Geometric Methods of Finsler-Based Field Theory

-Habilitation Thesis-

Nicoleta VOICU

Transilvania University of Brasov, Romania

Main goals and motivation

Beauty is the first test: there is no permanent place in the world for ugly mathematics (G.H. Hardy)

Main goals:

 ◊ develop a general geometric framework for Lagrangian field theories based on Finsler geometry;

◊ explore other applications, in more general field theories, of the newly developed geometric tools.

Motivation of our study: extending general relativity so as to address:

♦ the dark energy&dark matter problem:

♦ tensions with quantum mechanics.

"Who ordered Finsler?"

- ◊ In physics:
- most general geometry with a well defined notion of arc length (\sim proper time);
- quantum gravity phenomenology (modified dispersion relations)
- description of wave propagation in media
- kinetic description of gases (\rightarrow gravitational field generated by multiple sources, moving with different velocities).

◊ In pure mathematics:

- Lorentz-Finsler geometry is: little explored, strikingly different form positive definite one and... beautiful.

General structure:

Chapter 1: A geometric toolkit for the calculus of variations

Chapter 2: Geometry of Finsler spacetimes

Chapter 3: Finsler-based field theory

Chapter 4: Outlook and perspectives

1 A geometric toolkit for the calculus of variations

1.1. Preliminaries

Main refs.: Krupka 2015; Giachetta, Mangiarotti&Sardanashvili 2009.

Fibered manifold: a triple (Y, π, X) with: X, Y - smooth manifolds (dim X = n, dim Y = n + m) $\pi: Y \to X$ - surjective submersion

Fibers: $Y_x = \pi^{-1}(x)$) Fibered charts on Y: (V, ψ) , $\psi = (x^A, y^\sigma)$ - such that $\pi : (x^A, y^\sigma) \mapsto (x^A)$

Interpretation in physics:

Y - configuration space, X - parameter space (usually - spacetime) Local sections $\gamma \in \Gamma(Y), \gamma : (x^i) \mapsto (x^A, y^{\sigma}(x^A))$ - fields

Arena for field theory: the jet bundles (J^rY, π^r, X) .

Lagrangian of order $r := a(\pi^r)$ -horizontal form $\lambda \in \Omega_n(J^rY)$:

$$\lambda = \mathcal{L}d^n x,$$

with: $\mathcal{L} = \mathcal{L}(x^A, y^{\sigma}, y^{\sigma}_{i}, ..., y^{\sigma}_{i_1...i_n}), \quad d^n x := dx^1 \wedge ... \wedge dx^n.$

Action: $S_D : \Gamma(Y) \to \mathbb{R}$:

$$S_D(\gamma) = \int_D J^r \gamma^* \lambda,$$

where $D \subset X$ - **piece** (=compact *n*-dim. submanifold with boundary).

Variations of S_D - from 1-parameter groups $\{\Phi_{\varepsilon}\}$ of **fibered automorphisms**

$$\begin{array}{ccccc}
Y & \stackrel{\Phi_{\varepsilon}}{\longrightarrow} & Y \\
\pi \downarrow & & \downarrow^{\pi} & \Rightarrow & \Phi_{\varepsilon} : \\
X & \stackrel{\varphi_{\varepsilon}}{\longrightarrow} & X
\end{array} \Rightarrow \Phi_{\varepsilon} : \begin{cases}
\tilde{x}^{i} = \tilde{x}^{i}(x^{j}) \\
\tilde{y}^{\sigma} = \tilde{y}^{\sigma}(x^{j}, y^{\mu})
\end{array}$$

Variations as Lie derivatives: $\Xi \in \mathcal{X}(Y)$ - generator of $\{\Phi_{\varepsilon}\} \Rightarrow$

$$\delta S_D(\gamma) = \int_D J^r \gamma^* \mathfrak{L}_{J^r \Xi} \lambda$$

First variation formula:

$$J^{r}\gamma^{*}(\mathfrak{L}_{J^{r}\Xi}\lambda) = J^{2r}\gamma^{*}\mathbf{i}_{J^{2r}\Xi}\mathcal{E}(\lambda) - J^{2r-1}\gamma^{*}d\mathcal{J}^{\Xi}$$
(1)

 $\diamond \mathcal{E}(\lambda) \in \Omega_{n+1}(J^{2r}Y)$ - Euler-Lagrange form:

$$\mathcal{E}(\lambda) = rac{\delta \mathcal{L}}{\delta y^{\sigma}} \theta^{\sigma} \wedge d^n x, \qquad \theta^{\sigma} := dy^{\sigma} - y^{\sigma}_{\ i} dx^i$$

 $\diamond \mathcal{J}^{\Xi} \in \Omega_{n-1}(J^{2r-1}Y)$ - Noether current

 $\diamond \gamma \in \Gamma(Y)$ is an **extremal** of S if: $\forall D \subset X$ piece, \forall compactly supported variation $supp(\Xi \circ \gamma) \subset D$:

$$\delta S_D(\gamma) = \mathbf{0}$$

In coords.: γ - extremal \Leftrightarrow Euler-Lagrange equations:

$$\frac{\delta \mathcal{L}}{\delta y^{\sigma}} \circ J^{2r} \gamma = \mathbf{0}$$

Noether's first theorem:

$$\mathfrak{L}_{J^r\Xi}\lambda = \mathbf{0} \Rightarrow J^s\gamma^*d\mathcal{J}^\Xi \approx \mathbf{0}$$

(\approx - equality along critical sections γ).

Identification of $\mathcal{E}(\lambda), \mathcal{J}^{\Xi}$:

- integration by parts \rightarrow coordinates needed!
- via Lepage forms (Krupka, 1973) \rightarrow coordinate-free, diff. forms only (see Sec. 1.4).

Natural bundles and natural (generally covariant) Lagrangians:

 \mathcal{M}_n - category of smooth *n*-dim manifolds, \mathcal{FB} - category of smooth fiber bundles.

Natural bundle functor:= a functor $\mathfrak{F} : \mathcal{M}_n \to \mathcal{FB}$, such that:

- $\forall M \in Ob(\mathcal{M}_n) : \mathfrak{F}(M)$ is a fiber bundle over M;

- $\forall \alpha_0 : M \to M' \in Morf(\mathcal{M}_n) \Rightarrow$ the fibered manifold morphism $\mathfrak{F}(\alpha_0) : \mathfrak{F}(M) \to \mathfrak{F}(M')$ covers α_0 .

Natural (generally covariant) Lagrangians = globally def. Lagrangians $\lambda \in \Omega_n(J^r\mathfrak{F}(M))$ s.th:

$$J^r \mathfrak{F}(\phi)^* \lambda = \lambda, \quad \forall \phi \in Diff(M)$$

In terms of infinitesimal generators:

$$\mathfrak{L}_{J^r\mathfrak{F}(\xi)}\lambda = \mathbf{0}, \quad \forall \xi \in \mathcal{X}(M)$$
(2)

1.2. Variational completion of differential equations

References:

1. N. Voicu, D. Krupka, *Canonical variational completion of differential equations,* Journal of Mathematical Physics 56, 043507 (2015).

2. N. Voicu: Source Forms and Their Variational Completions, in vol. The Inverse Problem of the Calculus of Variations - Local and Global Theory, ed. Dmitri Zenkov, Atlantis Press-Springer (2015).

3. M. Hohmann, C. Pfeifer, N. Voicu, *Canonical variational completion and* 4D Gauss-Bonnet gravity, European Physical Journal Plus 136, 180 (2021).

Aim: Given an arbitrary PDE/ODE system:

- find out whether it is locally variational;

- if not, transform it into a locally variational one, by *adding a meaningful correction term.*

Motivation:

♦ Historically first variant of Einstein field eqs.:

$$R_{ij} = 8\pi\kappa T_{ij} \tag{3}$$

 \rightarrow inconsistent with local energy-momentum conservation.

♦ Corrected version:

$$R_{ij} - \frac{1}{2}Rg_{ij} = 8\pi\kappa T_{ij} \tag{4}$$

 \rightarrow variational, with Lagrangian function = "simplest scalar" R.

Q: Is there any systematic way of finding the "correction term", based on calculus of variations?

Setting: (Y, π, X) - fibered manifold, dim X = n.

Consider an arbitrary PDE system of order r over Y:

$$\varepsilon_{\sigma}(x^{A}, y^{\sigma}, ..., y^{\sigma}_{A_{1}...A_{r}}) = 0$$

 \rightarrow a local source form:

$$\varepsilon := \varepsilon_{\sigma} \theta^{\sigma} \wedge d^{n} x \in \Omega_{n+1}(J^{r}Y).$$
(5)

Use: Vainberg-Tonti Lagrangian (Vainberg 1956, Tonti 1969):

$$\lambda_{\varepsilon} = \mathcal{L}_{\varepsilon} d^n x$$

attached to ε and to a given chart:

$$\mathcal{L}_{\varepsilon}(x^{A}, y^{\sigma}, ..., y^{\sigma}_{j_{1}...j_{r}}) := y^{\sigma} \int_{0}^{1} \varepsilon_{\sigma}(x^{A}, uy^{\sigma}, ..., uy^{\sigma}_{j_{1}...j_{r}}) du.$$
(6)

Key property: Euler-Lagrange form $\mathcal{E}(\lambda_{\varepsilon}) = \mathcal{E}_{\nu}\theta^{\nu} \wedge d^{n}x$ of λ_{ε} :

$$\mathcal{E}_{\nu} = \varepsilon_{\nu} - \int_{0}^{1} u \{ y^{\sigma} (H_{\nu\sigma} \circ \chi_{u}) + \dots + y^{\sigma}_{B_{1} \dots B_{r}} (H_{\nu\sigma}^{B_{1} \dots B_{r}} \circ \chi_{u}) \} du,$$

where:

$$\circ \chi_u$$
: $(x^A, y^\sigma, y^\sigma_{j}, ..., y^\sigma_{j_1...j_r}) \mapsto (x^A, uy^\sigma, uy^\sigma_{j}, ..., uy^\sigma_{j_1...j_r}), u \in [0, 1].$
 $\circ H$ - Helmholtz form of ε - "obstructions from local variationality" of ε .

Definition 7, [1]: Canonical variational completion of ε :

$$\mathcal{E}(\lambda_{\varepsilon}) = \varepsilon + \kappa$$
 (7)

 $\Rightarrow \kappa = \kappa_{\nu} \theta^{\nu} \wedge d^n x \in \Omega_{n+1}(J^r Y)$ - completely expressed in terms of H.

Applications of canonical variational completion:

✓ Vacuum Einstein equations
$$R_{ij} - \frac{1}{2}Rg_{ij} = 0$$
 - c.v.c. of $R_{ij} = 0$, [1].

 \checkmark Energy-momentum tensors in general relativity (symmetrization [1], Lagrangian for perfect fluid [2]).

 \checkmark Linearly damped oscillations, [1].

✓ "Renormalized" (truncated) Gauss-Bonnet gravity theory - shown to be non-variational, [3].

✓ **Finsler gravity** - see Chapter 3.

1.3. Energy-momentum tensor and energy-momentum balance

Ref.: [1]. N. Voicu, *Energy-momentum tensors in classical field theories – a modern perspective*, International Journal of Geometric Methods in Modern Physics, 13, 1640001 (2016).

Ideas:

1. Use a "Hilbert-type" definition of energy-momentum tensors, in general Lagrangian field theories (\sim Gotay&Marsden 1992, Fernandez&co. 2000);

- 2. Find a general *energy-momentum balance law*, valid in any natural field theory of index 1 in the background variables.
- 3. Application: energy-momentum balance law in *general metric-tensor/metric-affine theories*.

Setting:

♦ Configuration manifold:

$$Y = Y^{(b)} \times_M Y^{(m)},$$

where $Y^{(b)}$, $Y^{(m)}$ - natural bundles over M (b - "background", m - "matter"). \diamond A generally covariant Lagrangian:

$$\lambda = \lambda_b + \lambda_m \in \Omega_n(J^rY)$$

 \diamond Assumption: Natural lift $l^b : \mathcal{X}(M) \to \mathcal{X}(Y^{(b)}), \ \xi \mapsto \Xi^{(b)}$ - of order 1:

$$\Xi^{(b)} = \xi^i \partial_i + (C^{\sigma}_{\ i} \xi^i + C^{\sigma j}_{\ i} \xi^i_{,j}) \frac{\partial}{\partial y^{\sigma}}.$$

Euler-Lagrange form of λ_m :

$$\mathcal{E}(\lambda_m) = \mathcal{E}^{(b)} + \mathcal{E}^{(m)}.$$

Lemma 8, [1]: There is a unique splitting:

$$h\mathbf{i}_{J^{s+1}\Xi}\mathcal{E}^{(b)} = \mathcal{B}(\xi) + hd(\mathcal{T}(\xi)), \quad \forall \xi \in \mathcal{X}(M),$$
 (8)

such that $\mathcal{T} : \mathcal{X}(M) \to \Omega_{n-1}(J^{s+1}Y), \mathcal{B} : \mathcal{X}(M) \to \Omega_n(J^{s+2}Y)$ are $\mathcal{F}(M)$ -linear mappings with horizontal values $(h : \Omega(J^{s+1}Y) \to \Omega(J^{s+2}Y))$ - *horizontalization* morphism).

$\diamond T$ - energy-momentum tensor, \mathcal{B} - balance function.

In fibered coords $\left(x^{i},y^{\sigma},y^{I}
ight)$ on Y :

$$\mathcal{T} = \mathcal{T}_{i}^{j} dx^{i} \otimes \mathbf{i}_{\partial_{j}} d^{n} x, \qquad \mathcal{T}_{i}^{j} = C_{i}^{\sigma j} \frac{\delta \mathcal{L}_{m}}{\delta y^{\sigma}}.$$
(9)

First variation formula revisited:

$$\int_{D} J^{s+2} \gamma^* \mathcal{B}(\xi) + \int_{\partial D} J^{s+1} \gamma^* (\mathcal{T}(\xi) - \mathcal{J}^{\Xi}) \approx_{\gamma(m)} 0, \quad (\gamma^{(m)} := proj_{Y(m)} \circ \gamma).$$

Theorem 10, [1] (Coordinate-free energy-momentum balance law): For any piece $D \subset M$ and any $\xi \in \mathcal{X}(M)$ with support contained in D, there holds:

$$\int_{D} J^{s+2} \gamma^* \mathcal{B}(\xi) \approx_{\gamma(m)} \mathbf{0}.$$
(10)

Theorem 11, [1]:

(i): Energy-momentum balance law in coordinates:

$$\left(d_{j}\mathcal{T}_{i}^{j}-(C_{i}^{\sigma}-y_{i}^{\sigma})\frac{\delta\mathcal{L}}{\delta y^{\sigma}}\right)\circ J^{s+2}\gamma\approx_{\gamma(m)}\mathbf{0}.$$

(ii) Relation with Noether currents:

$$\int_{\partial D} J^{s+1} \gamma^* \mathcal{T}(\xi) \approx_{\gamma(m)} \int_{\partial D} J^{s+1} \gamma^* \mathcal{J}^{l(\xi)}$$

Example. General metric-tensor theories:

$$Y^{(b)} = Met(M) imes_M T^p_q(M), \quad \lambda_m = \mathbb{L}_m \sqrt{|\det g|} d^n x.$$

Denote: $y^{\sigma} \in \{g^{ij}, y^{i_1 \dots i_p}_{j_1 \dots j_q}\}$ - background variables and

$$\mathfrak{T}_{\sigma} = \frac{1}{\sqrt{|\det g|}} \frac{\delta \mathcal{L}_m}{\delta y^{\sigma}}, \qquad T^j_{\ i} = \frac{1}{\sqrt{|\det g|}} \mathcal{T}^j_{\ i} = C^{\sigma j}_{\ i} \mathfrak{T}_{\sigma}. \tag{11}$$

Energy-momentum balance law:

$$(y^{\sigma}_{;i}\mathfrak{T}_{\sigma}+T^{j}_{i;j})\circ J^{s+2}\gamma\approx_{\gamma(m)}\mathbf{0}, \quad i=1,\dots,n.$$
(12)

In particular, in metric-affine theories: $y^{\sigma} \in \{g^{ij}, N^i_{\ jk} := K^i_{\ jk} - \Gamma^i_{\ jk}\}$:

$$(T^{j}_{i;j} + N^{j}_{kh;i} \frac{\delta \mathbb{L}_{m}}{\delta N^{j}_{kh}}) \circ J^{s+2} \gamma \approx_{\gamma(m)} \mathbf{0}.$$
(13)

1.4. A special property of Lepage equivalents of Lagrangians

[1]. N. Voicu, S. Garoiu, B. Vasian, *On the closure property of Lepage equivalents of Lagrangians*, Differential Geometry and its Applications 81, 101852 (2022).

Main idea: For general Lagrangians $\lambda \in \Omega_n(J^rY)$ of order $r \ge 1$, build *two* local Lepage equivalents with the **closure property**:

$$\mathcal{E}(\lambda) = \mathbf{0} \quad \Leftrightarrow \quad d\rho_{\lambda} = \mathbf{0}.$$

Application: Having a well defined Lepage formulation of *Hamiltonian* field theory.

(Only) previously known examples of ρ_{λ} with closure property:

- \checkmark mechanics (dim X = 1) Poincaré-Cartan form;
- √ *first order* Lagrangians (Krupka 1977, Betounes 1984).

Setting: (Y, π, X) - fibered manifold, $\lambda \in \Omega_n(J^rY)$ - Lagrangian

Definition (Krupka, 1973): $\rho_{\lambda} \in \Omega_n(J^sY)$ - **Lepage equivalent** of λ , if: (i) $\int_D J^r \gamma^* \lambda = \int_D J^r \gamma^* \rho_{\lambda}$, for all γ, D . (ii) The first contact comp. $p_1 d\rho_{\lambda}$ is a source form ($\Leftrightarrow \pi^{s+1,0}$ -horizontal).

Euler-Lagrange form/Noether currents in terms of ρ_{λ} :

$$\mathcal{E}(\lambda) = p_1 d
ho_{\lambda}, \quad \mathcal{J}^{\Xi} = \mathbf{i}_{J^s \Xi}
ho_{\lambda}.$$

Principal Lepage equivalent $\rho_{\lambda} =: \Theta_{\lambda}$ (Krupka, 1981) - **no** closure property:

$$\Theta_{\lambda} = \mathcal{L}d^{n}x + \left(\sum_{k=0}^{r-1} f_{\sigma}^{AB_{1}...B_{k}} \theta_{B_{1}...B_{k}}^{\sigma}\right) \wedge \mathbf{i}_{\partial_{A}}d^{n}x, \quad (14)$$

$$f^{B_1...B_{r+1}} = \mathbf{0}, \quad f^{B_1...B_k}_{\sigma} = \frac{\partial \mathcal{L}}{\partial y^{\sigma}_{B_1...B_k}} - d_A f^{AB_1...B_k}_{\sigma}. \tag{15}$$

 \bigstar Our idea, [1]: Use $\Theta_{\lambda'}$, for a conveniently chosen λ' equivalent to λ .

Consider $\lambda \in \Omega_n(J^rY)$ - arbitrary Lagrangian.

I. Canonical Lepage equivalent Φ_{λ} : Decompose λ locally as:

$$\lambda = \lambda_{VT} + hd\alpha, \tag{16}$$

where λ_{VT} - Vainberg-Tonti Lagrangian of $\mathcal{E}(\lambda)$ and set:

$$\Phi_{\lambda} := \Theta_{\lambda_{VT}} + d\alpha. \tag{17}$$

Properties of canonical Lepage equivalent:

- 1. Closure property $\mathcal{E}(\lambda) = 0 \iff d\Phi_{\lambda} = 0$.
- 2. Φ_{λ} uniquely defined by λ .

3. Generally Φ_{λ} - just locally defined. Yet, in *tensor* field theories with second order Euler-Lagrange equations, Φ_{λ} - globally well defined.

II. Minimal Lepage equivalent ϕ_{λ} : If λ - order-reducible, then use:

$$\lambda = \lambda' + h d\alpha, \qquad \phi_{\lambda} := \Theta_{\lambda'} + d\alpha, \tag{18}$$

(where λ' - of minimal order).

Properties of minimal Lepage equivalents:

- 1. Closure property.
- 2. If λ second order, reducible $\Rightarrow \phi_{\lambda}$ of order 1.
- 3. In general, ϕ_{λ} -not unique.

Example: Hilbert Lagrangian $\lambda \in \Omega_4(J^2Met(M)), \lambda = R\sqrt{|\det g|}d^4x$:

$$\Phi_{\lambda_g} = \Theta_{\lambda_g} = \phi_{\lambda_g}.$$
 (19)

2 Geometry of Finsler spacetimes

2.1. Definitions and basic geometric objects

[1]. M. Hohmann, C. Pfeifer, N. Voicu, *Mathematical foundations for field theories on Finsler spacetimes*, Journal of Mathematical Physics 63, 032503 (2022).

[2] M. Hohmann, C. Pfeifer, N. Voicu, *Finsler gravity action from variational completion*, Physical Review D 100, 064035 (2019).

Aim of the section: Present the notion of **Finsler spacetime** as defined in [1] and a minimal list of related notions, to be used in the sequel.

Setting: M - n-dim. connected, orientable, C^{∞} -smooth manifold

 $\diamond T \stackrel{\circ}{M} := TM \setminus \{0\}$ slit tangent bundle.

- \diamond An open subset $\mathcal{Q} \subset TM \setminus \{0\}$ is a **conic subbundle** if:
- for $\forall x \in M, \ \mathcal{Q}_x := \mathcal{Q} \cap T_x M$ is non-empty;
- conic property: $(x, \dot{x}) \in \mathcal{Q} \Rightarrow (x, \alpha \dot{x}) \in \mathcal{Q}, \quad \forall \alpha > 0.$

♦ (Bejancu&Farran, 1990): Pseudo-Finsler space = (M, L), where:
L: $\mathcal{A} \to \mathbb{R}$ - smooth on a conic subbundle $\mathcal{A} \subset TM$ and:
(i) $L(x, \alpha \dot{x}) = \alpha^2 L(x, \dot{x}), \forall \alpha > 0;$ (ii) $g_{\mu\nu}(x, \dot{x}) = \frac{1}{2} \frac{\partial^2 L}{\partial \dot{x}^{\mu} \partial \dot{x}^{\nu}}$ is nondegenerate on \mathcal{A} .

 \mathcal{A} - set of *admissible vectors*.

Definition 25, [1] A 4-dim. pseudo-Finsler space is a **Finsler spacetime** if: \exists a conic subbundle $\mathcal{T} \subset \mathcal{A}$, with connected fibers \mathcal{T}_x on which: $\checkmark L > 0, g$ has Lorentzian signature (+, -, -, -) $\checkmark L$ can be continuously extended as 0 to $\partial \mathcal{T}$.

Physical interpretations:

- Interval: $ds^2 = L(x, dx) = g_{ij}(x, \dot{x})dx^i dx^j$
- $\circ T_x :=$ future-pointing timelike cone at x.
- Observer space at $x \in M : \mathcal{O} := \{(x, \dot{x}) \in \mathcal{T} \mid L(x, \dot{x}) = 1\}$:

• Finslerian metric tensor:

$$g: \mathcal{A} \to T_2^0 M, (x, \dot{x}) \mapsto g_{(x, \dot{x})} = g_{ij}(x, \dot{x}) dx^i dx^j$$

• Hilbert form on $\mathcal{A}_0 := \mathcal{A} \smallsetminus L^{-1}(0)$:

$$\omega := F_{\cdot i}(x, \dot{x}) dx^i, F = |L|^{1/2}$$

• Arc length of a non-null admissible curve $c : [a, b] \to M$ (~ proper time):

$$l(c) = \int_{a}^{b} \sqrt{L(c(t), \dot{c}(t))} dt = \int_{a}^{b} \sqrt{g_{ij}(x, \dot{x})} dx^{i} dx^{j} dt = \int_{\mathrm{Im}(c, \dot{c})} \omega, \quad (20)$$

(!) The positive 2-homogeneity of L ensures that l(c) - well-defined.

Geodesics of (M, L): $\ddot{x}^i(s) + 2G^i(x(s), \dot{x}(s)) = 0$

Canonical nonlinear connection $T\mathcal{A} = H\mathcal{A} \oplus V\mathcal{A} \rightarrow \text{coeffs: } G^{i}{}_{j} = \partial_{j}G^{i}.$ Local adapted basis of $T\mathcal{A}$: $\{\delta_{i} = \partial_{i} - G^{j}{}_{i}\partial_{j}, \partial_{i} := \partial_{\dot{x}^{i}}\}.$ **Examples of Finsler spacetime functions** *L* :

 \checkmark Lorentzian (quadratic in \dot{x}):

$$L(x, \dot{x}) = a_{\mu\nu}(x) \dot{x}^{\mu} \dot{x}^{\nu}$$

✓ **Randers** $L = \epsilon F^2$, with $\epsilon = sign(F)$, where:

$$F(x, \dot{x}) = \sqrt{|a_x(\dot{x}, \dot{x})|} + b_x(\dot{x}).$$

✓ **Bogoslovsky/Kropina** (VSR,VGR - Cohen&Glashow):

$$L(x, \dot{x}) = \epsilon |a_{\mu\nu}(x) \dot{x}^{\mu} \dot{x}^{\nu}|^{1-q} (b_{\rho}(x) \dot{x}^{\rho})^{2q},$$

where: $\epsilon = sign(a_{\mu\nu}(x)\dot{x}^{\mu}\dot{x}^{\nu}).$ \checkmark Quartic metrics (\rightarrow birefringence - Pfeifer&Wohlfarth, Perlick etc.):

$$L(x,\dot{x}) = \epsilon \sqrt{|(a_{\mu\nu}(x) \dot{x}^{\mu} \dot{x}^{\nu}) (h_{\rho\sigma}(x) \dot{x}^{\rho} \dot{x}^{\sigma})|},$$

where $\epsilon = sign(...)$.

Homogeneity of Finslerian geometric objects

 $\diamond~L$ - homog. of degree 2 $\Rightarrow~g, G^i{}_j$ etc. \rightarrow all homogeneous of some degree.

Fiber homotheties:

$$\chi_{\alpha}: T \stackrel{\circ}{M} \to T \stackrel{\circ}{M}, \quad \chi_{\alpha}(x, \dot{x}) = (x, \alpha \dot{x}) \qquad (\alpha > 0)$$

- generated by the Liouville vector field

$$\mathbb{C} = x^i \partial_i. \tag{21}$$

Definition 30, [1]: A tensor field $T \in \Gamma(T^p_q(\mathcal{A}))$ is k-homogeneous, if:

$$\forall \alpha > \mathbf{0} : \quad \chi_{\alpha}^* T = \alpha^k T.$$

 \diamond Anisotropic tensor fields $\mathbb{T} : \mathcal{A} \to T^p_q(M) \rightsquigarrow d$ -tensor fields $T \in \Gamma(T^p_q(\mathcal{A}))$ (for which k-homog. is defined).

2.2. The positively projectivized tangent bundle PTM^+ (The projective sphere bundle)

1. On arbitrary manifolds M, dim M = n. Define:

where:

$$PTM^{+} := T \overset{\circ}{M}_{/\sim}$$

$$(x, \dot{x}) \sim (x, u) \Leftrightarrow \exists \alpha > 0 : u = \alpha \dot{x}.$$

$$(22)$$

 $\circ PTM^+$ - smooth, orientable (2n - 1)-dim. manifold, natural bundle over M, with fibers $\simeq \mathbb{S}^{n-1}$.

 \circ $(TM, \pi^+, PTM^+, \mathbb{R}^*_+)$ - principal bundle, with projection:

$$\pi^+: T \stackrel{\circ}{M} \to PTM^+, \ (x, \dot{x}) \mapsto [(x, \dot{x})].$$
(23)

• **0-homogeneous objects on** $TM \cong$ **geom. objects on** PTM^+ : • *Homogeneous local coords* of $[(x, \dot{x})]$: (x^i, \dot{x}^i) (unique up to a factor) (see Chern-Chen-Lam 1999). 2. On Finsler spacetimes (M, L): The set of non-null admissible directions:

$$\mathcal{A}_{\mathbf{0}}^{+} = \left\{ \left[(x, \dot{x}) \right] \in \pi^{+}(\mathcal{A}) \mid L(x, \dot{x}) \neq \mathbf{0} \right\}$$

has a contact structure - the Hilbert form $\omega^+ = \dot{\partial}_i F dx^i$.

$$\circ$$
 Canonical volume form: $d\Sigma^+ := \frac{\epsilon}{3!} \omega^+ \wedge (d\omega^+)^3$ $(\epsilon := sign(\det g)).$
 \circ Reeb vector field on $\mathcal{A}_0^+ : \ \ell^+ = l^i \delta_i, \quad l^i = \frac{\dot{x}^i}{F}.$

Proposition 38, [1] (Set of future pointing timelike directions \mathcal{T}^+): Define $\mathcal{T}^+ := \pi^+(\mathcal{T}) \subset \mathcal{A}_0^+$. Then: 1. $\pi^+ : \mathcal{O} \to \mathcal{T}^+$ is a diffeomorphism. 2. If $\rho^+ \in \Omega_7(\mathcal{T}^+)$ - compactly supported and $\rho := (\pi^+)^* \rho^+$, then: $\int_{\mathcal{T}^+} \rho^+ = \int_{\mathcal{O}} \rho.$ (24)

2.3. Finsler spacetimes, Finsler spaces, Lorentzian manifolds: a brief comparison

References:

 N. Voicu, Conformal maps between pseudo-Finsler spaces, International Journal of Geometric Methods in Modern Physics 15(01), 1850003 (2018).
 A. Fuster, S. Heefer, C. Pfeifer, N. Voicu, On the non metrizability of Berwald Finsler spacetimes, Universe 6 (5), 64 (2020).

Main aim: Show that:

1. Finsler spacetimes may *strikingly* differ from positive definite Finsler spaces 2. Yet: Finsler spacetimes share with Lorentzian ones some essential features $(\rightarrow \text{OK for physics!})$

Focus on: *projective* and *conformal* structures.

On the non-metrizability of Berwald-Finsler spacetimes, [2]:

(M, L) is called of **Berwald** type if G^i - quadratic in \dot{x} :

$$G^i = G^i{}_{jk}(x)\dot{x}^j \dot{x}^k$$

 $\Leftrightarrow G_{jk}^i$ define a symmetric affine connection on M, whose autoparallels are geodesics of (M, L).

Theorem (Szábó,'s Metrizability Theorem, 1981): Let (M, F) be a (positive definite, TM-smooth) Finsler space of Berwald type. Then, there exists a Riemannian metric a on M such that the affine connection of the Berwald space is the Levi-Civita connection of a.

Consequence: Parametrized geodesics of (M, F) = same as those of (M, a).

Results in [2]:

Necessary condition for pseudo-Riemann metrizability: horizontal Chern-Rund Ricci tensor components $R_{ij} := R_{ijk}^{k}$ must be symmetric:

$$R_{ij} = R_{ji}$$

Example: Berwald spacetime function on \mathbb{R}^4 with $R_{ij} \neq R_{ji}$:

$$L(x, \dot{x}) = a_x(\dot{x}, \dot{x})s^{-p}(k+m\ s)^{p+1},$$

 $a = 2dx^{0} \otimes dx^{1} + x^{1} \phi(x^{2}, x^{3}) dx^{0} \otimes dx^{0} + dx^{2} \otimes dx^{2} + dx^{3} \otimes dx^{3}, \ b = dx^{0},$ where: $s := \frac{(b_{x}(\dot{x}))^{2}}{a_{x}(\dot{x}, \dot{x})} \Rightarrow L$ - non-Lorentz metrizable.

Theorem 42: If (M, L) is Berwald with $\mathcal{A} = TM$, then:

$$R_{ij} = R_{ji}$$

Conformal symmetries of a pseudo-Finsler space (M, L), [1].

 $\phi \in Diff(M)$ - conformal symmetry if $\exists \sigma : M \to \mathbb{R}$ - smooth, s. th.

$$L \circ d\phi = e^{\sigma} L. \tag{25}$$

Particular case: $\sigma = \mathbf{0} \Rightarrow \phi$ - *isometry* of (M, L).

Remark: \exists Liouville-type classification of conformal symmetries of (flat) pseudo-Finsler spaces. Examples, [1]:

$$M := \mathbb{R}^k \times \mathbb{R}^{n-k}, \quad L := L_1^\alpha L_2^{1-\alpha}, \tag{26}$$

with $L_1 = \left| \dot{x}^1 \dot{x}^2 \dots \dot{x}^k \right|^{2/k}$, L_2 - arbitrary \rightarrow infinite-dim. conformal group.

Theorem 44, [1] (Pseudo-Finslerian extension of Weyl Theorem): If a conformal symmetry of a connected pseudo-Finsler space (M, L) preserves unparametrized geodesics of (M, L), then $\sigma = const$.

Other results in Lorentzian geometry which extend to Lorentz-Finsler: Conformal/Killing vector fields for (M, L) = generators of conf. symmetries/isometries of L.

Proposition 47, [1]: Any essential (= non-Killing, for any $e^{\sigma}L$) conformal vector field must be lightlike, i.e., $L \circ \xi = 0$, at least at a point. (pseudo-Riemannian case - see Kuhnel 2008).

Theorem 48, [1]: Assume a Lorentz-Finsler space (M, L) admits a Killing vector field ξ with the property that $L(x, \xi(x)) \ge 0$, $\forall x \in M$. If $\xi = 0$ at one point $x \in M$, then ξ vanishes identically. (pseudo-Riemannian case - Sanchez, 1997)

Theorem 49, [1]: If ξ is a Killing vector field for a Lorentz-Finsler space (M, L), having an isolated zero at some point $x \in M$, then: dim M - even and $L \circ \xi$ takes all possible signs on each neighborhood of x. (pseudo-Riemannian case - Sanchez, 1997).

2.4. Inequalities from Finsler and Lorentz-Finsler norms

Reference:

[1] N. Minculete, C. Pfeifer, N. Voicu, *Inequalities from Lorentz-Finsler norms*, Mathematical Inequalities and Applications 24(2), 373–398 (2021).

Main idea:

Finsler geometry is actually behind many notorious inequalities. Such as the arithmetic-geometric mean one...

Consider: (M, L) - pseudo-Finsler space, $x \in M$. $\mathcal{T} \subset T_x M \simeq \mathbb{R}^{n+1}$ - open, connected conic subset on which L > 0.

Pseudo-Finsler norm: $F = \sqrt{L} : \mathcal{T} \to (0, \infty)$.

Cauchy-Schwarz and reverse Cauchy-Schwarz inequalities (Bao-Chern-Shen, 2000/Minguzzi 2015, Aazami&Javaloyes 2016):

I. *L* - positive definite \Rightarrow Cauchy-Schwarz (fundamental) inequality:

$$dF_v(w) \leq F(w) \quad \Leftrightarrow \quad g_v(v,w) \leq F(v)F(w).$$

II. *L* - Lorentzian \Rightarrow reverse Cauchy-Schwarz inequality:

$$dF_v(w) \ge F(w) \quad \Leftrightarrow \quad g_v(v,w) \ge F(v)F(w).$$

Remark, [1]: Ineqs. still hold in the pos. semidef./degenerate-Lorentzian case.

Examples of reverse Cauchy-Schwarz inequalities, [1]:

1) Aczél's inequality:
$$a^{i}, b^{i} > 0 \Rightarrow$$

 $(a^{0}b^{0} - a^{1}b^{1} - \dots - a^{n}b^{n})^{2} \ge [(a^{0})^{2} - (a^{1})^{2} \dots - (a^{n})^{2}][(b^{0})^{2} - (b^{1})^{2} \dots - (b^{n})^{2}].$
2) Popoviciu's inequality. If $p > 1, \frac{1}{p} + \frac{1}{q} = 1, a^{i}, b^{i} > 0 \Rightarrow$
 $a^{0}b^{0} - a^{1}b^{1} - \dots - a^{n}b^{n} \ge [(a^{0})^{q} - (a^{1})^{q} - \dots - (a^{n})^{q}]^{\frac{1}{q}} [(b^{0})^{p} - (b^{1})^{p} - \dots - (b^{n})^{p}]^{\frac{1}{p}}.$

3) Arithmetic-geometric mean inequality:

$$\frac{\alpha_0 + \dots + \alpha_n}{n+1} \ge (\alpha_0 \alpha_1 \dots \alpha_n)^{\frac{1}{n+1}}, \quad \forall \alpha_i \in \mathbb{R}_+^*.$$
(27)

4) Weighted arithmetic-geometric mean inequality:

$$\sum_{i=0}^{n} a_i v^i \ge (v^0)^{a_0} (v^1)^{a_1} \dots (v^n)^{a_n}, \qquad a_i \ge 0, \ v^i > 0.$$
(28)

Example of (positive definite) CS inequality - Hőlder inequality:

$$a^{0}b^{0} + a^{1}b^{1} + + a^{n}b^{n} \; \leq \; \left[\left(a^{0}
ight)^{q} + ... + \left(a^{n}
ight)^{q}
ight]^{rac{1}{q}} \left[\left(b^{0}
ight)^{p} + ... + \left(b^{n}
ight)^{p}
ight]^{rac{1}{p}},$$

Playing to discover new inequalities:

1) Use a **Kropina** deformation of Miknowski metric $\eta \Rightarrow$

$$2\eta(v,w) \geq rac{w^0}{v^0}\eta(v,v)+rac{v^0}{w^0}\eta(w,w).$$

2) A Finslerian extension of Aczél's inequality:

$$[\rho(v)\rho(w) - \hat{g}_v(v,w)]^2 \ge [\rho^2(v) - \hat{F}^2(v)][\rho^2(w) - \hat{F}^2(w)],$$

where: \hat{F} - pos. def. Finsler, $\rho \in \Omega_1(\mathbb{R}^{n+1})$.

See [1] for more examples (triangle/reverse triangle ineqs.)...

3 Finsler-based field theory

3.1. The general framework

Ref.: [1]. M. Hohmann, C. Pfeifer, N. Voicu, *Mathematical foundations for field theories on Finsler spacetimes*, Journal of Mathematical Physics 63, 032503 (2022).

Main results:

- 1. Construct general configuration bundles (Y, Π, X) , allowing:
- k-homogeneous Finslerian geometric objects as sections;
- well defined fibered automorphisms;
- compactly supported variations;
- \Rightarrow best option: $X := PTM^+$.

2. Analyze the common features of (Y, Π, PTM^+) and of Lagrangians built upon them.

Structure of fibered manifolds over PTM^+

Consider: (M, L) - Finsler spacetime, (Y, Π, PTM^+) - fibered manifold \Rightarrow

$$Y \xrightarrow{\Pi} PTM^+ \xrightarrow{\pi_M} M.$$
(29)

Fibered automorphisms of (Y, Π, PTM^+) :

Bundles having *k*-homogeneous Finslerian geometric objects as sections: A *k*-homogeneous (Finslerian) geometric object= a local section:

$$\stackrel{\circ}{\gamma} : \mathcal{Q} \to \stackrel{\circ}{Y}, \quad (x, \dot{x}) \mapsto (x, \dot{x}, y(x, \dot{x})),$$

of some fiber bundle $(\stackrel{\circ}{Y}, \stackrel{\circ}{\Pi}, \stackrel{\circ}{TM}, Z)$ obeying:

$$\Gamma(x, \alpha \dot{x}) = \left(x, \alpha \dot{x}, \alpha^k y\right), \quad \forall \alpha > 0.$$

Necessary cond.: \exists an *action* $H : \mathbb{R}^*_+ \times \overset{\circ}{Y} \to \overset{\circ}{Y}$ by fibered automorphisms:

$$H(\alpha, \cdot) = H_{\alpha} \in Aut(\overset{\circ}{Y}), \qquad H_{\alpha}(x, \dot{x}, y) = \left(x, \alpha \dot{x}, \alpha^{k} y\right), \qquad (30)$$

Then: k-homogeneity = equivariance:

$$\begin{array}{cccc} \stackrel{\circ}{Y} & \xrightarrow{H_{\alpha}} & \stackrel{\circ}{Y} \\ \stackrel{\circ}{\gamma} \uparrow & & \uparrow \stackrel{\circ}{\gamma} \\ \stackrel{\circ}{TM} & \xrightarrow{\chi_{\alpha}} & \stackrel{\circ}{TM} \end{array} \qquad \qquad H_{\alpha} \circ \stackrel{\circ}{\gamma} = \stackrel{\circ}{\gamma} \circ \chi_{\alpha}$$

★ Idea: "factor away" the action of \mathbb{R}^*_+ from both \check{Y} and \check{TM} . **Theorem 58 (The orbit space** Y): Consider a fiber bundle $(\mathring{Y}, \Pi, \mathring{TM}, Z)$, equipped with action $H : \mathbb{R}^*_+ \times \mathring{Y} \to \mathring{Y}$ as in (30). Then: 1. The orbit space $Y = \mathring{Y}_{/\sim}$ of the action is a fiber bundle over PTM^+ , with typical fiber Z and projection:

$$\Pi: Y \to PTM^+, \quad \Pi[x, \dot{x}, y] = [x, \dot{x}].$$

2. *k*-homogeneous sections $\overset{\circ}{\gamma} : \mathcal{Q} \to \overset{\circ}{Y}$, where $\mathcal{Q} \subset T \overset{\circ}{M}$ is a conic subbundle, are in a one-to-one correspondence with local sections $\gamma : \pi^+(\mathcal{Q}) \to Y$.

Fibered homogeneous coordinates on Y (unique up to positive rescaling):

$$[x, \dot{x}, y] \mapsto \left(x^{i}, \dot{x}^{i}, y^{\sigma}\right) \tag{31}$$

:= local coords of an arbitrarily chosen representative of the class $[x, \dot{x}, y]$.

Examples:

1. Finsler (2-homogeneous) functions $L : \mathcal{A} \to \mathbb{R} \Rightarrow$

$$\overset{\circ}{Y} = T \overset{\circ}{M} \times \mathbb{R}, \quad H_{\alpha}(x, \dot{x}, \hat{L}) = (x, \alpha \dot{x}, \alpha^{2} \hat{L}), \quad \forall \alpha > 0.$$
(32)
Sections of $Y: \gamma[(x, \dot{x})] = [x, \dot{x}, L(x, \dot{x})],$ that is:
$$L = \hat{L} \circ \gamma \circ \pi^{+}.$$

2. 0-homogeneous metric d-tensors $g: \mathcal{A} \to T_2^0(\stackrel{\circ}{TM}) \Rightarrow$

$$\overset{\circ}{Y} = T_2^{\mathbf{0}}(T\overset{\circ}{M}), \quad H_{\alpha}(x, \dot{x}, y) = (x, \alpha \dot{x}, y), \quad \forall \alpha > \mathbf{0}.$$

Other examples: *d-tensors, connections*.

Finsler field Lagrangians, action, extremals:

Finslerian field: = a (local) section $\gamma \in \Gamma(Y)$. Field Lagrangian of order r:= a Π^r -horizontal 7-form $\lambda \in \Omega_7(J^rY)$:

$$\lambda^+ = \Lambda d\Sigma^+, \tag{33}$$

where: $d\Sigma^+ = (any)$ invariant volume form on PTM^+ .

Property (0-homogeneity): $\dot{x}^i \dot{d}_i \Lambda = 0$.

Action attached to λ^+ and to a piece $D^+ \subset PTM^+$:

$$S_{D^+}: \Gamma(Y) \to \mathbb{R}, \quad S_{D^+}(\gamma) = \int_{D^+} J^r \gamma^* \lambda^+$$

 \Rightarrow tools in Chapter 1 can be consistently applied.

3.2. The energy-momentum distribution tensor

Setting: Use *L* as the *background variable* (section of: $Y_g = (TM \times \mathbb{R})_{/\sim}$) \circ Configuration bundle (Y, Π, PTM^+) :

$$Y := Y_g \times_{PTM^+} Y_m$$

where: Y_m - fiber bundle over PTM^+ , Y_m - natural over M. \circ Canonical lifts Ξ of $\xi_0 \in \mathcal{X}(M)$ = double lifts:

$$\xi_0 \in \mathcal{X}(M) \quad \mapsto \quad \xi \in \mathcal{X}(PTM^+) \quad \mapsto \quad \Xi \in \mathcal{X}(Y).$$
 (34)

• Natural matter Lagrangians:

$$\mathfrak{L}_{J^r\equiv}\lambda_m^+=\mathbf{0},$$

for all Ξ as in (34).

Theorem 61 (Existence of energy-momentum distribution tensor Θ): Let $\lambda_m^+ \in \Omega_7(J^rY)$ be a natural Finsler Lagrangian and $\mathcal{E}_g(\lambda_m^+) \in \Omega_8(J^{s+1}Y)$ $(s+1 \leq 2r)$, the Y_g -component of its Euler-Lagrange form. Then, there exist unique $\mathcal{F}(M)$ -linear mappings $\Theta : \mathcal{X}(M) \to \Omega(J^{s+1}Y), \mathcal{B} : \mathcal{X}(M) \to \Omega(J^{s+2}Y)$, with horizontal values, such that:

$$h\mathbf{i}_{J^{s+1}\underline{=}}\mathcal{E}_g(\lambda_m^+) = \mathcal{B}(\xi_0) + hd\Theta(\xi_0), \quad \forall \xi_0 \in \mathcal{X}(M).$$
 (35)

Energy-momentum scalar \mathfrak{T} :

$$\mathcal{E}_{g}(\lambda_{m}^{+}) \coloneqq -\frac{1}{2}\mathfrak{T}\,\hat{L}^{-1}\theta \wedge d\Sigma^{+}, \quad \Theta^{j}{}_{i} \coloneqq \mathfrak{T}\hat{L}^{-1}\dot{x}^{j}\dot{x}_{i}, \qquad (36)$$

where: $\theta \coloneqq d\hat{L} - \hat{L}_{,i}dx^{i} - \hat{L}_{.i}d\dot{x}^{i}, \quad \dot{x}_{i} \coloneqq \frac{1}{2}\hat{L}_{.ij}\dot{x}^{j}.$

Energy-momentum distribution tensor:

$$\Theta(\xi_0) = (\Theta^j_{\ i} \xi^i) \mathbf{i}_{\delta_j} d\Sigma^+ = \mathfrak{T} \omega^+ \otimes \mathbf{i}_{\ell^+} d\Sigma^+.$$

Balance function: $\mathcal{B}(\xi_0) = -\Theta^{j}_{i|j}\xi^{i}d\Sigma^{+}.$

Theorem 65: For any local section $\gamma = (L, \gamma_m) \in \Gamma(Y_g \times_{PTM^+} Y_m)$ such that

$$\operatorname{supp}(J^r\gamma^*\lambda_m^+) \subset \mathcal{T}^+.$$
 (37)

and γ_m - critical for the action, there hold:

1. Averaged energy-momentum conservation law: At any $x \in M$ and in any corresponding fibered chart:

$$\int_{\mathcal{T}_x^+} (\Theta^j_{i|j} \circ J^{s+1}\gamma) d\Sigma_x^+ \approx_{\gamma(m)} 0, \tag{38}$$

where $d\Sigma^+ =: d^4x \wedge d\Sigma_x^+$.

2. Relation to Noether currents: For any $\xi_0 \in \mathcal{X}(M)$:

$$\int_{\partial \mathcal{T}^{+}(D_{0})} J^{s+1} \gamma^{*} \Theta(\xi_{0}) \approx_{\gamma(m)} \int_{\partial \mathcal{T}^{+}(D_{0})} J^{s+1} \gamma^{*} \mathcal{J}^{\Xi},$$
(39)

where Ξ denotes the canonical lift of ξ_0 to Y.

Energy-momentum tensor density on M :

If $supp(J^r\gamma^*\lambda_m^+) \subset \mathcal{T}^+$ (e.g., γ has compact support $supp(\gamma) \subset \mathcal{T}^+$), then:

$$\mathcal{T}^{i}_{j}(x) := \int_{\mathcal{O}^{+}_{x}} (\Theta^{i}_{j} \circ J^{s+1}\gamma)_{|(x,\dot{x})} d\Sigma^{+}_{x}, \quad \forall x \in M.$$
(40)

 \Rightarrow integral is finite, \mathcal{T}_{j}^{i} - comps. of a tensor density on M.

3.3. Concrete model: Finsler gravity sourced by a kinetic gas

Refs.:

[1] M. Hohmann, C. Pfeifer, N. Voicu, *Finsler gravity action from variational completion*, Physical Review D 100, 064035 (2019).

[2] M. Hohmann, C. Pfeifer, N. Voicu, *Kinetic gases as direct gravity sources*, Physical Review D 101, 024062 (2020).

[3] M. Hohmann, C. Pfeifer, N. Voicu, *The kinetic gas universe*, European Physical Journal C 80, 809 (2020).

Main results:

1. Construct a concrete, correctly defined **vacuum action**, starting from a *physical principle+canonical variational completion*.

2. Construct a **matter action** (kinetic gas) \Rightarrow field eq.&energy-momentum distribution.

Advantage: description of the gravitational field, fully taking the *velocity distribution of sources* into account.

1. Construction of vacuum action:

Geodesics of a Finsler spacetime $\nabla_{\dot{c}}\dot{c} = 0$ $(\nabla : \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$ - given by the canonical nonlinear connection)

Geodesic deviation equation: $\nabla_{\dot{c}}\nabla_{\dot{c}}\xi = \mathcal{R}(\dot{c},\xi);$

Finslerian Ricci scalar: $R := trace(\mathcal{R}) = R^{i}{}_{ik}\dot{x}^{k}$

Postulated vacuum field equation (Rutz 1993):

$$R = \mathbf{0}.\tag{41}$$

Rutz eqn. is **not** variational \rightarrow build the "closest" variational eq.

Canonical variational completion of Rutz's equation, [1]:

- Dynamical variable: $L \mapsto \Gamma(Y_g), Y_g := (TM \times \mathbb{R})_{/\sim}$
- Canonical volume form on $\mathcal{A}_0^+ \subset PTM^+ : d\Sigma^+ = \omega^+ \wedge d\omega^+ \wedge d\omega^+ \wedge d\omega^+$
- Source form: $\varepsilon = (RL^{-1})\theta \wedge d\Sigma^+ \in \Omega_8(J^4Y_g)$
- \Rightarrow Vainberg-Tonti Lagrangian:

$$\lambda_g^+ = \hat{L}^{-1} R d \mathbf{\Sigma}^+.$$

Variational completion of Rutz's equation

(= same eq. as *Pfeifer&Wohlfarth 2011*):

$$\frac{1}{2}g^{ij}R_{\cdot i\cdot j} - 3(L^{-1}R) - g^{ij}(P_{i|j} - P_iP_j + (\nabla P_i)_{\cdot j}) = 0, \quad (42)$$

where $P = P_i dx^i$ - trace of Landsberg tensor.

2. Kinetic gases in general relativity (see Sarbach-Zannias 2014):

Kinetic gas = a large number N of interacting point particles, described by a smooth **1-particle distribution function**:

$$arphi = arphi \left(x, \dot{x}
ight)$$
 .

kinetic gas (individual velocities)

fluid (averaged velocity)

Worldlines = piecewise smooth normalized geodesics $\gamma \rightarrow (\gamma(s), \dot{\gamma}(s)) \in \mathcal{O}$ $\checkmark \mathcal{O}$ - observer space of a Lorentzian metric

 $\mathcal{O} := \{(x, \dot{x}) \in TM \mid g_x(\dot{x}, \dot{x}) = 1, \dot{x}$ -future pointing}

 \checkmark Assumption: $\varphi(x, \cdot) : \mathcal{O}_x \to \mathbb{R}$ has compact support, $\forall x \in M$.

 \checkmark Number N_{σ} of particle trajectories $(\gamma, \dot{\gamma})$ crossing a hypersurface $\sigma \subset \mathcal{O}$:

$$N_{\sigma} = \int_{\sigma} \varphi d\Omega. \tag{43}$$

✓ Gravitational field - from **Einstein-Vlasov equations**:

$$R^{\mu\nu} - \frac{1}{2}Rg^{\mu\nu} = \frac{8\pi G}{c^4}T^{\mu\nu}, \qquad T^{\mu\nu}(x) := \int_{\mathcal{O}_x} m\varphi \dot{x}^{\mu} \dot{x}^{\nu} d\Sigma.$$

 \checkmark For collisionless gases \Rightarrow Liouville equation:

$$\ell(\varphi) = 0.$$

Our approach, [2]:

★ Idea: Couple φ directly to gravity (no \dot{x} -averaging!) → this is possible in Finsler geometry.

 \circ Rewrite $\varphi : \mathcal{O} \to \mathbb{R}$ as a function on J^4Y_g :

$$\varphi^+: J^4Y_g \to \mathbb{R}, \ \varphi^+(J^4_{[(x,\dot{x})]}\gamma) := \varphi(x,\dot{x}).$$

• Construct **matter action** on J^4Y_g as:

$$S_{m,D} := -mN\tau = -m\int_D \varphi d\Sigma = -m\int_{\pi^+(D)} (\varphi^+ \circ J^4\gamma) d\Sigma^+,$$

with: $D \subset \mathcal{O}$ (piece).

• Matter Lagrangian: $\lambda_m^+ := -m\varphi^+ d\Sigma^+$ - generally covariant.

Total Lagrangian:
$$\lambda^+ = rac{1}{2\kappa^2}\lambda_g^+ + \lambda_m^+.$$

Theorem 68: The Euler-Lagrange equation attached to λ^+ is:

$$\frac{1}{2}g^{ij}(LR_0)_{i\cdot j} - 3R_0 - g^{ij}(P_{i|j} - P_iP_j + (\nabla P_i)_{\cdot j}) = \kappa^2 m\varphi.$$
(44)

Energy-momentum distribution tensor comps.:

$$\Theta^{i}{}_{j} = m\varphi^{+}\hat{L}^{-1}\dot{x}^{i}\dot{x}_{j}.$$
(45)

Energy-momentum density on M - components (supp($\varphi(x, \cdot)$) - compact!):

$$\mathcal{T}^{i}_{j}(x) := m \int_{\mathcal{O}^{+}_{x}} (\varphi^{+} l^{i} l_{j}) \circ J^{6} \gamma \ d\Sigma^{+}_{x} = m \int_{\mathcal{O}_{x}} \varphi l^{i} l_{j} d\Sigma_{x}$$
(46)

- formally similar to pseudo-Riemannian (GR) approach.

Averaged e.-m. conservation law (38) becomes:

$$\int_{\mathcal{O}_x} \ell(\varphi) l_j d\Sigma_x = 0.$$
(47)

Particular cases:

1. Collisionless gases:

- Pointwise covariant conservation law of $\Theta = Liouville$ equation:

$$\ell(\varphi) = 0.$$

2. Lorentzian spaces (M, a):

- Averaged energy-momentum conservation law (38) \Leftrightarrow

$$T^i_{\ j;i} = \mathbf{0}.$$

3.4. Cosmologically symmetric Finsler spacetimes

Reference:

[1]: M. Hohmann, C. Pfeifer, N. Voicu, *Cosmological Finsler spacetimes*, Universe 6 (5), 65 (2020).

Main results:

1. Use the Copernic principle to identify the Lie algebra of generators of cosmological symmetry (& general form of Finsler functions with cosmological symmetry.)

2. For cosmologically symmetric **Berwald spacetime functions** \rightarrow **complete classification**.

Cosmological (Copernic) principle:

At largest scales, the Universe is: homogeneous ("same at all points"): and isotropic ("same in each direction"):

Consider: (M, L) - Finsler spacetime. Global time function = a smooth $t : M \to \mathbb{R}$ such that

- $\diamond \quad dt(X) > \mathsf{0}, \ \forall X \in \bar{\mathcal{T}} \text{ and }$
- ♦ the spatial slices $\Sigma_T := \{p \in M | t(p) = T = constant\}$ are connected.

Definition, [1]: (M, L) - cosmological Finsler spacetime if:

- 1. It admits a global time function $t: M \to \mathbb{R}$ and
- 2. All spatial slices Σ_T obey:

(i) Σ_T - homogeneous: \exists a Lie group G of *isometries* of (M, L) acting transitively on each slice Σ_T :

$$\forall T \in \mathbb{R}, \forall q_1, q_2 \in \mathbf{\Sigma}_T \exists \varphi \in G : \varphi(q_1) = \varphi(q_2)$$

(ii) Σ_T - isotropic: at all $p \in \Sigma_T$: the isotropy group at p :

$$G_p := \{ \psi \in G | \psi(p) = p \}$$

acts transitively on the projective space $PT_p \Sigma_T$:

$$\forall [v_1], [v_2] \in PT_p \Sigma_T : \exists \varphi_p \in G_p : d\varphi_p ([v_1]) = [v_2].$$

Theorem 72, [1]: For a cosmologically symmetric Finsler spacetime (M, L):

$$\dim G = \mathbf{6}, \quad \dim G_p = \mathbf{3}.$$

Proposition 73, [1]: The identity component of G_p is isomorphic to SO(3).

Remark (Kobayashi&Nomizu, 1963) : Σ_T - homogeneous, $G_p \simeq SO(3) \stackrel{!}{\Rightarrow} \Sigma_T$ admits a *G*-invariant *Riemannian* metric *h*.

Consequences:

- **1.** h maximally symmetric \Rightarrow h has constant sectional curvature κ ;
- **2.** L and h have the same Killing vector fields $X_{(k)}$, k = 1, ..., 6.
- 3. One can use *spherical coords*. (t, r, φ, θ) given by h.

Theorem (\equiv Hohmann&Pfeifer 2016): If (M, L) - cosmologically symmetric Finsler spacetime, then:

$$L = L(t, \dot{t}, w), \qquad w^2 = \frac{\dot{r}^2}{1 - kr^2} + r^2 \left(\dot{\theta}^2 + \sin^2 \theta \dot{\varphi}^2\right)$$

Theorem 75, [1] (Classification of cosmologically symmetric Berwald spacetime functions): If (M, L) - cosmological Berwald spacetime, then L falls into one of the following classes:

a) pseudo-Riemannian spaces: $L(x, \dot{x}) = a_{ij}(x)\dot{x}^{i}\dot{x}^{j}$:

b) *nontrivially Finslerian:* of the form:

$$L(t, \dot{t}, w) = \dot{t}^2 B^2(t) \Phi\left(\frac{w}{\dot{t}B(t)}\right).$$

where B, Φ - arbitrary real functions and $\kappa \in \{0, \pm 1\}$.

4 Outlook and perspectives

I. A geometric toolkit for the calculus of variations:

1. *Geometric formulation of higher order Hamiltonian field theory* (Hamilton-de Donder equations), based on canonical Lepage equivalents.

2. Energy-momentum tensors:

- Extend (if possible) the definition of energy-momentum tensors in Ch.1 to the case when the differential index of $Y^{(b)}$ is greater than 1 (e.g., in purely affine theories).

- Obtaining a general construction of a conserved gravitational *energy-momentum pseudotensor*, in general field theories.

3. *Extending the Vainberg-Tonti Lagrangian construction* - e.g., using other groups of fiber automorphisms.

II. Finsler spacetimes:

Classes of Finsler spacetimes which are relevant for solving the Finsler gravity field equation (44):

- Spacetimes with (lpha,eta)-metric.

- Spacetimes with \dot{x} - compactly supported Ricci scalar $R(x, \cdot)$; in particular, Ricci-flat ones R = 0.

- Compactly supported deviations from Lorentzian metrics a.
- Weakly Landsberg spacetimes. Weak unicorns.
- Berwald spacetime functions with special properties (e.g., spherical symmetry, $\overset{\circ}{TM}$ -smoothness etc.).

III. Finslerian field theory:

1. Solutions of the Finslerian field equation:

- Vacuum spatially spherically symmetric solutions.
- Cosmologically symmetric solutions of the (non-vacuum) field equation (44).
- Linearized Finslerian perturbations of Lorentzian metrics.

2. Comparison of Finslerian equation with the Einstein-Vlasov equations. Focus on: cosmologically symmetric case $\stackrel{?}{\Rightarrow}$ dark energy.

3. Build models for: *electromagnetic field*, *ultrarelativistic gas*.

4. *Finsler geometry as the geometry of modified dispersion relations:* Cotangent bundle formulation of Finsler field theory framework, geometry of curved momentum spaces.

