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Main goals and motivation

Beauty is the first test: there is no permanent place in the world for ugly

mathematics (G.H. Hardy)

Main goals:
& develop a general geometric framework for Lagrangian field theories based

on Finsler geometry;
& explore other applications, in more general field theories, of the newly devel-

oped geometric tools.

Motivation of our study: extending general relativity so as to address:
¢ the dark energy&dark matter problem:
& tensions with quantum mechanics.



"Who ordered Finsler?"

& In physics:

- most general geometry with a well defined notion of arc length (~
proper time);

- quantum gravity phenomenology (modified dispersion relations)

- description of wave propagation in media

- kinetic description of gases (— gravitational field generated by multiple

sources, moving with different velocities).

¢ In pure mathematics:
- Lorentz-Finsler geometry is: little explored, strikingly different form positive

definite one and... beautiful.



General structure:

Chapter 1: A geometric toolkit for the calculus of variations
Chapter 2: Geometry of Finsler spacetimes
Chapter 3: Finsler-based field theory

Chapter 4: Outlook and perspectives




1 A geometric toolkit for

the calculus of variations



1.1. Preliminaries

Main refs.: Krupka 2015; Giachetta, Mangiarotti&Sardanashvili 2009.

Fibered manifold: a triple (Y, 7, X) with:
X,Y - smooth manifolds (dim X =n, dimY =n 4 m)
m:Y — X — surjective submersion

Fibers: Yz = n~1(x))
Fibered charts on Y: (V, ), ¥ = (x4, y7) - such that 7 : (24, y%) — (z4)

Interpretation in physics:
Y - configuration space, X - parameter space (usually - spacetime)

Local sections v € T(Y), ~ : (z%) — (24, y7(x?)) - fields

Arena for field theory: the jet bundles (J"Y, n", X).



Lagrangian of order r := a (n")-horizontal form A € Q,(J"Y) :
A= Ld"x,
with: £ = E(ar;A, v, Y%, ..., y",b-lmin), d"z = dxl A ... A da™

Action: Sp : I'(Y) — R:
Sp(y) = [ T7*A
D
where D C X - piece (=compact n-dim. submanifold with boundary).

Variations of S - from 1-parameter groups {®.} of fibered automorphisms

e . S
Y — 7 = 7 33])
m T = $g - - :
! e ! ) { 57 =19 (‘m]’ y“)
X — X



Variations as Lie derivatives: = € X(Y) - generator of {®:} =
6Sp(y) = /JT’Y*QJ""E)‘
D

First variation formula:

Ty (Lrra)) = T2y ormE(N) — J2 Iy d g = (1)

o E(N) € Q,,11(J?"Y) - Euler-Lagrange form:
oL :
E(N) = (Sy—UHG Nd'zx, 0 = dy? — y%dax’

o J= € Q,_1(J* 1Y) - Noether current

o v € (YY) is an extremal of S if: VD C X piece, V compactly supported
variation supp(=ovy) C D :

6Sp(v) =0



In coords.: v - extremal < Euler-Lagrange equations:

oL 0 J?y =0
oy?

Noether’s first theorem:

LA =0= J+*dTZ~0

(=~ - equality along critical sections ).

Identification of £()\), J= :
- integration by parts — coordinates needed!
- via Lepage forms (Krupka, 1973)— coordinate-free, diff. forms only

(see Sec. 1.4).



Natural bundles and natural (generally covariant) Lagrangians:

My, - category of smooth n-dim manifolds, FB - category of smooth fiber
bundles.

Natural bundle functor:= a functor § : My, — FB, such that:

-V M € Ob(My,) : §(M) is a fiber bundle over M;

-Vag: M — M € Morf(My;) = the fibered manifold morphism §(ayg) :
S(M) — F(M') covers ag.

Natural (generally covariant) Lagrangians = globally def. Lagrangians A €
Qn(J"§(M)) s.th:
JFS) A=A, Vo€ Dif f(M)

In terms of infinitesimal generators:

£Jr{§:(§))\ =0, V¢€eX(M) (2)



1.2. Variational completion of differential equations

References:
1. N. Voicu, D. Krupka, Canonical variational completion of differential equa-
tions, Journal of Mathematical Physics 56, 043507 (2015).

2. N. Voicu: Source Forms and Their Variational Completions, in vol. The
Inverse Problem of the Calculus of Variations - Local and Global Theory, ed.

Dmitri Zenkov, Atlantis Press-Springer (2015).

3. M. Hohmann, C. Pfeifer, N. Voicu, Canonical variational completion and
4D Gauss—Bonnet gravity, European Physical Journal Plus 136, 180 (2021).



Aim: Given an arbitrary PDE/ODE system:
- find out whether it is locally variational;

- if not, transform it into a locally variational one, by adding a meaningful
correction term.

Motivation:
& Historically first variant of Einstein field egs.:

Rz’j — 87TI€TZ']' (3)

— inconsistent with local energy-momentum conservation.
¢ Corrected version:

1
Rij — ERgij = 87Tl<:Tz'j (4)
— variational, with Lagrangian function = "simplest scalar" R.

Q: Is there any systematic way of finding the "correction term", based on
calculus of variations?



Setting: (Y, 7, X) - fibered manifold, dim X = n.

Consider an arbitrary PDE system of order r over Y :

6g(acA, y7, ..., yg‘l“.Ar) =
— a local source form:
e :=¢egl’ Nd"x € Q,11(J"Y).
Use: Vainberg-Tonti Lagrangian (Vainberg 1956, Tonti 1969):
e = Ledx
attached to € and to a given chart:

1

Lg(a:A, y7, ..., yajl...jr) — ya/aa(azA, wy?, ..., uyajl”_jr)du.

0



Key property: Euler-Lagrange form £(A\:) = E,0Y A d"x of ¢ :

1
gV — €V_/u{ya(HVU © Xu) T T yGBl...Br(HVO'BlmBT © Xu)}dua
0

\ 7

~~

Ry

where:

O Xu - (xA,yayy%.’ '”7y0:7.1~-jr) — (mAyqu’uyaj, ""uy%l---jr)’ u < [0, 1].

o H - Helmholtz form of ¢ - "obstructions from local variationality" of ¢.

Definition 7, [1]: Canonical variational completion of ¢ :

E(Xe) =e+k (7)

= Kk = k0¥ ANd"z € Q2,1 1(J"Y) - completely expressed in terms of H.



Applications of canonical variational completion:
: . . 1
v" Vacuum Einstein equations R;; — ERg,,;j =0-cwv.c of R;; =0, [1].

v Energy-momentum tensors in general relativity (symmetrization [1], La-
grangian for perfect fluid [2]).

v’ Linearly damped oscillations, [1].

v "Renormalized" (truncated) Gauss-Bonnet gravity theory - shown to be non-
variational, [3].

v Finsler gravity - see Chapter 3.



1.3. Energy-momentum tensor and energy-momentum
balance

Ref.: [1]. N. Voicu, Energy-momentum tensors in classical field theories — a
modern perspective, International Journal of Geometric Methods in Modern

Physics, 13, 1640001 (2016).

Ideas:
1. Use a "Hilbert-type" definition of energy-momentum tensors, in general

Lagrangian field theories (~ Gotay&Marsden 1992, Fernandez&co. 2000) ;
2. Find a general energy-momentum balance law, valid in any natural field
theory of index 1 in the background variables.

3. Application: energy-momentum balance law in general metric-tensor/metric-

affine theories.



Setting:
¢ Configuration manifold:

Y = Y0 x,, y(m)

where Y(b), Y (") _ natural bundles over M (b - "background", m - "matter").

& A generally covariant Lagrangian:

o Assumption: Natural lift [0 : X(M) — X(Y(®)), ¢ — 2®) - of order 1:

. . . - 0
:(b) — S‘Lai i (Caigz + nggz,j)a—ya'

Euler-Lagrange form of A\, :

£ (Am) = W) 4 glm)



Lemma 8, [1]: There is a unique splitting:

hi or1g€® = B(€) + hd(T(€)), V€ € X(M), (8)

such that 7 : X(M) — Q,_1(J5T1Y), B : X(M) — Qu(J5T2Y) are
F(M)-linear mappings with horizontal values (h : Q(J5T1Y) — Q(J512Y)
- horizontalization morphism).

¢ 7 - energy-momentum tensor, B - balance function.

In fibered coords (:vi,ya,y1> onY :

’l: 5y0' ’

T = Tlda' @ ip,d"z, T/ =C (9)

First variation formula revisited:

[ 2 BE)+ [ I (T©)-TF) 2y 0, (™ 1= progymyon).
D oD



Theorem 10, [1] (Coordinate-free energy-momentum balance law): For

any piece D C M and any £ € X(M) with support contained in D, there
holds:

/JS+27*B(€) ~_(m) 0. (10)
D

Theorem 11, [1]:

(i): Energy-momentum balance law in coordinates:

- oL 5
(djT?i —(C% - ygy,)@—(j) o JoF 4y ~(m) 0.
(ii)) Relation with Noether currents:

0D 0D



Example. General metric-tensor theories:

Y = Met(M) x5y TP(M),  Am = Limy/|det g|d"z.

Denote: y7 € {gij, yﬁ;];} - background variables and

J|det g| 97 " J|detg]

Energy-momentum balance law:

Ty = T = C%%,.

(ya;q;‘za + Tji;j) o JS+2’7 R (m) 0, 2=1,....,n.

(11)

(12)

In particular, in metric-affine theories: y° € {g¥, N’ijk = Kijk — Fijk} ;

Sy,
5N]k "

J J 42, ~

(13)



1.4. A special property of Lepage equivalents of
Lagrangians

[1]. N. Voicu, S. Garoiu, B. Vasian, On the closure property of Lepage equiv-
alents of Lagrangians, Differential Geometry and its Applications 81, 101852
(2022).

Main idea: For general Lagrangians A € Q,(J"Y) of order » > 1, build two
local Lepage equivalents with the closure property:

EN)=0 & dpy,=0.

Application: Having a well defined Lepage formulation of Hamiltonian field
theory.

(Only) previously known examples of p, with closure property:
v mechanics (dim X = 1) - Poincaré-Cartan form;
v' first order Lagrangians (Krupka 1977, Betounes 1984).



Setting: (Y, m, X) - fibered manifold, A € Q,(J"Y’) - Lagrangian

Definition (Krupka, 1973): py € Qu(J®Y) - Lepage equivalent of ), if:

(i) [J"Y*\ = [J"v*py, for all ~,D.
D D

(i) The first contact comp. pidpy is a source form (< w5+1.0 horizontal).

Euler-Lagrange form/Noether currents in terms of py:

E(N) =pidpy, T~ =isszpy.
Principal Lepage equivalent py, =: ©) (Krupka, 1981) - no closure property:

. ABj...By po .
©, = Ld"x + (kzof 8 -Bk) N laAdnm, (14)

oL
_ o, ngl...Bk: ¢ 4 fABl

£B1Bria
ayBl...Bk

(15)



% Our idea, [1]: Use ©,/, for a conveniently chosen )\’ equivalent to \.
Consider A € Qu(J"Y") - arbitrary Lagrangian.

I. Canonical Lepage equivalent ®): Decompose A locally as:

A = A\yr + hda, (16)

where A\ 7 - Vainberg-Tonti Lagrangian of £()\) and set:

) =0, +da (17)
Properties of canonical Lepage equivalent:
1. Closure property £(A\) =0 < d$, = 0.
2. ®, - uniquely defined by .
3. Generally &, - just locally defined. Yet, in tensor field theories with second
order Euler-Lagrange equations, ® - globally well defined.



Il. Minimal Lepage equivalent ¢, : If A - order-reducible, then use:
A=X+hda, ¢):=0, +da, (18)

(where X' - of minimal order).

Properties of minimal Lepage equivalents:

1. Closure property.

2. If X - second order, reducible = ¢, - of order 1.

3. In general, ¢, -not unique.

Example: Hilbert Lagrangian X € Qq(J°Met(M)), A = Ry/|det g|d*z :

Py, =0, =&y, (19)



2 Geometry of Finsler spacetimes



2.1. Detinitions and basic geometric objects

[1]. M. Hohmann, C. Pfeifer, N. Voicu, Mathematical foundations for field
theories on Finsler spacetimes, Journal of Mathematical Physics 63, 032503
(2022).

[2] M. Hohmann, C. Pfeifer, N. Voicu, Finsler gravity action from variational
completion, Physical Review D 100, 064035 (2019).

Aim of the section: Present the notion of Finsler spacetime as defined in

[1] and a minimal list of related notions, to be used in the sequel.



Setting: M - n-dim. connected, orientable, C°°-smooth manifold

@)
o TM :=TM\{0} slit tangent bundle.

¢ An open subset Q@ C T'M\{0} is a conic subbundle if:
- forVe € M, Qy := QN1 M is non-empty;
- conic property: (z,z) € Q = (z,az) € Q, Va > 0.

¢ (Bejancu&Farran, 1990): Pseudo-Finsler space = (M, L), where:
L: A — R - smooth on a conic subbundle A C T'M and:
(i) L(z, ad) = o?L(zx, &), Va > 0;

1 0%L

(i) guv(x, ) = S BEAOY is nondegenerate on A.
THOT

A - set of admissible vectors.



Definition 25, [1] A 4-dim. pseudo-Finsler space is a [Finsler spacetimej if:
3 a conic subbundle 7 C A, with connected fibers 7, on which:

v L > 0, g has Lorentzian signature (+, —, —, —)

v' L can be continuously extended as 0 to 07 .

Physical interpretations:

o Interval: ds® = L(x,dz) = gii(x, &)dxtda)

o 7, := future-pointing timelike cone at z.

o Observer space at x € M : O :={(z,z) € T | L(z,z) = 1} :




o Finslerian metric tensor:
g: A— T20M, (z,2) +— I(z,i) = 9:i(x, :i:)dwida:j
o Hilbert form on Ag := A~ L~1(0):
w:= Fi(z,&)de', F = |L|1/2

o Arc length of a non-null admissible curve c : [a,b] — M (~ proper time):

b b
I(c) = / JL(e(®), é(t))dt = / 9ii(@, &) daidai dt = / W, (20)
a a Im(c,¢)

(') The positive 2-homogeneity of L ensures that I(c) - well-defined.
Geodesics of (M, L) : &'(s) + 2G*(z(s), #(s)) = 0

Canonical nonlinear connection TA = HA® VA — coeffs: Gij = 3jGi.
Local adapted basis of T A: {§; = 0; — Gjiéj, 0; = 0.i}.



Examples of Finsler spacetime functions L :

v’ Lorentzian (quadratic in z):
L(x, %) = app(x)ztz”
v Randers L = eF?, with € = sign(F), where:
F(z,2) = \/|az (&, )] + be (&) -
v Bogoslovsky/Kropina (VSR,VGR - Cohen& Glashow):

L(z,2) = e|ay(x)zHa” |1 =9(by(x) i),

where: € = sign(auv(z)zHz?).
v Quartic metrics (— birefringence - Pfeifer&Wohlfarth, Perlick etc.):

L(z, &) = e\/|(au () 313" (hpo (x) £PE7)),

where € = sign(...).




Homogeneity of Finslerian geometric objects
& L - homog. of degree 2 = g, Gij etc. — all homogeneous of some degree.

Fiber homotheties:
Xo T™ — T(}W, Xo(z, %) = (2, ax) (o > 0)
- generated by the Liouville vector field
C = #'9;. (21)
Definition 30, [1]: A tensor field T' € ['(T%;(.A)) is k-homogeneous, if:

Va>0: 5T =d"T.

o Anisotropic tensor fields T : A — T'y(M) ~ d-tensor fields T' € [(T%;(A))
(for which k-homog. is defined).



2.2. The positively projectivized tangent bundle PTM™
(The projective sphere bundle)

1. On arbitrary manifolds M, dim M = n. Define:

@)
PTM™ :=TM,, (22)
where: (z,2) ~ (r,u) < Ja>0: u= ax.
o PTM™ - smooth, orientable (2n — 1)-dim. manifold, natural bundle over
M, with fibers ~ S"—1,
@)
o (TM,rnT, PTMJF,Ri) - principal bundle, with projection:

L TM — PTMY, (2,2) — [(z,#)]. (23)

o
o 0-homogeneous objects on T'M < geom. objects on PT M ™ :

o Homogeneous local coords of [(z,#)]: (z*, ") (unique up to a factor)
(see Chern-Chen-Lam 1999).



2. On Finsler spacetimes (M, L): The set of non-null admissible directions:
AL = {l(z,2)] € 7T (A)| L (z,2) # 0]

has a contact structure - the Hilbert form w™ = adea:Z

31

o Canonical volume form: dX+ 1= —wt A (dwt)3 (e := sign(det g)).

m"l,

o Reeb vector field on .AS_ ot =18, 1= ok

Proposition 38, [1] (Set of future pointing timelike directions 7 T):
Define 7T := 77 (7) C .Aar. Then:

1. 77 : O — T 7T is a diffeomorphism.

2. If pT € Q7(7 ) - compactly supported and p := <7T+)* pT, then:

/ pt = / p. (24)
T+ o



2.3. Finsler spacetimes, Finsler spaces, Lorentzian
manifolds: a brief comparison

References:

[1] N. Voicu, Conformal maps between pseudo-Finsler spaces, International
Journal of Geometric Methods in Modern Physics 15(01), 1850003 (2018).

[2] A. Fuster, S. Heefer, C. Pfeifer, N. Voicu, On the non metrizability of
Berwald Finsler spacetimes, Universe 6 (5), 64 (2020).

Main aim: Show that:
1. Finsler spacetimes may strikingly differ from positive definite Finsler spaces

2. Yet: Finsler spacetimes share with Lorentzian ones some essential features
(— OK for physics!)

Focus on: projective and conformal structures.



On the non-metrizability of Berwald-Finsler spacetimes, [2]:

(M, L) is called of Berwald type if G* - quadratic in & :
G' = Gy (x)i! 2"

& Gz'k define a symmetric affine connection on M, whose autoparallels are
geodesics of (M, L).

Theorem (Szabé,’s Metrizability Theorem, 1981): Let (M, F') be a (pos-

O
itive definite, T'M-smooth) Finsler space of Berwald type. Then, there exists
a Riemannian metric a on M such that the affine connection of the Berwald
space is the Levi-Civita connection of a.

Consequence: Parametrized geodesics of (M, F') = same as those of (M, a).



Results in [2]:

Necessary condition for pseudo-Riemann metrizability: horizontal Chern-Rund
Ricci tensor components R;; := R, ) must be symmetric:

Rz’j = Rji-
Example: Berwald spacetime function on R* with R;; # Rj; :

L(z, %) = az(z, #)s P(k +m s)PTL

a = 2dz° @ dz! + 21 qb(m2, 333) dr® @ dz® + dx® @ dz? +dz3 @ dz3, b = daP,
_ (ba(2))?

where: s := ——) = L - non-Lorentz metrizable.
az (T, 1)

@)
Theorem 42: If (M, L) is Berwald with A = T'M, then:
Rij = Rjz'-



Conformal symmetries of a pseudo-Finsler space (M, L), [1].

¢ € Dif f(M) - conformal symmetry if 3o : M — R - smooth, s. th.
Lodp=e L. (25)

Particular case: 0 = 0 = ¢ - isometry of (M, L).

Remark: F Liouville-type classification of conformal symmetries of (flat)
pseudo-Finsler spaces. Examples, [1]:

M :=RFxR"F  [.=L$L37 % (26)

2/k : e :
k‘ / , Lo - arbitrary — infinite-dim. conformal group.

with L1 = ‘jzla'cz...x'
Theorem 44, [1] (Pseudo-Finslerian extension of Weyl Theorem): If a
conformal symmetry of a connected pseudo-Finsler space (M, L) preserves un-
parametrized geodesics of (M, L), then o = const.



Other results in Lorentzian geometry which extend to Lorentz-Finsler:
Conformal/Killing vector fields for (M, L) = generators of conf. symme-
tries/isometries of L.

Proposition 47, [1]: Any essential (= non-Killing, for any e’ L) conformal
vector field must be lightlike, i.e., L o £ = 0, at least at a point.
(pseudo-Riemannian case - see Kuhnel 2008).

Theorem 48, [1]: Assume a Lorentz-Finsler space (M, L) admits a Killing
vector field & with the property that L(xz,&(xz)) > 0, Vo € M. If £ = 0 at one
point x € M, then & vanishes identically.

(pseudo-Riemannian case - Sanchez, 1997)

Theorem 49, [1]: If £ is a Killing vector field for a Lorentz-Finsler space
(M, L), having an isolated zero at some point x € M, then: dim M - even
and L o & takes all possible signs on each neighborhood of x.
(pseudo-Riemannian case - Sanchez, 1997).



2.4. Inequalities from Finsler and Lorentz-Finsler
norms

Reference:

[1] N. Minculete, C. Pfeifer, N. Voicu, Inequalities from Lorentz-Finsler norms,
Mathematical Inequalities and Applications 24(2), 373-398 (2021).

Main idea:
Finsler geometry is actually behind many notorious inequalities. Such as the
arithmetic-geometric mean one...

Consider: (M, L) - pseudo-Finsler space, © € M.
T C Ty M ~ Rt open, connected conic subset on which L > 0.

Pseudo-Finsler norm: F =+/L : T — (0,00).



Cauchy-Schwarz and reverse Cauchy-Schwarz inequalities
(Bao-Chern-Shen, 2000/Minguzzi 2015, Aazamié Javaloyes 2016):

I. L - positive definite = Cauchy-Schwarz (fundamental) inequality:

dFy(w) < F(w) <  gv(v,w) < F(v)F(w).

Il. L - Lorentzian = reverse Cauchy-Schwarz inequality:

dFy(w) > F(w) < gu(v,w) > F(v)F(w).

Remark, [1]: Inegs. still hold in the pos. semidef./degenerate-Lorentzian case.



Examples of reverse Cauchy-Schwarz inequalities, [1]:

1) Aczél’s inequality: o', b* > 0 =

(@ — ab! — ... — a"b")? > [(a®)® = (ab)?... — (@™)[(t°)° = (bY)°... — (™).
1 1 o
2) Popoviciu’s inequality. If p > 1, = +=-=1, a',b*' > 0=
p g
a®® — a'b! — ... —a"p" > [(ao)q— (al)q —...—(a™)]" [(bo)p — (bl)p e (0
3) Arithmetic-geometric mean inequality:
1
0 +n—|— ;_ %n > (apou...an)ntl,  Voy € RY. (27)

4) Weighted arithmetic-geometric mean inequality:

Zaivi > (v2)%(vl)m... (™), a; >0, v' > 0. (28)
i=0



Example of (positive definite) CS inequality - Holder inequality:

1
q

@ b < [(@0) o (@) [(00) e ()]

Playing to discover new inequalities:
1) Use a Kropina deformation of Miknowski metric n =

wP 0

v
277(U7 ’UJ) > FU(% U) + En(wa w)

2) A Finslerian extension of Aczél’'s inequality:

[o(v)p(w) = (v, w)]* > [p*(v) — E*(0)][p*(w) — F2(w)],

where: F- pos. def. Finsler, p € Qi(R"1).

See [1] for more examples (triangle/reverse triangle inegs.)...



3 Finsler-based field theory



3.1. The general framework

Ref.: [1]. M. Hohmann, C. Pfeifer, N. Voicu, Mathematical foundations
for field theories on Finsler spacetimes, Journal of Mathematical Physics 63,
032503 (2022).

Main results:

1. Construct general configuration bundles (Y, 1, X'), allowing:
- k-homogeneous Finslerian geometric objects as sections;
- well defined fibered automorphisms;

- compactly supported variations;
= best option: X := PTMT™.

2. Analyze the common features of (Y,, PTM™) and of Lagrangians
built upon them.



Structure of fibered manifolds over PT M
Consider: (M, L) - Finsler spacetime, (Y, N, PT' M) - fibered manifold =

v 2L pravt T (29)

Fibered automorphisms of (Y, M, PTM™) :

1T IT
PTM+ —2 . PTM+
T AT TAT



Bundles having k-homogeneous Finslerian geometric objects as sections:
A k-homogeneous (Finslerian) geometric object= a local section:

¥ Q=Y. () (z,d,y(, 1)),
of some fiber bundle (Y, M, T M, Z) obeying:

[(z,ax) = <a:, oz:i:,ozky> , VYa > 0.

O O
Necessary cond.: Jan action H : R} X Y — Y by fibered automorphisms:

O
H(a, ) = Ho € Aut(Y), Ho(x,,y) = (.’L‘, oL, ozky> : (30)
Then: k-homogeneity = equivariance:
O O
y Ho oy
O O
¥ 1 ik} Hao oy =70Xa
O XO( O
T™M == TM



©) @)
% Idea: "factor away" the action of R’ from both Y and T'M.

Theorem 58 (The orbit space Y) Con5|der a fiber bundle (Y ﬂ TM Z),
equipped with action H : R X Y — Y as in (30). Then:

1. The orbit space Y = Y/Nof the action is a fiber bundle over PT M ™, with
typical fiber Z and projection:

N:Yy - PTM*T, Nz, &,vy] = [z, i].

O O
2. k-homogeneous sections% : Q — Y, where Q C T'M is a conic subbundle,
are in a one-to-one correspondence with local sections v : 77 (Q) — Y.

V xR

= IL' x E‘_ ] L. vV

= UT xZ.
1 L I o
W .,..z”# PTo) ; J._f“’ prog,

Ut xR v

@)
Figure: local trivializations on' Y and Y.



Fibered homogeneous coordinates on Y (unique up to positive rescaling):

[z, T,y] — (xi,a'ci,ya)

(31)

:= local coords of an arbitrarily chosen representative of the class [x, z, y].

Examples:
1. Finsler (2-homogeneous) functions L : A — R =

O O A A
Y =TM xR, Hu(z,%,L) = (z,ad,a?L), Va>O0.
Sections of Y: ~[(x, )] = [z, , L(x, )], that is:
L=Lo v o T,

O
2. 0-homogeneous metric d-tensors g : A — TS(TM) =

@) @)
Y = TNTM), Ha(z, 2,y) = (z,od,y), VYo > 0.

Other examples: d-tensors, connections.

(32)



Finsler field Lagrangians, action, extremals:

Finslerian field: = a (local) section v € I'(Y)).

Field Lagrangian of order r:= a M"-horizontal 7-form A € Q7(J"Y):
AT = AdX T,

where: dX. T = (any) invariant volume form on PT M ™.
Property (0-homogeneity): &'d;A = 0.

Action attached to A™ and to a piece Dt C PTM™:

Spr i T(Y) >R, Spe(y) = [ J7y*a*
D+
= tools in Chapter 1 can be consistently applied.

(33)



3.2. The energy-momentum distribution tensor

@)
Setting: Use L as the background variable (section of: Yy = (T'M x R), )
o Configuration bundle (Y, rl,PTM+):

where: Y, - fiber bundle over PTM+, Y - natural over M.
o Canonical lifts = of {5 € X (M) = double lifts:

g €EX(M) — (€X(PTMT) — ZeXx(Y). (34)
o Natural matter Lagrangians:
=Xt =0,

for all = as in (34).



Theorem 61 (Existence of energy-momentum distribution tensor ©): Let
A € Q7(J7Y) be a natural Finsler Lagrangian and £5(\}) € Qg(J511Y)
(s + 1 < 2r), the Yy-component of its Euler-Lagrange form. Then, there
exist unique F(M)-linear mappings © : X(M) — Q(J*T1Y), B: X(M) —
Q(J512Y"), with horizontal values, such that:

higsi1=E9(Ay,) = B(€o) + hdO(&g), Vég € X(M). (35)

Energy-momentum scalar ¥ :
1 _ . : " .
Eq(N) =: -5F L tondzt, @ =307 tilq,, (36)
A " : ~ : 1. :
where: 0 := dL — L ;dx* — L.;dx*, x; := EL-iij]-

Energy-momentum distribution tensor:
O(€o) = (€7£")is,dxt = Tw' @ iprdr .

Balance function: B(&g) = —@ji‘jﬁidZJr.



Theorem 65: For any local section v = (L, ~,,) € I'(Yy X ppas+ Ym) such
that

supp(J"y* A) Cc TT. (37)

and v,,, - critical for the action, there hold:
1. Averaged energy-momentum conservation law: At any x € M and in
any corresponding fibered chart:

[ (@0 I FINdEE & ) O, (38)
IZZC—F

where dX T =: d*z A dX.

2. Relation to Noether currents: For any £5 € X (M):

/ TSy 0(€p) R (m) / J5Hy* 7= (39)
T +(Dyp) 9T+ (Do)

where = denotes the canonical lift of £y to Y.



Energy-momentum tensor density on M :

If supp(J™y*\1) C T (e.g., v has compact support supp () C 7 1), then:

Ti(z) = / (00 I (uy I, Vo e M. (40)
O

= integral is finite, Tg- - comps. of a tensor density on M.



3.3. Concrete model: Finsler gravity sourced by a kinetic gas

Refs.:

1] M. Hohmann, C. Pfeifer, N. Voicu, Finsler gravity action from variational
comp/et/on Physical Review D 100, 064035 (2019).

2] M. Hohmann, C. Pfeifer, N. Voicu, Kinetic gases as direct gravity sources,
Phy5|cal Review D 101, 024062 (2020).

3] M. Hohmann, C. Pfeifer, N. Voicu, The kinetic gas universe, European
Physical Journal C 80, 809 (2020).

Main results:

1. Construct a concrete, correctly defined vacuum action, starting from a
physical principle+canonical variational completion.

2. Construct a matter action (kinetic gas) = field eq.&energy-momentum
distribution.

Advantage: description of the gravitational field, fully taking the velocity
distribution of sources into account.



1. Construction of vacuum action:

Geodesics of a Finsler spacetime V:.c=0
(V:X(M)xX(M) — X(M) - given by the canonical nonlinear connection)

Geodesic deviation equation: V. .V.: = R(¢, &);
Finslerian Ricci scalar: R := trace(R) = Riikdﬁk

Postulated vacuum field equation (Rutz 1993):

R=0. (41)

Rutz eqn. is not variational — build the "closest" variational eq.



Canonical variational completion of Rutz’s equation, [1]:

o Dynamical variable: L +— I(Yy), Yy := (T?W xR),/,

o Canonical volume form on A(_)I' C PTMT :dXt = wT AdwT Adwt Adw™
o Source form: ¢ = (RL™1)0 A dXT € Qg(J4Yy)

= Vainberg-Tonti Lagrangian:

A =L 'Rdz ™.

Variational completion of Rutz’s equation
(= same eq. as Pfeifer&Wohlfarth 2011):

1 .. B g
97 Riij = 3(L 'R) — g"(Py; — PPj+ (VP).;) =0,  (42)

where P = P;dz" - trace of Landsberg tensor.



2. Kinetic gases in general relativity (see Sarbach-Zannias 2014):

[Kinetic gas] = a large number NN of interacting point particles, described by

a smooth 1-particle distribution function:

90:90(337x.)'

‘\s.,o—p

'S

<l

kinetic gas fluid

(individual velocities) (averaged velocity)



Worldlines = piecewise smooth normalized geodesics v — (v(s),~(s)) € O
v O - observer space of a Lorentzian metric

O :={(x,z) € TM | gz(&,%) = 1, - future pointing}

v' Assumption: ¢ (x,-) : Oy — R has compact support, Vx € M.
v" Number N, of particle trajectories (-, y) crossing a hypersurface o C O :

o
v’ Gravitational field - from Einstein-Vlasov equations:
1 8w
RHY — ERg“V = 7T—4T“V, THY () 1= /mgoa':“:izydz.
c
Og

v’ For collisionless gases = Liouville equation:

() = 0.



Our approach, [2]:

% ldea: Couple ¢ directly to gravity (no i-averaging!)
— this is possible in Finsler geometry.

o Rewrite ¢ : O — R as a function on J4Yg ;

o J4Yg — R, 90+(J[Azg;,5g)]7) = ¢(z, &)

o Construct matter action on J4Yg as:

i _ _ + 4 +
Sm,D = —mNT = m/Dgde— m/7T+(D)(gp o Jy)dXT,

with: D C O (piece).

o Matter Lagrangian: A\ := —mpTdX T - generally covariant.



_ 1
Total Lagrangian: AT = 2—/-4;2>\; + A,

Theorem 68: The Euler-Lagrange equation attached to A7 is:

1 .. g
EQZ](LRO)@-]’ — 3Rg — gZ](PZ-U — PP+ (VF).;) = /ﬂ:zmgo : (44)

Energy-momentum distribution tensor comps.:

; N
O'; = met L™ i, (45)

Energy-momentum density on M - components (supp((x,-)) - compact!):
Ti(z) :=m / (@t1i) 0 SOy dXf = m / Plil;ds, (46)
OF Oz

- formally similar to pseudo-Riemannian (GR) approach.



Averaged e.-m. conservation law (38) becomes:

/E(gp)ljdzx —0.
o

Particular cases:

1. Collisionless gases:
- Pointwise covariant conservation law of © = Liouville equation:

¢(p) = 0.
2. Lorentzian spaces (M, a):
- Averaged energy-momentum conservation law (38) <

sz;?: — 0

(47)



3.4. Cosmologically symmetric Finsler spacetimes

Reference:
[1]: M. Hohmann, C. Pfeifer, N. Voicu, Cosmological Finsler spacetimes, Uni-

verse 6 (5), 65 (2020).

Main results:

1. Use the Copernic principle to identify the Lie algebra of generators of
cosmological symmetry (& general form of Finsler functions with cos-
mological symmetry.)

2. For cosmologically symmetric Berwald spacetime functions — complete

classification.



Cosmological (Copernic) principle:
At largest scales, the Universe is: homogeneous ("same at all points"):
and isotropic ("same in each direction"):

Consider: (M, L) - Finsler spacetime.

Global time function = a smooth t : M — IR such that

o dt(X) >0, VX € T and

¢ the spatial slices X1 := {p € M|t(p) =T = constant} are connected.

=



Definition, [1]: (M, L) - cosmological Finsler spacetime if:
1. It admits a global time function ¢t : M — R and

2. All spatial slices 27 obey:
(i) X7 - homogeneous: 3 a Lie group G of isometries of (M, L) acting

transitively on each slice X7 :
VI € R,Vq1,q2 € Zr3p € G ¢(q1) = ¢(q2)
(i) X - isotropic: at all p € X7 : the isotropy group at p :
Gp :={y € Gl¢(p) = p}
acts transitively on the projective space PTp2 7:

V[vi], [vo] € PTpXy: 3o, € Gp @ dpy, ([v1]) = [v2] -



Theorem 72, [1]: For a cosmologically symmetric Finsler spacetime (M, L) :
dmG =6, dimGy=3.

Proposition 73, [1]: The identity component of G is isomorphic to SO(3).

Remark (Kobayashi&Nomizu, 1963) :
> - homogeneous, Gp >~ SO(3) = > 7 admits a G-invariant Riemannian

metric h.

Consequences:

1. h - maximally symmetric = h has constant sectional curvature k;
2. L and h have the same Killing vector fields X(k), k=1,...,6.
3. One can use spherical coords. (t,r,p,0) given by h.



Theorem (= HohmannéPfeifer 2016): If (M, L) - cosmologically symmetric

Finsler spacetime, then:

7;2

L = L(t,t,w), 2 —
( w) v 1 — kr?

+ 72 (92 + sin® 9(,2)2) :

Theorem 75, [1] (Classification of cosmologically symmetric Berwald
spacetime functions): If (M, L) - cosmological Berwald spacetime, then L
falls into one of the following classes:

a) pseudo-Riemannian spaces: L(x,x) = aij(:ﬁ):i:ij:j :

b) nontrivially Finslerian: of the form:

. 252 w
lﬁﬁmo_tB@w<E@Q.

where B, ® - arbitrary real functions and x € {0, +1}.



4 Qutlook and perspectives

I. A geometric toolkit for the calculus of variations:

1. Geometric formulation of higher order Hamiltonian field theory (Hamilton-de
Donder equations), based on canonical Lepage equivalents.

2.Energy-momentum tensors:

- Extend (if possible) the definition of energy-momentum tensors in Ch.1 to the
case when the differential index of Y (b) s greater than 1 (e.g., in purely affine
theories).

- Obtaining a general construction of a conserved gravitational energy-
momentum pseudotensor, in general field theories.

3. Extending the Vainberg-Tonti Lagrangian construction - e.g., using other
groups of fiber automorphisms.



Il. Finsler spacetimes:

Classes of Finsler spacetimes which are relevant for solving the Finsler gravity
field equation (44):

- Spacetimes with («, 8)-metric.

- Spacetimes with - compactly supported Ricci scalar R(x,-); in particular,
Ricci-flat ones R = 0.

- Compactly supported deviations from Lorentzian metrics a.

- Weakly Landsberg spacetimes. Weak unicorns.

- Berwald spacetime functions with special properties (e.g., spherical symmetry,

@)
T'M-smoothness etc.).



l1l. Finslerian field theory:

1. Solutions of the Finslerian field equation:

- Vacuum spatially spherically symmetric solutions.

- Cosmologically symmetric solutions of the (non-vacuum) field equation (44).
- Linearized Finslerian perturbations of Lorentzian metrics.

2. Comparison of Finslerian equation with the Einstein-Vlasov equations.

. _ ?
Focus on: cosmologically symmetric case =- dark energy.
3. Build models for: electromagnetic field, ultrarelativistic gas.
4. Finsler geometry as the geometry of modified dispersion relations:

Cotangent bundle formulation of Finsler field theory framework, geometry of

curved momentum spaces.






