies on a di¤erent idea than the �rst order
construction in [119], as it uses as a raw material, the principal Lepage equivalent (1.44), which is
much simpler; more speci�cally, it is 1-contact, whereas the fundamental Lepage equivalent �� has
a higher degree of contactness.
The principal Lepage equivalent as it stands, does not generally obey the closure property, but

we show that it can be tailored in such a way as to eliminate this drawback, as follows. To any
Lagrangian � over a given �bered chart domain, one can canonically attach the Vainberg-Tonti
Lagrangian �V T of the Euler-Lagrange form of �; see (1.68). The di¤erence between � and �V T
is thus a trivial Lagrangian, which can be written, [114], up to pullback by the corresponding jet
projections, as

� = �V T + hd�; (1.124)

where h denotes the horizontalization operator and d� is uniquely determined, via a speci�c homo-
topy operator. Using the above decomposition, we prove that

�� := ��V T + d�; (1.125)

where ��V T is the principal Lepage equivalent of �V T ; gives a Lepage equivalent of � (which we
call canonical), obeying the closure property. The construction is a local one; yet, we show that, for
globally de�ned Lagrangians of order r � 2 on tensor bundles, having second order Euler-Lagrange
equations - which represent most of the cases of interest for physical theories - �� is actually globally
well de�ned.
A variant of the above construction, which is convenient in the case when � is locally equivalent

to a lower order Lagrangian �0, is to consider in (1.125), instead of the Vainberg-Tonti Lagrangian
�V T , a reduced Lagrangian �

0: This leads, in general, to non-unique Lepage equivalents ��, which
we will call reduced ; and, if we can ensure that �0 is truly of minimal order, the obtained reduced
Lepage equivalent will still possess the closure property.
In particular, for reducible second order Lagrangians, any reduced Lepage equivalent will be of

order 1.
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1.4.2 The closure property

In the following, let (Y; �;X) denote an arbitrary �bered manifold. We recall that by 
k(JrY ) we
mean the set of all k-forms de�ned on open subsets of JrY ; yet, whenever necessary, the precise
domain of de�nition of these forms will be indicated explicitly.
A Lagrangian � 2 
n;X(JrY ) is called trivial, or null, if its Euler-Lagrange form E� vanishes

identically. It is known, e.g., [114], p. 123, that � is trivial if and only if, for each �bered chart
domain V r := JrV in the domain of de�nition of �; there exists an (n� 1)-form � 2 
n�1(V r�1)
of order r � 1 over V; such that:

� = hd�; (1.126)

i.e., in coordinates, � is given by a divergence expression (1.14).
A mapping � : 
n;X(JrY ) ! 
n(J

sY ) attaching to any Lagrangian � 2 
n;X(JrY ); a Lepage
equivalent �� of some order s; is said, [177], to have the closure property, if:

� - trivial ) d�� = 0: (1.127)

Remark. The converse implication: d�� = 0) � - trivial, is true for any Lepage equivalent ��;
since d�� = 0 implies E� = p1d�� = 0; hence, whenever it holds, (1.127) is actually an equivalence.

A �rst consequence of the closure property is the following.

Proposition 16 : If the mapping � 7! �� : 
n;X(J
rY )! 
n(J

sY ) is R-linear and has the closure
property, then, for any two dynamically equivalent Lagrangians �; �0 2 
n;X(JrY ):

d�� = d��0 : (1.128)

Proof. Assuming that the Lagrangians �; �0 2 
n;X(J
rY ) are equivalent, it follows that the

di¤erence �� �0 is a trivial Lagrangian, hence d����0 = 0; which, by linearity, implies (1.128).
The closure property is a very convenient one for physical applications, as, basically, equality

(1.128) says that all Lagrangians describing the same physics will produce the same d��:

Example: The fundamental (Krupka) Lepage equivalent for �rst order Lagrangians.
For � 2 
n;X(J1Y ); a globally de�ned, �rst order Lepage equivalent possessing the closure property
is, [119], [170], [177]:

~�� = Ldnx+
minfm;ngX

k=1

1

(k!)
2

@kL
@y�1A1

:::@y�kAk

��1 ^ ::: ^ ��k ^ !A1:::Ak
; (1.129)

the degree of contactness of ~�� is min fm;ng :

1.4.3 Canonical Lepage equivalent

De�nition and properties.

Fix a vertically star-shaped �bered coordinate chart (V;  ) and an arbitrary Lagrangian � 2

n;X(V

r) of order r � 2 de�ned on V r := JrV: As, by de�nition, � is a Lagrangian for its
own Euler-Lagrange form E� = E��

� ^ dnx, the Vainberg-Tonti Lagrangian (of order � 2r):

�V T := IE� 2 
n;X(V 2r); (1.130)
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where I denotes the �bered homotopy operator (1.63), is always equivalent to �: The di¤erence
between � and �V T is thus a trivial Lagrangian; more precisely, see Sec. 4.9 of [114], we can write:�

�2r;r
��
� = �V T + hd�; (1.131)

where:
� := I�� +

�
�2r�1

��
�0; (1.132)

and �0 is an (n� 1)-form on �(V ) � X such that

0��� = d�0 (1.133)

(�0 is guaranteed to exist, as 0
��� is a form of maximal degree on X).

We will call the Lagrangian �V T ; the Vainberg-Tonti Lagrangian associated to �:

Let us make the following remarks.

1. As �� is 1-contact, we obtain by (1.67) that � is horizontal; moreover, since �� is of order
� 2r � 1, it follows that � 2 
n�1;X(V 2r�1), its coordinate expression is:

� = �A!A; �A = �A(xC ; y�C ; :::; y
�
C1:::C2r�1):

2. For a Lagrangian � of order r; the Euler-Lagrange expressions (1.34) are of order � 2r; but
their dependence on the variables y�A1:::A2r

is, in any �bered chart, at most a¢ ne. Hence, the
associated Vainberg-Tonti Lagrangian �V T is also at most a¢ ne in y�A1:::A2r

: Consequently,
using Proposition 6, we �nd out that the order of its principal Lepage equivalent ��V T does
not exceed 4r � 2:

We are now able to prove the following result.

Theorem 17 (Canonical Lepage equivalent): Let � 2 
n;X(V r) be an arbitrary Lagrangian
of order r over a vertically star-shaped �bered chart domain V r and �V T = IE� 2 
n;X(V 2r); its
associated Vainberg-Tonti Lagrangian corresponding to the given chart. Then:

(i) The di¤erential form �� 2 
n(V 4r�2) given by:

�� := ��V T +
�
�4r�2;2r�1

��
d�; (1.134)

where � is given by (1.132)-(1.133), is a Lepage equivalent of �;

(ii) If � is a trivial Lagrangian, then d�� = 0:

Proof. (i) Write � as in (1.131). Then, since the horizontalization h is a linear mapping, we have,
up to the corresponding jet projections:

h�� = h��V T + hd� = �V T + hd� = �;

moreover, taking the exterior derivative of (1.131), we obtain: d�� = d��V T ; therefore,

p1d�� = p1d��V T = E�V T = E�;
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which proves that �� is a Lepage equivalent of �:
(ii) Assuming that � is trivial, we have E� = 0; which implies �V T = 0 and, accordingly,

��V T = 0; as a consequence, �� =
�
�4r�2;2r�1

��
d� is locally exact - therefore, closed.

We will call the di¤erential form �� in (1.131)-(1.134), the canonical Lepage equivalent of �:

Remarks.

1. (Uniqueness of ��): Though the (n� 1)-form �0 in (1.133) is not unique, in the expression
of ��; it only appears through

d� = dI�� +
�
�2r�1

��
d�0 = dI�� +

�
�2r�1

��
0���

which is uniquely de�ned.

2. Linearity of �: The mappings I;� and E involved in constructing � are all R-linear ones,
therefore,

� : 
n;X(V
r) 7! 
n(V

4r�2); � 7! ��

is also an R-linear mapping. Together with the closure property, this ensures that, for equiv-
alent Lagrangians �1; �2; we will have d��1 = d��2 :

Lagrangians admitting globally de�ned canonical Lepage equivalents. As the above
construction heavily relies on quantities that are de�ned on a speci�ed chart, such as the Vainberg-
Tonti Lagrangian and the principal Lepage equivalent, a natural question is whether (or rather,
when) could �� be globally de�ned. Though a complete answer to this question is out of the scope
of this work, here is a result which covers a lot of the situations of interest for physical applications.

Theorem 18 Assume that Y is a tensor bundle over X and � 2 
n;X(JrY ) is a globally de�ned
Lagrangian of order at most 2, having second order Lagrange equations. Then, the canonical Lepage
equivalent (1.134) is globally well de�ned.

Proof. Let us start by the following remark on the �bered homotopy operator I. In the particular
case when (Y; �;X) has a vector bundle structure, the �ber rescalings �u = � (�; u) ; u 2 R; given
by (1.61) are nothing but the jet prolongations of the �berwise scalar multiplication on Y; i.e., they
make sense globally on JrY . Accordingly, � : JrY �R! JrY; (Jrx
; u) 7! �u(J

r
x
) is a well de�ned,

smooth mapping. Hence, for any globally de�ned form � 2 
(JrY ), ��� is also globally de�ned on
JrY � R: Further, noticing that, in (1.64), we can actually write �(0) = i@u(���); we obtain

I� =

1Z
0

i@u(�
��)du;

where, in this case, all the involved operations make sense globally. Therefore, on vector bundles,
I� is globally de�ned.
Assume now that � satis�es the above hypotheses; as � is globally de�ned, its Euler-Lagrange

form E� is also globally de�ned. Using the above remark, we get that �V T = IE� is globally de�ned
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- and, according to our hypothesis, of second order. But, for second order Lagrangians, the principal
Lepage equivalent is globally de�ned, which means that so is ��V T .
On the other hand, as the order of � does not exceed two, �� is globally well de�ned. Applying

again the above remark on the operator I, we �nally get that d� = dI�� +
�
�2r�1

��
0���; is

also globally de�ned. Summing up, we obtain that both terms of �� are globally de�ned, which
completes the proof.

The above result applies, for instance, to:
- all generally covariant, �rst order Lagrangians on tensor bundles;
- Lovelock gravity, Horndeski theories, metric-a¢ ne gravity theories with second order �eld

equations.

The result below gives the di¤erence between the canonical and the principal Lepage equivalent.

Proposition 19 For a Lagrangian � = �V T +hd� as in (1.131), there holds, up to the correspond-
ing jet projections:

�� = �� + (d���hd�): (1.135)

Proof. From the linearity of �; we have: �� = ��V T +�hd�: Adding to both hand sides d� and
taking into account that, up to jet projections, �� = ��V T + d�, this leads to (1.135).

Remark. The term d� � �hd� in (1.135) is 1-contact. Therefore, using (1.49), there exists a
1-contact form � such that, up to the corresponding jet projections:

d���hd� = p1d�: (1.136)

The precise coordinate expression of � is calculated, for �rst order Lagrangians, in [198].

1.4.4 Reduced Lepage equivalents

In the following, we present an alternative construction, which is advantageous in the case when
the Lagrangian � can be order-reduced; for reducibility criteria, see, e.g., [85] [170], [176].
Consider an arbitrary open subsetW � Y and a Lagrangian � 2 
n;X(W r); whereW r := JrW .

Picking any equivalent Lagrangian �0 2 
n;X(W s) to � of minimal order s � r over W; we can
again write

� = (�r;s)��0 + hd�; (1.137)

for some � 2 
n�1(W r�1).
In particular, for a trivial Lagrangian �; minimal order Lagrangians equivalent to � are �r-

projectable n-forms �0 = f(xA)dnx.

Proposition 20 Let � 2 
n;X(W r) be an arbitrary Lagrangian and �0 2 
n;X(W s); a dynamically
equivalent Lagrangian to �; of minimal order s � r: Then:
(i) The n-form

�� := ��0 + d�; (1.138)

where �0 and � are as in (1.137) and the equality must be understood up to the corresponding jet
projections, is a Lepage equivalent of �:
(ii) If � is variationally trivial, then any �� constructed as above is closed.
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Proof. (i) The proof is similar to the one of Theorem 17. First, we note that, up to jet projections:

h�� = h��0 + hd� = �0 + hd� = �;

moreover, d�� = d��0 implies p1d�� = p1d��0 = E�0 = E�; which is a source form, that is, �� is a
Lepage equivalent of �:
(ii) If � is trivial, then �0 = f(xA)dnx, which gives: ��0 = �0: But, as �0 is an n-form on X;

dimX = n; we �nd that: d�� = d��0 = d�0 = 0:

De�nition 21 We will call any Lepage equivalent built as in (1.137)-(1.138), a reduced Lepage
equivalent of �:

Remarks.

1. The reduced Lagrangian �0 of � (if it exists) is, generally, not unique. As a consequence,
we may obtain multiple reduced Lepage equivalents �� for the same Lagrangian. Even so,
the multi-valued correspondence � 7! �� is R-linear, in the following sense: for any �1; �2 2

n;X(W

r) and a1; a2 2 R, if ��1 2 � (�1) and ��2 2 � (�2) ; then a1��1 + a2��2 belongs to
the image � (a1�1 + a2�2).

2. The splitting (1.137) is, generally, only local - therefore, reduced Lepage equivalents are, in
general, de�ned only locally.

In particular, for second order Lagrangians, we obtain:

Proposition 22 Any reducible second order Lagrangian admits a local �rst order Lepage equivalent.

Proof. If � 2 
n;X(W 2) is reducible to a �rst order Lagrangian �0 2 
n;X(W 1); the corresponding
reduced Lepage equivalent �� is of order 1, as both ��0 and � are, in this case, of order 1.

Example: the Hilbert Lagrangian. This is a very peculiar example, for which:

��g = ��g = ��g ; (1.139)

where ��g corresponds to the famous non-invariant, �rst order Lagrangian equivalent to �g, see,
e.g., [126]. In particular, ��g is of order 1.

To prove this statement, denote, again, by Y =Met(M), the bundle of nondegenerate tensors of
type (0,2) over a 4-dimensional manifold M and by (xi; gij ; gij;k; gij;kl); the coordinates in a �bered
chart on J2Y: By a quick direct computation similar to the one in Section 1.2, it follows that the
Hilbert Lagrangian

�g := Rdnx; R = R
p
jdet gj

(having as its Euler-Lagrange form E(�g) = (Rij � 1
2
Rgij)�ij ^ d4x = (Rij � 1

2
Rgij)dgij ^ d4x)

coincides with its associated Vainberg-Tonti Lagrangian �V T ; which leads to: ��g = ��g :
The second equality (1.139) is based on the following remark that��g can be locally decomposed,

[199], as:
��g = ��0g + d�; (1.140)
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where
�0g = gjk(�ijl�

l
ki � �ijk�l il)

p
jdet gjdnx =: L0gdnx (1.141)

is the reduced non-invariant Lagrangian for �g and � = (�ijj � �
ji
j)
p
jdet gj!i: Therefore, ��g is

also a reduced Lepage equivalent.

The coordinate expression of ��g in the natural basis
�
dxi; dgjk; dgjk;i

	
of 
(J1Y ) is known,

[120], as:

��g = gip(�jip�
k
jk � �

j
ik�

k
jp)
p
jdet gjdnx

+
�
gjpgiq � gpqgij

�p
jdet gj(dgpq;j + �kpqdgjk) ^ !i:

Two more examples of canonical Lepage equivalents: the Klein-Gordon Lagrangian and the
Lagrangian of classical electromagnetic �eld, are discussed in the paper [198]. In the �rst case, it
turns out that �� = ��, while in the second one, the canonical and the principal Lepage equivalents
are di¤erent.



Chapter 2

Geometry of Finsler spacetimes

This chapter presents the notion of Finsler spacetime as introduced in my joint paper with C.
Pfeifer and M. Hohmann, [97], and points out its peculiarities - with a focus on the di¤erences
from the established and in-depth studied case of (smooth, positive de�nite) Finsler spaces. As
the geometry-generating functions of Finsler spacetimes are typically smooth on a smaller set than
their positive de�nite counterparts, these di¤erences are quite often unexpected; hence, one has to
proceed with maximum care when extending results from Finsler spaces to Finsler spacetimes. Yet,
as we will point out in the following, physical �eld theories can still be safely built over Finsler
spacetimes.
Throughout the chapter, we denote by M a connected, orientable C1-smooth manifold of di-

mension n � 2 and by (TM; �TM ;M), its tangent bundle; xi will designate the coordinates of a
point x 2 U � M in a local chart (U;') and (xi; _xi), the naturally induced local coordinates of
points (x; _x) 2 TU , i.e., _x = _xi@icx is the decomposition of the vector _x 2 TxM in the natural local
basis f@icxg. Whenever there is no risk of confusion, we will omit the indices of the coordinates.
Commas ;i will mean partial di¤erentiation with respect to the coordinates xi and dots �i partial
di¤erentiation with respect to the �ber coordinates _xi. The notation

�
TM = TMnf0g

will mean the tangent bundle of M without its zero section (the slit tangent bundle). Also, pseudo-
Riemannian metrics will typically be denoted by a, whereas the notation g will be reserved for
properly pseudo-Finslerian metric tensors.

2.1 De�nitions and basic geometric objects

This section introduces Finsler spacetimes and the associated notions playing a core role in physical
applications: light cones, cones of future-pointing timelike vectors, observer space; also, we brie�y
review the related geometric objects to be used in the sequel. A special attention is paid to
homogeneity, which is the key concept ensuring a well-de�ned notion of arc length in pseudo-
Finsler geometry. With the exception of Subsections 2.1.1, 2.1.4 and 2.1.5, which are just a quick
review of known results to be used later, the results in this section are obtained in [97] as joint work
with C. Pfeifer and M. Hohmann and represent re�ned versions of results in our older papers [96],
[93], [94].

39
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2.1.1 Finsler spaces

Finsler geometry is a generalization of Riemannian one, in the following sense. Whereas a Rie-
mannian space is a manifold equipped with a smoothly varying family of scalar products, a Finsler
space is, roughly speaking, a manifold equipped with a smoothly varying family of norms of tangent
vectors; the origin of this idea goes back to Riemann [169], but it was only systematically investi-
gated 60 years later by Finsler in his thesis [73]. Nowadays, (positive de�nite) Finsler geometry is
an established and active area of study; here is just a very quick introduction.

De�nition 23 [26], A Finsler space is a pair (M;F ), whereM is a smooth n-dimensional manifold
and the Finsler function F : TM ! [0;1) has the following properties:
1. Regularity: F is smooth on

�
TM and continuous on TM:

2. Positive 1-homogeneity: F (x; � _x) = �F (x; _x); 8� > 0; 8 (x; _x) 2 TM:

3. Strong convexity: At any point (x; _x) 2
�

TM; the bilinear form g(x; _x) : TxM � TxM ! R;
(u; v) 7! g(x; _x)(u; v) given by:

g(x; _x)(u;w) :=
1

2

@2F 2

@t@s
(x; _x+ tu+ ws) jt=s=0 (2.1)

is positive de�nite.

Interpretation. In a Finsler space (M;F ) ; each partial function Fx = F (x; �) : TxM ! R;
x 2 M; which we will call in the following, a Finsler norm, is actually, a smooth "almost norm",
as it is positive de�nite, obeys the triangle inequality, but is typically only positively homogeneous.
Using F; the length of a regular curve c : [a; b]!M is de�ned as:

l(c) =

bZ
a

F (c(t);
dc

dt
(t))dt: (2.2)

The positive 1-homogeneity axiom ensures that l(c) is invariant with respect to orientation-
preserving reparametrizations of c:
The third axiom in De�nition 23 introduces the Finsler metric tensor, which is a mapping

g :
�

TM ! T 02M; (x; _x) 7! g(x; _x): In coordinates, it is given by:

g(x; _x) = gij (x; _x) dx
i 
 dxj ; (2.3)

where

gij (x; _x) =
1

2

@2F 2

@ _xi@ _xj
(x; _x) ; (2.4)

the strong convexity requirement is equivalent to the fact that, at any point (x; _x) 2
�

TM and in
one (and then, in any) local chart around it, the matrix (gij (x; _x)) is positive de�nite.

Particular cases.

1. Riemannian spaces, with:

F (x; _x) =
p
ax( _x; _x) =

q
aij(x) _xi _xj ; (2.5)
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where a is a Riemannian metric on M: In this case, each Finsler norm Fx arises from a scalar
product. In terms of the metric tensor (2.4), Riemannian manifolds are singled out in the
class of Finsler manifolds by the fact that

gij(x; _x) = aij(x)

are, in any local chart, independent of _x:

2. (�; �)-metrics, [21], [173]. These are obtained by deforming a given Riemannian metric a on
M with the help of a 1-form b 2 
1(M): From 1-homogeneity, one �nds that these are always
expressible as:

F = ��(
�

�
); (2.6)

where � is a smooth real function and for all x 2M; _x 2 TxM :

� (x; _x) =
p
ax( _x; _x); � (x; _x) = bx ( _x) : (2.7)

This class includes as its simplest subclasses:

(i) Randers metrics, see, e.g., [26]:

F (x; _x) =
p
ax( _x; _x) + bx ( _x) (2.8)

where, in order to ensure the positive de�niteness of (gij); one must impose the condition
a�1(b; b) 2 (0; 1) (where a�1(b; b) := aijbibj).

(ii) Kropina metrics, see, e.g., [223]:

F (x; _x) =
ax ( _x; _x)

bx ( _x)
: (2.9)

Kropina metrics are among the Finsler metrics most used in applications; yet, to be honest,
they do not completely �t into the above de�nition, since F cannot be de�ned on the whole
TM: They are, actually, a �rst example of so-called conic Finsler metrics, to be discussed in
the next subsection.

The 2-homogeneous Finsler function L: The whole geometry of (M;F ) can be just as well
characterized in terms of the square

L = F 2; (2.10)

actually, when passing Lorentzian signature, the 2-homogeneous function L will turn out to be even
more convenient, as it will physically interpreted as relativistic interval. Using the 2-homogeneity
of L and (2.4), one �nds, in any local chart:

L (x; _x) = g(x; _x) ( _x; _x) = gij (x; _x) _x
i _xj : (2.11)
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2.1.2 Finsler spacetimes; future directed timelike cones, observer space

A �rst remark that comes to one�s mind is that, even for the simplest nontrivial examples of
Finsler spaces, which are Randers spaces, when replacing the positive de�nite Riemannian metric
a with a Lorentzian one, the obtained Finsler function will not be smooth for _x 2 TxM such that
ax( _x; _x) = 0: Moreover, for another very simple example, which is the Kropina metric, we have seen
that the requirement that F should be de�ned on the entire TM is too strong even in the positive
de�nite case.
Actually, for a lot of applications - including gravity theories - having with F (or L) de�ned and

smooth on a wisely chosen conic subbundle of TM is just enough, which will be done below.

A conic subbundle of TM (see, e.g., Bejancu&Farran, [30], or Javaloyes&Sanchez, [101]), is a
non-empty open submanifold Q � TMnf0g, with the following properties:

� �TM (Q) =M ;

� conic property: if (x; _x) 2 Q, then, for any � > 0 : (x; � _x) 2 Q.

Any conic subbundle is thus a �bered manifold over M; having as �bers Qx := Q\ TxM; conic
subsets of TxM; x 2M .

The above notion allows one to introduce the notion of pseudo-Finsler space. The de�nition
below is due to Bejancu&Farran, [30].

De�nition 24 A pseudo-Finsler space is a pair (M;L); where M is a smooth manifold, A �
�

TM is a conic subbundle and L : A ! R is a smooth function obeying the following conditions:

1. Positive 2-homogeneity : L(x; � _x) = �2L(x; _x); 8� > 0; 8(x; _x) 2 A:

2. Nondegeneracy: At any (x; _x) 2 A and in one (and then, in any) local chart around (x; _x);
the Hessian:

gij =
1

2

@2L

@ _xi@ _xj
(2.12)

is nondegenerate.

The conic subbundle A; where L is de�ned, smooth and with nondegenerate Hessian, is called
the set of admissible vectors. In the following, unless elsewhere speci�ed, we will always consider
as A; the maximal set with these properties.
The nondegeneracy condition implies that the matrix (gij) has constant signature on each con-

nected component of A - but it might very well fail to have the same signature on all of A:

In a pseudo-Finsler space, the Finslerian pseudo-norm F : A ! R+; which de�nes a notion of
arc length for curves similarly to (2.2), is given by

F :=
p
jLj: (2.13)

In turn, F de�nes L up to a sign:

L = �F 2; � = sign(L): (2.14)



2.1. DEFINITIONS AND BASIC GEOMETRIC OBJECTS 43

Examples:

- Finsler spaces are characterized by the fact that A =
�

TM and (gij) is everywhere positive

de�nite. The case when (gij) is positive de�nite on A; but A is strictly contained in
�

TM; is known
under the name of conic Finsler spaces, [101].

- Lorentz-Finsler spaces are characterized by q = n � 1: As we will see below, in Lorentzian
signature, the admissible set A is most often strictly contained in

�
TM .

Finsler spacetimes are a more nuanced version of Lorentz-Finsler spaces; though there is yet no
general consensus in literature over their precise de�nition, most recent versions, e.g., [101], [96],
[53], [88], tend to converge to the following: roughly speaking, a Finsler spacetime is a pseudo-
Finsler space (M;L) such that L > 0 and g has Lorentzian signature on a "large enough" conic

subbundle T of
�

TM ; the precise conditions to be imposed to T are, in principle, meant to ensure
the existence of a well de�ned causal structure.

De�nition 25 (Finsler spacetimes, [97]): A Finsler spacetime is a 4-dimensional, connected

pseudo-Finsler space (M;L) ; with admissible set A �
�

TM; obeying the extra condition:

There exists a connected conic subbundle T � A with connected �bers Tx = T \ TxM; x 2 M;
such that, on each Tx :

� L > 0;

� g has Lorentzian signature (+;�;�;�);

� L can be continuously extended as 0 to the boundary @Tx:

The set T is called the set of future-pointing timelike vectors.

Convention. In the following, though we will not specify this explicitly, we will always consider
that L is continuously prolonged as 0 on @T ; in particular, L(0) = 0.

The above de�nition allows for situations like the ones below, where, in red, we have depicted
the set TMnA of non-admissible vectors and Tx := T \ TxM :
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Future-pointing timelike cones in a Finsler spacetime

Comparison to other de�nitions in the literature. Our de�nition presented above is a
slightly more relaxed one than the one of improper Finsler spacetimes in [32], which is recovered
for A := T ; having T just contained in A allows one to talk about L also outside T ; which is
useful, e.g., in situations like in the �rst picture above, corresponding to the physical situation of
birefringence - and is characterized in terms of 4-th root metrics (see below for a discussion).
The existence and uniqueness of geodesics with given initial conditions (x; _x) 2 �T , which was

explicitly required in our older de�nition in [93], follows from the axioms 1:�3: above, see [32], and
thus the de�nition presented here also covers the Finsler spacetimes discussed in [125], [88].
In principle it would be possible to include particular directions in T that are not in A; but

just in A, as in [52], [53]. Yet, when deriving the necessary geometric objects for �eld theory
(connections, curvature), one needs smoothness, hence, it will be more convenient to assume that
T � A, in order to avoid unnecessary complications in variational procedures involving T .

Timelike vectors and the observer space. Assume, in the following, that (M;L) is a Finsler
spacetime; in particular, dimM = 4: An important conic subbundle in a pseudo-Finsler space is
the set of non-null admissible vectors:

A0 := A n L�1f0g: (2.15)

This is the set where we can divide by L in order to adjust the homogeneity degree of geometric
objects in _x.
For the application of Finsler spacetimes in physics, besides the sets of admissible (respectively,

non-null admissible) directions A and A0, the following subsets of TM play an important role:

1. The conic subbundle T of future pointing timelike vectors.

2. The observer space, or set of unit future pointing timelike vectors:

O := f(x; _x) 2 T j L(x; _x) = 1g : (2.16)
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3. The conic set L�1(0) has the meaning of set of null or lightlike vectors. By continuously
extending L as zero to the boundary @T , as speci�ed above, we always have the inclusion

@T � L�1(0): (2.17)

It is important to notice that the null set L�1(0) might not be contained in A, but just in A.

Relations between O; T ;A0 and A : From the above de�nitions, we �nd the inclusions:

O � T � A0 � A:

Moreover, due to the homogeneity of L, we have at any x 2M :

Tx = (0;1) � Ox; (2.18)

where Ox = O \ TxM is the observer space at the point x:

Observer space

An immediate result, yet, with quite deep implications, is the following, [97].

Proposition 26 At each point x 2M of a Finsler spacetime (M;L) :
(i) The future timelike cone Tx is an entire connected component of L�1((0;1)) \ TxM .
(ii) The observer space Ox is a connected component of the indicatrix Ix := L�1(1) \ TxM .

Proof. (i) holds by virtue of the null boundary condition @Tx� L�1(0) \ TxM and (ii) follows
immediately from the connectedness and maximality of Tx:

As a consequence of the maximal connectedness of Ox, a result by Beem, [29] ensures that Ox
is a strictly convex hypersurface of TxM and moreover, the set

Sx := Tx \ L�1([1;1)) = [1;1) � Ox

is also convex. Based on this, we can state, [97]:
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Proposition 27 In a Finsler spacetime as de�ned above, all future timelike cones Tx; x 2M; are
convex.

Proof. Fix x 2M and consider two arbitrary vectors u; v 2 Tx: In order to show that the segment
fw := (1 � �)u + �v j � 2 [0; 1]g lies in Tx; we rescale it by � � max(L(u)�1=2; L(v)�1=2); this
way, the endpoints �u; �v lie in Sx and, by the convexity of Sx; we �nd that �w 2 Sx � Tx: The
statement then follows from the conicity of Tx:

The convexity of the cones Tx allows one to prove (see Section 2.4 below) a Finslerian version
of reverse Cauchy-Schwarz inequality and a reverse triangle inequality - which are important in
discussing causal relations.

2.1.3 Examples of Finsler spacetimes

Here are some classes that are allowed by De�nition 25.

1. Lorentzian spacetimes: If a :M ! T 02M; x 7! ax = aij(x)dx
i 
 dxj is a Lorentzian metric

on M , then
L(x; _x) = ax ( _x; _x) = aij(x) _x

i _xj (2.19)

de�nes a Finsler spacetime function that is smooth on the entire TM:
In a Lorentzian space (M;a) ; a tangent vector _x 2 TxM is called timelike, if ax ( _x; _x) > 0;

lightlike if ax ( _x; _x) = 0; causal if ax ( _x; _x) � 0; respectively, spacelike, if ax( _x; _x) < 0: The future-
pointing timelike set Tx is typically chosen by specifying a time orientation, which is an everywhere
timelike vector �eld t; more precisely, one declares as Tx, the connected component of the set
f _x 2 TxM j ax ( _x; _x) > 0g containing the vector tx.

2. Randers spacetimes: L = �F 2; with � = sign(F ); where:

F (x; _x) =
p
jax ( _x; _x)j+ bx ( _x) :

Here, a is a Lorentzian metric and b = bidx
i is a 1-form on M: In our paper [93] (using a more

restrictive de�nition of Finsler spacetimes), we proved that, if a�1 (b; b) 2 (0; 1) ; then L de�nes a
Finsler spacetime structure; that is, it will also satisfy the more relaxed axioms presented above.
In physics, Randers spaces are employed to study the motion of an electrically charged particle

in an electromagnetic �eld, the propagation of light in static spacetimes [221], Lorentz violating
�eld theories from the standard model extension, [111], [178], [179] and Finsler gravitational waves
[89]. Recently also spinors have been constructed on Randers geometries, [190].

3. Bogoslovsky/Kropina type:

L (x; _x) = �(jax( _x; _x)j)1�q jbx ( _x)j2q (2.20)

[36], [113], where q 2 R; a is a Lorentzian metric as above, b = bidx
i is a 1-form on M and

� 2 f�1; 1g is a sign, e.g., � = sign(ax ( _x; _x)) ; the conditions upon the 1-form b, such that F de�nes
a spacetime structure depend on the value of q, see our paper [93] for a discussion.
In physics, these have been used in approaches to quantum �eld theories and modi�cations of

general relativity, known under the name of very special/very general relativity ; their main feature
is that each L (x; �) : TxM ! R is only invariant under a speci�c subgroup of the Lorentz group,
[61], [67], [81], [77], [78].
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4. Kundt spacetimes, [162]:

L(x; _x) = ax( _x; _x)s
�p(k +m s)p+1 ; (2.21)

where k; p;m 2 R are arbitrary constants, a; b are as above and s := (bx( _x))
2

jax( _x; _x)j
The causal properties

of this Finsler Lagrangian are discussed in Appendix B of the paper [76].

5. Polynomial (m-th root) type:

L (x; _x) = �jai1���im(x) _xi1 : : : _xim j
2
m ; (2.22)

where � = sign
�
ai1���im(x) _x

i1 : : : _xim
�
: In particular, for m = 4; one obtains quartic metrics, which

appear in physics, for example, in the description of propagation in birefringent media, in the context
of premetric electrodynamics, and the minimal standard model extension, [158], [171], [178], [86].
To check the axioms in De�nition 25 for m-th root metrics, pick any conic subbundle T � A

such that L > 0 on T . On such a subbundle, one can de�ne the polynomial function in _x :

H := Lm=2 = Fm: (2.23)

The Hessian of (H�i�j) is related to g, [160], [39], by the rule H�i�j = mFm�2[gij + (m � 2)F�iF�j ]
which easily leads (see the Appendix of our paper [140] for a proof) to the implication:

(H�i�j) - Lorentzian at (x; _x)) (gij (x; _x)) is Lorentzian. (2.24)

That is: if (H�i�j) is Lorentzian on T and T obeys the extra conditions: connectedness of �bers,
Lj@T = 0, then the considered pseudo-Finsler space (M;L) is a Finsler spacetime.

6. Anisotropic conformal transformations of Lorentzian metrics a:

L (x; _x) = e2�(x; _x)ax ( _x; _x) ; (2.25)

which have been studied in the context of an extension of the Ehlers-Pirani-Schild axiomatic to
Finsler geometry [184], [185]. The light cones of L are the same as those of a.

7. General �rst order perturbations:

L = ax ( _x; _x) + 2"h(x; _x); (2.26)

(where "2 ' 0) of pseudo-Riemannian metrics a; in physics, these are often used in the study of the
physical phenomenology of Planck scale modi�ed dispersion relations [4], [131], [166]. In particular,

if the 2-homogeneous function h is smooth on
�

TM; then L is smooth on
�

TM .

Examples 2-4 above belong to the more general class of (�; �)-metric spacetimes.
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2.1.4 Typical Finslerian geometric objects

Here, we brie�y review the typical Finslerian objects to be used in the following sections; on pseudo-
Finsler spaces (M;L) and, in particular, on Finsler spacetimes, these are obtained similarly to the
corresponding objects in positive de�nite Finsler spaces, see, e.g., [26, 60, 46], just taking care that
we have to restrict them to A or, if necessary, to A0 = AnL�1(0):
As further, in Chapter 3, we will explicitly need the coordinate expressions of these geometric

objects, we will present, for brevity, directly these expressions; for their coordinate-free de�nitions,
we mainly refer to the book by Buc¼ataru and Miron, [46].

Hilbert form and Finsler metric tensor. On a pseudo-Finsler space (M;L) the Hilbert form
! : A0 ! T 01M and the Finslerian metric tensor g : A ! T 02M are expressed, in every manifold
induced local coordinate chart, as

!(x; _x) := F�i(x; _x)dx
i ; F�i = �

gij _x
j

F
; (2.27)

g(x; _x) := gij(x; _x)dx
i 
 dxj ; gij :=

1

2
L�i�j ; (2.28)

where � = sign(L) and F =
p
jLj: We note that the Hilbert form ! is only de�ned on A0 =

AnL�1(0); as it involves derivatives of F =
p
jLj - which are not de�ned at points where L = 0.

Arc length, geodesics and canonical nonlinear connection. A curve c : [a; b] ! M is
called admissible if all its tangent vectors are in A: The arc length of a regular admissible curve
c : t 2 [a; b] 7! c(t) on M is calculated as

l(c) =

bZ
a

F (c(t); _c(t))dt; (2.29)

where _c(t) =
dc

dt
(t): If, moreover, _c(t) is nowhere lightlike, i.e., (c(t); _c(t)) 2 A0 for all t, then l(c)

can also be expressed in terms of the Hilbert form as:

l(c) =

bZ
a

C�! =

Z
ImC

!; (2.30)

where C : [a; b]! TM; t 7! (c(t); _c(t)) denotes the natural lift of c to TM .

Proposition 28 , see, e.g., [46]: Critical points of the length functional (2.29), called Finsler
geodesics, are characterized, in the arc length parametrization c : s 7!

�
xi(s)

�
, by the equations:

�xi(s) + 2Gi(x(s); _x(s)) = 0; (2.31)

where _xi(s) =
dxi

ds
(s); the geodesic coe¢ cients are well de�ned at all points (x; _x) 2 A and given,

in any coordinate chart, by

2Gi(x; _x) =
1

2
gih(L�h;j _x

j � L;h) : (2.32)
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A nonlinear connection will be understood as a connection on the �bered manifold A in the
sense of [79, pp. 30-32], i.e. , it is characterized by the existence of a vector subbundle HA, called
the horizontal subbundle, of the tangent bundle TA; such that:

TA = HA� VA;

where VA = ker d(�TM jA) is the vertical subbundle of TA; locally generated by the vectors _@i :=
@

@ _xi
. Such a splitting gives rise to a local adapted basis (�i; _@i) of TA; where the vectors:

�i :=
@

@xi
�Gji

@

@ _xj
(2.33)

locally span HA and, accordingly, to the dual basis (dxi; � _xi := d _xi +Gijdx
j); the locally de�ned

functions Gji = Gji(x; _x) are called the local coe¢ cients of the connection.
For pseudo-Finsler spaces, a canonical choice is the Cartan nonlinear connection N; given by:

Gij := Gi�j ; (2.34)

Arc-length parametrized geodesics of the Finsler spacetime (M;L) are autoparallel curves of the
canonical nonlinear connection. This is equivalent to the fact that an admissible curve c : [a; b]!M;
s 7! c (s) parametrized by arc length is a geodesic if and only if its natural lift C has everywhere
horizontal velocity vector _C (s) = _xi(s)�i:
We denote by h and v the horizontal and, accordingly, the vertical projector determined by the

canonical nonlinear connection; that is, for any vector X 2 TA; locally written as X = Xi�i+Y
i _@i

we will have:
hX = Xi�i; vX = Y i _@i: (2.35)

Any admissible vector �eld V = V i@i 2 �(A) can then be lifted to TM; either into a horizontal
vector �eld as V 7! V h := (V i � �TM jA)�i or into a vertical one, as: V 7! V v := (V i � �TM jA) _@i.
The dynamical covariant derivative, [45], [46], determined by the canonical nonlinear connection

can be regarded as an R-linear map1 r : X (A)! X (A), acting on horizontal, respectively, vertical
vector �elds as:

r(Xi�i) = ( _x
j�jX

i +GijX
j)�i; r(Y i _@i) = ( _xj�jY i +GijY j) _@i: (2.36)

Nonlinear curvature tensor and Finsler Ricci scalar. The curvature tensor R = Rijkdx
j ^

dxk 
 _@i of the canonical nonlinear connection of (M;L) is a tensor on TM; with local components
Rijk := � _xi([�j ; �k]) given by:

Rijk = �kG
i
j � �jGik: (2.37)

Geodesic deviations are characterized in terms of the canonical nonlinear connection as:

(rrV h)j(c; _c) = R( _ch; V h); (2.38)

1 In [46], r was introduced as an operator acting on vertical vector �elds only; yet, it can be also thought of as
acting on horizontal ones.
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where V 2 X (M) is the corresponding deviation vector �eld and the symbol j(c; _c) means that the

dynamical covariant derivativer is calculated along the natural lift C = (c; dc
ds
) to TM of a geodesic

c : [a; b]!M .
The trace of the geodesic deviation operator V 7! R

�
_ch; V h

�
gives the so-called Finsler-Ricci

scalar2 R0; on a Finsler spacetime, it makes sense on A0 and is given by

R0 =
1

L
Riik _x

k: (2.39)

Besides the canonical nonlinear connection, it is possible to additionally introduce on A several
linear connections (e.g., Chern-Rund, Berwald, Cartan, see [46]), which preserve the distributions
generated by the canonical nonlinear connection N . In this work we will pick, for simplicity, one
of these linear connections as an auxiliary tool to ensure that all obtained objects are well de�ned
tensors. Our particular choice of the linear connection is, yet, unessential, as both the results in
this chapter and our construction in Chapter 3 are independent of the typical Finslerian linear
connections that one may use.

Chern-Rund linear connection. The Chern-Rund linear covariant derivative on a Finsler
spacetime (M;L), de�ned on A � TM , is locally given by the relations

D�k�j = �
i
jk�i; D�k

_@j = �
i
jk
_@i; D _@k

�j = D _@k
_@j = 0 ; (2.40)

where
�ijk :=

1

2
gih(�kghj + �jghk � �hgjk): (2.41)

We denote by ji D-covariant di¤erentiation with respect to �i.
In any local chart, there holds _xi�kji = Gkj ; as a consequence, the dynamical covariant derivative

r determined by the nonlinear canonical connection N can be conveniently expressed in terms of
D-covariant derivatives as:

r = _xiD�i = r _xi�i : (2.42)

Relation (2.42) remains valid also when using other typical Finslerian connections (Berwald,
Cartan) and is intuitively interpreted as follows. Since tangent vectors to natural lifts of geodesics
c of (M;L) are horizontal, i.e., of the form _xi�i, r actually measures the rate of change of tensors
under parallel transport along (lifted) geodesics of M:

Cartan tensor and Landsberg tensor. The Cartan tensor C : A ! T 03M is a measure of how
"non-Riemannian" a (pseudo-)Finsler structure is; it is given in coordinates by:

C(x; _x) = Cijk (x; _x) dx
i 
 dxj 
 dxk; Cijk =

1

2
gij�k: (2.43)

Indeed, C = 0 is equivalent to the fact that gij depends on x only, i.e., it is pseudo-Riemannian.

The Landsberg tensor can be de�ned as P = rC - which would thus give a mapping from
A to T 03M: It is more customary, yet, to introduce it with one index raised, i.e., as a mapping
P : A ! T 12M; P = P ijkdx

j 
 dxk 
 @i; in coordinates:

P ijk = gmirCmjk = Gi�j�k � �ijk ; (2.44)

2This is equal to minus the Finsler-Ricci scalar denoted by Ric in [26].
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Its trace tr(P ) = Pidx
i has the components

Pi = P jij = rCi; (2.45)

where Ci := gjkCijk are the local coe¢ cients of the trace of the Cartan tensor.
The Finsler spacetime (M;L) is called of Landsberg type if P = 0 and weakly Landsberg, if

tr(P ) = 0:

Finally, the following identities will also be useful when we consider action integrals and calculus
of variations on Finsler spacetimes:

�iL = Lji = 0; gijjk = 0; _xijj = 0; (2.46)

rL = 0; rgij = 0; r _xi = 0; (2.47)

P ijk _x
k = 0; Pi _x

i = 0: (2.48)

They can all be proven by using the homogeneity properties of the tensors involved and the de�nition
of the canonical nonlinear connection in terms of the Finsler Lagrangian.

2.1.5 Lorentzian, �at and Berwald spacetimes

Lorentzian spaces. Pseudo-Riemannian (in particular, Lorentzian) manifolds (M;a) correspond
to quadratic Finsler functions

L (x; _x) = aij(x) _x
i _xj ; (2.49)

in this case, the canonical nonlinear connection coe¢ cients and its curvature are expressed as:

Gij = 
ijk(x) _x
k; Rijk = r ij kl _x

l; (2.50)

where we have denoted by lowercase letters the geometric objects speci�c to pseudo-Riemannian
geometry.
Caveat: The Finsler-Ricci scalar R0 = L�1Riik _x

k (which explicitly depends on _x) does not
coincide with the usual Riemannian Ricci scalar r = gijr ki jk; the relation between these two scalars
is:

gij(LR0)�ij = �2r: (2.51)

Flat Finsler spacetimes. We will call a Finsler spacetime (M;L) �at, if around any (x; _x) 2 A;
there exists a local chart in which L = L ( _x) depends on _x only. Picking such a coordinate chart,
we get:

Gi = 0;

which entails Gij = 0; R
i
jk = 0; R = 0: Also, �

i
jk = 0:

In the literature on positive de�nite Finsler spaces, �at spaces are most often called locally
Minkowski spaces. We will, still, prefer to avoid this terminology, as, especially when passing to
Lorentzian signature, it can lead to confusions with the Minkowski metric � = diag(1;�1; :::;�1)
on Rn or to its associated pseudo-Finsler function F : Rn ! R; F ( _x) =

q���ij _xi _xj��; which is
just a very particular case. The term �at used here is justi�ed by analogy with the Riemannian
case ([128], p. 119), as, in this case, the canonical nonlinear connection has identically vanishing
curvature.
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Berwald spacetimes. Pseudo-Finsler spaces of Berwald type include as subclasses pseudo-
Riemannian ones and �at ones. They are de�ned by the fact that its geodesic spray coe¢ cients are,
in any local chart, quadratic in _x:

Gi(x; _x) =
1

2
Gijk(x) _x

j _xk : (2.52)

The second _x-derivatives Gi�j�k = Gijk coincide, in this case, with the Chern-Rund connection
coe¢ cients:

�ijk(x; _x) = Gijk(x); (2.53)

which, thus, depend on x only. In particular, the Chern-Rund connection of a Berwald space can
be projected onto a well de�ned connection on M; called simply the a¢ ne connection of (M;L) :

The above equalities imply P ijk = 0; i.e., all Berwald spaces are Landsberg spaces.

2.1.6 Homogeneity of geometric objects on
�
TM

This subsection is devoted to positively homogeneous geometric objects de�ned on conic subbundles

Q �
�

TM: The results, proven by us in [97], are fairly straightforward extensions of the results by
Bucataru and Miron, [46] and Szilasi, [183], referring to objects de�ned on the whole slit tangent

bundle
�

TM . Yet, as these results will be essential in the following, we chose to present them in
quite some detail.
We recall that homogeneity is a key concept in pseudo-Finslerian geometry, as the positive

homogeneity of L is precisely the property ensuring that the arc length (2.29) of a curve is invariant
under orientation-preserving reparametrizations. But, the positive homogeneity of L in _x entails
the positive homogeneity of some degree of all typical Finslerian geometric objects.

Let, for the rest of this section, M denote an arbitrary n-dimensional manifold, with no addi-
tional structure assumed.

De�nition 29 (Fiber homotheties) The mappings

�� :
�

TM !
�

TM; ��(x; _x) = (x; � _x) ; � > 0; (2.54)

are called �ber homotheties on
�

TM:

Fiber homotheties form a 1-parameter group of strict automorphisms of the �bered manifold

(
�

TM; �TM ;M); isomorphic to (R�+; �) and generated by the Liouville vector �eld

C = _xi _@i: (2.55)

The corresponding group action is given by the mapping:

� :
�

TM � R�+ !
�

TM; � ((x; _x); �) = ��(x; _x): (2.56)
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De�nition 30 (Homogeneous tensor �elds on TM ) , [97] Let T be a tensor �eld over a

conic subbundle Q �
�

TM . T is called positively homogeneous of degree k 2 R in _x; or simply,
k-homogeneous, if, for all � > 0; its pullback by the restriction �� : Q ! Q satis�es

���T = �kT: (2.57)

In particular, 0-homogeneity is synonimous with invariance under the �ber rescalings ��; � > 0;
i.e., with invariance under the �ow of C.

Note: In [46], k-homogeneity of vector �elds is de�ned di¤erently (it is, in our terms (k + 1)-
homogeneity). The reason for our convention on the homogeneity degree is that it allows a unitary
treatment of tensors of any rank.

The result below extends to tensors of arbitrary type a result proven in the book by Szilasi [183,
Lemma 4.2.9] for scalar functions and vector �elds.

Theorem 31 A tensor �eld T over Q is positively homogeneous of degree k 2 R if and only if

LCT = kT (2.58)

Proof. In the following, it will be more convenient to reinterpret the multiplicative 1-parameter
group f��g as the additive group (R;+), by setting t := log(�) 2 R and

�t(x; _x) := (x; e
t _x) = ��(x; _x):

for all (x; _x) 2
�

TM .
!: Assume, �rst, that T is k-homogeneous, i.e.: ��tT = ektT . Then,

LCT =
d

dt
(��tT )

����
t=0

=
d

dt
(ektT )

����
t=0

= kT:

 : Conversely, assume (2.58) holds. Di¤erentiating the identity ��t��"T = ��t+"T with respect
to " at " = 0, one �nds, for all t:

��tLCT =
d

dt
(��tT ): (2.59)

Using (2.58), this leads to the di¤erential equation
d

dt
(��tT ) = k��tT in the unknown ��tT . Inte-

grating this equation with the initial condition ��0T = T , we �nd ��tT = ektT , which, reverting to
the old notation, is precisely ���T = �kT .

Examples: Using (2.58), we �nd that:

1. The Liouville vector �eld C is 0-homogeneous, since LCC = [C;C] = 0 :

2. The vertical local basis vectors _@i are (�1)-homogeneous, as [C; _@i] = � _@i:
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De�nition 32 (Homogeneous nonlinear connection) A nonlinear connection TQ = HQ �
VQ on the conic subbundle Q �

�
TM; is called homogeneous, if �ber homotheties preserve the hori-

zontal subbundle, i.e., (��)�X 2 HQ for all � 2 R and all X 2 HQ.

The above condition is a nontrivial one; in coordinates, homogeneity of a nonlinear connection
is characterized (see, e.g., the book by Bucataru and Miron, [46]) by that fact its local coe¢ -
cients (2.33) are 1-homogeneous functions in _x. A standard example of a homogeneous nonlinear
connection is the canonical nonlinear connection (2.34) of a Finsler space.

Homogeneous anisotropic tensors. Homogeneous d-tensors.
Almost all Finsler geometric objects discussed in the previous section are anisotropic tensor

�elds, which thus deserve a special mentioning. These can be mapped into speci�c tensor �elds on
the tangent bundle, called distinguished tensor �elds, or d-tensor �elds; for the latter, homogeneity
can be discussed in a natural manner.

De�nition 33 , [101]: An anisotropic tensor �eld on the conic subbundle Q �
�

TM is a section of
the pullback bundle ��TM jQ(T pq M); i.e. , a smooth mapping:

T : Q ! T pq M; (x; _x) 7! T(x; _x);

i.e., for any (x; _x) 2 Q; T(x; _x) is a tensor on M; based at x = �TM (x; _x).

Consequently, an anisotropic tensor �eld will be locally expressed as: T(x; _x) = T
i1:::ip
j1:::jq

(x; _x) (@i1

:::
 @ip 
 dxj1 
 :::
 dxjq )jx:

On the other hand, in the presence of a nonlinear connection on TM; with horizontal and,
respectively, vertical projectors h; v as in (2.35), the following de�nition makes sense.

De�nition 34 , [46]: A d-tensor �eld on a conic subbundle Q �
�

TM (regarded as a manifold) is
a tensor �eld T 2T pq (Q), obeying the condition:

T (!1; :::; !p; V1; :::; Vq) = T ("1!1; :::"p!p; "p+1V1; :::; "p+qVq) ;

for an arbitrarily �xed choice of the projectors "1; ::; "p+q 2 fh; vg :

For instance, if V is an arbitrary vector �eld onQ; its horizontal and vertical components hV and
vV , taken separately, are d-tensor �elds (of type (1; 0)), as each of them acts on a single speci�ed
component h! or v! of a 1-form ! 2 
1(Q), whereas their sum is typically, not a d-tensor �eld.
With respect to the horizontal/vertical adapted local bases of TQ and T �Q; a d-tensor �eld T

will be expressed as:

T(x; _x) = T
i1:::ip
j1:::jq

(x; _x) (�i1 
 :::
 _@ip 
 dxj1 
 :::
 � _xjq )j(x; _x): (2.60)

Local characterization of homogeneous d-tensors. In particular, in the presence of a
homogeneous nonlinear connection, the local basis elements �i are 0-homogeneous. Taking into ac-
count that the natural vertical basis vectors _@i are (�1)-homogeneous, the degree of homogeneity (if
any) of a d-tensor can be easily established in local coordinates, by summing up the _x-homogeneity
degrees of the contributing factors T i1:::ipj1:::jq

; �i1 ; :::; � _x
jq to each term of (2.60).
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Relation between anisotropic tensors and d-tensors. Anisotropic tensor �elds can be
mapped into multiple d-tensor �elds on Q � TM; using either horizontal or vertical lifts determined
by the nonlinear connection. When doing this, one must take into account that using horizontal lifts
@i 7! �i, one obtains a d-tensor of di¤erent degree of homogeneity, compared to the one obtained
via a vertical lift @i 7! _@i, due to the �1-homogeneity of _@i.

Example: 0-homogeneous geometric objects on Finsler spacetimes. If, in particular,
M is equipped with a Finsler spacetime function L, then, the following geometric objects are
0-homogeneous d-tensor �elds:

� the Finslerian metric tensor g = gijdx
i 
 dxj ;

� the curvature tensor R = Rijkdx
j
dxk
 _@i of the canonical linear connection (0-homogeneity

follows as Rijk are 1-homogeneous and _@i are (�1)-homogeneous).

� The Hilbert form ! = lidx
i and its dual vector �eld:

` = li�i; (2.61)

where li =
_xjp
jLj
(which, we recall, are only de�ned on A0 = AnL�1 (0)).

Also, on a Finsler spacetime, an important feature of both the Chern-Rund connection D
(more generally, of any of the typical Finslerian connections in the literature) and of the dynamical
covariant derivative r on TA; is that the covariant derivative of a d-tensor �eld is always a d-tensor
�eld, [46]. Moreover, if T 2 T pq (Q) is k-homogeneous, then: D�iT is k-homogeneous, rT = _xiD�iT

is (k + 1)-homogeneous and D _@i
T = _@iT is (k � 1)-homogeneous.

2.2 The positively projectivized tangent bundle PTM+

2.2.1 Introduction

The positively projectivized tangent bundle PTM+ (also called in the literature, the projective
sphere bundle over M , see, e.g., [26], [27]), is essential for a mathematically well de�ned calculus of
variations on Finsler spacetimes.
Thus, in the �rst part of this subsection, we try to systematize and complete the common

knowledge on projectivized bundles over general manifolds. The particular case whenM is equipped
with a Finsler spacetime structure is then studied in its second part. Since, passing to Finsler
spacetimes, some of the facts that became folklore in the standard (smooth, positive de�nite)
Finsler case, will inevitably su¤er changes, we will proceed, in this case, with attention to details.
Here are some key facts to be stressed:

� The construction of PTM+ is a natural (functorial) one, referring to the whole category of
di¤erentiable manifolds. That is, it is completely independent of any Finsler, or pseudo-Finsler
structure that may exist on the manifold.
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� In particular case of smooth, positive de�nite Finsler spaces, PTM+ is globally di¤eomorphic
to the (unit) sphere bundle, or indicatrix bundle SM = f(x; _x) 2 TM j L(x; _x) = 1g. Yet,
such a di¤eomorphism does not hold anymore in Lorentzian signature; this is seen as PTM+

has compact, connected �bers di¤eomorphic to round spheres Sn�1, whereas the Finslerian
unit spheres L = 1 are non-compact and, generally, disconnected. This is why, in order to
avoid any possible confusions, we preferred here the term of positively projectivized tangent
bundle, rather than projective sphere bundle.

What can still be established, in Finsler spacetimes, is a di¤eomorphism between the observer
space O and the subset T + � PTM+ consisting of future-pointing (or observer) directions
at all points of M ; a nice consequence is that integration on timelike domains in PTM+ is
computationally equivalent to integration over subsets of the observer space O:

� In a Finsler spacetime, the set of non-null admissible directions (which includes the set of
observer directions T +) in PTM+ has a natural contact structure, given by the Hilbert form
!; this allows one to characterize geodesics as integral curves of the Reeb vector �eld, or to
introduce a canonical volume form - in a similar way to what is done, e.g., on observer spaces
in Lorentzian geometry, see, e.g., [175].

This section is based on our paper [97].

2.2.2 De�nition and structure over general manifolds

Throughout this subsection, M will denote an arbitrary smooth, orientable manifold of dimension
n � 2, with no pseudo-Finsler structure assumed.

De�nition 35 (positively projectivized tangent bundle, projective sphere bundle) ,
[26], [27] Let M be a connected, orientable smooth manifold of dimension n. The positively
projectivized tangent bundle is the quotient space

PTM+ :=
�

TM=� (2.62)

where � is the equivalence relation on
�

TM given by:

(x; _x) � (x; u), u = � _x for some � > 0 : (2.63)

In other words we identify the half-line f(x; � _x) j � > 0g as a single point. We denote by

�+ :
�

TM ! PTM+; (x; _x) 7! [(x; _x)] (2.64)

the canonical projection.

Here are some properties of PTM+, to be used in the following. As a clear and systematic
formulation seems to be missing in the literature, we brie�y sketch their proofs.

� PTM+ is a smooth manifold of dimension 2n� 1; [27]. A smooth atlas
�
(�+(V �i );  

�)
	
on

PTM+, which will be occasionally used in the following, is constructed as follows. Start with
an atlas f(U;')g ; ' = (xi) onM and, for each local chart domain U and each i = 0; : : : ; n�1,
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consider the open sets: V +i =
�
(x; _x) 2 TU j _xi > 0

	
; V �i =

�
(x; _x) 2 TU j _xi < 0

	
: Then,

for each [(x; _x)] 2 �+(V +i ), de�ne the coordinate maps  
+ := (xi; u�) (respectively,  � =

(xi; u�)) as:

(xi; u�) = (x0; :::; xn�1;
_x0

_xi
; :::;

_xi�1

_xi
;
_xi+1

_xi
; :::;

_xn�1

_xi
): (2.65)

Yet, a more practical choice will be homogeneous local coordinates, to be presented in the next
paragraph.

� PTM+ is the orientable double cover (see [128], Ch. 15) of the usual projectivized tangent
bundle PTM ; in particular, PTM+ is orientable.

� (
�

TM; �+; PTM+;R�+) is a principal bundle, with typical �ber (R�+; �), [93]; this is seen as
the mapping � :

�
TM � R�+ !

�
TM; ((x; _x) ; �) 7! (x; � _x); de�ned in (2.56), is a smooth

action which preserves the �bers (�+)�1([x; _x]) =
�
(x; � _x) j � 2 R�+

	
and acts freely and

transitively on them.

The Liouville vector �eld C is tangent to the �bers of �+ - i.e., it is �+-vertical :

(�+)�C = 0; (2.66)

actually, as these �bers are 1-dimensional, C generates the tangent spaces to the �bers.

� The triple (PTM+; �M ;M), where �M : PTM+ ! M; [(x; _x)] 7! x, is a natural bundle,
with �bers di¤eomorphic to the Euclidean sphere Sn�1 (hence the name of projective sphere
bundle used, e.g., in [26]). The fact that the �bers PTxM+ are di¤eomorphic to Sn�1 follows
easily, as they are orientation coverings of the projective tangent spaces PTxM ' PRn; but,
the orientation covering of the projective space PRn is the round sphere Sn�1:
Naturality is seen as the correspondence F :Mn ! FB; attaching to any manifold M 2Mn;
its positively projectivized tangent bundle PTM+ and to any di¤eomorphism f : M ! M 0;
the �bered morphism F(f) : PTM+ 7! PTM 0+; [(x; _x)] 7! [(f(x); dfx( _x))] (which is well
de�ned by virtue of the linearity of dfx), is a covariant functor.

From PTM+ to
�

TM and back. Homogeneous local coordinates.

Homogeneous local coordinates (see, e.g., [27] and also, [60] for PTM) of a point (that is, of an
equivalence class [(x; _x)]) of PTM+ are de�ned as the coordinates (xi; _xi) in the corresponding
chart on TM of an arbitrarily chosen representative (x; _x) of the class [(x; _x)]: Thus, homogeneous
coordinates are only unique up to multiplication by a positive scalar of the _x-coordinates.
In these coordinates, local computations on PTM+ will become identical to those on TM; just,

with due care that the involved expressions in
�
xi; _xi

�
- which formally correspond to geometric

objects on TM - should really de�ne objects on PTM+. A necessary (but not always su¢ cient) con-
dition is that these formally de�ned geometric objects on TM should be positively 0-homogeneous
in _x, i.e., invariant under the �ow of C: Here we list the most frequently encountered examples:

- Functions. A function f :
�

TM ! R; f = f(x; _x) can be identi�ed with a function f+ on
PTM+ such that f = f+ � �+; if and only if it is positively 0-homogeneous in _x; in this case,
f+ : PTM+ ! R is de�ned by:

f+[(x; _x)] = f (x; _x) :
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- Vector �elds. For a vector �eld X = Xi@i + ~Xi _@i 2 X (
�

TM), the projection

X+ := (�+)�X

is a well de�ned vector �eld on PTM+ if and only if X is positively 0-homogeneous in _x, i.e.,
LCX = 0.

We note, [97], that the correspondence X 7! X+ is surjective, but not injective, since the

�+-verticality of C implies that all vector �elds of the form X + fC 2X (
�

TM) will descend by
�+� onto the same X

+ 2 X (PTM+):

- Di¤erential forms. For di¤erential forms � de�ned on conic subbundles of
�

TM , 0-
homogeneity is necessary, but not su¢ cient in order to be identi�ed with di¤erential forms
on PTM+: More precisely, given �; there exists a (unique) di¤erential form �+ 2 
(PTM+)
such that � = (�+)��+; if and only if � is 0-homogeneous in _x and �+-horizontal, i.e.3 :

LC� = 0; iC� = 0: (2.67)

Remarks, see also [60]:

1. The projection �+ is represented in homogeneous coordinate as the identity � : (xi; _xi) 7!
(xi; _xi). Therefore, the geometric objects f;X; � etc. on TM and their correspondents
f+; X+; �+ etc. on PTM+ (provided that they exist) have identical expressions in local
homogeneous coordinates.

2. Exterior di¤erentiation of forms �+ 2 
(PTM+) (and, in particular, di¤erentiation of func-
tions) can be carried out, in homogeneous coordinates, identically to exterior di¤erentiation

of the corresponding form � 2 
(
�

TM); since:

d� = d
�
(�+)��+

�
=
�
�+
��
d�+:

The function f+ is di¤erentiable at [(x; _x)] if and only if f = f+ � �+ is di¤erentiable at one
representative (x; _x):

2.2.3 The positively projectivized tangent bundle of Finsler spacetimes

Assume, in the following, that M is equipped with a Finsler spacetime function L: This way, one

can speak about the conic subbundles A;A0; T �
�

TM and the observer space O, see Section
2.1.2. We will denote by a plus sign, e.g., T + = �+(T ); A+ = �+(A) etc., their images through
�+ :

�
TM ! PTM+: Also, we will always use local homogeneous coordinates on PTM+.

Canonical nonlinear connection and Chern-Rund connection. The canonical nonlinear
connection N on A (see eq. (2.34)) is naturally transplanted to A+, as follows. For any vector
X+ 2 TA+, there exists a positively 0-homogeneous vector X 2 TA - which is unique up to
a multiple of C - such that (�+)�X = X+. The vector �eld X is then decomposed using N;

3This result, proven in [93], is just the coordinate-free restatement of a result in [60].
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as X = hX + vX; where hX = Xi�i and vX = _Xi _@i; both these components are positively 0-
homogeneous, due to the homogeneity of N , hence they descend back, by (�+)� onto well de�ned
vectors hX+; vX+ 2 TA+; in homogeneous local coordinates,

hX+ = Xi�i; vX+ = _Xi _@i:

The possible multiple of C appearing in the procedure will be projected back to PTM+ into the
zero vector, hence the components hX+; vX+ are uniquely de�ned by X+. This gives rise to a
splitting X+ = hX+ + vX+; i.e., to a connection N+ on A+ := �+(A) :

TA+ = HA+ � VA+: (2.68)

Similarly, the Chern-Rund connection D gives rise to a linear connection D+ on A+; given in
homogeneous coordinates, by the same local expression of covariant derivatives as D.

Contact structure and volume form for the set of non-null admissible directions A+0 =
�+(A0). The Hilbert form ! = F�idx

i, de�ned on A0 obeys the conditions:

iC! = 0; LC! = diC! + iCd! = 0;

which allow us to identify it with a di¤erential form !+ on A+0 � PTM+; such that (�+)�!+ = !:
In homogeneous coordinates, this is:

!+ = F�idx
i: (2.69)

Using the exterior derivative:

d!+ =
1

F
(�gij � F�iF�j)� _xj ^ dxi; (2.70)

where the sign � is de�ned by the equality L = �F 2 (see Section 2.1.2), a similar calculation to the
one in the positive de�nite case (e.g., [60]), shows that, for dimM = 4; the 7-form:

!+ ^ d!+ ^ d!+ ^ d!+ = 3!
det g

L2
iC(d

4x ^ d4 _x) = 3!det g
L2

Vol0; (2.71)

where
Vol0 := iC(d

4x ^ d4 _x) ; (2.72)

is always nonzero. In other words, the Hilbert form !+ de�nes a contact structure on A+0 � PTM+.

Warning: In the above, Vol0 should be understood just as a shorthand notation for iC(d4x ^
d4 _x). Since it is 4-homogeneous, it does not represent any di¤erential form on PTM+. The one
which does represent a well de�ned form on PTM+ is (2.71); the notation Vol0 is just meant
will serve later, in Chapter 3, for a convenient bookkeeping, which explicitly separates quantities
depending on L from those that do not depend on L:

In contact geometry, the Reeb vector �eld `+ 2 X (A+0 ) corresponding to the contact structure
!+ is uniquely de�ned by the conditions

i`+(!
+) = 1; i`+d!

+ = 0: (2.73)
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In our case, a quick coordinate computation identi�es `+ as:

`+ = li�i; li =
_xi

F
: (2.74)

We note that the Reeb vector �eld `+ on PTM+ is just the image through �+ of the vector �eld
` = li�i 2 X (A0); de�ned in Section 2.61.
The importance of the Reeb vector �eld is given by the following result, which extends to

Lorentzian signature a result in [66].

Proposition 36 Let c : [a; b] ! M; s 7! x(s) be a non-lightlike admissible curve parametrized by
arc length and C : [a; b]! A+0 ; s 7! [(x(s); _x(s))]; its canonical lift. Then, C is an integral curve of
`+ if and only if c is an arc-length parametrized geodesic of (M;L):

Proof. In homogeneous coordinates, _C = _xi(s)�i + �s _x
i(s) _@i, where �s _x

i(s) := �xi(s) +
2Gi(xj(s); _xj(s)); that is, C is an integral curve of `+ is and only if:

_xi(s) = li; �s _x
i(s) = 0:

The �rst condition above is trivially satis�ed by any curve parametrized by arc length, since
F (x(s); _x(s)) = 1; whereas the second one means that c is an arc-length parametrized geodesic
of (M;L), see (2.31).

The contact structure !+ enables us to identify a canonical volume form on A+0 . Taking into
account that dimM = 4 (i.e., dimPTM+ = 7), the following de�nition makes sense.

De�nition 37 (Canonical volume form) Let (M;L) be a Finsler spacetime, A+0 � PTM+, the
set of its admissible, non-null directions and !+; the Hilbert form on A+0 . The 7-form:

d�+ :=
�

3!
!+ ^ (d!+)3 = jdet gj

L2
Vol0 (2.75)

(with � = sign(det g) and Vol0 as in (2.72)) is called the canonical volume form on A+0 .

Note that, on A+0 , g is nondegenerate, so, d�+ is well de�ned.

The divergence of a vector �eld X 2 X (A+0 ), with respect to this volume form is de�ned as
usually by (divX)d�+ = LXd�+; in coordinates, this gives, for horizontal and vertical vector �elds,
XH = Xi�i and XV = Y i _@i:

div(XH) = (Xi
ji � PiXi); (2.76)

div(XV ) = (Y i�i + 2CiY
i � 4

L
Y i _xi) ; (2.77)

where Pi are the components of the trace of the Landsberg tensor (2.44) and Ci; those of the trace
of the Cartan tensor (2.43). For any f : A+0 ! R, the above equations imply

rf = div(f`+) = div(fli�i): (2.78)



2.2. THE POSITIVELY PROJECTIVIZED TANGENT BUNDLE PTM+ 61

Integration on PTM+ and integration on observer space

As already seen above, in Finsler spacetimes, there is no global di¤eomorphism between the indi-
catrix bundle L�1(1) and PTM+: Yet, we can establish a di¤eomorphism between the observer
space O � L�1(1) and the set of future pointing timelike directions T + := �+(T ) � PTM+; as
a consequence, integration of di¤erential forms on the observer space of Finsler spacetimes can be
understood as integration of di¤erential forms on (subsets of) PTM+.

Proposition 38 1. The restriction �+ : O ! T + of the projection �+ :
�

TM ! PTM+ is a
di¤eomorphism.

2. Pick any compactly supported 7-form �+ on T + and set: � = (�+)� �+: Then:Z
T +

�+ =

Z
O

�: (2.79)

Proof. 1. Injectivity : Assume �+(x; _x) = �+(x0; _x0) for some (x; _x); (x0; _x0) 2 O: It follows that
[(x; _x)] = [(x0; _x0)]; i.e., x = x0 and there exists an � > 0 such that _x0 = � _x: Applying L to both
hand sides, we �nd L(x; _x0) = �2L(x; _x); but, on O; L = 1; which means that �2 = 1: Since � > 0;
it follows that (x; _x0) = (x; _x):
Surjectivity: Pick an arbitrary [(x; _x)] 2 T + and an arbitrary representative (x; _x) 2 T : From

the conicity of T , we �nd that the vector (x; � _x); with � := L (x; _x)
�1=2

; also belongs to T and,
in addition, L(x; � _x) = 1: In other words, we have found a representative (x; � _x) 2 O of the class
[(x; _x)]: But, as �+(x; _x) = �+(x; � _x) = [(x; _x)]; it follows that [(x; _x)] 2 �+(O):
The smoothness of �+ and of its inverse are immediate.
2. follows from � = (�+)

�
�+ and point 1.

In particular, the above result shows that the set of observer directions O+ and the set of
future-pointing timelike directions T + are the same:

O+ = T +: (2.80)

Integration on pieces of A+0 : A similar result holds for pieces D+ � A+0 (i.e., to compact
7-dimensional submanifolds with boundary of A+0 ); in this case, the compact support condition on
� can be dropped, i.e., for any di¤erential form �+ on PTM+, there holds, [93]:Z

D+

�+ =

Z
D

�; (2.81)

where � = (�+)� �+ 2 
(
�

TM) and D := (�+)
�1
(D+) \ L�1(1).

The following Lemma, proven in our paper [93], allows us to evaluate and manipulate action
integrals in Chapter 3; on positive de�nite Finsler spaces, a similar relation to the �rst equation
(2.82) below was proven by Chen and Shen, [59].
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Lemma 39 : Let (M;L) be a Finsler spacetime, f : A+0 ! R be a smooth function de�ned on
the set of non-lightlike admissible directions A+0 of L and X = (Lgijf�i) _@j. Then, the following
identities hold in homogeneous local coordinates:

[gij(Lf)�i�j � 8f ]d�+ = d(iXd�
+) ; (2.82)

[L�1gij(L2f)�i�j � 24f ]d�+ = d(iXd�
+) (2.83)

(gij � 4L�1 _xi _xj)(Lf)�i�jd�+ = d(iXd�
+) : (2.84)

Proof. For the �rst equation, we expand

gij(Lf)�i�jd�
+ = gij(2gijf + 2L�if�j + Lf�i�j)d�

+ :

As f is de�ned on a subset of PTM+; it must be given by a 0-homogeneous expression in _x; i.e.:

gijL�if�j = 2 _x
if�i = 0; (2.85)

in addition, gijgij = dimM = 4; which leads to: gij(Lf)�i�jd�+ = 8fd�++Lgijf�i�jd�+ : The last
step is to show that the last term in this sum is of the form d(iXd�

+) = divXd�+. This can be
seen from:

Lgijf�i�jd�
+ = gijf�i�j

jdet gj
L

iCVol0 = (gijf�i
jdet gj
L

)�jiCVol0 = divXd�+ = d(iXd�
+);

where we have used (gij jdet gj)�j = 0 and (2.85).
Equation (2.83) can be proven by expanding

L�1gij(L2f)�i�j = L�1gij(2gij(Lf) + 2L�i(Lf)�j + L(Lf)�i�j)

and using L�i = 2gik _xk together with the 2-homogeneity of Lf to write: 2gijL�i(Lf)�j = 4 _xj(Lf)�j =
8Lf: The desired result then follows as a consequence of the �rst equation. The third equation (2.84)
is then obtained from (2.82) and the 2-homogeneity of Lf:

2.3 Finsler spacetimes, Finsler spaces, Lorentzian manifolds:
a brief comparison

2.3.1 Introduction

Finsler spacetimes di¤er from Finsler spaces in sometimes unexpected ways. The reason is that,
besides the change of signature, there is one more detail that comes into play: the existence, in each
tangent space, of non-admissible directions along which L is either non-smooth, or has degenerate
_x-Hessian. This calls for extreme care when trying to extend to Lorentzian signature, results that
hold true in Finsler spaces. Yet, on the other hand, Finsler spacetimes seem "manageable" enough
for physical applications, while o¤ering much more generality than Lorentzian ones.
This section, which combines results from my paper [200] and from my joint paper [76] with A.

Fuster, S. Heefer and C. Pfeifer, tries to capture, on the one hand, some of the di¤erences between
Finsler and pseudo-Finsler spaces and, on the other hand, to show some results that do extend
from Lorentzian spaces to Lorentz-Finsler ones.
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Finsler spacetimes versus Finsler spaces. As already seen above in Section 2.1.4, compu-
tational results such as: geodesic equations, the canonical nonlinear connection, geodesic deviation

equations, all have the same expressions as in (positive de�nite,
�

TM -smooth) Finsler spaces, with
the only di¤erence that the geodesic coe¢ cients Gi and geometric objects arising thereof can only

be de�ned on a conic subbundle of
�

TM .
But, not much else seems to extend from Finsler spaces, to Finsler spacetimes. Here are just

some results that hold valid in Finsler geometry, but do not extend to Finsler spacetimes.

1. Szábó Metrizability Theorem for Berwald spaces. This result, [181], states that any Berwald-
type Finsler structure (M;L) is Riemann metrizable, i.e., there exists a Riemannian metric
on M which shares the same parametrized geodesics with L.

This result does not extend to Finsler spacetimes, as explicitly shown in [76]. Yet, the question
on the extendability of this result still remains open in the case of smooth (or regular) Finsler
spacetime metrics, see Subsection 2.3.2 below.

2. Averaged Riemannian metrics. For smooth, positive de�nite Finsler structures (M;F ); one
can construct a so-called averaged Riemannian metric a on M , whose components aij =
aij(x) are obtained, see, e.g., [62] by integrating the Finslerian metric components gij =
gij(x; _x) (alternatively, the products _xi _xj or some linear combination of gij and _xix j), over
the indicatrix Ix = F�1(1)\ TxM: Averaged Riemannian metrics have an essential property:
if any a¢ ne connection on M is compatible with F; then it must be metrical with respect
to a: The technique is used in proving Szabó�s Theorem, [196], and extending results from
Riemannian geometry to Finslerian spaces, e.g., [197], [137].

Sadly, in Finsler spacetimes, the above construction makes no sense. Even in the case when the
functions to be integrated exist and are smooth for all _x 2 Sx (which is, as seen above, rather
the exception, than the rule, in the case of Finsler spacetimes), we have a bigger problem:
the indicatrix Ix is non-compact - and, even its most "domesticated" connected component,
which is the observer space Ox; is still non-compact. Thus, the procedure typically leads
to in�nite integrals. Up to now, there is no fully-featured extension of this technique to
Lorentzian signature4 . Yet, as we will show below in Subsection 2.3.5, an old and simple
technique of reducing Finslerian problems to their Riemannian counterparts, which is the use
of associated (or osculating) pseudo-Riemannian metrics can still be very helpful, depending
on the problem to be solved.

3. Liouville-type classi�cation theorem for conformal symmetries. A di¤eomorphism f :M !M
is deemed a conformal symmetry of a pseudo-Finsler structure (M;L) if the Finsler functions
L and ~L = L�df are conformally related, i.e., if there exists a function � :M ! R; � = � (x) ;
such that:

~L (x; _x) = e2�(x)L (x; _x) ; (2.86)

at all admissible (x; _x) 2
�

TM ; the latter equality is obviously equivalent to conformal relation
~g(x; _x) = e2�(x)g(x; _x) between the corresponding metric tensors, i.e., (2.86) extends the pseudo-
Riemannian notion of conformal equivalence.

4A notion of averaging was proposed recently in [189]; yet, the a¢ ne connection of a Berwald space does not
coincide with the Levi-Civita of the averaged metric.
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In Riemannian geometry, the existence of a 1-parameter group of conformal symmetries can
provide valuable information, which can go up to full classi�cation results, [3], [48], [49],
[123], on the metric structure. It is thus a natural question to try to classify conformal
transformations, also in the Finslerian case.

Conformal groups of pseudo-Finsler metrics have, yet, a much more complicated structure
than both pseudo-Riemannian and Finslerian conformal groups. To prove this statement, we
show in Subsection 2.3.3 that there exist entire classes of examples of �at pseudo-Finsler spaces
whose conformal symmetries depend on arbitrary functions. Comparatively, in dimension
n � 3; conformal symmetries of a pseudo-Euclidean space can only be similarities, inversions
and compositions thereof, [87], while the only conformal symmetries of a non-Euclidean �at
Finsler space are similarities, [136].

4. Deicke�s Theorem. This theorem states that, in a (
�

TM -smooth, positive de�nite) Finsler
space, if the trace of the Cartan tensor identically vanishes, then the full Cartan tensor is
identically zero, i.e., the space is actually Riemannian. But this is known ([135], p. 154-156)
not to extend to pseudo-Finsler spaces5 . A concrete counterexample is given by the so-called
Berwald-Moór metric on Rn; see eq. 2.96 below - which, in the particular case n = 4; gives
an example of Finsler spacetime structure.

Extending to Finsler spacetimes results from Lorentzian geometry. Despite the "odd-
ities" of Finslerian spacetime structures presented above, from the point of view of physical appli-
cations, the situation is by far less discouraging than it might seem. Actually, Finsler spacetimes
share with Lorentzian ones some essential features that make them desirable for physical applica-
tions: a well de�ned notion of proper time (i.e., of arc length), a well-de�ned causal structure (see,
e.g., [142]), geodesic equations that can be interpreted as trajectories of freely falling particles.
But there are de�nitely more results from semi-Riemannian/Lorentzian geometry that can ac-

tually be extended to pseudo-Finsler, respectively, to Lorentz-Finsler geometry; actually, a full,
in-depth exploration of this topic is still to be done. We will just present here, in Subsections 2.3.4
and 2.3.5, a few examples regarding projective and conformal transformations, proven in our paper
[200].

1. One of the basic results for general relativity, which isWeyl�s Theorem (see, e.g., [105]). This
states that two metrics on a connected manifold of dimension greater than 1 that are both
conformally and projectively related, can only di¤er by a multiplicative constant.

2. A result regarding the causal character of essential conformal vector �elds.

3. Two results regarding the existence of zeros of Killing vector �elds on Lorentzian manifolds.

2.3.2 On the non-metrizability of Berwald-Finsler spacetimes

This section presents in brief the results in [76].
In the following, assume (M;L) is a Berwald-type pseudo-Finsler space. It means that the

Chern-Rund connection on TM descends into a well de�ned a¢ ne connection onM ; more precisely,
the coe¢ cients �ijk coincide with the derivatives G

i
�j�k and depend on x only, see Section 2.1.5.

5The result was deduced in [203], but later I realized that this was actually, a rediscovery.
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A natural question is then whether L is a¢ nely equivalent to a Lorentzian metric a on M; i.e.,
whether there exists some pseudo-Riemannian metric tensor on M admitting �ijk as its Christo¤el
symbols (which is the same as saying that a and L have the same parametrized geodesics).

For properly Finslerian (i.e., positive de�nite, smooth on
�

TM) Berwald spaces, the following
result is known in the literature:

Theorem 40 (Szábó�s Metrizability Theorem, [181]): Let (M;F ) be a Finsler space of
Berwald type. Then, there exists a Riemannian metric a on M such that the a¢ ne connection
of the Berwald space is the Levi-Civita connection of a.

The metric a above is explicitly constructed by averaging the Finsler metric g over the indicatrix
at each point x 2M . Yet, as already noted above, this is not applicable in Lorentzian signature.

A necessary condition for Lorentz metrizability. We denote by

R m
i jk = �k�

m
ij � �j�mik + �sij�msk � �sik�msj ; (2.87)

the horizontal components6 of the curvature of the Chern-Rund connection of (M;L); and by
Rij := R k

i jk the horizontal Chern-Rund Ricci tensor components:

Rij = �m�
m
ij � �j�mim + �sij�msm � �sim�msj : (2.88)

A necessary condition for the connection de�ned by �ijk to be the Levi-Civita connection of a
pseudo-Riemannian metric is that the Ricci tensor (2.88) is symmetric. Yet, this is generally not
the case, as shown from the example below.

An explicit example of a Berwald spacetime (M;L) with non-symmetric Chern-
Rund Ricci tensor7 is the following, [76]. Consider, onM = R4 equipped with global coordinates
(xi)i=0;3, the following Kundt-type metric:

L(x; _x) = ax( _x; _x)s
�p(k +m s)p+1; (2.89)

where k;m; p 2 R are constants, s(x; _x) = (bx( _x))
2

ax( _x; _x)
and:

a := 2dx0 
 dx1 + x1 �(x2; x3) dx0 
 dx0 + dx2 
 dx2 + dx3 
 dx3; b := dx0; (2.90)

for some arbitrary smooth function � = �(x2; x3): Calculations using computer algebra show that,
for k 6= 0; p 6= 1, the function L de�nes a Berwald spacetime structure on R4, whose Chern-Rund
Ricci tensor satis�es:

R02 �R20 =
2p

p� 1@2�; R03 �R30 =
2p

p� 1@3�; (2.91)

i.e., it is not symmetric for non-constant �. As a consequence, this particular Berwald spacetime
cannot be a¢ nely equivalent to any pseudo-Riemannian metric. Hence, Szabó�s Theorem does not
extend to general Finsler spacetimes.

6Here, a di¤erent sign convention for the components R m
i jk is used, compared to [76].

7Full credit for �nding this precise example must go to my coauthors.
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What makes Rij ; yet, be non-symmetric? Actually, the culprit for the non-symmetry of
Rij is the existence of non-admissible directions for L; rather than of the change of signature. This
can be seen from the two results below.

Lemma 41 In any pseudo-Finsler space (M;L) and in any local chart, the antisymmetric part of
the Chern-Rund Ricci tensor (2.88) is expressed as:

Rij �Rji = R k
m ji _x

mCk; (2.92)

where Ck are the components of the trace of the Cartan tensor (2.43).

Proof. Fix an arbitrary local chart on TM; which intersects the set of admissible vectors of L:
From (2.88), we �nd:

Rij �Rji = �i�
m
jm � �j�mim:

Then, denoting:

f := ln
q
jdet(gij)j; (2.93)

we �nd that, in the given chart:
�jf = �

m
jm;

_@jf = Cj : (2.94)

In particular, this gives:

Rij �Rji = �i�jf � �j�if = [�i; �j ]f = Rkij
_@kf;

Further, using the identity _xmR k
m ij = Rkij (which follows immediately from the local expressions

(2.37) and (2.87) and the second equality (2.94), we get the required equality (2.92). Moreover, as
both hand sides of (2.92) are tensor components, it follows that the relation does not depend on
the choice of the local chart - though the expression f does.
Relation (2.92) holds in any pseudo-Finsler space and, in particular, in any Finsler spacetime.

The peculiarity of Berwald-type spaces is that, in this case, its left hand side does not depend on
_x. This fact will be used in the following.

Theorem 42 (Symmetry of the Chern-Rund Ricci tensor for smooth Finsler spacetime

metrics): If (M;L) is a Berwald spacetime with A =
�

TM , then:

Rij = Rji:

Proof. Fix an arbitrary point x 2M and a chart (TU; �); � =
�
xi; _xi

�
on TM; naturally induced

by some arbitrary chart with domain U � M; x 2 U: This way, expression (2.93) locally de�nes a
0-homogeneous function f : TU ! R which is, according to the hypothesis A =

�
TM , smooth on

the entire TUnf0g:
The 0-homogeneity of f allows us to naturally identify it with a smooth function f+ on the

subset TU+ = �+(TU) � PTM+ having in homogeneous coordinates, the same expression as f
(see Section 2.2.2). Thus, the partial function f+x (�) = f+(x; �) is de�ned and smooth on the �ber
of �+(TU) at x, i.e., on the compact set PTxM+ ' Sn�1: As a consequence, it must admit at
least a local extremum, say at [(x; v)]; using homogeneous coordinates, this implies that the partial
derivatives _@kf vanish at (x; v); i.e.: Ck(x; v) = 0.
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But then, evaluating (2.92) at (x; v); we �nd:

Rij(x)�Rji(x) = R k
m ji(x)v

mCk(x; v) = 0;

since the left hand side does not depend on v; it yields, in the given local coordinates: Rij(x) =
Rji(x): Moreover, from the tensorial character of (2.92), we �nd that the equality does not depend
on the choice of local coordinates around x: The conclusion now follows from the arbitrariness of
x:

As we have seen in Section 2.1.3, for many (actually, most) interesting classes of Finsler space-

times, the condition A =
�

TM is not ful�lled. In this case, Berwald-Finsler spacetimes are not
necessarily Lorentz metrizable.

2.3.3 How large is the set of conformal symmetries of a pseudo-Finsler
space?

This subsection is a part of our paper [200]. The results below, if not otherwise stated, refer to the
larger class of n-dimensional pseudo-Finsler spaces.

De�nition 43 Let (M;L) be a pseudo-Finsler space. A di¤eomorphism � : M ! M is called a
conformal symmetry of (M;L) ; if there exists a smooth function � : M ! R; x 7! �(x); such
that:

L � d� = e�L: (2.95)

In particular:
(i) if � = const:; then � is called a similarity;
(ii) if � = 0; then � is called an isometry of (M;L).

Conformal symmetries of �at pseudo-Finsler functions on Rn; n � 3; do not admit a Liouville-
type classi�cation, unlike their pseudo-Euclidean counterparts. Actually, as follows from the coun-
terexamples below, there exist whole classes of pseudo-Finsler functions with larger (even in�nite-
dimensional) groups of conformal symmetries.

For dimM = 4; a �rst such example is actually known for long in the literature, see [157]. But,
this example can be immediately extended to any dimension, as presented below.
Example 1: Consider, on M = Rn; n > 1 :

A =
�
(xi; _xi)i=0;n�1 j _x0 _x1:::: _xn�1 6= 0

	
� TRnnf0g

and the n-dimensional Berwald-Moor pseudo-Finsler function ([135], pp. 155-156) on A :

L(x; _x) = �
�� _x0 _x1:::: _xn�1�� 2n ; (2.96)

where � := sign( _x0 _x1:::: _xn�1). This is a �at (locally Minkowski) pseudo-Finsler metric with the
property that any di¤eomorphism of the form

f : Rn ! Rn; x =
�
x0; x1; :::; xn�1

�
7! (f0(x0); f1(x1); :::; fn�1(xn�1)); (2.97)
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with positive Jacobian determinant J(x) :=
df0

dx0
df1

dx1
::::
dfn�1

dxn�1
; is a conformal symmetry of L: The

statement follows immediately, as:

L(x; dfx( _x)) = J(x)
2
nL(x; _x); 8(x; _x) 2 A: (2.98)

The conformal symmetry f depends on n arbitrary functions f0; :::; fn�1:

Remark. The Berwald-Moor metric is known, see [11], to be of Lorentzian signature
(+;�;�;�) on the conic convex set T =

�
(xi; _xi)i=0;n�1 j _xi > 0; 8i = 0; :::; n� 1

	
: As the �bers

of T are connected and Lj@T = 0; in dimension 4, it de�nes a spacetime structure according to
De�nition 25.

Further, using the above example, we can build a whole class of �at pseudo-Finsler metrics on
Rn; n � 2; which admit conformal symmetries that are not similarities.
Example 2: Weighted product Finsler functions. Consider M = Rk � Rn�k and a pseudo-

Finsler metric function L : A ! R of the form:

L = L�1L
1��
2 ; (2.99)

where L1 : A1 ! R; and L2 : A2 ! R (with A1 � TRk; A2 � TRn�k) are smooth, 2-homogeneous
functions and � 2 (0; 1): The admissible set A of L is a subset of the Cartesian product A1 �A2:
Assume that f1 : Rk ! Rk;

�
x0; :::; xk�1

�
7! (~x0; :::; ~xk�1) is a conformal transformation for L1;

with non-constant factor � = �(x). Then, the transformation

f : Rn ! Rn; f := (f1; idRn�k) (2.100)

is a conformal symmetry of L with non-constant conformal factor ��(x): The function L1 can then
be chosen. e.g., as the k-dimensional Berwald-Moor metric, or as the k-dimensional Minkowski
metric L1( _x0; :::; _xk�1) =

�
_x0
�2 � � _x1�2 � ::::� ( _xn)2 (in which case, f1 can be, e.g., an inversion),

whereas the factor L2 in (2.99) can be absolutely arbitrarily chosen, subject to the only condition
that there exists a conic subset A � A1�A2 on which L is smooth and has nondegenerate _x-Hessian.

2.3.4 A pseudo-Finslerian extension of Weyl�s Theorem

The Weyl Theorem basically states that, in the class of Lorentzian spacetimes, knowing geodesics
as point sets, i.e., the projective structure, and the conformal structure (which, as noted in the
paper by Ehlers, Pirani&Schild [69], �xes: the light cones at each point, a notion of orthogonality
and lightlike geodesics), uniquely determine the spacetime metric up to a constant rescaling. In the
following, we will show that this property remains valid when passing to the much larger class of
Finslerian spacetimes.

Before extending the Weyl Theorem to pseudo-Finsler spaces, let us brie�y discuss Finslerian
projective and, respectively, of conformal equivalence.

Assume (M;L) is a pseudo-Finsler space, with admissible set A �
�

TM . A di¤eomorphism
f :M !M between is called a projective map if geodesics of L coincide, up to re-parametrization,
with geodesics of

~L := L � df:
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In a completely similar manner to the positive de�nite case ([7], pp. 110-111), it follows that the
mapping f is projective if and only if there exists a 1-homogeneous scalar function P : A! R such
that, in any local chart,

2 ~Gi (x; _x) = 2Gi (x; _x) + P (x; _x) _xi; 8 (x; _x) 2 A: (2.101)

On the other hand, if two pseudo-Finsler functions L; ~L : A ! R overM are conformally related,
i.e.,

~L(x; _x) = e�(x)L(x; _x); 8(x; _x) 2 A; (2.102)

for some smooth function � = �(x) :M ! R; then, the following properties follow easily:

1. L and ~L share the same light cones at each point, as L = 0, ~L = 0:

2. Fix a point x 2M: Then, for any admissible admissible vector _x 2 Ax and any v 2 TxM; the
conditions L�i(x; _x)vi = 0 and ~L�i(x; _x)vi = 0 (which can be interpreted, see [146], p. 127) as
L; respectively ~L-orthogonality of _x and v); are equivalent.

3. Null geodesics of two conformally related pseudo-Finsler metrics coincide up to parame-
trization, [200]. This is seen as follows. Along null geodesics, there holds L = 0; on
the other hand, since L and ~L are conformally related, we have (2.103), which leads to
2 ~Gi = 2Gi + �;ky

kyi =: 2Gi + Pyi; for P := �;ky
k. The latter equality means exactly that

(lightlike) geodesics of L and ~L coincide up to reparametrization.

Note. The properties 1. and 3. above are also preserved, in the Finslerian realm, by the
more general anisotropically conformal equivalence, obtained by allowing the conformal factor � in
(2.102) to depend smoothly on _x; as shown by Javaloyes and Soares, [104]. Yet, L-orthogonality is
not preserved by anisotropically conformal transformations. Thus, the preservation of all the three
features: light cones, lightlike geodesics, orthogonality - seems to remain a privilege of the usual,
"isotropic" conformal relation.

The result below, proven by us in [200], is an extension to pseudo-Finsler spaces of Weyl�s
Theorem. This is, also, one of the results that do extend from (smooth, positive de�nite) Finsler
spaces to general pseudo-Finsler spaces. For the standard Finsler case, we refer to Cheng [20] and
Szilasi [182]; yet, as the cited results explicitly used the positive de�niteness of the Finslerian metric
tensor, a di¤erent technique was necessary for proving it in the inde�nite case.

Theorem 44 If a conformal symmetry of a connected pseudo-Finsler space (M;L) is also a pro-
jective map, then it is a similarity.

Proof. Assume that the di¤eomorphism f : M ! M is a conformal symmetry of L; i.e., ~L :=
L � df = e�f for some function � = �(x) :M ! R. Then, at any (x; _x) 2 A and in any local chart
around (x; _x), a direct calculation using (2.32) shows that:

2 ~Gi = 2Gi +
1

2
gih
�
�;k _x

kL�h � �;hL
�
= 2Gi + �;k _x

k _xi � 1
2
gih�;hL; (2.103)

where in the last equality we have used: L�h = 2 _xh: If, moreover, f is a projective map, then (2.101)
holds, meaning that,

�;k _x
k _xi � 1

2
gik�;kL = P _xi: (2.104)
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Now, �x an arbitrary x 2M and an arbitrary open region of Ax = A\ TxM where L 6= 0; on such
a region, one can introduce the angular metric tensor components hij = hij(x; _x), as, [26]:

hij = gij �
_xi _xj
L
;

these functions obey the identity:
hij _x

j = 0: (2.105)

Contracting (2.104) with hij and using (2.105), it remains: hijgik�;kL = 0: Taking into account

that hijgik = �kj �
_xk _xj
L

; this becomes:

L�;j � �;k _xk _xj = 0: (2.106)

Di¤erentiating with respect to _xi and taking into account that L�i = 2 _xi and _x�j = gij ; we get:

2 _xi�;j � �;i _xj � �;k _xkgij = 0:

Now, contract both hand sides of the above equality with hij := gikgjlhkl: Using again (2.105),
we get rid of the �rst and of the second term. Further, noticing that hijgij = n � 1; we obtain:
(n� 1)�;k _xk = 0: But, by hypothesis, n = dimM � 2, therefore:

�;h _x
h = 0;

which, by di¤erentiation with respect to _xk; gives that: �;k(x) = 0: As the point x was arbitrarily
chosen (and M is connected), we get �(x) = const:, q.e.d.

2.3.5 Some results on conformal and Killing vector �elds

In the following, (M;L) will denote a pseudo-Finsler space of arbitrary dimension.
A arbitrary vector �eld � 2 X (M) is, by de�nition, a section of the natural bundle

(TM; �TM ;M); the natural lift of its local 1-parameter group of di¤eomorphisms �" : M ! M;
" 2 I; is the 1-parameter group fd�"g"2I of �bered automorphisms of TM generated by the complete
lift �c 2 X (TM) (see [46]):

�c = �i@i + (�
i
;j _x

j) _@i; (2.107)

The �ow fd�"g acts on �; L and g as follows, see Section 1.1.5:

1. The vector �eld � is deformed by the rule: �" = d�" � � � ��1" : But, � is invariant under its
own �ow, which means �" = �; equivalently:

d�" � � = � � �": (2.108)

2. The Finslerian metric tensor g : A ! T 02M is transformed into the mapping:

g" := T 02 �" � g � d�" : A ! T 02M (2.109)

where T 02 �" : T
0
2M ! T 02M is the natural lift of �". A quick check in coordinates shows that

g" is nothing but the Finslerian metric tensor corresponding to the deformed pseudo-Finsler
function:

L" = L � d�": (2.110)
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Assume, in the following, that � 2 X (M) is everywhere admissible or zero, i.e., � 2 �(A) [ f0g.
Also, we will assume (if necessary, by restricting A) that d�"(A) � A:

De�nition 45 An (either admissible, or zero) vector �eld � 2 X (M) on a pseudo-Finsler space
(M;L) is called a conformal vector �eld, if its �ow consists of conformal symmetries of L:

Conformality of � is equivalent to

L � d�" = e�"L; 8" 2 I; (2.111)

for some functions �" :M !M; " 2 I, respectively, to:

L�cL = �L; (2.112)

where � =
d�"
d"
j"=0:

Particular case: By a Killing vector �eld, one understands an admissible or zero vector �eld
� 2 X (M) whose �ow consists of isometries of L: In particular, Killing vector �elds obey:

L�cL = 0: (2.113)

The set of Killing vector �elds of a pseudo-Finsler space of dimension n is known, see e.g., Pfeifer,

[160], to form a Lie algebra of dimension at most
n (n+ 1)

2
:

Also, we have proven in [200] that the existence of a conformal or a Killing vector �eld gives
rise to a conserved quantity along lightlike geodesics.

Here is a notion that will prove very useful in the following.
Associated (osculating) pseudo-Riemannian metrics are de�ned, see. e.g., [10], [180], as

pseudo-Riemannian metrics on M obtained as:

g� := g � � :M ! T 02M; (2.114)

for some admissible (hence, nonzero) vector �eld � 2 �(A): As � is assumed to be everywhere
admissible, g� is a well de�ned, smooth pseudo-Riemannian metric on M:
The associated metric g� is thus a section of the bundle T 02M over M ; as a consequence, the

�ow f�"g"2I of � (more precisely, its natural lift T 02 �" to T 02M) deforms it into the section:

��"(g
�) := T 02 �" � g� � �" :M ! T 02M: (2.115)

That is: � is a conformal vector �eld for g� if and only if ��"(g
�) = e�"g for some functions

�" :M !M; " 2 I: In this case, ��"(g�) is also nondegenerate.

Using these remarks, we can now prove the following Lemma, [200].

Lemma 46 If � :M ! A is a conformal vector �eld for a pseudo-Finsler metric structure (M;L),
with 1-parameter group f�"g"2I ; then:
(i) � is also a conformal vector �eld for the pseudo-Riemannian metric g�:
(ii) The conformal factor relating g� and ��"(g

�) is the same as the one relating L and L � d�":



72 CHAPTER 2. GEOMETRY OF FINSLER SPACETIMES

Proof. (i) Assume that � is a conformal vector �eld for L; i.e., L � d�" = e�"L; 8" 2 I: In terms
of g, this is translated, using (2.109)-(2.110), into:

T 02 �" � g � d�" = e�"g:

Composing this equality to the right by � and using (2.115), (2.108), this leads to:

e�"g� = T 02 �" � g � (d�" � �)
(2:108)
= T 02 �" � g � � � �" = T 02 �" � g� � �"

(2:115)
= ��"(g

�);

which means that � is a conformal vector �eld for g�:
(ii) The statement follows immediately from the above relation.
In the following, we will present three results in Lorentzian geometry that can be extended,

using the above Lemma, to Finsler spacetimes.

A property of essential conformal vector �elds, [200].

A conformal vector �eld for a pseudo-Finsler metric L is called essential if it is not a Killing vector
�eld for any conformally related metric to L: Here is a property (known in pseudo-Riemannian
geometry from [123]) which can be extended to pseudo-Finsler spaces.

Proposition 47 In a pseudo-Finsler space (M;L), any essential conformal vector �eld must be
lightlike, i.e., L � � = 0; at least at a point.

Proof. Let � : M ! A denote a conformal vector �eld and assume that � is nowhere lightlike.
Since � is a conformal vector �eld for L; we have, for some � :M ! R :

(L�cL) (x; _x) = �L(x; _x); 8(x; _x) 2 A: (2.116)

We construct the real-valued function on M :

� := g�(�; �) = L � �:

Under our assumption that � is nowhere lightlike, � cannot have any zeros. Now, take:

~L(x; _x) :=
1

�(x)
L(x; _x); 8(x; _x) 2 A:

The Lie derivative of the function ~L : A ! R is: (L�c ~L) = L�(
1

�
)L+

1

�
L�c(L): By Lemma 46, we

�nd:
L�� = (L�g

�)(�; �) + 2g�(L��; �) = �g�(�; �) + 0 = ��: (2.117)

Together with (2.116), this leads to:

(L�c ~L) = �
1

�2
��L+

1

�
�L( _x) = 0;

meaning that � is a Killing vector �eld for ~L. This contradicts the hypothesis that � is essential.
Hence, � must be lightlike at some x 2M:
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Zeros of Killing vector �elds on a Lorentz-Finsler space, [200].

Here are, for instance, two results due to Sanchez, holding on Lorentzian manifolds.

Theorem 48 , [174]: Let (M; g) be a Lorentzian manifold with a non-spacelike (at any point)
Killing vector �eld �. If �x = 0 for some x 2M; then � vanishes identically.

Theorem 49 , [174]: If � is a Killing vector �eld on a Lorentzian manifold (M; g); admitting
an isolated zero at some point x 2 M; then, the dimension of M is even and � becomes timelike,
spacelike and null on each neighborhood of x:

Using Lemma 46, these results can easily be extended from Lorentzian spaces to Lorentz-Finsler
ones8 (of any dimension), as shown below.

Theorem 50 Let (M;L) be a Lorentz-Finsler space, admitting a Killing vector �eld � with the
property that L(x; �(x)) � 0, 8x 2M: If � = 0 at one point x 2M; then � vanishes identically.

Proof. Since the signature of g is assumed to be everywhere Lorentzian, it follows that the metric
g� = g � � is Lorentzian, too, which makes (M; g�) a Lorentzian manifold.
Further, as � is a Killing vector �eld for L; we get from Lemma 46 that � is a Killing vector

�eld for the pseudo-Riemannian metric g�; which, additionally, satis�es g�(�; �) = L � � � 0; that
is, � is non-spacelike for g�: The statement now follows from Proposition 48.

In a Finsler spacetime, Lorentzian signature of the Finsler metric tensor g is, by De�nition 25,
only ensured inside the timelike conic subbundle T � A; for L-lightlike vectors, g might very well
not exist or be degenerate. Yet, the above result still works if we impose that @T � A. Under this
assumption, the smoothness of L along @T ensures that g is de�ned, smooth and nondegenerate -
hence, Lorentzian - on the whole set of causal vectors �T = T [ @T : We thus obtain:

Corollary 51 In a Finsler spacetime (M;L) such that �T � A, if a causal Killing vector �eld
� :M ! �T vanishes at one point, then it must vanish identically.

Finally, we can state:

Theorem 52 If � is a Killing vector �eld for a Lorentz-Finsler space (M;L); admitting an isolated
zero at some point x 2 M; then, the dimension of M is even and L � � takes all possible signs on
each neighborhood of x:

Proof. Assume � is a Killing vector �eld for (M;L); with an isolated zero at some x 2 M ; then,
by Lemma 46, � is also a Killing vector for the Lorentzian metric g� on M: But:

L � � = g�(�; �); (2.118)

in particular, the signs of L � � and g�(�; �) coincide. The result now follows from Theorem 49.

8 In [200], Lorentz-Finsler spaces, as de�ned in Section 2.1.2 of this thesis, were called "Finsler spacetimes". Here,
we preferred a more nuanced de�nition of the latter.
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2.4 Inequalities from Finsler and Lorentz-Finsler norms

2.4.1 Introduction

The Cauchy-Schwarz inequality and the triangle inequality known for Riemannian spaces, together
with their Lorentzian-reversed counterparts - which are basic results for both mathematics and
physics - admit natural generalizations to Finsler, [26], respectively, Lorentz-Finsler spaces [1],
[101], [143], [144].
In this section, which is a shortened version of my joint paper with N. Minculete and C. Pfeifer,

[140], we will show Finsler geometry is behind some of the most notorious inequalities on Rn :
the arithmetic-geometric mean inequality together with its weighted version, Aczel�s, Popoviciu�s
and Bellmann�s inequalities. All these are nothing but reverse Cauchy-Schwarz, or reverse triangle
inequalities for conveniently chosen Lorentz-Finsler functions. Similarly, H½older�s and Minkowski�s
inequalities are obtained from the positive-de�nite (non-reversed) counterparts of these inequalities.
Afterwards, the same method is put to work to construct completely new inequalities.
Moreover, in order to increase the applicability of the results, we will relax the usual as-

sumptions on the pseudo-Finsler function L (or, accordingly, on F ). Speci�cally, the Finslerian
Cauchy-Schwarz inequality and its Lorentzian-reversed version are known in the literature, under
the assumption that the Finslerian metric tensor gv exists and everywhere positive de�nite for all
nonzero vectors v; [26], respectively, of Lorentzian signature on the (strictly convex) set F�1([1;1)),
[1, 101, 143, 144]. Under these assumptions, the obtained inequalities are strict, i.e., equality only
holds when the vectors v and w are collinear. In the following, we prove that:
- the respective inequalities still hold - just, non-strictly - if we allow g to be degenerate along

some directions;
- also, for practical reasons, the strict convexity assumption on F�1([1;1)) is replaced with the

more relaxed one that F is de�ned on a convex conic domain T .

The results below refer to Finsler (respectively, for Lorentz-Finsler) norms on the vector space
Rn+1 - but they can be extended in a straightforward manner to tangent bundles of (n+ 1)-
dimensional smooth manifolds, where they will hold on each tangent space TxM .

2.4.2 Finsler and Lorentz-Finsler functions on a vector space

On a pseudo-Finsler manifold (M;L), each partial function Fx : Ax ! [0;1); v 7! Fx(v) is what
we will call a Finsler pseudo-norm on any open, connected and conic subset Tx � Ax where L > 0.
In the following, as already mentioned above, we will just consider this particular structure on a
single, �xed real vector space, which we will identify as Rn+1; this is why we will omit in the writing
the dependence (if any) of F; Ax or Tx on the points of any manifold whatsoever and write simply,
F; A; respectively, T .
Brie�y, by a Finsler pseudo-norm on Rn+1; we will understand a smooth, positively 1-

homogeneous function F : T ! (0;1) ; v 7! F (v); de�ned on an open, connected conic subset
T � Rn+1; such that, at any v 2 T ; the bilinear form gv : Rn+1 � Rn+1 ! R;

gv(u;w) :=
1

2

@2F 2

@t@s
(v + tu+ ws) jt=s=0 (2.119)
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is nondegenerate. Any Finsler pseudo-norm will be prolonged as 0 at v = 0:

Fixing an arbitrary basis feigi=0;n of Rn+1, gv will be written as:

gv(u;w) = gij(v)u
iwj ; gij (v) =

1

2

@2F 2

@vi@vj
(v); (2.120)

for all u = uiei; w = wjej 2 Rn+1 and v = viei 2 T : The following relations, following from the
1-homogeneity of F; will be repeatedly used in the following:

F (v) =
p
gv(v; v); (2.121)

dFv(w) = F�i(v)w
i =

gij(v)v
jwi

F (v)
=
gv(v; w)

F (v)
: (2.122)

Particular cases: A Finsler pseudo-norm is called: a (conic) Finsler norm if gv is posi-
tive de�nite at all v 2 T ; respectively, a Lorentz-Finsler norm, if gv has everywhere Lorentzian
(+;�;�; :::;�) signature on T :

Remark: On a Finsler spacetime (M;L), all the considerations below will hold on the cone Tx
of future-directed vectors at points x 2M: Yet, in a Finsler spacetime, we have one more property:
Fj@T = 0; which we will not assume it troughout this section, as it would just uselessly limit the
range of allowed examples. Actually, in the following, we will relax the conditions on F even more,
by allowing gv to be degenerate (or even, not de�ned) along some directions.

2.4.3 Inequalities for (possibly, degenerate) Finsler and Lorentz-Finsler
norms

Triangle inequality and its reverse.

The triangle inequality and its Lorentzian reverse, actually do not need any smoothness assumption
on F . To be more precise, one can easily obtain the following result.

Lemma 53 For any 1-homogeneous function F : T ! R+ de�ned on some convex conic set T �
Rn+1; the following statements are equivalent:
(i) F is concave;
(ii) F obeys the reverse triangle inequality:

F (u+ v) � F (u) + F (v) ; 8u; v 2 T ; (2.123)

(iii) the set F�1([1;1)) is convex.
The reverse triangle inequality is strict if and only if the concavity of F is strict.

Before proceeding to the proof, we note that the conicity and convexity of T ensure that for all
u; v 2 T ; the vectors (1� �)u; �v and (1� �)u+ �v; where � 2 (0; 1); all remain in T ; that is, it
makes sense to apply F to these vectors.
Proof. (i) !(ii): If F is concave, then, by de�nition:

F ((1� �)u+ �v) � (1� �)F (u) + �F (v); (2.124)
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for all u; v 2 T and � 2 [0; 1]: The triangle inequality is then the particular case thereof, obtained
for � = 1=2. Moreover, if F is strictly convex (i.e., (2.124) is strict), then (2.123) must be also
strict.
(ii) ! (i): Assume that F obeys (2.123) and pick two arbitrary vectors u; v 2 T : Then, for

any � 2 [0; 1]; we have, by (2.123): F ((1 � �)u + �v) � F ((1 � �)u) + F (�v); which, using the
1-homogeneity of F yields (2.124), meaning that F is concave.
If, moreover, (2.123) is strict, then, the above inequality is also strict, i.e., F is strictly convex.
(ii)!(iii): Assuming that the reverse triangle inequality (2.123) holds, pick two arbitrary vec-

tors v; w 2 F�1([1;1)); that is, F (u); F (v) � 1, and an arbitrary � 2 [0; 1]: Then,

F ((1� �)v + �w) � F ((1� �)v) + F (�w) = (1� �)F (v) + �F (w) � 1;

which means F ((1� �)v + �w) 2 F�1([1;1)): Consequently, F�1([1;1)) is convex.
(iii)!(i): The idea of the proof is similar to the one in the positive semi-de�nite case (see

e.g., [102]). Assume F�1([1;1)) is convex and pick two arbitrary vectors v; w 2 T : By the 1-
homogeneity of F; it follows that the vectors v0 :=

v

F (v)
; w0 =

w

F (w)
obey F (v0) = F (w0) = 1, i.e.,

v0; w0 2 F�1([1;1)). Set � := F (w)

F (v) + F (w)
2 (0; 1) and build the convex combination:

u := (1� �)v0 + �w0 = v + w

F (v) + F (w)
2 T :

Since F�1 ([1;1]) is assumed to be convex, we have u 2 F�1([1;1)); i.e., F (u) � 1; taking into
account the homogeneity of F; this gives: F (v + w) � F (v) + F (w):
The above result extends a result in [1], by removing the restrictions on the continuity of F or

on the boundary @T :

Remark.

1. Similarly, one obtains the following equivalences (see also [26]):

F is convex , F�1([0; 1]) is a convex set , F obeys the triangle inequality:

F (v + w) � F (v) + F (w); 8v; w 2 T : (2.125)

2. If, in addition, one assumes F is smooth, then one can speak about the Hessian Hess(F );
which is a powerful tool in characterizing the concavity/convexity of F;more precisely: convex-
ity of F is equivalent to the fact that Hess(F ) is positive semide�nite, respectively, concavity
of F is equivalent to the negative semide�niteness of Hess(F ).

In the following, we will also relate these properties to the signature of the Finslerian metric
tensor gv.
Assume F is smooth and pick an arbitrary basis feigi=0;n of Rn+1: Then, the components of

the Hessian Hess(F ) are:

F�i�j(v) =
1

F
[gij(v)� F�i(v)F�j(v)]; 8v 2 T : (2.126)

This immediately leads to the identity:

F (v)F�i�j(v)u
iuj = gij(v)u

iuj � (F�i(v)ui)2; 8v 2 T ; 8u 2 Rn; (2.127)

which will serve in proving the following Lemma.
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Lemma 54 Consider a smooth positively 1-homogeneous function F : T !R de�ned on a conic
domain T � Rn+1nf0g. Then, at any v 2 T :

1. gv has only one positive eigenvalue , Hessv(F ) is negative semide�nite.

2. gv is positive semide�nite , Hessv(F ) is positive semide�nite.

Proof. of 1:
!: Fix an arbitrary v 2 T such that gv has only one positive eigenvalue and choose an orthog-

onal basis feigi=0;n for gv; with e0 = v: Since gv(e0; e0) = gij(v)v
ivj = F 2(v) > 0; it follows that

all the other diagonal entries g��(v) = gv(e�; e�); � 6= 0; are nonpositive.

Then, set u = e�: From (2.122), we �nd that F�i(v)ui =
gv(v; u)

F (v)
; i.e., the orthogonality condition

gv(v; u) = 0 can be re-expressed as F�i(v)ui = 0; the latter, substituted into (2.127), gives

F�i�j(v)u
iuj =

1

F (v)
gij(v)u

iuj =
1

F (v)
gv(e�; e�); (2.128)

which means: F�i�j(v)uiuj � 0: Together with F�i�j(v)ei0e
j
0 = F�i�j(v)v

ivj = 0 (which holds by virtue
of the 1-homogeneity of F ), this implies that Hess(F ) = (F�i�j(v)) is negative semide�nite.
 : Conversely, assume that Hessv(F ) is negative semide�nite. Using the same gv-orthogonal

basis, we will have, again, (2.128), for all u = e�; � = 1; n , which, taking into account that
(F�i�j(v)) is negative semide�nite, leads to: 0 � gv(e�; e�): That is, gv has at least n nonpositive
eigenvalues. But, on the other hand, gv(e0; e0) = F 2(v) > 0; i.e., the eigenvector e0 = v corresponds
to a (unique) positive eigenvalue for g:
Statement 2. is proven similarly, taking into account that, this time, F (v)F�i�j(v)uiuj =

gij(v)u
iuj � 0:

Putting together Lemmas 53 and 54 and the two above remarks, we �nd:

Proposition 55 (Triangle-type inequalities): Consider a smooth, positively 1-homogeneous
function F : T ! (0;1) de�ned on a convex conic domain T �Rn+1. Then:

1. (The degenerate-Lorentzian case): The following statements are equivalent:

(a) gv has exactly one positive eigenvalue, for any v 2 T ;
(b) the Hessian of F is negative semide�nite at all v 2 T ;
(c) F is concave;

(d) the set F�1([1;1)) is convex;
(e) F obeys the reverse triangle inequality (2.123).

2. (The positive semide�nite case): The following statements are equivalent:

(a) gv is positive semide�nite for any v 2 T ;
(b) the Hessian of F is positive semide�nite at all v 2 T ;
(c) F is convex;
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(d) the set F�1([0; 1]) is convex (where we have de�ned F (0) := 0);

(e) F obeys the triangle inequality (2.125).

Strictness: The case when the concavity/convexity of F is strict - respectively, the above
inequalities are strict - corresponds, see, e.g., [101], to the situation when gv is nondegenerate.

Fundamental (Cauchy-Schwarz) inequality and its reverse

The Cauchy-Schwarz inequality can be similarly extended for degenerate metrics, as shown in the
Theorem below.

Theorem 56 (Cauchy-Schwarz type inequalities): Let T � Rn+1nf0g be a convex conic
domain and F : T !(0;1) a smooth, positively 1-homogeneous function. Then:

1. (The degenerate-Lorentzian case): If gv has only one positive eigenvalue at all v 2 T ,
then, for any v; w 2 T ; there holds the reverse Cauchy-Schwarz inequality:

dFv(w) � F (w): (2.129)

2. (The positive semide�nite case): If gv is positive semide�nite at all v 2 T ; then, there
holds the Cauchy-Schwarz inequality:

dFv(w) � F (w): (2.130)

If, in addition gv is everywhere nondegenerate, then the corresponding inequalities are strict.

Proof. 1. The technique follows roughly the same steps as in the standard, positive de�nite Finsler
case (see, e.g., [26], p. 8-9). Consider two arbitrary vectors u; v 2 T : Since T is convex and conic,
it follows that u + v 2 T ; i.e., F (u + v) is well de�ned. Now, perform a Taylor expansion around
v, with the remainder in Lagrange form:

F (u+ v) = F (v) + F�i(v)u
i +

1

2
F�i�j(v + "u)u

iuj : (2.131)

From Lemma 54, we obtain that F�i�j is negative semide�nite, that is, F�i�j(v + "u)uiuj � 0 and
therefore,

F (u+ v) � F (v) + F�i(v)ui: (2.132)

Then, denoting w := u + v; the above becomes F (w) � F (v) + F�i(v)(w
i � vi): Using the 1-

homogeneity of F; the terms F (v) and �F�i(v)vi cancel out, which leaves us with:

F (w) � F�i(v)wi; (2.133)

which is the coordinate form of (2.129)
The strictness part was also proven in ([101]); we just sketch a proof here for completeness: If

gv is nondegenerate, then F�i�j has radical spanned by v; i.e., the equality F�i�j(v + "u)uiuj = 0
happens if and only if v and u are collinear; this leads to the strictness (2.132) and consequently,
of (2.129).
Statement 2. is proven in a completely similar manner.

Here are some important remarks.
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1. The name of Cauchy-Schwarz inequality for (2.130) is justi�ed as follows. Using the identity

dFv(w) =
gv(v; w)

F (v)
(see (2.122)), this is equivalent to:

gv(v; w) � F (v)F (w); (2.134)

which is visibly a generalization of the Cauchy-Schwarz inequality a (v; w) �p
a (v; v)

p
a (w;w) holding for a usual scalar product a : Rn � Rn ! R. Similarly, its

Lorentzian reverse (2.129) can be written in the more familiar form:

gv(v; w) � F (v)F (w): (2.135)

2. The reverse Cauchy-Schwarz inequality loses strictness if F is degenerate-Lorentzian. To

prove this, consider, for instance, F : T ! R+; F (v) =
q
(v0)2 � (v1)2; where T � R4 is

the set of all vectors v =
�
v0; v1; v2; v3

�
with v0 > 0; (v0)2 �

�
v1
�2
> 0: The corresponding

metric tensor gv = diag(1;�1; 0; 0) is degenerate at all v 2 T : Picking v = (1; 0; 1; 0) and
w = (1; 0; 0; 1); we have gv(v; w) = F (v)F (w) = 1; while, obviously, v and w are not collinear.
Obviously, the same happens in the positive semide�nite case.

Coordinate expression of the reverse Cauchy-Schwarz inequality: With respect to a
given basis, (2.129) takes the form:

F�i(v)w
i � F (w): (2.136)

2.4.4 Some remarkable examples

Here are some famous inequalities that can be obtained as either Cauchy-Schwarz type inequalities,
or as triangle type ones, associated to Finsler or Lorentz-Finsler norms.

� Aczél�s inequality, [2]:

(v0w0� v1w1� ::::� vnwn)2 � [
�
v0
�2� �v1�2 :::� (vn)2][�w0�2� �w1�2 :::� (wn)2]; (2.137)

holding for all v; w belonging to the connected, convex conic set:

T := fv 2 Rn j v0 � 0;
�
v0
�2 � �v1�2 :::� (vn)2 � 0g: (2.138)

From a geometer�s point of view, this is just the reverse Cauchy-Schwarz inequality (2.135)
obtained for the orthonormal basis expression (�ij) = diag(1;�1;�1; :::;�1) of the (n+ 1)-
dimensional Minkowski metric � on Rn+1 - or, equivalently, for the Lorentz-Finsler norm
F : T ! R+;

F (v) :=
p
�(v; v) =

q
(v0)

2 � (v1)2 :::� (vn)2:

The set T is interpreted as the future-pointing timelike cone of the Minkowski metric.
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� Popoviciu�s inequality, [165]:

a0b0 � a1b1 � :::� anbn �
h
(a0)q �

�
a1
�q � :::� (an)qi 1q h�b0�p � �b1�p � :::� (bn)pi 1p ;

(2.139)

where p > 1;
1

p
+
1

q
= 1 and (ai); (bi) belong to the convex conic domain:

T := fv 2 Rn+1 j v0; v1; :::; vn > 0;
�
v0
�p � �v1�p � :::� (vn)p > 0g: (2.140)

This inequality can be obtained as a reverse Cauchy-Schwarz inequality, for the Lorentz-Finsler
norm F : T ! R+ de�ned by

F (v) := H(v)
1
p ; H(v) =

�
v0
�p � �v1�p � :::� (vn)p : (2.141)

To check that F is indeed, a Lorentz-Finsler norm, one can use the Hessian H�i�j(v) (which
is immediately seen to be Lorentzian on T ), together with (2.24). Then, the reverse Cauchy-
Schwarz inequality F (w) � F�i(v)wi (which holds strictly on T ), followed by the substitutions:

q :=
p

p� 1 ; ai :=
�
vi
�p�1

; bj := wj ; (2.142)

(in particular,
1

p
+
1

q
= 1), yields Popoviciu�s inequality.

� Bellman�s inequality:

(vp0 � v
p
1 � :::� vpn)

1=p
+(wp0 � w

p
1 � :::� wpn)

1=p � [(v0+w0)p�(v1+w1)p�:::�(vn+wn)p]1=p;
(2.143)

holding (strictly) on T ; is then obviously the reverse triangle inequality applied to (2.141).

� Hölder�s inequality:

a0b0 + a1b1 + ::::+ anbn �
h�
a0
�q
+ :::+ (an)

q
i 1
q
h�
b0
�p
+ :::+ (bn)

p
i 1
p

; (2.144)

which takes place for all ai; bi > 0; i = 0; n;, can be treated as the fundamental inequality of
the Finsler norm:

F (v) = [
�
v0
�p
+ :::+ (vn)

p
]
1
p ; (2.145)

which is positive de�nite on T :=
�
v 2 Rn+1 j vi > 0; i = 0; n

	
: Substituting a; b; q as in

(2.142) into the Cauchy-Schwarz inequality F�i(v)wi � F (w); one gets (2.144).

� Minkowski�s inequality:h�
a0 + b0

�p
+ :::+ (an + bn)

p
i 1
p �

h�
a0
�p
+ :::+ (an)

p
i 1
p

+
h�
b0
�p
+ :::+ (bn)

p
i 1
p

;

8ai; bi > 0; i = 0; n; p > 1 is just the triangle inequality for (2.145).
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� The arithmetic-geometric mean inequality:
�0 + ::::+ �n

n+ 1
� (�0�1:::�n)

1
n+1 ; 8�i 2 R�+; (2.146)

is obtained using the (n+ 1)-dimensional Berwald-Moór metric:

F : T ! R+; F (v) = (v0v1:::vn)
1

n+1 ; (2.147)

de�ned on the connected, convex conic set T :=
�
v 2 Rn+1 j v0; v1; :::; vn > 0

	
: As already

mentioned above in Subsection 2.3.3, the metric tensor gv associated to F is known to be of
Lorentzian signature. A surprising fact is that its reverse Cauchy-Schwarz inequality (2.133)

becomes, upon substituting �i :=
wi

vi
, just (2.146).

� The weighted arithmetic-geometric mean inequality:
nX
i=0

aiv
i � (v0)a0(v1)a1 :::(vn)an ; 8vi > 0; (2.148)

can be obtained similarly, using the function F : T ! R+; de�ned by

F (v) =
�
v0
�a0 �

v1
�a1

::: (vn)
an ;

nX
i=0

ai = 1 ai � 0;

where, again, T =
�
v 2 Rn+1 j v0; v1; :::; vn > 0

	
. A short direct calculation shows that F is

a Lorentz-Finsler norm and its reverse Cauchy-Schwarz inequality (2.133) is just (2.148).

Here are also, just two examples of new inequalities that can be produced this way.

� Kropina metric: Start from a timelike Kropina-type deformation F : T ! R+ of the
Minkowski metric � :

F (v) :=
�ijv

ivj

v0
=
1

v0
[(v0)2 � (v1)2 � ::::� (v1)2];

where T :=
�
v 2 Rn+1 j �ijvivj > 0; v0 > 0

	
� Rn+1 ; is the future-pointing timelike cone of

�: The function F can be checked by direct computation, see [140] to be a Lorentz-Finsler
norm. Then, F obeys the strict fundamental inequality (2.129), which becomes, after a short
calculation:

2�(v; w) � w0

v0
�(v; v) +

v0

w0
�(w;w); 8v; w 2 T : (2.149)

� A Finslerian extension of Aczél�s inequality (2.137) is obtained by considering, on
the entire space Rn+1; a positive de�nite Finsler norm F̂ and a 1-form � = �idx

i: Then, the
mapping F : Rn+1 ! R;

F (v) =

q
�2(v)� F̂ 2(v)

de�nes (see Theorem 4.1 in [101]), a (smooth, nondegenerate) Lorentz-Finsler norm on the
convex conic domain T = fv 2 Rn+1 j �(v) > F̂ (v)g � Rn+1nf0g: The reverse Cauchy-
Schwarz inequality then reads:

[�(v)�(w)� ĝv(v; w)]2 � [�2(v)� F̂ 2(v)][�2(w)� F̂ 2(w)]: (2.150)
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Chapter 3

Finsler-based �eld theory

Pseudo-Riemannian geometry owes its tremendous �ourishing to its main physical application,
general relativity, in which it serves to describe one of the four fundamental physical interactions,
gravity.
It is already commonplace that general relativity is, on a wide variety of physical scales, in

excellent agreement with observations. Yet, there are problems, showing up at either very large
scales and giving rise to the so-called dark energy/dark matter, or very small scales (its tension
with quantum theory), which indicate that it is reasonable to look for a more general gravitational
theory. A possible route, which we will take in this chapter, is to generalize the geometry underlying
our gravitational models.
Such a more general geometry, which has the potential of producing realistic models, is precisely

Finsler geometry; here is just a short and non-exhaustive list of features that recommend it (a more
detailed discussion can be found in the review by Pfeifer, [159]):

� Finsler spacetimes are the most general spacetimes admitting a well de�ned notion of arc
length (which is physically interpreted as proper time); thus, they are the most general space-
times which satisfy the clock postulate stating that the time an observer measures between
two events is given by the length of its worldline.

� Using the recent de�nitions of Finsler spacetimes (see Chapter 2), they also possess a smooth
distribution of convex cones interpreted as future-pointing timelike cones - brie�y, a well
de�ned cone structure.

� They have well behaved geodesic structure, thus they allow for models obeying the weak
equivalence principle stating that motion of free particles in a gravitational �eld takes place
along geodesics of spacetime.

� What is generally no longer true in a Finslerian spacetime compared to a Lorentzian one, is
local Lorentz invariance. This latter feature makes Finsler spacetimes particularly suitable
for quantum gravity phenomenology models; actually, the relation between Lorentz symmetry
breaking and Finsler geometry is a very active topic, [38], [81], [68], [75], [129].

Historically, the �rst to use geometry based on Finslerian line elements to describe physical
interactions was Randers [168], in his search for a uni�ed geometric description of gravity and

83
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electromagnetism. Later on, Finsler geometry (and, to some extent, its generalizations, Lagrange
and generalized Lagrange geometry, introduced by R. Miron and his collaborators, [146]-[148]) were
used in physics in various other contexts, for example: the geometric description of �elds in media,
[8], [47], [56], [106], [134], [158], [171], [222], the study of non-local Lorentz invariant extensions of
fundamental physics, [185], [186], [178], [108]-[110], [36]-[38], and, �nally, the search for an improved
description of gravity [81], [124], [145], [172], [163], [93], [94], which might explain dark matter or
dark energy geometrically, [90], [112], [130], [138], [139], [204].
For the latter topic, an extremely motivating example is the coupling of kinetic gases to Finsler

spacetime geometry, proposed by us in [94], [95]. Yet, a �rst question is on how to proceed in our
quest for a realistic Finslerian gravity model. So far, there exists a multitude of models, which
mostly vary in:
- the way of obtaining the �eld equation: by variation from an action, [163], [93], [94], [209], by

formal resemblance to the Einstein equations, e.g., [147], [195], or from further physical principles,
e.g., [172].
- the choice of the fundamental variable, e.g., the Finsler function L, [172], [163], [93], the Finsler

metric tensor g (e.g., [147], [209]) the nonlinear connection N , or a combination thereof, [103].

In the following, we will abide by two principles: 1) the �eld equations should be obtained by
variational means and 2) the existence of a well-de�ned arc length on spacetime. The latter selects
pseudo-Finsler geometry as the spacetime geometry and implies the homogeneity of certain degree
of the related geometric objects, see Section 2.1.6.
Since these principles are, still, quite general, understanding the main features of the allowed

models, is a �rst task to pursue. This is why this chapter introduces, in its �rst two sections, based
on the paper [97], the general mathematical framework for �eld theories whose dynamical variables
are geometric objects possessing a homogeneous dependence on direction. One such feature is
the appearance of the novel, direction-dependent notion of energy-momentum distribution tensor,
which, in the case of natural Lagrangians, will be proven, following a similar algorithm to the one
in Section 1.3, to obey an averaged conservation law.
Then, within this framework, Section 3.3 presents the concrete Finslerian model which was �rst

introduced in [93], [94]. Finally, Section 3.4 discusses the notion of cosmological symmetry in the
class of Finsler spacetimes. All the results presented in this chapter are obtained by joint work with
C. Pfeifer and M. Hohmann.

3.1 The general framework

3.1.1 Introduction

This section reproduces almost identically parts of the paper [97]; here are the main ideas to be
discussed:

� Establishing an appropriate class of con�guration bundles, allowing us to treat (homogeneous)
Finslerian geometric objects as sections and to consistently apply the tools of the calculus of
variations. Typically, in metric or metric-a¢ ne gravity theories, the con�guration bundle Y
sits over the spacetime manifold. Yet, in Finslerian �eld theories, all the typical geometric
objects discussed in Chapter 2 have a nontrivial dependence on tangent vectors _x to the
spacetime manifoldM: Moreover, this dependence obeys a property which cannot be ignored,
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which is positive homogeneity of some degree k 2 Z; let us recall that the 2-homogeneity of
the Finsler function is essential in ensuring a well de�ned notion of arc length.

Thus, at �rst sight, one may think that the appropriate con�guration bundles should sit
over the tangent bundle TM: Yet, such a choice turns out to be highly problematic, due to
homogeneity. The problem arises as, in this case, one cannot ensure the existence of compactly
supported variations of geometric objects. This is seen as follows: since we want to stay in the
class of k-homogeneous objects in _x, the considered variations must also be k-homogeneous in
_x; but, once a k-homogeneous quantity is assumed to vanish at a boundary point (x; _x) 2 @D
of the integration domain D � TM , then, by homogeneity, it will vanish along the entire ray
f(x; � _x) j � > 0g - i.e., typically, also inside D; which is not acceptable.

Another idea in the literature, see [160], is to consider as the base manifold X; the indicatrix
bundle L�1(1) of our Finsler spacetime manifold (M;L) : But, in this case, our integration
domain D � X will vary with L, which means that one cannot correctly de�ne in this
case, �bered automorphisms - since, as we have already seen in Subsection 1.1.3, for �bered
automorphisms, the transformation of the base points (i.e., the transformation of D) cannot
depend on the transformation of the �eld variables. Therefore, when considering theories
having L-dependent quantities as our dynamical variables, L�1 (1) or any of its subsets cannot
serve as base manifold for our con�guration bundle.

A possibility that does not su¤er from any of these shortcomings - and which we will investigate
here in detail - is to consider as the base manifoldX, the positively projectivized tangent bundle
(the projective sphere bundle) PTM+, discussed in Section 2.2, which does not depend on
the Finsler function or any derived object and allows one to correctly apply all the tools of
the calculus of variations.

� Analyzing the peculiar structure �bered manifolds (Y;�; PTM+) and of Lagrangians built
upon them. Fibered manifolds built upon PTM+ have a quite sophisticated structure - if we
are only to take into account that PTM+ is a set of equivalence classes and a �bered manifold
itself. This will of course impose conditions upon the constructed Lagrangians. For instance,
any Lagrangian di¤erential form �+ must become, whenever evaluated along sections (�elds)

 2 �(Y ); a well de�ned di¤erential form on PTM+; in particular, this means it must be
0-homogeneous.

Moreover, geometric objects that have a nonzero homogeneity degree in _x - a notorious
example is here the Finsler spacetime function L - cannot be directly regarded as mappings
de�ned on PTM+; thus, identifying them as sections of some PTM+-based �bered manifold
Y requires a careful construction. This is why we take some time to discuss the details - and
prove that, using homogeneous local coordinates on PTM+; local calculations are greatly
simpli�ed.

In the following, we will set for convenience, dimM = 4; yet, the results below can be extended in
a straightforward manner for arbitrary dimension. By "homogeneity" of geometric objects on TM ,
we will always mean positive homogeneity in the tangent vectors _x. Also, throughout the chapter,
we will sometimes use a plus superscript + to designate geometric objects that are either de�ned on
subsets of PTM+; on bundles sitting over PTM+; this is done especially in the cases when similar
objects de�ned on Finslerian observer spaces O are also used, in order to avoid confusions.
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3.1.2 Fibered manifolds over PTM+

Consider a Finsler spacetime (M;L) and denote by (Y;�; PTM+) an arbitrary �bered manifold of
dimension 7 +m: Then, Y will acquire a double �bered manifold structure:

Y
��! PTM+ �M�!M: (3.1)

As a consequence, Y will admit an atlas consisting of �bered charts (V;  ) ;  = (xi; u�; z�);
i = 0; 1; 2; 3; � = 0; 1; 2, � = 1; :::;m on Y; that are adapted to both �brations; thus, the two
projections will be represented in these charts as:

� : (xi; u�; z�) 7!
�
xi; u�

�
; �M : (xi; u�) 7!

�
xi
�
:

Further, corresponding to any induced local chart (�(V ); �); � = (xi; u�) on PTM+; we can
introduce the homogeneous coordinates

�
xA
�
:= (xi; _xi): This way, we obtain on V = ��1(U+) the

coordinate functions
~ := (xi; _xi; y�) = (xA; y�)

on V , which we will call �bered homogeneous coordinates. The above introduced �ber coordinate y�

of a point p 2 Y is typically not unique, as its relation to the usual coordinates (xi; u�; z�) typically
depends on the choice of representative (x; _x) in the class of [(x; _x)] : The precise form of this
relation depends, obviously, on the concrete con�guration manifold Y ; just to give a hint for now,
we will prove below in Section 3.1.4 that, in the particular case when Y is a space of k-homogeneous
geometric objects, then, Y itself will be a set of equivalence classes and, on a coordinate chart with,
say, _x3 6= 0; _x� = _x3u�; � = 1; 2; 3; we will have:�

xi; _xi; y�
�
= (xi; _x3u0; _x3u1; _x3u2; _x3; ( _x3)kz�):

In �bered homogeneous coordinates, local sections of (Y;�; PTM+); say, 
 : W+ !
Y; [(x; _x)] 7! 
[(x; _x)] (where W+ � PTM+ is open), are represented as:


 : (xi; _xi) 7! (xi; _xi; y�(xi; _xi)): (3.2)

The set of all such sections is denoted by �(Y ).

On the jet bundle JrY; �bered charts (V; ~ ) induce the �bered charts 1 (V r; ~ 
r
), with:

~ 
r
= (xi; _xi; y�; y�;i; y

�
�i; :::; y

�
�i1�i2:::�ir ) ;

where, for k = 1; :::; r and 
 2 �(Y ) locally represented as in (3.2),

y�;i1:::�ik(x
j ; _xj) =

@k

@xi1 :::@ _xik
(y�(xj ; _xj))

1We note that, since we are using homogeneous coordinates over each chart domain, the number of coordinate
functions (y�;i; y

�
�_i) on the �rst jet bundle J

1Y is 8m, not 7m as one would expect taking into account the dimension

of the �bers of J1Y ! Y . A similar remark applies to higher order jet bundles.
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are all partial x; _x-derivatives up to the total order k. The canonical projections �r;s : JrY ! JsY;
Jr(x; _x)
 7! Js(x; _x)
 (with r > s), are then represented as:

�r;s : (xi; _xi; y�; y�;i1 ; :::; y
�
�i1�i2:::�ir ) 7! (xi; _xi; y�; y�;i1 ; :::; y

�
�i1�i2:::�is);

accordingly,
�r : JrY ! PTM+; (xi; _xi; y�; y�;i1 ; :::; y

�
�i1�i2:::�ir ) 7! (xi; _xi):

As already seen in Section 1.1.4, in the calculus of variations, we need two classes of di¤erential
forms on JrY; namely, horizontal and contact forms. In our case, these notions are translated as
follows.

1. �r-horizontal forms � 2 
k(JrY ) are de�ned as forms that vanish whenever contracted with
a �r-vertical vector �eld. In the local basis (dxi; d _xi; dy�; :::dy��i1:::�ir ); they are expressed as:

� =
1

k!
�i1i2:::ikdx

i1 ^ dxi2 ^ ::: ^ d _xik ; (3.3)

where �i1i2:::ik are smooth functions of the coordinates on J
rY . Similarly, �r;s-horizontal

forms, 0 � s � r are locally generated by wedge products of dxi; d _xi; dy�; dy�;i:::; dy��i1:::�is .

2. Contact forms on JrY are, by de�nition, forms � 2 
k(JrY ) that vanish along prolonged
sections, i.e., Jr
�� = 0; 8
 2 �(Y ): Standard examples of contact forms are the elements
of the local contact basis fdxi; d _xi; ��; ��;i; ���i; :::���i1:::�ir�1 ; dy

�
;i1:::;ir

; :::dy��i1:::�irg of 
(J
rY );

given by:

�� = dy� � y�;idxi � y��id _xi; ��;i = dy�;i � y�;i;jdxj � y�;i�jd _xj etc: (3.4)

Another important class of contact forms are source forms � 2 
8(JrY ), de�ned as �r;0-
horizontal, 1-contact 8-forms on JrY: In coordinates:

� = ���
� ^Vol0; (3.5)

where the expression
Vol0 := iC(dx ^ d _x) (3.6)

was introduced and discussed in Chapter 2, eq. (2.72).

Raising to Jr+1Y; any di¤erential form � 2 
k(JrY ) can be uniquely decomposed as:�
�r+1;r

��
� = h�+ p�;

where h� is horizontal and p� is contact. We recall that the horizontal component h� is what
survives of � when pulled back by prolonged sections Jr
 (where 
 2 �(Y );) i.e.,

Jr
�� = Jr+1
�(h�): (3.7)

The horizontalization morphism h : 
(JrY )! 
(Jr+1Y ), acts on the natural basis 1-forms by
the rule (1.8), which in our case becomes:

hdxi := dxi; hd _xi = d _xi; hdy� = y�;idx
i + y��id _x

i etc: (3.8)
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Accordingly, for any smooth function f on JrY , we obtain:

hdf = dAfdx
A = difdx

i + _difd _x
i 2 
1(Jr+1Y ); (3.9)

where dif and _dif represent total xi- and, accordingly, total _xi-derivatives (of order r + 1). Using
(3.7) for � = df; gives:

@i(f � Jr
) = dif � Jr+1
; _@i(f � Jr
) = _dif � Jr+1
 : (3.10)

Total adapted derivatives. Alternatively, one may use a nonlinear connection on A+ �
PTM+, with local coe¢ cients, say, N i

j ; to introduce the total adapted derivative operators

�i := di �N j
i
_dj ; (3.11)

which help constructing manifestly covariant expressions (where we have identi�ed N j
i with their

pullbacks by �r+1). More precisely, using these operators, we can write (3.9) as

hdf = (�if)dx
i + ( _dif)� _x

i; (3.12)

where � _xi = d _xi + N i
jdx

j : If Y is a natural bundle over M and f : JrY ! R is an invariant
scalar (see Section 1.1.5), then �if and _dif will transform, under coordinate changes induced from
coordinate changes on M; as d-tensor components.

3.1.3 Fibered automorphisms

Taking into account the doubly �bered structure of the con�guration bundle Y , we introduce:

De�nition 57 (Automorphisms of Y ) : An automorphism of a �bered manifold (Y;�; PTM+)
is a di¤eomorphism � : Y ! Y such that there exists a �bered automorphism � of (PTM+; �M ;M)
with � � � = � ��:

In particular, this means that there exists a di¤eomorphism �0 : M ! M which makes the
following diagram commute:

Y
�����! Y

�

??y ??y�
PTM+ �����! PTM+

�M

??y ??y�M
M

�0����! M

(3.13)

In �bered homogeneous coordinates, a �bered automorphism of Y is represented as:

~xi = ~xi(xj);
�
~xi =

�
~xi(xj ; _xj); ~y� = ~y�(xi; _xi; y�):
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An automorphism of Y is called strict if it covers the identity of PTM+, i.e., � = idPTM+ :

Generators of 1-parameter groups f�"g of automorphisms of Y are vector �elds � 2 X (Y ) that
are projectable with respect to both projections � and �M ; in coordinates, this is expressed as:

� = �i(xj)@i + _�
i
(xj ; _xj) _@i + �

�(xj ; _xj ; y�)
@

@y�
: (3.14)

In particular, strict automorphisms are generated by �-vertical vector �elds � = ��(xj ; _xj ; y�)
@

@y�
.

Given such a 1-parameter group f�"g ; any section 
 2 �(Y ) is deformed into the section


" := �" � 
 � ��1" :

In �rst approximation, if 
 is locally represented as: 
 :
�
xi; _xi

�
7!
�
xi; _xi; y�

�
xi; _xi

��
; then:


" :
�
xi; _xi

�
7!
�
xi; _xi; y�

�
xi; _xi

�
+ "(~�� � J1
)j(xi; _xi) +O("2)

�
;

where
~�� := (�� � �iy�;i � _�

i
y��i): (3.15)

The functions ~� � J1
, de�ned on each local chart in the domain of 
, are commonly denoted by
�y�:
The automorphisms �" : Y ! Y are prolonged into automorphisms Jr�" of JrY by the rule:

Jr�"(J
r
(x; _x)
) := Jr�(x; _x)
":

The generator of the 1-parameter group fJr�"g is called the r-th prolongation of the vector �eld
� and denoted by Jr�:

3.1.4 Homogeneous geometric objects on TM as sections

A priori, k-homogeneous Finslerian geometric objects are local sections of some �ber bundle
�
Y

sitting on
�

TM . In the following, we will reinterpret these objects as sections of a bundle Y with
base PTM+, which, as we have argued above, is more appropriate in view of the calculus of
variations. The construction of the con�guration bundle (Y;�; PTM+) was inspired by the one
made in [79, Sec 5.4] for the bundle of principal connections - and relies on factoring out an action

of (R�+; �), from both the total space and the base of the original bundle
�
Y .

Consider a �ber bundle
�
Y

�
�!

�
TM;

with typical �ber Z: In the following, it will be convenient to abuse the notation by explicitly

mentioning the base point of any element in
�
Y , i.e., we will identify2 elements y 2

�
Y as triples

(x; _x; y) ; where (x; _x) =
�
�(y).

2Such an identi�cation is always possible, via the �bered manifold isomorphism (
�
�; id �

Y
) :

�
Y !

�
TM � �

TM

�
Y

covering the identity of
�

TM .
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Assume that (R�+; �) acts on
�
Y by some �bered automorphisms:

H : R�+ �
�
Y !

�
Y ; H(�; �) = H� 2 Aut(

�
Y ) (3.16)

of the form:
H�(x; _x; y) =

�
x; � _x; �ky

�
; (3.17)

for some �xed k 2 R: In particular, each automorphism H� 2 Aut(
�
Y ) covers the homothety

�� :
�

TM !
�

TM , (x; _x) 7! (x; � _x); introduced in Section 2.1.6.

Note. In the following, we do not assume a speci�c form of the �ber Z of
�
Y ; we just assume

that, for a given k; rescaling of any �ber element y by the power �k; 8� > 0; makes sense. For

instance, in the case of vector bundles over
�

TM; this makes sense for any k 2 R; whereas for bundles
whose �bers do not admit a rescaling of elements, one is forced to choose k = 0.

The quotient manifold Y: Now, consider the space of orbits of the action H, i.e., the set:

Y =
�
Y =�; (3.18)

where the equivalence relation � is given by:

(x; _x; y) � (x0; _x0; y0) , 9� > 0 : (x0; _x0; y0) = H�(x; _x; y): (3.19)

The action H can be easily shown to be free and proper (properness is proven by verifying that the

mapping f : R�+ �
�
Y !

�
Y �

�
Y ; (�; x; _x; y) 7! (x; � _x; �ky; x; _x; y) is proper); as a consequence, the

Quotient Manifold Theorem (see [128], Ch. 21) ensures that Y is a smooth manifold.

Moreover,
�
Y acquires the structure of a principal bundle over Y; with �ber R�+ and projection

projY :
�
Y ! Y; (x; _x; y) 7! [(x; _x; y)]: (3.20)

In the following, we show that Y is indeed the con�guration space we are looking for.

Theorem 58 (Structure of the orbit space Y ): Let
�
Y

�
�!

�
TM be a �ber bundle with typical

�ber Z, equipped with an action H of (R�+; �) by rescaling, as in (3.16)-(3.17). Then:

1. The orbit space Y =
�
Y =� of H is a �ber bundle over PTM+; with typical �ber Z:

2. k-homogeneous sections f : Q !
�
Y ; where Q �

�
TM is a conic subbundle, are in a one-to-one

correspondence with local sections 
 : Q+ ! Y; where Q+ = �+(Q) � PTM+:

Proof. 1. First, let us de�ne the projection:

� : Y ! PTM+; [(x; _x; y)] 7! [(x; _x)]: (3.21)
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This mapping is independent of the choice of representatives in the class [(x; _x; y)]; as
�[
�
x; � _x; �ky

�
] = [(x; � _x)] = [(x; _x)] = �[(x; _x; y)]; moreover, it is obviously a surjective sub-

mersion, which means that (Y;�; PTM+) is a �bered manifold.
It remains to construct a local trivialization of Y: With this aim, start with a given local

trivialization of
�
Y and consider a chart domain

�
V :=

�
��1(U) �

�
Y ; such that there exists a

di¤eomorphism:
�
V ' U � Z; (3.22)

where U �
�

TM is a small enough coordinate neighborhood on which one of the coordinates _xi

keeps a constant sign. But, on the one hand, as (
�

TM; �+; PTM+;R�+) is a principal bundle, which
gives a di¤eomorphism

U ' U+ � R�+;

where U+ = �+(U) � PTM+: We thus get:

�
V ' (U+ � R�+)� Z:

On the other hand, using the principal bundle structure of (
�
Y ;projY ; Y;R�+), we obtain, for small

enough
�
V (i.e., for small enough U), the di¤eomorphism:

�
V ' V � R�+;

where V := projY (
�
V ): This way, the given trivialization (3.22) of

�
Y can be written as follows:

Assuming _x3 has constant sign on U; a system of R�+-adapted �bered coordinate functions on
�
V is

of the form
�
xi; u�; _x3; z�

�
; where

�
xi; u�

�
; with u� =

_x�

_x3
; � = 0; 1; 2 are coordinate functions on

U+ � PTM+:
A local trivialization of Y is obtained by discarding the R�+ factor in the above diagram:

where � is as in (3.21). Indeed, the mappings above are smooth and the top arrow is obviously
a di¤eomorphism; moreover, an elementary reasoning shows that V = ��1(U+); which completes
the proof.
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Using the above trivialization, the corresponding �bered coordinates on V � Y are obtained by

discarding the _x3 coordinate from the coordinates
�
xi; u�; _x3; z�

�
on

�
V ; i.e.,

 :=
�
xi; u�; z�

�
; � = 0; 1; 2:

2. Let f : Q !
�
Y ; (x; _x) 7! f (x; _x) 2

�
Y (x; _x) be a k-homogeneous section, i.e., f (x; � _x) =

�kf (x; _x) ; 8� > 0 and de�ne:


 : Q+ ! Y; 
[(x; _x)] = [(x; _x; f(x; _x))]:

The mapping 
 is independent of the choice of representatives (x; _x) 2 [(x; _x)] by virtue of the
k-homogeneity of f: Moreover, (� � 
)[(x; _x)] = [(x; _x)] for all (x; _x) 2 Q; which makes 
 a well
de�ned local section of Y:
Injectivity of the correspondence f 7! 
 is immediate. To prove surjectivity, pick an arbitrary


 2 �(Y ) and de�ne f(x; _x); for every representative (x; _x) 2 [(x; _x)]; as the third component y of
the representative (x; _x; y) 2 
[(x; _x)]; then, f(x; � _x) = �ky by the de�nition of equivalence classes

in Y; which means that f is a k -homogeneous section of
�
Y :

Homogeneous �bered coordinates on Y . Since we have now �xed, in (3.16), (3.17), the

group action of R�+ on
�
Y , on each �bered chart domain (V;  );  =

�
xi; u�; z�

�
of Y as above, we

can explicitly introduce homogeneous �bered coordinates as the local coordinates�
xi; _xi; y�

�
:= (xi; _x3u�; ( _x3)kz�) (3.23)

of an arbitrarily chosen representative of the class [x; _x; y] where u� = _x�

_x3 ; � = 0; 1; 2. These are,
obviously unique up to positive rescaling, i.e.,

�
xi; _xi; y�

�
and (xi; � _xi; �ky�) will represent the

same class.

Examples.

1. Finsler functions L : A ! R: In this case,
�
Y =

�
TM � R is a trivial line bundle, which

means the con�guration bundle Y =
�
Y =� is the space of orbits of the Lie group action

H : R�+ �
�
Y !

�
Y given by the �bered automorphisms:

H� :
�
Y !

�
Y ; H�(x; _x; y) = (x; � _x; �

2y); 8� > 0: (3.24)

This way, 2-homogeneous Finsler functions are identi�ed with local sections 


L 7! 
 2 �(Y ); 
[(x; _x)] = [x; _x; L(x; _x)]: (3.25)

In homogeneous �bered coordinates, the class [(x; _x; L(x; _x))] is represented as (xi; _xi; L(x; _x)):

2. 0-homogeneous metric d-tensors g : A ! T 02 (
�

TM), g(x; _x) = gij(x; _x)dx
i
dxj (see Section

2.1.6), are obtained as sections 
 of the bundle Y =
�
Y =�; where

�
Y = T 02 (

�
TM), where the Lie

group action H : R�+ �
�
Y !

�
Y is given by

H� :
�
Y !

�
Y; H�(x; _x; y) = (x; � _x; y); 8� > 0:
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In �bered homogeneous coordinates naturally induced by the coordinates
�
xi
�
on M , these

sections are represented as 
 :
�
xi; _xi

�
7! (xi; _xi; gij(x; _x)):

Homogeneous d-tensors of any rank and any homogeneity degree can be treated similarly.

3.1.5 Finsler �eld Lagrangians, action, extremals

Taking into account that Finslerian geometric objects typically have a homogeneous dependence
on direction - and this allows one to identify them as sections of �bered manifolds (Y;�; PTM+) ;
let us introduce the following de�nition.

De�nition 59 (Fields) By a Finslerian �eld, we will understand a section 
 of a �bered manifold
(Y;�; PTM+) over the positively projectivized tangent bundle PTM+.

Having in mind that dimM = 4 (that is, dimPTM+ = 7), a �eld Lagrangian of order r is a
�r-horizontal 7-form � 2 
7(JrY ). In homogeneous �bered coordinates, it can be expressed in two
ways, as:

�+ = LVol0 = �d�+; (3.26)

where:

� Vol0 = iC(dx ^ d _x) and the expression L will be called the Lagrangian density corresponding
to �+;

� d�+ is an arbitrary invariant volume form on an appropriately chosen open subset Q+ �
PTM+; accordingly, � = �(xi; _xi; y�; y�;i; :::; y

�
�i1:::�ir ) is called a Lagrangian function.

Example. If M is equipped with a pseudo-Finsler function L : A !R, one can choose as d�+
the canonical volume form (2.75) on the set A+0 � PTM+ of admissible directions along which
L 6= 0; in this case, the relation between the Lagrangian function � and the Lagrange density L is:

L = � jdet gj
L2

: (3.27)

The fact that the base manifold of our con�guration bundle is PTM+ entails the 0-homogeneity
of all Finsler �eld Lagrangians � - where, by 0-homogeneity of a geometric object on JrY , we will
mean that the homogeneous coordinate expression of respective object formally corresponds to a

positively 0-homogeneous object on
�

TM .
More precisely, using any globally de�ned, invariant volume form d�+ on PTM+ - which in

particular, means that it is at least well de�ned locally on PTM+; i.e., it is 0-homogeneous, we
�nd the following result.

Proposition 60 In homogeneous local coordinates corresponding to any �bered chart (V r;  r) on
Y , any Finsler �eld Lagrangian function � : V r ! R as in (3.26) must obey:

_xi _di� = 0 : (3.28)
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Proof. Pick an arbitrary section of �; say, 
 : U ! Y; where U � PTM+ is a local chart domain.
The function � � Jr
 is then de�ned on a subset of PTM+; hence, it must be 0-homogeneous in _x;
that is,

_xi _@i(� � Jr
) = 0:

But, from (3.10), we �nd: _@i(� � Jr
) = ( _di�) � Jr+1
; which, substituted into the above relation
and using the arbitrariness of 
, leads to (3.28).

The formulation of �elds as local sections of a con�guration bundle (Y;�; PTM+), allows us now
to straightforwardly apply the coordinate-free formulation of the calculus of variations for Finsler
�eld Lagrangians presented in Chapter 1.

� The action attached to the Lagrangian (3.26) and to a piece D+ � PTM+ is the function
SD+ : �(Y )! R; given by:

SD+(
) =

Z
D+

Jr
��+:

� Variations as Lie derivatives. The variation of the action under the �ow f�"g of a doubly
projectable vector �eld � 2 X (Y ) is given by the Lie derivative

��SD(
) =

Z
D+

Jr
�LJr��
+: (3.29)

� Critical sections. A �eld 
 2 �(Y ); [(x; _x)] 7! 
[(x; _x)] on a Finsler spacetime is a critical
section for S; if for any piece D+ � PTM+ and for any �-vertical vector �eld � such that
supp(� � 
) � D+, there holds: ��SD(
) = 0:

� Euler-Lagrange form and Noether currents. For any Lagrangian �+ 2 
7(Y ); there
exists a unique source form E(�+) 2 
8(Js+1Y ) of order s+1 � 2r; called the Euler-Lagrange
form of �+; such that:

Jr
�(LJr��
+) = Js+1
�iJs+1�(E(�+))� d(Js
�J �); (3.30)

for some J � 2 
6(JsY ): The Noether current 6-form J � is only unique up to a total deriv-
ative; in integral form, this reads:Z

D+

Jr
�(LJr��
+) =

Z
D+

Js+1
�iJs+1�E(�+)�
Z
@D+

Js
�J � : (3.31)

In the local contact basis, E(�+) is described as:

E(�+) = E��� ^Vol0;

where E� are the Euler-Lagrange expressions (1.34) of �+:
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3.2 The energy-momentum distribution tensor

3.2.1 Introduction

As already pointed out in Chapter 1, general covariance of Lagrangians leads to a notion of energy-
momentum tensor, respectively, to an energy-momentum balance law. As stated in [84], the energy-
momentum tensor "measures the response of �elds to compactly supported di¤eomorphisms of
spacetime".
Passing to Finslerian �eld theories, in order to measure such a response, we must �rst take

into account that our con�guration manifolds do not have as their base the spacetime manifold
M; but its positively projectivized tangent bundle PTM+; that is, canonical lifts of spacetime
di¤eomorphisms will be, by the nature of our con�guration spaces, double lifts. This will lead, on
the one hand to the novel notion of PTM+-based ( _x-dependent) energy-momentum distribution
tensor. On the other hand, we prove that, due to the fact that general covariance of Lagrangians
is based on M; which is a space of lower dimension than PTM+; the resulting energy-momentum
balance law will be a "weaker" one, more precisely, it will not be a pointwise one, but an averaged
one - expressed as the vanishing of an integral over _x: The construction presented below, which is
part of the paper [97], adapts to the Finslerian context the ideas in Section 1.3.

To identify the energy-momentum tensor in our construction of �eld theories on Finsler space-
times, we need some preparations:

1. Lifts of di¤eomorphisms �0 of M into doubly �bered automorphisms of the con�guration
manifold Y , that cover the natural lifts3 of �0 to PTM

+, see the diagram (3.13).

2. A splitting of the total Lagrangian �+ of the theory into a background (vacuum) Lagrangian
�+g and a matter one �

+
m and, accordingly, of the variables of the theory into background and

dynamical ones. The background Lagrangian will only depend on the background variables
(e.g., metric components, or a Finsler function etc.), whereas the matter Lagrangian �+m will
depend on all the variables of the theory. In other words, denoting the background coordinates
by y�B and non-background or dynamical variables by y

�
D, we have:

�+(y�B ; :::; y
�
B;i:::�j ; y

�
D; :::y

�
D;i:::�j) = �+g (y

�
B ; :::; y

�
B;i:::�j) + �

+
m(y

�
B ; :::; y

�
B;i:::�j ; y

�
D; :::y

�
D;i:::�j):

Then, under the assumption that the matter Lagrangian �+m is generally covariant, it will be
invariant under any one-parameter group of canonical lifts of di¤eomorphisms of M , thus giving
rise to conserved Noether currents J � (where � is the canonical lift to Y of a di¤eomorphism
generating vector �eld �0 2 X (M)). Roughly speaking, the energy-momentum tensor will be given
by the correspondence �0 7! J �:

Assumption. In the case of Finsler spacetimes, the fundamental background variable is the
Finsler Lagrangian L itself - which we will thus assume in the following. This way, our con�guration
space will be a �bered product

Y := Yg �PTM+ Ym

3Such lifts exist, e.g. when Y is a bundle of k-homogeneous d-tensors, which is the R�+-orbit space of a bundle
�
Y of d-tensors on

�
TM . Di¤eomorphisms �0 of M are naturally lifted into �bered automorphisms d�0 of TM and

further, by tensor lifting to
�
Y ; �nally, the lifts PTM+ ! Y are obtained by projectivisation.
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over PTM+, where Yg = (
�

TM � R)=� was constructed in Section 3.3.2 and Ym is both a �ber
bundle over PTM+ and a natural bundle over M . Under this assumption, we will show that any
vector �eld �0 2 X (M) admits a canonical lift � 2 X (Y ):

As Y sits over PTM+; it acquires a double �bered manifold structure:

Y
��! PTM+ �M�!M ;

we denote the homogeneous coordinates corresponding to a doubly �bered chart on Y by
(xi; _xi; L̂; y�D), where yB = L̂ is the coordinate on the �ber of Yg and y�D are local coordinates
on the �ber of Ym:
These being said, consider a Lagrangian �+m 2 
(JrY ) of order r;

�+m = Lm(xi; _xi; L̂; L̂;i; L̂�i; :::; L̂�i1:::ir ; y�D; :::; y�D�i1:::ir )Vol0;

which will be interpreted as the matter Lagrangian. We will assume that �+m is natural (generally
covariant), meaning that, for any compactly supported vector �eld �0 2 X (M) on spacetime, �+m is
invariant under the �ow of the canonical lift of �0 i.e.: LJr��

+
m = 0: Applying the horizontalization

operator h; this gives:
hLJr��

+
m = 0: (3.32)

In the following, we will explore in detail the consequences of this invariance of �+m.

3.2.2 Construction of the energy momentum distribution tensor

Canonical lifts of �0 2 X (M) to Y:

Assume
�
�0;"

	
is a 1-parameter group of compactly supported di¤eomorphisms of M; generated

by �0 2 X (M), �0 = �i@i: Then:

1. Each �0;" is �rst naturally lifted to TM; as �" := d�0;": The generator of f�"g is the complete

lift � = �c0 2 X (
�

TM) of �0 :

� = �i@i + _�
i _@i; _�

i
= �i;j _x

j : (3.33)

The complete lift � is 0-homogeneous, which means that we can identify it with a vector �eld
on PTM+, see Section 2.2.2.

2. Further, taking into account that Yg = (
�

TM � R)=� is obtained as a quotient space of the

trivial bundle
�

TM �R; the canonical lift �g;" : Yg ! Yg of �" is also a trivial one i.e., it acts
on the �ber variable L̂ as the identity:

�g;"[(x; _x; L̂)] = [(�"(x; _x); L̂)]:

The above mapping is well de�ned, i.e., independent of the choice of the representative of the
class [(x; _x; L̂)], due to the linearity of �" in _x: Moreover, since all �g;" act trivially on L̂, the

generator � is canonically lifted into a vector �eld �g 2 X (Yg); with vanishing
@

@L̂
component:

�g = �i@i + _�
i _@i + 0

@

@L̂
:
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3. According to our �rst assumption at the beginning of this section, � can also be canonically

lifted into some vector �eld �m 2 X (Ym); � = �i@i+ _�
i _@i+�

� @

@y�D
: All in all, we obtain that

the canonical lift of �0 2 X (M) to the �bered product Y = Yg �PTM+ Ym is expressed in a
�bered chart by adding to � the contributions describing the transformation of each of the
�ber variables:

� = �i@i + _�
i _@i + 0

@

@L̂
+ ��

@

@y�D
; (3.34)

where �� are functions of the coordinates xi; _xi; y�D; :::; y
�
D�i1:::ir and of a �nite number of the

derivatives of �i:

First variation formula.

Recalling that our con�guration bundle Y is the �bered product Y := Yg �PTM+ Ym; the Euler-
Lagrange form E(�+m) will be split into a Yg and a Ym-component as:

E(�+m) = Eg(�+m) + Em(�+m):

Denoting the order of E(�+m) by s+ 1 (where, obviously, s+ 1 � 2r), in the local contact basis
of 
(Js+1Y ), the above source forms are written as:

Eg(�+m) =
�Lm
�L̂

� ^Vol0; Em(�+m) =
�Lm
�y�D

��D ^Vol0; (3.35)

where � = dL̂� L̂;idxi � L̂�id _xi and ��D = dy�D � y�D;idxi � y�D�id _xi.

Now, using hLJr��
+
m = 0, we �nd:

hiJs+1�Eg(�+m) + hiJs+1�Em(�+m)� hdJ � = 0:

On-shell for the dynamical variables y�D (that is, along sections 
 := (L; 
m) such that the "matter
component" 
m : PTM+ ! Ym;

�
xi; _xi

�
7!
�
xi; _xi; y�D

�
xi; _xi

��
, is critical for �+m), the Em-term

above vanishes, which leaves us with:

hiJs+1�Eg(�+m)� hdJ � '
m 0; (3.36)

where '
m means equality on-shell for the matter component 
m:

The energy-momentum distribution tensor.

The surviving Euler-Lagrange component hiJs+1�Eg(�+m) in (3.36) can be split into a linear expres-
sion in � and a divergence expression; the latter will couple with hdJ � into a boundary term and
will provide the building block of the energy-momentum distribution tensor �. This is seen in the
following result.
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Theorem 61 (Existence of the energy-momentum distribution tensor): For any natural
Finsler �eld Lagrangian �+m 2 
7(JrY ); there exist unique F(M)-linear mappings � : X (M) !

(Js+1Y ); B : X (M)! 
(Js+2Y ); with �s+1, respectively, �s+2-horizontal values, where s+ 1 �
2r is the order of the Euler-Lagrange form E(�+m), such that, for any �0 2 X (M):

hiJs+1�Eg(�+m) = B(�0) + hd�(�0): (3.37)

Proof. We will �rst construct � and B in a �bered chart and then show that the obtained
expressions are independent of the choice of this chart. In any �bered chart, Eg is expressed as:

Eg(�+m) =
�Lm
�L̂

� ^Vol0 =: �
1

2
T L̂�1� ^ d�+; (3.38)

where d�+ is the pullback of an (arbitrary) invariant volume form on PTM+. The coe¢ cient T
can easily be seen to be a 0-homogeneous scalar invariant; 0-homogeneity is ensured by the factor
L̂�1; as both L̂�1� and d�+ are 0-homogeneous, whereas invariance of T under lifted spacetime
di¤eomorphisms follows from the invariance of �+m.
Then, for any vector �eld � 2 X (Y ); we �nd:

iJs+1�Eg(�+m) = (�
1

2
TL̂�1iJs+1��)d�

+ +
1

2
TL̂�1� ^ iJs+1�d�+:

The last term is a multiple of �, hence it is a contact form and will not contribute to the action
integral; the remaining component is the horizontal component hiJs+1�Eg(�+m) and can be expressed
(up to a pullback by �s+2;s+1 of the right hand side) as:

hiJs+1�Eg(�+m) = �
1

2
(T L̂�1iJs+1��)d�

+: (3.39)

Further, using � = dL̂� L̂;idxi � L̂�id _xi = dL̂� �iL̂dxi � L̂�i� _xi and �iL̂ = 0; we �nd:

� = dL̂� L̂�i� _xi;

where we recall that � _xi = d _xi +Gijdx
j : Inserting into � the lift � = �i@i + (�

i
;j _x

j) _@i of �0; a brief
calculation leads to:

iJr�� = �2 _xir�i:

We can thus rewrite (3.39) as:

hiJs+1�Eg(�+m) = T L̂�1 _xir�id�+:

Taking into account that r _xi = 0 and rL̂ = 0, this can be uniquely split into a linear term in �i

and a divergence expression:

hiJs+1�Eg(�+m) = [r(TL̂�1 _xi�i)� �i _xiL̂�1rT]d�+: (3.40)

Then, using _xijj = 0 and r = _xjD�j ; we can rearrange the divergence term as

r(TL̂�1 _xi�i) = (TL̂�1 _xi _xj�i)jj ; (3.41)



3.2. THE ENERGY-MOMENTUM DISTRIBUTION TENSOR 99

which suggests the notation:
�ji := TL̂

�1 _xj _xi (3.42)

Since T is a scalar invariant, the functions �ji; de�ned on the given �bered chart, transform under
induced �bered coordinate changes as the components of a tensor on M (equivalently, as d-tensor
components on TM). Also, noticing that the last term in (3.40) can be written as:

�i _xiL̂
�1rT = �i _xiL̂

�1 _xjTjj = �
j
ijj�

i;

it follows that the mappings � : X (M)! 
6(J
s+1Y ) and B : X (M)! 
7(J

s+2Y ) given by

�(�0) = (�ji�
i)i�jd�

+; (3.43)

B(�0) = ��jijj�
id�+: (3.44)

are globally well de�ned, i.e., independent of the chosen coordinate charts. Moreover, they have
�s+1 (respectively, �s+2)-horizontal values, they are both linear in � and obey (3.37), which com-
pletes the proof of the existence. Uniqueness of B and � follows from the uniqueness of the splitting
(3.40) and the arbitrariness of �i.

Notes. The invariant scalar T will act as the source term for Finsler gravity equations having L
as the dynamical variable. Its precise expression depends on the chosen volume form; for instance,
if d�+ is the canonical volume form (2.75), then:

T = �2 L̂3

jdet gj
�Lm
�L̂

: (3.45)

Further, identifying, by abuse of notation, the Reeb vector �eld `+ = li�i 2 X (A+0 ) with the
vector �eld on Js+1Y obtained by replacing �i with the formal total adapted derivative �i; i.e.,
with: li�i 2 X (Js+1Y ); and the values !+[(x; _x)] of the Hilbert form !+ : A+0 ! 
1(M) with their
pullbacks to Js+1Y; we can also provide a coordinate-free formula for �:

Proposition 62 (Coordinate-free expression of �). The energy-momentum distribution � :
X (M)! 
(Js+1Y ) can be expressed as:

� = T!+ 
 i`+d�+: (3.46)

Proof. In homogeneous �bered coordinates, � is expressed as:

� = �ijdx
j 
 i�id�+; (3.47)

where, according to (3.42), �ji := TL̂
�1 _xj _xi:

A quick computation shows that, regardless of the sign of L̂; one can write L̂�1 _xi _xj = F̂�j l
i;

where F̂ =

q
jL̂j; which leads us to: � = T(F̂�jdx

j) 
 ili�id�+: The statement then follows by
realizing that !+ = F̂�jdx

j :

The above theorem justi�es the following de�nitions.
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De�nition 63 (Energy-momentum distribution tensor) The energy-momentum distribution
tensor associated to a natural Lagrangian �+m on a bundle Y = Yg�PTM+ Ym, which is natural over
a Finsler spacetime M , is the F(M)-linear mapping � : X (M) 7! 
6(J

s+1Y ) de�ned by (3.46).

De�nition 64 (Energy-momentum scalar) We call the function T : Js+1Y ! R, de�ned by
the relation

Eg(�+m) = �
1

2
T L̂�1� ^ d�+;

where d�+ is the pullback to Js+1Y of an invariant volume form on PTM+, the energy-momentum
scalar corresponding to d�+.

The F(M)-linear mapping B : X (M) 7! 
7(J
s+2Y ) de�ned by (3.37)-(3.44) will be called,

similarly to Section 1.3, the balance function and it will serve to naturally express the energy-
momentum conservation (or energy-momentum balance) law.

3.2.3 The averaged energy-momentum conservation law

Denote by T + � PTM+ the set of timelike directions of a given Finsler spacetime (M;L) and
consider local sections 
 2 �(Y ) such that:

supp(Jr
��+m) � T +:

This way, it makes sense to integrate the form Js+1
�iJs�Eg(�+m) on the entire set T +x = O+x of
timelike directions at x:
Consider a piece D0 �M and denote by

T +(D0) := [
x2D0

T +x = [
x2D0

O+x ;

the set of all timelike directions (equivalently, of all observer directions) corresponding to points of
D0: Then, (3.37) becomes, with 
 := (L; 
m):Z

T +(D0)

Js+1
�iJs+1�Eg(�+m) =
Z

T +(D0)

Js+2
�B(�0) +
Z

@T +(D0)

Js+1
��(�0): (3.48)

On-shell for 
m; we have, according to (3.36): J
s+1
�iJs+1�Eg(�+m) � Js+1
�dJ � '
m 0; which,

substituting into the above relation, gives:Z
T +(D0)

Js+2
�B(�0) +
Z

@T +(D0)

Js+1
�(�(�0)� J �) '
m 0: (3.49)

We are now able to prove the following result.

Theorem 65 Consider a bundle Ym over PTM+; which is natural over M , and an arbitrary
section 
 = (L; 
m) 2 �(Yg �PTM+ Ym) with supp(Jr
��

+
m) � T +. Then, the following statements

hold:
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1. Averaged energy-momentum conservation law: At any x 2M and in any corresponding
�bered chart: Z

T +
x

(�jijj � J
s+1
)d�+x = 0; (3.50)

where d�+ =: d4x ^ d�+x :

2. Relation to Noether currents: For any �0 2 X (M):Z
@T +(D0)

Js+1
��(�0) =

Z
@T +(D0)

Js+1
�J �; (3.51)

where � denotes the canonical lift of �0 to Y:

Proof. 1. Fix a point x0 2 M: Consider an arbitrary piece D0 � M containing x0 as an interior
point and an arbitrary �0 2 X (M) with support contained in D0:
Now, let us have a look at the boundary term in (3.49). Since the support of the integrand, at

every x 2 M , is strictly contained in T +x , the only possible nonzero values are obtained at points
[(x; _x)] with x 2 @D0: But, at these points, �0 identically vanishes (hence also � = 0, since � is
built from � and its derivatives), which means that this boundary term is actually zero. It follows:Z

T +(D0)

Js+2
�B(�0) '
m 0: (3.52)

In coordinates, this is: Z
T +(D0)

(�jijj � J
s+1
)�id�+ '
m 0:

Squeezing D0 around x0 such that D0 is contained into a single chart domain, the above integral
can be written as an iterated integral

R
D0

�i(
R
T +
x

(�jijj � Js+1
)d�+x )d4x; which, taking into account

the arbitrariness of �i, leads to the result.
2. follows then immediately from (3.49) and 1.

Relation (3.51) says that, the energy-momentum tensor �(�0) is, at least up to a term which
does not contribute to the integral (3.51)), the conserved Noether current J � - i.e. (see also [84]),
it gives the correct notions of energy and momentum of the system under discussion.

Remarks.

1. Taking into account that O+x = T +x and Proposition 1, the averaged conservation law can be
rewritten as an integral over Ox :Z

Ox

(�jijj � J
s+1
)d�x = 0; (3.53)

where d�x = (�+)�d�+x is the pullback of the volume form d�+x 2 
3(T +x ) by the restriction
to Ox of the projection �+ :

�
TM ! PTM+:
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2. As already stated in the Introduction of this section, due to the fact that naturality of La-
grangians comes from M , which is a space of lower dimension than the one of the space
PTM+ on which the action integral is considered, in the above relation, integration over T +x
cannot be removed, i.e., we can typically only establish an averaged conservation law. This
is a distinctive feature of Finslerian �eld theory.

Energy-momentum tensor density on M: The mapping � : X (M)! 
(Js+1Y ) gives rise
to an energy-momentum tensor density on M , by averaging over observer (or timelike) directions
O+x = �+(Ox): Consider an arbitrary �bered chart on Y ; �(�) = �ij�

j 
 i�id�+. Then, for any
section 
 2 �(Y ) such that supp(Jr
��+m) � T +, set

T ij(x) :=
Z
O+
x

(�ij � Js+1
)j(x; _x)d�+x ; 8x 2M : (3.54)

Under the above assumption this integral is �nite, so the result is well de�ned. Moreover, given the
expression of d�+x ; the functions T ij(x) represent the components of a tensor density on M:

3.3 A concrete model: Finsler gravity sourced by a kinetic
gas

3.3.1 Introduction

As a concrete model for a �eld theory on Finsler spacetimes, we discuss in the dynamics of a Finsler
spacetime sourced by a kinetic gas introduced in [93], [94], [95]. We �rst discuss the purely geometric
(vacuum) �eld theory, where the Finsler spacetime function L itself is the dynamical �eld, and then
add a matter Lagrangian as source of these dynamics.
The section follows the jet bundle formulation in [97], with details from our earlier papers [93],

[94], [95] incorporated.

Vacuum action and vacuum �eld equation, [93]. The �rst �eld equation which took the
Finsler function L as fundamental variable was formulated by Rutz in 1993, [172], as follows.
It was argued that, in vacuum, the trace of the geodesic deviation operator should vanish.

This argument was applied in the pseudo-Riemannian case by Pirani, [164], to obtain the Einstein
vacuum �eld equations. Similarly, Rutz�s equation postulates that the trace of the Finslerian
geodesic deviation operator (2.38) - which is nothing but the Finsler-Ricci scalar (2.39), must
vanish:

R0 = 0: (3.55)

Using the canonical variational completion algorithm introduced in Section 1.2.3, we will prove
below that Rutz�s equation is not variational and �nd the variationally completed equation. This
equation turns out to be similar to the one found in [163] on the unit tangent bundle and (to

a certain extent) in [59] for
�

TM -smooth positive de�nite Finsler functions. The important new
ingredients are here that, on the one hand, the Lagrangian was obtained from a physical principle
and by variational completion algorithm and, on the other hand, the corresponding variational
problem is consistently and rigorously formulated, also in inde�nite signature. To the best of our
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knowledge, this is the �rst example of a Finslerian gravitational �eld equation abiding by these two
ideas.

Coupling to matter, [94]. As already mentioned in the beginning of this chapter, in the
theory of kinetic gases, the function encoding the properties of the gas is a function de�ned on the
tangent (or, equivalently, on the cotangent) bundle of spacetime, called the 1-particle distribution
function (1PDF) ', see, e.g., [175]. In general relativity, the gravitational �eld of a kinetic gas is
described in terms of the so-called Einstein-Vlasov equations [6], which are the usual Einstein �eld
equations with energy-momentum tensor components obtained by averaging (i.e., integrating) '
over observer velocities. Yet, when the gravitational �eld of a kinetic gas is derived via the Einstein-
Vlasov equations, the information about the velocity distribution of the gas particles is averaged
out and therefore lost. We show that Finsler geometry allows one to derive the gravitational �eld
of a kinetic gas directly from its 1PDF, taking the velocity distribution fully into account. We
conjecture that this re�ned approach may account for the observed dark energy phenomenology.

3.3.2 Finsler vacuum action from variational completion

Vainberg-Tonti Lagrangian for Rutz�s equation.

We have shown above that, for theories using the 2-homogeneous Finsler function L : A ! R as
the dynamical variable, the appropriate con�guration bundle is the bundle

Yg := (
�

TM � R)=�

obtained, [97], as the quotient space of the trivial bundle
�

TM �R with respect to the action (3.24)
of
�
R�+; �

�
. This way, Finsler spacetime functions L : A ! R are in a one-to-one correspondence

with local sections 
 2 �(Yg); more precisely, in homogeneous �bered coordinates (xi; _xi; L̂) on Yg,
L is described as the principal component of the section 
 : (xi; _xi) 7! (xi; _xi; L(xi; _xi)); that is,

L = L̂ � 
: (3.56)

In the following, by g; Gi; R;R0 etc., we will mean the formal Finslerian geometric objects obtained
by replacing L with L̂ in the usual formulas; taking into account that R and R0 are of fourth order
in L̂; all these objects will be identi�ed as objects on the fourth order jet bundle J4Yg:
Also, we will �x the invariant volume form, as:

d�+ :=
jdet gj
L̂2

iC(dx ^ d _x) 2 
7(J4Yg): (3.57)

In order to apply the canonical variational completion algorithm to Rutz�s equation, we must
�rst write down a generally covariant source form:

E = FL̂�1 � ^ d�+ 2 
8(J4Yg); (3.58)

where F = F(xi; _xi; L̂; L̂;i; L̂�i; :::L̂�i1:::�i4); whose vanishing is equivalent to Rutz�s equation4 . Since
4The factor L̂�1 was introduced, just as in the previous section, to adjust the homogeneity degree of �; thus,

along sections L; F will become a 0-homogeneous function in _x.
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any di¤erential form on J4Yg must be 0-homogeneous, it turns out that E must be (up to multipli-
cation by a constant):

E = R0L̂
�1 � ^ d�+ = (L̂�3R0 jdet gj) � ^Vol0 2 
(J4Yg): (3.59)

Corresponding to any coordinate chart domain of J4Yg; the Vainberg-Tonti Lagrangian is �g =
LgVol0; where:

Lg = L̂

Z 1

0

(L̂�3R0 jdet gj) � �u du; (3.60)

and �u denotes the �ber homothety (1.62), expressed, in �bered homogeneous coordinates, as:

�u : (x
i; _xi; L̂; L̂;i; L̂�i; :::L̂�i1:::�ir ) 7! (xi; _xi; uL̂; uL̂;i; uL̂�i; :::uL̂�i1:::�ir ):

Under the homotheties �u; the formal metric tensor components obey gij � �u = ugij ; g
ij � �u =

u�1gij ; hence, the geodesic spray coe¢ cients Gi, the canonical nonlinear connection coe¢ cients
Gij and the curvature components R

i
jk (see Section 2.1.4) remain invariant. This implies that

R0 = L̂�1Riji transforms as: R0 ��u = u�1R0; which, together with jdet gj ��u = u4jdet gj, gives:

(L̂�3R0 jdet gj) � �u = L̂�3R0 jdet gj ;

leading to the desired Lagrangian density

Lg = L̂�2R0 jdet gj
Z 1

0

du =
R0 jdet gj

L̂2
:

We have thus obtained the Vainberg-Tonti Lagrangian of Rutz�s equation as:

�+g = R0
jdet gj
L̂2

Vol0 = R0d�
+: (3.61)

Note. The obtained Lagrange density Lg coincides along sections 
 with the ones suggested by
Pfeifer and Wohlfarth in [163] on the indicatrix bundle and, respectively by Chen and Shen, [59]
for positive de�nite Finsler spaces - here, derived by the means of canonical variational completion.

The Finsler gravity action on PTM+ and its variation

Consider an arbitrary piece D+ � PTM+. Without loss of generality, we are looking for functions

L that are smooth and do not vanish on the preimage (�+)�1(D+) �
�

TM . The action associated
to the Lagrangian (3.61) and to D+ is the mapping SD+ : �(Yg)! R; 
 7! SD+(
) given by:

SD+(
) =

Z
D+

J4
��+g =

Z
D+

(R0 jdet gj)
L̂2

� J4
 Vol0: (3.62)
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In order to determine the corresponding Euler-Lagrange equation, variation with respect to

vertical vector �elds � =: 2v̂
@

@L̂
2 X (Yg) such that supp(� � 
) is strictly contained in D+,

is su¢ cient. This way, the �ow f�tg consists of strict automorphisms of Yg, giving rise to the
deformed sections 
t = �t � 
. In coordinates:


t :
�
xi; _xi

�
7!
�
xi; _xi; �L (x; _x)

�
: (3.63)

The Euler-Lagrange form E(�+g ) = EL̂�1� ^ d�+ will be identi�ed by direct computation from the
�rst variation formula

�SD+(
) :=
d

dt
jt=0(SD+(
t)): (3.64)

Theorem 66 , [93] The (unique) Euler-Lagrange expression of �+g is:

E : =
1

2
gij(L̂R0)�i�j � 3R0 � gij(Pijj � PiPj + (rPi)�j) 2 F(J6Yg): (3.65)

Proof. To keep notations short, let us momentarily designate by a bar quantities evaluated along
the deformed section 
t; e.g., �L := L̂ � 
t, �L�i := L̂�i � 
t etc. and without bars, the same quantities
evaluated along the undeformed section 
; that is, L�i; gij etc. will for now denote the usual, TM -
based Finslerian geometric objects attached to the pseudo-Finsler function L = L̂ � 
: With these
notations, we have:

�SD+ (
) =
d

dt
jt=0

�Z
D+

( �R0 jdet �gj)
�L2

Vol0

�
=

d

dt
jt=0

�Z
D+

(�L�3 �R jdet �gj) Vol0
�
:

Using the product rule and the identity jdet �gj) Vol0 = �L2d�+, this is:

�SD+(
) = (I1 + I2 + I3) ; (3.66)

as follows:

I1 =

Z
D+

d�L�3

dt
jt=0RL2d�+ ; I2 =

Z
D+

L�1
d �R

dt
jt=0d�+; I3 =

Z
D+

L�1R

jdet gj
d(det �g)

dt
jt=0 d�+:

(3.67)
To evaluate each of these integrals, denote:

2v :=
d�L

dt
jt=0 = 2v̂ � 
;

Thus, v = v(x; _x) is a 2-homogeneous function on some domain of TM; which vanishes, together
with its derivatives of any order, along directions corresponding to the boundary @D+. The �rst
integral is then easily seen to be

I1 = �
Z
D+

3
R

L

2v

L
d�+ : (3.68)

To evaluate I2, we write:

�L�i
t1' L�i + 2tvi; �gij

t1' gij + tvij ; �gij
t1' gij � tvij ;
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where: vi := v�i; vij := v�i�j ; v
ij := gmignjvmn and the symbol

t1' means equality modulo higher
than the �rst power in t. As a consequence:

2 �Gi =
1

2
�gij( _xk �L�j;k � �L;j)

t1' 2Gi + tgij( _xkvj;k � v;j � 2Gkvjk):

Since vi are d-tensor components, it makes sense to rewrite the above in terms of the Chern-Rund
covariant derivatives: vijj = vi;j�Gkjvik��kijvk, which gives (see also [59] for the variation of Gi):

2 �Gi
t1' 2Gi + 2tAi; with Ai =

1

2
gij(rvj � vjj) ; (3.69)

Then, we �nd by di¤erentiation: �Gij
t1' Gij+ tAi�j and accordingly, after a brief computation using

Gij�k = �
i
jk + P

i
jk:

�Rijk = Rijk + t(A
i
�jjk �Ai�kjj +Al �jP ikl �Al �kP ijl)

Taking the trace i = j, contracting with _xk; and taking into account that P ijk _xk = 0, Al �k _x
k = 2Al;

we get

�R
t1' R+ t(rAii � 2Aiji � 2AlPl)

respectively,

I2 =

Z
D+

L�1(rAii � 2Aiji � 2AlPl) d�+ :

The term rAii is, see (2.78), a boundary term, which we can neglect; also, Lji = 0 and the
divergence formula (2.76) give L�1Aiji = div(L�1Ai�i) + L�1AiPi, that is,

I2 = �
Z
D+

4

L
AlPl dV

+
0 :

Using the de�nition (3.69) of Ai; we can expand the integrand as

�4L�1AiPi = 2
�
(L�1vP i)ji � L�1vP iji �r(L�1viP i) + L�1virP i

�
;

which, after a series of integration by parts using (2.76),(2.77), yields:

I2 =

Z
D+

(P iPi � P iji � gij(rPi)�j)
2v

L
dV +0 : (3.70)

For the integral I3; the derivative formula for the determinant d
dt det �g = �g

ij d�gij
dt det �g; followed

by integration by parts leads to:

I3 =

Z
D+

R

L
gijvij d�

+ =

Z
D+

1

2
gijR�i�j

2v

L
d�+:

Collecting the results and reverting to L = L̂ � 
; v = v̂ � 
 etc., we get (3.65).
Along critical sections, we must thus have E � J6Yg = 0; which gives:
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Corollary 67 (Vacuum �eld equation): Critical functions L of the Finsler gravity action (3.62)
are given by the equation:

1

2
gij(LR0)�i�j � 3R0 � gij(Pijj � PiPj + (rPi)�j) = 0; (3.71)

where R0 is the Finsler-Ricci scalar of L and Pi are the components of the trace of the Landsberg
tensor of L:

Once a solution L of this equation is found, the equation holds on the set of admissible non-
lightlike vectors A+0 of L.

Particular case: Lorentzian metrics. For the class of Lorentzian (quadratic) Finsler space-
time functions L : TM ! R;

L(x; _x) = aij(x) _x
i _xj ; (3.72)

one obtains that: L obeys the Finsler vacuum equation (3.71) , a obeys the vacuum Einstein
equations rij = 0.
This is easily seen taking into account that, for semi-Riemannian metrics, we have (see Section

2.1.5): Pi = 0 and R = �rij _xi _xj . Hence, in this case, equation (3.71) becomes (after multiplication
by L):

0 = 3R� L

2
gijR�i�j = �3rij _xi _xj + (aij _xi _xj)r: (3.73)

Assuming that L is a solution of (3.73), then, di¤erentiating twice with respect to _x, we �nd:
3rij � aijr = 0; which, contracting the equation with aij ; implies r = 0; substituting back into the
above relation, we �nd: rij = 0: Conversely, if a obeys rij = 0; then, R = �rij _xi _xj = 0; which
immediately leads to (3.73).
Actually, there is more to it. Using equation (2.82) in Chapter 2, a direct computation shows

that our Lagrangian function, which is the Finsler-Ricci scalar R0 = �rijL�1 _xi _xj of L is, up to a
divergence term and multiplication by a constant, nothing but the scalar curvature r of a :

R0 = �
1

4
r + div Y;

where Y = �1
8
(Laij(R0)�j) _@i 2 X (PTM+).

3.3.3 Action for a kinetic gas

The 1PDF and the action on the observer space.

Fix, for the moment, the Finsler spacetime structure (M;L) :
The notion of kinetic gas. A kinetic gas is a collection of a large number of particles which

propagate through spacetime on piecewise normalized geodesics c : [a; b]!M; � 7! c (�); here, the
arc length parameter � = s is denoted as � and physically interpreted as proper time.
In the language of Finsler spacetimes (M;L), this means, on the one hand, that the tangent

vectors _c (�) :=
dc

d�
(�) are future-directed unit timelike vectors, i.e., elements of the observer space:

_c (�) 2 Oc(�) � Tc(�):
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On the other hand, geodesic motion means that the lifted trajectories C(�) = (c(�); _c (�)) are
integral curves of the Reeb vector �eld ` = li�i (which can be regarded as a vector �eld on O; see
Section 2.2.3). Assuming, for simplicity, that all the particles have mass m; their trajectories are
critical points of the action integral5 :

S[c] = �m
Z �2

�1

C�! = �m
Z �2

�1

F (c(�); _c(�))d� = �mt; (3.74)

where ! = F�idx
i is the Hilbert form. The number t = �2 � �1 denotes the proper time passing

along a particle trajectory between the points c(�1) and c(�2).

The restriction of the Hilbert form ! 2 
1(
�

TM) to O; which is nothing but the pullback
by the di¤eomorphism �+jO : O ! T + of the contact structure !+ on T + � PTM+, de�nes a
contact structure on O; hence all the construction in Subsection 2.2.3 can be carried out with no
modi�cation on O:

The 1-particle distribution function. Instead of describing the motion of all particles
individually, the kinetic gas theory employs the so-called 1-particle distribution function (1PDF).
This is typically de�ned as a scalar function of the particle positions and velocities:

' : O ! R; (x; _x) 7! '(x; _x);

allowing one to express number N [�] of particle trajectories crossing an oriented (6-dimensional)
hypersurface � � O as the integral:

N [�] =

Z
�

'
 ; (3.75)

here, 
 is the canonical volume form on � :


 = i`d� =
1

3!
d! ^ d! ^ d!; (3.76)

obeying the relations:
d
 = 0; d� = ! ^ 
 : (3.77)

Remarks.

1. Since in all practical physical situations, there will always be gas particles with a �nite maximal
velocity, we assume in what follows that for all x 2 M; the partial function 'x = '(x; �) :
Ox ! R has compact support.

2. The 1PDF is a priori de�ned for normalized (unit) vectors, but it can be naturally prolonged
into a 0-homogeneous function ' : T !R on the entire future timelike cone T : Alternatively
(as we will actually do in the next subsection), one can also identify ' as a function de�ned
on O+ = T + and, accordingly, regard N [�] as an integral on the hypersurface �+ = �+ (�)
of PTM+- with the advantage that �+ does not depend on the Finsler spacetime function L:

5Here, a sign correction is introduced. Namely, the action presented here is minus the one introduced in the
paper [94]; this sign thus agrees with the one in [126] and will give in the next subsection, the correct (plus) sign for
the components of the energy-momentum tensor density.



3.3. A CONCRETE MODEL: FINSLER GRAVITY SOURCED BY A KINETIC GAS 109

Collisionless gases: Liouville equation.
Choose a hypersurface �0 � O as above and �x an arbitrary t > 0. We obtain a family of

hypersurfaces �s by following the �ow of the Reeb vector �eld ` = li�i from each point in �0; for
one and the same parameter s 2 (0; t). This family of hypersurfaces spans a volume D =

S
s2(0;t) �s,

see the picture below for a sketch.

Kinetic gas: volume spanned by particle worldlines

The di¤erence between the number of particles on �0 and �t is given by

N [�t]�N [�0] =
Z
D

`(') d� :

In the particular case of collisionless gases, there holds N [�t]�N [�0] = 0; which, taking into account
the arbitrariness of t and �0 (hence, of D) gives the Liouville equation:

`(') = 0: (3.78)

Equivalently, using the dynamical covariant derivative r = _xiD�i attached to the canonical non-
linear connection of (M;L) ; this can be written as:

r' = 0 (3.79)

The above equation is interpreted as follows: for collisionless gases, ' is constant along lifted
geodesics C : � 7! (c(�); _c(�)) of spacetime.
The above reasoning, which is similar to the one made for Lorentzian spacetimes (M;a) in

[175], already hints that ' may be, up to a constant rescaling, the energy-momentum scalar T: This
intuition, yet, has to be checked; to this aim, we will construct a Lagrangian for the kinetic gas,
starting from a physical principle.

The action Sgas. Assume, for the beginning, that the kinetic gas consists of P particles of the
same mass m: The action of the gas in a compact domain D � O constructed as above, is obtained
by summing the actions (3.74) for each individual particle:

Sgas = �mPt = �mP
Z t

0

F (c (s) ; _c (s))ds:
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Expressing the total number P of particles as P = N [�t]; we obtain:

Sgas = �m
Z t

0

�Z
�s

'


�
ds = �m

Z
D

'
 ^ !;

which, using the identity d� = 
 ^ !, gives:

Sgas = �m
Z
D

'd�: (3.80)

Using the assumption of compact support of each partial function 'x : Ox ! R; we can rewrite
Sgas as an iterated integral, as follows. Suppose that the piece D � O is of the form D =

S
x2D0

Vx
(where D0 �M and Vx � Ox; x 2 D are compact) and Vx is large enough as to contain the support
of 'x. Then:

Sgas = �m
Z
D

'd� = �m
Z
D0

�Z
Vx

'x( _x)d�x

�
d4x = �m

Z
D0

�Z
Ox

'x( _x)d�x

�
d4x ; (3.81)

where d�x = i@0 i@1 i@2 i@3d� =
jdet gj
L2

iC(d
4 _x).

If the particles have di¤erent masses mi, then the action Sgas will be written as a �nite sum of
actions corresponding to each mass mi:

Translating ' and Sgas into the jet bundle language

Now, we will allow the Finsler function L to vary; otherwise stated, we will regard it as a component

L = L̂ � 
 of a local section 
 2 �(Yg), [(x; _x)] 7! [(x; _x; L (x; _x))] ; where Yg := (
�

TM � R)=� is as
in the previous subsection.

� The �rst thing to note is that the particle number N(�) is independent of the Finsler space-
time function L; as it only depends on the trajectories of the particles and on the chosen
hypersurface. But, having a look at the integral (3.75), this implies that ' : T ! R (or,
equivalently, its PTM+-version ' � (�+jO)�1) does depend on L and its derivatives up to
order two - as the volume form d� depends on these. Therefore, to be completely honest, we
should actually write:

' = '(x; _x; L (x; _x) ; L;i (x; _x) ; :::; L�i�j (x; _x)); (3.82)

which suggests that ' arises from a function on some jet bundle JrYg; with r � 2: Since we
want to couple the obtained Lagrangian to the vacuum one �g; which is of order 4, it will
be convenient to set r := 4: Thus, by formally replacing L in the above relation with the
coordinate function L̂, we get the homogeneous �bered coordinate expression

'+ :
�
xi; _xi

�
7! (xi; _xi; L̂; L̂;i; :::; L̂�i�j)

of a well de�ned function '+ : J4Yg ! R - more precisely, '+(J4[(x; _x)]
) := '(x; _x): This way,
the function ' in (3.82) and the section 
 2 �(Yg) are related by:

' = '+ � J4
 � �+jO: (3.83)
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� The number of particles N (�) crossing the hypersurface � � O can be now rewritten as:

N (�) =

Z
�+

('+ � J4
)
+; (3.84)

where �+ = �+(�) � PTM+ and 
+ = i`+d�+:

� Finally, we obtain for Sgas in (3.80):

Sgas = �m
Z
D+

('+ � J4
)d�+ = �m
Z
D+

J4
��+m; (3.85)

which corresponds to the matter Lagrangian:

�+m 2 
7(J4Yg); �+m := �'+d�+: (3.86)

Remark. Kinetic gases are a very peculiar case, allowing for a simple structure of the con�gura-
tion bundle, which is just Y = Yg (let us recall that, in general, when discussing energy-momentum
tensors, this is generally a �bered product Y = Yg �PTM+ Ym).

3.3.4 Field equation and energy-momentum distribution tensor

The �eld equation.

Summarizing the results in the above subsections, the total Lagrangian of our model is:

�+ =
1

2�2
�+g + �

+
m; (3.87)

where � is a constant and �+g = R0d�
+ is the vacuum Lagrangian (3.61). Variation of the cor-

responding action with respect to L with respect to vertical vector �elds � 2 X (Yg) leads to the
following result.

Theorem 68 The Euler-Lagrange equation attached to the Lagrangian (3.87) is6 :

1

2
gij(LR0)�i�j � 3R0 � gij(Pijj � PiPj + (rPi)�j) = �2m' : (3.88)

Proof. The proof below is a transcription in the jet bundle language of the reasoning made in [94].
The variation of the �+g -part of the action is known from (3.65), therefore, we only need to vary

its matter part Sgas; (3.85).

Consider a �-vertical vector �eld � = 2v̂
@

@L̂
2 X (Yg); such that � � 
 has support strictly

contained in D+. Then, the variation of Sgas is:

�Sgas = �m
Z
D+

J4
�LJ4��
+
m;

6The di¤erent sign compared to the one in the paper [94] is obtained due to the choice, here, of the minus sign in
�+m: Also, a small correction (the factor m; which was lost in [94]) is introduced here.
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which, using �+m = '+d�+ = '+
+ ^ !+; can be rewritten as:

�Sgas = �m
Z
D+

J4
�LJ4�('
+
+ ^ !+):

The factor '+
+ is insensitive to variations in L (since its integral on any hypersurface �+ �
PTM+, expressing the number N(�) of particle trajectories crossing �, does not depend on L),
i.e., it is invariant under the �ow of �, that is,

�Sgas = �m
Z
D+

J4
�['+
+ ^ LJ4�!+]:

Substituting 
+ = i`d�+ into the wedge product 
+ ^ LJ4�!+, we �nd:


+ ^ LJ4�!+ = (i`d�+) ^ LJ4�!+ = i`(d�+ ^ LJ4�!+) +
�
i`LJ4�!

+
�
d�+:

But, LJ4�!+ = J4�(F̂�i)dx
i is a multiple of dxi; meaning that d�+ ^ LJ4�!+ = 0: Thus, the �rst

term in the right hand side above vanishes and we remain with:


+ ^ LJ4�!+ =
�
i`LJ4�!

+
�
d�+:

The 0-form i`LJ4�!
+ = liJ4�(F̂�i) can be obtained directly, by applying J4� to the ratio

F̂�i =
L̂�i

2L̂1=2
and using the local expression J4� = 2v̂

@

@L̂
+2(div̂)

@

@L̂;i
+2( _div̂)

@

@L̂�i
+(:::); together

with the 2-homogeneity of v̂; as:

i`+LJ4�!
+ =

v̂

L̂
:

Substituting into the action, we �nd:

�Sgas = �m
Z
D+

J6
�('+
v̂

L̂
d�+); (3.89)

where the integrand (which is actually, of order 2) was pulled back to J6Yg to match the order of
the variation of �+g . Using formula (3.65) for the variation of the vacuum action, we now get the
statement.

The energy momentum distribution tensor of a kinetic gas.

The action Sgas (and, accordingly, the matter Lagrangian �
+
m) is, by construction, generally co-

variant. That is, it will lead to an energy-momentum distribution tensor �; obeying the averaged
conservation law (3.50).
As the boundary terms in �Sgas vanish, we can write: �Sgas =

R
D+

J6
�iJ6�E(�+m); then, (3.89)

together with � = 2v̂
@

@L̂
; identify the Euler-Lagrange form as:

E(�+m) = �
m

2
'+L̂�1� ^ d�+ 2 
8(J6Yg):
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Using (3.38), (3.42), we obtain the energy-momentum scalar:

T := m'+

and accordingly, the components of the energy-momentum tensor distribution � as:

�ij = m'+ lilj : (3.90)

Averaging over observer directions will provide the corresponding energy-momentum density on
M (3.54), with components:

T ij(x) := m

Z
O+
x

('+lilj) � J6
 d�+x = m

Z
Ox

'liljd�x; (3.91)

we recall that '(x; �) is compactly supported, i.e., the above integrals are �nite.

The averaged conservation law (3.50) holds at all x 2M , i.e.,Z
T +
x

(�jijj � J
6
)d�+x = 0: (3.92)

In our case, we easily �nd: �ijji = m('+ lilj)ji = m'+ji l
ilj = (r'+)lj ; which, rewriting the

above as an integral over Ox and simplifying the factor m; gives the averaged conservation law for
a kinetic gas as a system of 4 equations:Z

Ox

(r')ljd�+x = 0: (3.93)

Particular cases:

1. Collisionless gases. In this case, we have already seen that ' is subject to the Liouville
equation r' = 0: In other words, the Liouville equation is nothing else than a pointwise
covariant conservation law of �:

�ijji � J4
 = 0:

2. Lorentzian spaces. On a Lorentzian manifold (M;a), the functions:

T ij =
1p
jdet aj

T ij (3.94)

represent the components of a tensor of type (1,1) on M: In this case, Levi-Civita covariant
derivatives are, [62], just the integrals of the Chern covariant derivatives, that is,

T ij;i = jdet aj
�1=2

Z
O+
x

Js+1
��ijji(x; _x)d�x:

Thus, the averaged energy-momentum conservation law (3.50) reads

T ij;i = 0:
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Remark. In the particular case of kinetic gases on a Lorentzian spacetime, our expression (3.91)
of the energy-momentum density T reduces to the known one, see [175]. Yet, on general Finsler
spacetimes, the Finslerian metric tensor g depends on tangent vectors _x 2 TxM; hence formally
writing (3.94) would not de�ne any tensor on M ; all we can get is an energy-momentum tensor
density on M; by averaging over observer directions, as in (3.54) and, accordingly, the averaged
conservation law (3.53) of �.

3.4 Cosmologically symmetric Finsler spacetimes

3.4.1 Introduction

The cosmological (Copernic) principle underlying modern cosmology states that, at the largest
scales, the Universe is homogeneous (intuitively, "the same at all points") and isotropic ("the same
in all directions").
To translate the Copernic principle into a geometric language, one �rst needs a spacetime

manifold M that can be foliated into "spatial slices" playing the role of the Universe in the above
statement. This is achieved via a so-called global time function t :M ! R; whose level hypersurfaces
t = const. are the said spatial slices. Homogeneity and isotropy are then de�ned in terms of a
group of isometries acting transitively on each of these hypersurfaces and containing a local isotropy
group which acts transitively on spatial directions at each point.
In the class of Lorentzian (semi-Riemannian) spacetimes, the only possible metrics obeying the

above requests are the celebrated Friedmann-Lemaître-Robertson (FLRW) metrics, having spatial
slices of constant sectional curvature k 2 f�1; 0; 1g and locally given in spherical coordinates
(t; r; �; ') by:

ds2 = dt2 � a2 (t)
�

dr2

1� kr2 + r
2d�2 + r2 sin2 �d'2

�
; (3.95)

where a = a (t) is a smooth real function called the scale factor.

But, the notion of isometry is also well de�ned in Finsler spacetime geometry, which means that
the same ideas can be applied to Finsler geometry. Below, we apply the above geometric formulation
of the Copernic principle to identify the algebra of generators of cosmological symmetry in the
Finslerian case. Surprisingly or not, we �nd that these generators are the same as in the Lorentzian
case - i.e., the corresponding isometries are spatial rotations and the so-called quasi-translations.
After having identi�ed the symmetry generators, integration of the resulting Killing equations

straightforwardly leads to the most general form of cosmologically symmetric Finsler functions; yet,
this class is still a very large one, i.e., the cosmological symmetry demand leaves room, in Finsler
spacetime geometry, for a much wider choice than in Lorentzian geometry.
As we have already seen above, a class of Finsler spacetime geometries, which can be regarded

as closest to pseudo-Riemannian geometry, are the so-called Berwald spacetimes. In this particular
case, we were able to completely classify Finsler functions with cosmological symmetry.
The ideas presented below are part of the paper [96].

3.4.2 Axioms of Finslerian cosmological symmetry

Consider a Finsler spacetime (M;L), with admissible set A �
�

TM and future-pointing timelike
conic bundle T (see Section 2.1 for the de�nitions of A and T ).
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Time function and spatial slices. We assume in the following that (M;L) possesses a
smooth global time function t : M ! R, which assigns to each point p 2 M a "time stamp" and
whose di¤erential dt satis�es dt(X) > 0; 8X 2 T [ @T . The level sets of the time function:

�T := fp 2M j t(p) = T = constantg (3.96)

are interpreted as equal-time spatial hypersurfaces; as, by de�nition, dimM = 4; all spatial hyper-
surfaces �T are 3-dimensional. We assume that all the sets �T are connected.

The de�nition below, [96] naturally extends to the Finslerian realm the de�nition of cosmologi-
cally symmetric Lorentzian spacetimes in [219], [220].

De�nition 69 (Cosmologically symmetric Finsler spacetimes): A Finsler spacetime (M;L)
equipped with a global time function t :M ! R is said to admit cosmological symmetry if it is:

(i) spatially homogeneous, i.e. there exists a Lie Group G of isometries of (M;L) acting
transitively on each spatial slice �T ;

(ii) spatially isotropic, i.e., the stabilizer (the isotropy group) at each point p 2M :

Gp = f 2 Gj (p) = pg

acts transitively on the projective tangent spaces PTp�T of �T .

Interpretation of the axioms. Spatial homogeneity means that, for each two points q1 and
q2 in �T , there exists an isometry of (M;L) bringing q1 to q2, whereas the spatial isotropy request
says that, having �xed a point p 2 �T ; any two lines in the tangent plane Tp�T - i.e., any two
elements7 [v1]; [v2] 2 PTp�T - can be mapped isometrically into each other.

3.4.3 Identifying the symmetry generators

Assume, in the following, that (M;L) is a cosmologically symmetric Finsler spacetime, with cos-
mological symmetry group (G; �) ; and �x a spatial slice �T as in (3.96). We start by some remarks
that will be used repeatedly in the following:
1) [128]: On any Lie group (G; �) ; the connected component G0 of the identity element (the

identity component), is a Lie subgroup.
2) [150]: If a Lie group (G; �) acts transitively on a connected manifold M , then its identity

component G0 still acts transitively on M:
3) In determining the Lie algebra of generators of a Lie group (G; �), it is only the identity

component G0 that has a contribution.
4) If a group acts e¤ectively8 on a set, then any of its subgroups acts e¤ectively on that set.

7Elements of the projective tangent space PTp�T are lines [v] = f�v j � 2 Rg directed by tangent vectors v 2
Tp�T :

8A group action is said to be e¤ective if the only element of the group providing a trivial action on all points, is
the identity element.
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Taking into account the �rst three statements above, we can assume with no loss of generality
that G is connected, i.e., it coincides with its identity component. In particular, this means that
its action on M can only consist of orientation-preserving transformations  : M ! M . The
latter statement follows immediately having in mind that, on the one hand, the correspondence
 7! J ( ) : Diff(M) ! (0;1) [ (�1; 0) ; attaching to a given di¤eomorphism  : M ! M its
Jacobian determinant J( ); is continuous (thus, it maps connected sets of transformations  into
connected subsets of R) - and, on the other hand, our subset of interest contains  = idM :

The homogeneity demand makes each spatial slice (�T ; G) a homogeneous space, which is thus
(see, e.g., [128]) di¤eomorphic to the quotient �T = G=Gp and the following relation holds:

dimG = dimGp + dim�T = dimGp + 3: (3.97)

We will now prove two lemmas to identify the dimension of the groups G and Gp.

Lemma 70 On a cosmologically Finsler spacetime (M;L); the dimension of the spatial isotropy
group Gp at each point p 2M is at most 3.

Proof. Fix an arbitrary point p 2M: Since the full symmetry group G acts by Finslerian isometries
on the 3-dimensional spatial slice �T at p; we have, see Section 2.3.3:

dimG � 3 (3 + 1)
2

= 6:

The statement then follows from (3.97).

Lemma 71 The dimension of the isotropy group Gp is at least 3, at any p 2M .

Proof. Fix an arbitrary p 2M: We will proceed in several steps.

� Step 1. Identify a connected quotient group G0p of Gp that acts transitively and e¤ectively on
PTp�T :

Let us �rst write down explicitly the action of Gp on the projectivized tangent space PTp�T :
Elements  2 Gp act on tangent vectors v 2 Tp�T via the linear tangent map d p; on
elements [v] = f�v j � 2 Rg 2 PTp�T of the projectivized tangent space PTp�T ; Gp acts by
the rule:

( ; [v]) 7!
�
d p (v)

�
;

(which is independent of the representative of the class [v] by virtue of the linearity of d p).

This action is, by the isotropy hypothesis, transitive.

Further, any Lie group action on a manifold gives rise to an e¤ective Lie group action on the
respective manifold, by factorizing away the elements which provide trivial actions. In our
case, denoting by Idp the subgroup of Gp whose elements act trivially on PTp�T , we obtain
that the quotient group

G0p = Gp=Idp (3.98)

still acts e¤ectively on PTp�T :
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To identify the subgroup Idp; we note that the statement  2 Idp is equivalent to the fact
that, for any v 2 Tp�T ; there holds [d (v)] = [v] ; equivalently:

d p (v) = �v;

for some � 2 R: Using the above remark that  must be orientation-preserving, it follows
that, in the above equality, � > 0, hence we can use the positive 2-homogeneity of L to obtain:
L (p; �v) = �2L(p; v):

But, on the other hand, each  is, by hypothesis, an isometry of (M;L) ; which means:
L
�
p; d p (v)

�
= L (p; v) : We thus get:

L (p; v) = L
�
p; d p (v)

�
= L (p; �v) = �2L (p; v) ;

which ultimately gives � = 1 and therefore,

 2 Idp , d p (v) = v; 8v 2 Tp�T :

In other words, Idp consists of those  2 G whose di¤erential at p is the identity of Tp�T :
Accordingly, the quotient group G0p is obtained by identifying as a single element those dif-
feomorphisms  ; 0 2 G which have the same values at p and the same di¤erentials d p - but
whose higher order derivatives at p might di¤er.

Since we have only factorized away trivial actions, the action of G0p on PTp�T is also, still
transitive.

We can again consider with no loss of generality that G0p is connected; elsewhere, we can just
rebrand as G0p its connected component of the identity (which, using the above Remark 2,
still acts transitively and e¤ectively on PTp�T ). This way, G0p acts transitively and e¤ectively
on PTp�T ; as required.

� Step 2. Show that any maximal compact subgroup Hp of G0p still acts transitively on PTp�T :

Choosing an arbitrary basis of Tp�T ; we can identify Tp�T with R3 and, accordingly, the
projectivized tangent space PTp�T with the projective plane PR3. We are thus able to use the
following result, [154], p. 398: If a connected Lie group acts transitively on a compact manifold
with �nite fundamental group, then any maximal compact subgroup also acts transitively on
the respective manifold.

The projective plane is connected, compact and with fundamental group Z2: Therefore: if Hp

is a maximal compact subgroup of G0p, then Hp also acts transitively on PTp�T : Moreover,
using Remark 4 above, this action is also e¤ective.

� Step 3. Show that dimHp = 3:

This follows immediately from another result in [154], p. 398-401, stating that: any connected,
compact Lie group acting transitively and e¤ectively on the projective plane PR3 is isomorphic
to SO(3).

The group Hp is, by construction, compact and acts transitively and e¤ectively on PTp�T '
PR3: Again, assuming it is not connected, its identity component, say, H 0

p; still acts transi-
tively and e¤ectively on PR3; moreover, as any connected component is closed, this makes
H 0
p a closed subset of a compact set - that is, H

0
p is also compact. Applying the mentioned

result, we get
H 0
p ' SO (3) :
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� Step 4: Evaluation of dimGp:
Summing up, we have:

dimGp � dimG0p � dimHp = dimH
0
p = 3;

which completes the proof.

From Lemma 70 and Lemma 71 we now immediately �nd:

Theorem 72 On a Finsler spacetime obeying the cosmological principle, the dimension of the
isotropy group Gp is 3 and the dimension of the full symmetry group G is equal to 6.

As we have seen above, we can assume with no loss of generality that Gp is connected - elsewhere,
we will rebrand as Gp its identity component. This way, we obtain:

Proposition 73 On cosmologically symmetric Finsler spacetimes, the isotropy group Gp is com-
pact.

Proof. Denote by G any maximal compact subgroup of Gp. We proceed similarly to the reasoning
in Lemma 71: as Gp is connected and PTp�T ' PR3 has �nite fundamental group, it follows that
G must still act transitively and e¤ectively on PTp�T : But, this entails that the identity component
G0 of G (which is, again, compact), acts transitively and e¤ectively on PTp�T ' PR3; therefore:

G0 ' SO(3);

in particular, dimG0 = dimG = 3:
The statement then follows from Cartan�s classi�cation theorem, [154], p. 389, stating that:

any connected Lie group is the direct product between one of its maximal compact subgroups and a
Euclidean space.
Taking into account that Gp was assumed to be connected and dimGp = 3, we conclude that

Gp = G0; i.e. Gp itself is compact.

The proof of the above Proposition points out that (the identity component of) Gp is actually,
SO(3).

The symmetry generators

To explicitly determine the generators of the groups G and Gp, we use the above Proposition stating
that the isotropy group Gp is compact. This way, each spatial slice �T is a homogeneous manifold
having a compact isotropy group; thus, see [107] (p. 154), it must admit a G-invariant Riemannian
metric h.
But, the G-invariance of h means that the generators of our group G are also Killing vector �elds

of h. We thus have at hand a 3-dimensional Riemannian manifold (�T ; h) admitting a 6-dimensional
group of isometries, which means that(�T ; h) is actually, maximally symmetric.
In particular, h has constant scalar curvature k - and it allows one, see [220] to identify the

generators of G. In local spherical coordinates (r; �; �) given by h on �T , these read:
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� generators of the isotropy group (which are the elements of the Lie algebra so(3)):

X1 = sin�@� + cot � cos�@�; X2 = � cos�@� + cot � sin�@�; X3 = @�;

� generators of the so-called quasi translations:

X4 =
p
1� kr2 sin � cos�@r +

p
1� kr2
r

sin � cos�@� �
p
1� kr2
r

sin�

sin �
@�;

X4 =
p
1� kr2 sin � sin�@r +

p
1� kr2
r

sin � sin�@� +

p
1� kr2
r

cos�

sin �
@�;

X6 =
p
1� kr2 cos �@r �

p
1� kr2
r

sin �@�:

(3.99)

Substituting the above vector �elds into the Finsler Killing equations Xc
I (L) = 0; I = 1; :::; 6,

where Xc = Xi@i + _xjXi
;j
_@i yields the most general spatially homogeneous and isotropic Finsler

Lagrangian, as:

L(t; r; �; �; _t; _r; _�; _�) = L(t; _t; w); w2 =
_r2

1� kr2 + r
2( _�

2
+ sin2 � _�

2
): (3.100)

Note. The general solution (3.100) of the equations Xc
I (L) = 0 was already already determined

by C. Pfeifer, in his thesis [160], based on an intuition, namely, by postulating XI as the symmetry
generators; in the paper [96], we proved, starting from an axiomatic de�nition of homogeneity and
isotropy, that XI are, indeed, the generators of cosmological symmetry for Finsler spacetimes.

3.4.4 Classi�cation of cosmologically symmetric Berwald spacetimes

The Berwald condition

Besides the classical characterizations of Berwald-type spaces, there exists a newer characterization
of Berwald spaces by Pfeifer, Fuster and Heefer, [162], which will prove extremely useful in the
following. This starts from the remark that any pseudo-Finsler function L : A ! R can be written,
in any local chart, as

L(x; _x) = ~L(x; _x)
(x; _x); (3.101)

where ~L(x; _x) = ~gij (x) _xi _xj is an arbitrary pseudo-Riemannian9 Finsler function and 
 = 
(x; _x) :
A !R is a 0-homogeneous function in _x; outside the null cone ~L(x; _x) = 0; the function 
 is also
smooth. Using this remark, the following result is known:

Theorem 74 (The Berwald condition, [162]): A pseudo-Finsler space (M;L); with admissible

set A �
�

TM; is of Berwald type if and only if there exists a quadratic pseudo-Finsler function
~L(x; _x) = ~gij (x) _x

i _xj and a symmetric (1; 2)-type tensor D = Di
jk (x) @i 
 dxk 
 dxj on M such

that, at any point (x; _x) 2 A such that ~L(x; _x) 6= 0 and in any local chart around it:

@i
� (~
jik _x
k) _@j
 = Dj

ik _x
k

 
_@j
+

2e_xj

~L

!
; (3.102)

9We will avoid here denoting pseudo-Riemannian metrics by a; in order not to interfere with the classical notation
of the scale factor a = a (t) :
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where 
 is as in (3.101), ~
ijk are the Christo¤el symbols of ~g and e_xj = _xi~gij(x):

Once the above result holds for one pseudo-Riemannian Finsler function ~L; it holds for any
other such function (just, with a di¤erent D; see our paper [96] for a justi�cation), which means
that we are actually free to choose ~L. These being said, let us choose as our ~L; the most general
homogeneous and isotropic quadratic Finsler Lagrangian

~L(x; _x) = ( _t2 + �a(t)2w2); (3.103)

where � 2 f�1; 1g is a sign factor, corresponding to either positive de�nite (� = 1), or Lorentzian
(� = �1) signature, the function a = a (t) in (3.103) is a smooth function, called the scale function
and w is as in (3.100).
Choosing � = 1 in (3.103) has the advantage that the set of null vectors of the chosen metric

does not interfere with our result (anyway, as we will see below, the �nal result will not depend on
the choice of �).

To evaluate the Berwald condition, let us �rst write L as in (3.101):

L(t; _t; w) = ( _t2 + �a(t)2w2)
(t; _t; w):

On the conic bundle T of L; where _t 6= 0, this expression can be more conveniently rewritten in
terms of the 0-homogeneous variable

s := w= _t

as:
L(t; _t; w) = _t2(1 + �a(t)2s2)
(t; 1; s):

The second ingredient in the Berwald condition (3.102) is the (1; 2)-tensor �eld D. The most
general spatially homogeneous and isotropic such tensor �eld that is symmetric in its vector argu-
ments, has the following nonzero components, see for example [91]:

Dt
tt = b(t); Dt

rr =
c(t)

1� kr2 ; D
t
�� = r2c(t); Dt

�� = r2 sin2 �c(t) ; (3.104)

Dr
rt = Dr

tr = D�
�t = D�

t� = D�
�t = D�

t� = d(t) : (3.105)

where b(t); c(t); d(t) are arbitrary functions of t.
Using the above expressions in (3.102) yields two independent equations, which need to be solved

to determine 
(t; s) := 
(t; 1; s):8><>:
M(t; s)
(t; s) +N(t; s)

@

@s

(t; s) = 0;

@

@t

(t; s) + P (t; s)
(t; s) +Q(t; s)

@

@s

(t; s) = 0;

(3.106)

where

M(t; s) := 2
c(t) + �a(t)2d(t)

1 + �s2a(t)2
; N(t; s) :=

a0(t)� a(t)
�
s2 [c(t)� �a(t)a0(t)]� d(t)

	
sa(t)

(3.107)

P (t; s) := �2b(t) + �s
2a(t)2d(t)

1 + �s2a(t)2
Q(t; s) := s

a(t) [b(t)� d(t)]� a0(t)
a(t)

: (3.108)
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Solving the Berwald condition

� If N 6= 0, then we can divide the �rst equation in (3.106) by N to get:

M(t; s)

N(t; s)

(t; s) +

@

@s

(t; s) = 0 : (3.109)

Substituting M and N from (3.107), this equation can be explicitly integrated to give:


(t; s) = f(t)
a0(t)� a(t)

�
s2 [c(t)� �a(t)a0(t)]� d(t)

	
1 + �s2a(t)2

:

Then, plugging 
 into the Finsler Lagrangian L = _t2(1 + �s2a(t)2)
(t; s) yields a quadratic
expression in _t and w :

L = I(t) _t2 � J(t)w2;

(with I(t) = f(t)(a0(t) + a(t)d(t)) and J(t) = a(t)f(t) [c(t)� �a(t)a0(t)]).
That is, in the case N 6= 0; the obtained solution L de�nes a pseudo-Riemannian Finsler
spacetime metric - which thus must coincide, after a coordinate change, with the FLRW one.

� If N = 0 and M 6= 0, then the �rst equation in (3.106) implies immediately that 
(t; s) = 0
and thus the Finsler Lagrangian L = ~L
 is identically zero. Hence, in this case, L does not
de�ne a spacetime structure.

� Finally, the only case that leads to nontrivial Finslerian solutions is M = N = 0; as we will
see below.

Setting M = N = 0; we �nd from the de�nitions (3.107) of M and N :

c(t) + �a(t)2d(t) = 0; a0(t)� a(t)
�
s2 [c(t)� �a(t)a0(t)]� d(t)

	
= 0:

Since s and t are independent variables, the coe¢ cient of s2 in the latter equation must
vanish, which immediately implies c(t) = �a(t)a0(t). Plugging this into what is left of the
above equations yields d(t) = �a

0(t)
a(t) .

The �rst equation (3.106) is, in our case, trivially satis�ed, whereas the second one gives:

@

@t

(t; s) + sb(t)

@

@s

(t; s)� 2(b(t)� �s

2a(t)a0(t))

1 + �s2a(t)2

(t; s) = 0 : (3.110)

This is a �rst order quasilinear PDE, with the general solution:


(t; s) =
B(t)2

s2a(t)2 + �
f(sB(t)�1); B(t) := exp(

tZ
t0

b(�)d�;

where f is an arbitrary smooth function and t0 2 R: Accordingly, we �nd the Finsler spacetime
function L = � _t2

�
s2a(t)2 + �

�

; as:

L = � _t2B(t)2f(sB(t)�1): (3.111)
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In the above, we can see that the sign factor � (as well as the lower integration point t0 in
the expression of B) can, without loss of generality, be absorbed into the free function f .

One further step of simpli�cation can be done by changing the coordinate t into:

~t(t) :=

Z t

0

B(�)d�;

which implies
d~t

dt
= B(t); in the newly induced tangent bundle coordinates, _~t = _tB(t) and

~s = w= _~t, (3.111) becomes

L(~t; _~t; w) = _~t2f(~s) : (3.112)

The above results are summarized in the following theorem:

Theorem 75 (Classi�cation of cosmologically symmetric Berwald spacetimes): If a
Finsler spacetime Lagrangian L is of Berwald type and admits cosmological symmetry, then it falls
into one of the following classes:

1. pseudo-Riemannian (quadratic in _x), in which case it is, up to a t coordinate rede�nition,
given by the Friedmann-Lemaitre-Robertson-Walker metric

L = _t2 � a (t)w2; w2 =
_r2

1� kr2 + r
2( _�

2
+ sin2 � _�

2
); (3.113)

2. nontrivially Finslerian, in which case it is of the form (3.112).

In the nontrivial Finslerian case, the function f in (3.112) can be chosen freely (just, taking
care that the resulting function L obeys the Finsler spacetime axioms in Section 2.1) and must be
determined from the gravitational �eld equation.



Chapter 4

Outlook and perspectives

This chapter brie�y lists some future research directions, which are based on the results we have
presented above and which we will pursue in the future.

4.1 A geometric toolkit for the calculus of variations

4.1.1 Hamilton-de Donder equations for higher order �eld theories

There are multiple ideas in the literature, on how to de�ne a Hamiltonian �eld theory, see, e.g.,
[79], [121]. One such possibility, introduced by D. Krupka [118] (and extending an older idea by
Dedecker, [64]), relies on Lepage equivalents of Lagrangians. Given a Lagrangian � of order r
over a �bered manifold (Y; �;X) and an arbitrary Lepage equivalent �� of � (say, of order s), a
local section � of the �bered manifold (JsY; �s; X) is called a Hamilton extremal of ��; if, for any
�s-vertical vector �eld � on JsY :

��i�d�� = 0: (4.1)

Thus, the Hamilton equation (4.1) depends not only on the Lagrangian �; but also on the choice of
the Lepage equivalent ��: In particular, it is not generally guaranteed that Lagrangians producing
the same Euler-Lagrange equation (1.42) would generally also produce the same Hamilton equation
- let alone the question of whether such a Hamilton equation is equivalent to the Euler-Lagrange
one.
This lack of uniqueness is, yet, eliminated if the (R-linear) mapping � 7! �� has the closure

property discussed in Section 1.4, as, in this case, (1.128) ensures that, for all equivalent Lagrangians
�; �0, the resulting Hamilton equation (4.1) will be the same.
In Section 1.4, we have proposed two notions of local Lepage equivalent �� for general La-

grangians � of arbitrary order r � 1; possessing the closure property. Both these notions are
constructed as

�� = ��� + d�; (4.2)

i.e., by adding an exact form d� to the principal (Poincaré-Cartan) form ��� of an appropriately
chosen equivalent Lagrangian �� = � � hd�; this guarantees that all equivalent Lagrangians to �
will lead to the same d� :

d�� = d���: (4.3)

123
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Moreover, basing our construction on the principal (Poincaré-Cartan) Lepage equivalent as in (4.2)-
(4.3) has promising features. It is known, [122], that, under certain regularity conditions on the
Lagrangian function L; the Hamilton equation (4.1) for the principal Lepage equivalent �� - called
the Hamilton-de-Donder equation - becomes, indeed, equivalent to the Euler-Lagrange equation of
�; which is what one would expect from a "correct" Hamilton equation.
The above mentioned regularity conditions (involving the second order derivatives of the La-

grangian density function L) are, yet, quite restrictive. Thus, in the future, we plan to explore,
using Lepage forms as in (4.2), the possibility of extending the Hamilton-de-Donder procedure to
general Lagrangians, of any order.
As a remark, the above construction of �� allows, at least in principle, for other choices of �� in

(4.3); an interesting such choice for �� might be, for instance, the so-called augmented Lagrangian
equivalent to �; de�ned by Fatibene, Ferraris and Francaviglia, [71] for the cases when a standard
background (a "vacuum state", e.g., Minkowski metric in the case of general relativity) can be �xed.

4.1.2 Extending the Vainberg-Tonti Lagrangian construction

The canonical variational technique, as introduced in Section 1.2.3 is a powerful tool, allowing one
to establish whether a given di¤erential system is locally variational or not - and, in the negative
case, to transform it into a variational one. The algorithm relies on the Vainberg-Tonti Lagrangian,
which can be attached, on vertically star-shaped chart domains, to any source form.
But, on the one hand, the condition of vertical star-shapedness of the domain is a limitation

to the applicability of the algorithm1 . Another issue is that the Vainberg-Tonti Lagrangian of a
source form does not necessarily have the same symmetries with the respective source form.
Both the above problems suggest that it would be interesting to �nd an "improved" Vainberg-

Tonti Lagrangian, with the following property: if the given source form admits a speci�ed 1-
parameter group of symmetries, then, the Lagrangian should also be invariant under this group.
This way, once given a set of variational equations that are known to have a certain local 1-
parameter group of symmetries (i.e., they satisfy the so-called Noether-Bessel-Hagen equations,
[114]), one would obtain a Lagrangian which is invariant to (at least) this speci�ed 1-parameter
group; also, for a non-variational such system, one would obtain a variational completion possessing
the given symmetries.
Such a Lagrangian could be constructed, for instance, by replacing the group of �ber homotheties

with a di¤erent local Lie group. Of course, the question is whether such a Lagrangian can be
constructed in general; moreover, one may obtain, for a non-variational source form, in principle,
a variational completion which di¤ers from the canonical one. These problems are to be studied in
the near future.

4.1.3 Energy-momentum tensors and gravitational energy-momentum
pseudo-tensor

The general construction presented in Section 1.3 leaves room for at least two questions, which we
plan to investigate in the future:

1. Can a similar notion (and a similar energy-momentum balance law) be de�ned in the case
when the di¤erential index of the background manifold Y (b) is greater than 1?

1A quick �x, which works in a lot (though, not in all) of the cases, was presented in Section 1.2.3 and consists in
considering the integral that de�nes the Vainberg-Tonti Lagrangian as a limit.
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An a¢ rmative answer would be relevant for purely a¢ ne gravity theories, where the index of
the lifting is 2.

2. Obtaining a general construction of a conserved gravitational energy-momentum pseudotensor
in general gravity theories. Such a construction, which consists in "completing" the balance
term B(�) up to an exact form by a canonically added term, was �rst made by Landau and
Lifshitz, [126], in the case of general relativity; extensions of this procedure exist for the case
of metric theories, see, e.g., the paper by Capozziello, Capriolo and Transirico, [55]. Yet, to
the best of our knowledge, in the case of arbitrary (not necessarily metric) backgrounds, an
extension of the Landau-Lifshitz pseudotensor is not known yet.

4.2 Finsler spacetimes

The main problem we plan to focus on, in the near future, is the study of several special classes of
Finsler spacetimes which are relevant for solving the Finsler gravity �eld equation (3.88).

4.2.1 Spacetimes with (�; �)-metric

Spaces with (�; �)-metrics, obtained by deforming a pseudo-Riemannian metric � on a given mani-
foldM using a 1-form � 2 
1(M); are a most immediate class of examples of pseudo-Finsler spaces
- and it includes Randers, Bogoslovsky-Kropina and Kundt spaces discussed in Section 2.1.3. The
case when � is positive de�nite has been (and is still being) quite intensively studied, see, e.g., [21],
[58], [63], [173]. Yet, in Lorentzian signature, apart from the purely computational results that can
be immediately extended from the positive de�nite case, very little is known.
A �rst question that arises is the one of the precise conditions to be satis�ed, such that the

resulting "deformed" pseudo-Finsler (�; �)-metric de�nes a Finsler spacetime according to De�ni-
tion 25, Sec. 2.1.2; some �rst results in this directions were obtained in the cases of Randers and
Bogoslovsky-Kropina cases, yet, a much more general study is needed. But also other questions,
such as the one of (�; �)-metrics possessing given symmetries (e.g., cosmological, or spatial spherical
symmetry) are relevant.

4.2.2 Finsler spacetime functions with _x-compactly supported Finsler-
Ricci scalar

We discussed in detail in Sec. 3.3.3 that a kinetic gas couples to Finsler gravity and that, in this
case, the 1PDF of the gas sources the Finsler gravity equation (3.88). An immediate consequence
is the restriction of the right hand side of this equation to each the (projectivized) tangent space
PTxM

+, x 2 M; has compact support; we refer to this property brie�y, as _x-compact support.
Since, on the other hand, the Finsler-Ricci scalar R0 is a basic ingredient of the left hand side of
the �eld equation, it is natural to look for solutions L with the property that R0 has _x-compact
support. In particular, we plan to:

1. Determine the conditions for L such that R0 has _x-compact support.

2. Find, if not all, at least large enough classes of Finsler spacetimes of Berwald type, respectively,
of weakly Landsberg type, with _x-compactly supported R0.
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3. In particular, try to classify all Finsler spacetime functions with identically vanishing R0. In
positive de�nite Finsler geometry, a famous result by Akbar-Zadeh, [26], says that, under
some supplementary assumptions (forward geodesic completeness, boundedness of the Cartan
tensor), R0 = 0 implies that the space is, actually, �at. The question is whether such a result
can be extended to Finsler spacetimes.

A related question is the existence of non-weakly Landsberg Finsler spacetime functions with
R0 = 0: This would be also relevant as it would simplify the �eld equation and also could
provide a direct physical interpretation of the trace of the Landsberg tensor.

4.2.3 Compactly supported deviations from Lorentzian metrics a.

Finsler spacetime functions of the form

L(x; _x) := ax( _x; _x) + h(x; _x); (4.4)

such that the the 2-homogeneous partial function h(x; �) : TxM ! R is smooth on TxMnf0g and
has _x-compact support, are especially interesting for our Finslerian gravity model, as they lead to
a Landsberg tensor whose trace trace(P ) has _x-compact support. If, additionally, the Lorentzian
metric a is Ricci-�at, then R0 is also _x-compactly supported. Moreover, these metrics will be smooth

on the whole slit tangent bundle
�

TM; which simpli�es a lot of considerations.
Understanding in depth the geometry of Finsler spacetimes (4.4) is one of the topics we want

to pursue in the next years. In particular, we plan to �nd:
- all (or at least large enough classes of) nontrivial examples of spacetimes (4.4) of Berwald type;
- curvature properties of metrics (4.4), especially in the case when L and a have speci�c sym-

metries, e.g., cosmological or spherical symmetry.

4.2.4 Weakly Landsberg spacetimes. Weak unicorns

The weakly Landsberg assumption trace(P ) = 0 greatly simpli�es the Finsler gravity �eld equation
(3.88). So, it is natural look for weakly Landsberg spacetimes obeying some additional conditions.
For instance:

1. Cosmologically symmetric weakly Landsberg spacetimes; this is actually already work in
progress, jointly with C. Pfeifer, A. Fuster and S. Heefer. It turns out that in cosmologi-
cal symmetry, the set of four weakly Landsberg equations Pi = 0; i = 0; :::; 3; actually reduce
to a single (though, rather complicated) third order partial di¤erential equation. A future
task is to �nd, if not the most general solution of this equation, at least large enough classes
of solutions.

2. Weak unicorns. In Finsler geometry, a unicorn is de�ned as a Landsberg metric which is
non-Berwaldian. These metrics are particularly interesting, as they are more general than
Berwald ones, while still leading to a simple form of the �eld equation (3.88). The name is
justi�ed as such examples are quite rare - actually, it is still an open problem whether for

(properly, i.e.,
�

TM -smooth) Finsler metrics, these do exist at all; all the known examples of
unicorns so far have non-admissible directions at each point ofM; see [187] for a recent review
of unicorns in (positive de�nite) Finsler geometry.
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Passing to spacetime signature, most examples are not smooth on the entire slit tangent

bundle
�

TM; one can therefore expect weak unicorns to exist - and even more, weak (or
generalized) unicorns, i.e., weakly Landsberg metrics that are not Berwald. Yet, this case is
very little studied; to the best of our knowledge, only one particular class of weak spacetime
unicorns, due to Asanov, [12] is known - and it de�nitely deserves a much deeper study.

In the near future, we plan to determine weak spacetime unicorns - or prove their non-existence
(if the case), at least for some speci�c classes of metrics, e.g., of Randers, Bogoslovsky-Kropina,
or Kundt type etc..

4.2.5 Smooth Berwald spacetime functions

Since in the case of Finsler spacetime metrics that are smooth on the entire slit tangent bundle
�

TM;
the question of the metrizability of the a¢ ne connection (see Section 2.3.2) of Berwald spacetimes
is still open, we plan to also investigate this problem.

4.3 Finslerian �eld theory

4.3.1 Solutions of the Finslerian �eld equation

So far, to the best of our knowledge, for the Finslerian vacuum equation, only a very few, Berwald-
type solutions of the vacuum �eld equation are known, belonging to the VGR (Bogoslovsky-
Kropina), [78], [77], or Randers type (the latter are completely classi�ed in [89]), or a class of static
Berwald ones, [52]. In the nearest future, we plan to determine other (not necessarily vacuum)
solutions, in three cases: spherical symmetry, cosmological symmetry and linearized perturbations
of Ricci-�at Lorentzian metrics.

Vacuum spatially spherically symmetric solutions

In general relativity, spatially spherically symmetric solutions of the vacuum Einstein equations and,
in particular, the Schwarzschild metric, model the gravitational �eld around a massive spherically
symmetric source such as a star or a black hole. According to a famous result by Birkho¤, the
Schwarzschild metric is the unique solution of the vacuum Einstein equations which is: spatially
spherically symmetric, static (i.e., it possesses a timelike Killing vector �eld which is orthogonal to
a family of hypersurfaces) and asymptotically �at.
Similarly, spatially spherically symmetric solutions of the Finslerian vacuum �eld equation (3.71)

are candidates to model the matter around a massive gravity source, which we hope could explain
at least a part of the observed dark matter phenomenology. But, a Schwarzschild-type solution of
this equation - let alone its uniqueness or non-uniqueness is not yet known2 .

For a Finsler spacetime (M;L) equipped with a time function t : M ! R as de�ned in Section
3.4, spatial spherical symmetry is well de�ned, more precisely, it can be understood as SO(3)-
invariance of the conic Finsler function induced by L on each spatial slice t = const.

2For Rutz�s equation R = 0 a Birkho¤-type theorem is known to hold, [172]. Yet, our equation (3.71), which is
the canonical variational completion of Rutz�s equation, is a much more complicated one.
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The most general form of spatially spherically symmetric Finsler spacetime functions is already
known in the literature, [160]. That is, in �nding a solution, we will restrict our attention to Finsler
functions of this form.
I.A. Berwald-type solutions.
A greatly simplifying assumption is to look for vacuum solutions of Berwald type. In this

direction, here are some concrete problems that we plan to solve in the near future:

1. Classifying, if possible, all Berwald-type Finsler spacetime functions admitting spherical sym-
metry. This is already work in progress, using a similar technique to the one presented in
Section 3.4.

2. Finding all possible spatially spherically symmetric, static3 and asymptotically �at solutions
of the vacuum Finslerian �eld equation (3.71) of Berwald type. Since the Schwarzschild metric
is obviously such a solution, the question is whether there exist other, nontrivially Finslerian,
ones. This would actually solve the question on whether Birkho¤�s Theorem stating the
uniqueness of the Schwarzschild solution extends to the Berwald-Finsler context.

3. In the case when nontrivially Finslerian solutions exist, an interesting problem is the study of
the behavior of geodesics of the obtained solutions; these could explain, for instance, rotational
curves of galaxies - thus, providing a geometric alternative to dark matter, as pointed out in
the paper by Chang and Li, [57].

4. Finding other (e.g., not necessarily static) spherically symmetric solutions of the vacuum
equation (3.71).

I. B. Non-Berwaldian solutions.
In particular, we plan to investigate the existence (or non-existence) of vacuum solutions with

zero Ricci scalar R0 = 0, yet, nonzero trace of the Landsberg tensor. Obtaining such a solution
would an important step towards a deeper understanding of the physical interpretation of the
Landsberg tensor.

Cosmologically symmetric solutions of the Finsler �eld equation

Interpreting the matter content of the Universe as a kinetic gas, rather than as a perfect �uid,
allows one to investigate the in�uence of the distribution of kinetic energies of the gas particles on
the resulting gravitational �eld, as discussed in Section 3.3.3. We conjectured in [94], [95] that this
may account for the dark energy phenomenology. In order to verify this conjecture, we plan to:

1. Expand the Finslerian �eld equation (3.88), for the particular class of cosmologically sym-
metric Finsler spacetime functions. As the general form of cosmologically symmetric Finsler
functions is known and the most general form of cosmologically symmetric 1-particle distri-
bution functions ' can be obtained similarly, this is just a routine task - yet, with quite
deep implications. Namely, the obtained equation will represent a Finslerian analogue of the
Friedmann equations in general relativity - which predict the behavior of the scale function
a = a(t) of the universe.

3A Finslerian analogue of staticity was de�ned in the paper by Caponio and Stancarone, [54].
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2. Find an exact solution of the Finslerian �eld equation, with right hand side given by a concrete
cosmologically symmetric 1-particle distribution function. For this exact solution, one can
study the behavior of the obtained "scale function". As we expect this behavior to di¤er from
the one obtained in general relativity, we expect this di¤erence to account for at least a part
of the dark energy in the universe.

3. Study the behavior of timelike, respectively, lightlike geodesics for the obtained solution.
These will model trajectories of massive bodies, respectively, of light rays in our model.

Linearized Finslerian perturbations of Lorentzian metrics.

We plan to investigate �rst order perturbations of the Minkowski metric � and of Ricci-�at
Lorentzian metrics on M = R4 (such as the Schwarzschild metric), which would thus model a
"weakly Finslerian" gravitational �eld and Finslerian gravitational waves. Here are some problems
we plan to study in the near future:

1. Linearization of the Finsler �eld equation and obtaining a Finsler post-Newtonian formalism.

The latter is obtained, after having linearized the �eld equation around the Minkowski back-
ground, by also taking a Taylor expansion of the left hand side of the �eld equation, around
zero spatial velocity and then identifying the corresponding coe¢ cients, order by order. This
topic is already work in progress, with C. Pfeifer and M. Hohmann.

2. Linearized perturbations of Minkowski metric on R4 - that is, �nding solutions of the Fins-
lerian �eld equation (3.88), expressible as L(x; _x) = �( _x; _x) + �h(x; _x); with �2 ' 0: In this
case, the corresponding 1-particle distribution function ' has to be also of the same magnitude
order as �; this would thus describe a "sparse" kinetic gas, generating a weak gravitational
�eld. For instance, one can use as ' a curved spacetime extension of the Maxwell-Jüttner
distribution, see, e.g., [191].

3. Linearized perturbations of the Schwarzschild metric. Such a (non-vacuum) solution of the
Finsler gravity equation (3.88) would model a region of spacetime possessing gravity generated
by a massive source lying outside that region, e.g., a star or a black hole situated in the center
of a galaxy, together with some other smaller sources situated inside that region - such as
planets in the solar system, or stars in a galaxy.

4.3.2 Finslerian equation and the Einstein-Vlasov equations

In general relativity, the energy-momentum tensor of a kinetic gas is obtained, see [175], by in-
tegrating the 1-particle distribution function ' over _x 2 Ox; as in eq. (3.91) - which is always
possible, as '(x; �) is assumed to have compact support, or at least, to be integrable on the observer
spaces Ox. The Einstein-Vlasov equations are then the Einstein equations with the right hand side
given by (3.91); thus, the Einstein-Vlasov equations are second order PDE�s having as unknown
functions, the components of a Lorentzian metric tensor a on the spacetime manifold M:
On the other hand, the Finsler gravity equation (3.88) is a single equation, having as unknown,

a scalar function L : TM ! R: As already noticed above, in the non-vacuum case, the right hand
side �2m' of this equation has _x-compact support, which means that the same must hold for its
left hand side. That is, we expect non-vacuum solutions to be non-Riemannian. Yet, once we have
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a solution obtained for a realistic ', by applying to both hand sides of the �eld equation the same
procedure as in (3.91) in the left hand side of the equation, we obtain an equation of the form:

~Gij = 8�� ~T ij ;

relating two tensor �eld densities of type (1,1) over M:
This way, if, on the given manifoldM; there exists a "�ducial" Lorentzian metric a :M ! T 02M

modeling the given physical situation (e.g., the Friedmann-Lemaître-Robertson-Walker metric, in
cosmology), we plan to compare the obtained tensor density ~G to the (densitized) Einstein tensor
of a: The obtained di¤erence will represent corrections to the Einstein equations obtained from
velocity averaging which could account, in cosmology, for at least a part of the observed dark
energy phenomenology.

4.3.3 Finsler geometry as the geometry of modi�ed dispersion relations.
Cotangent bundle formulation of Finsler �eld theory

In physics, a dispersion relation is a relation of the form H(x; p) = const: (where H : T �M ! R is
a smooth enough function), to be satis�ed by the 4-momenta p of physical particles; the function
H is interpreted as the Hamiltonian of the given physical system, [159].
In special and general relativity, dispersion relations for a free particle are given by a Hamiltonian

H which is quadratic in p. In the case when H is non-quadratic (possibly, not even 2-homogeneous),
the resulting dispersion relation is called modi�ed. Modi�ed dispersion relations are a most promi-
nent way to describe possible observables from quantum gravity, [68], [75] - and they naturally lead
to Finsler geometry, [82], [166]. Therefore, we plan to study the following.

1. The cotangent bundle formulation of Finsler �eld theory framework. Traditionally, Finsler
geometry is formulated on the tangent bundle of the spacetime manifold. But, for most
physical applications (kinetic gases or modi�ed dispersion relations are here just some �rst
examples), the language of momenta, rather than then one of velocities, seems more appro-
priate. Hence, for the physics community, it would be both more accessible and more useful
to have a formulation of our framework in terms of momenta - i.e., a reformulation on the
cotangent bundle of the spacetime manifold.

A cotangent bundle version of Finsler geometry, having as a central piece a 2-homogeneous
Hamiltonian, instead of a 2-homogeneous Lagrangian, obtained via the Legendre transforma-
tion from the usual one, is since long known from the work of R. Miron and collaborators, see.
e.g., [148]. Yet, in the case of non-homogeneous Hamiltonians, the relation between the given
Hamiltonian and the corresponding Finsler spacetime function (obtained via the so-called
Helmholtz action, [159]) is a more sophisticated one, hence obtaining a clear relation between
the basic Finslerian geometric notions attached to the resulting Finsler function L and the
given Hamiltonian function is still to be done.

A next step would be a cotangent bundle reformulation of the Finslerian �eld equation (3.88).

2. Modi�ed dispersion relations give rise to a pseudo-Riemannian metric g = g(p) on each cotan-
gent space T �xM; i.e., to a curved momentum space at each point x 2M . Hence, understanding
in depth the geometry of these curved momentum spaces, appears as an interesting topic.
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