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Main goals and motivation

Beauty is the �rst test: there is no permanent place in the world for ugly
mathematics (G.H. Hardy)

Main goals:
� develop a general geometric framework for Lagrangian �eld theories based
on Finsler geometry;
� explore other applications, in more general �eld theories, of the newly devel-
oped geometric tools.

Motivation of our study: extending general relativity so as to address:
� the dark energy&dark matter problem:
� tensions with quantum mechanics.



"Who ordered Finsler?"

� In physics:
- most general geometry with a well de�ned notion of arc length (�
proper time);

- quantum gravity phenomenology (modi�ed dispersion relations)

- description of wave propagation in media

- kinetic description of gases (! gravitational �eld generated by multiple

sources, moving with di¤erent velocities).

� In pure mathematics:
- Lorentz-Finsler geometry is: little explored, strikingly di¤erent form positive

de�nite one and... beautiful.



General structure:

Chapter 1: A geometric toolkit for the calculus of variations

Chapter 2: Geometry of Finsler spacetimes

Chapter 3: Finsler-based �eld theory

Chapter 4: Outlook and perspectives



1 A geometric toolkit for

the calculus of variations



1.1. Preliminaries

Main refs.: Krupka 2015; Giachetta, Mangiarotti&Sardanashvili 2009.

Fibered manifold: a triple (Y; �;X) with:
X;Y - smooth manifolds (dimX = n; dimY = n+m)
� : Y ! X �surjective submersion

Fibers: Yx = ��1(x))
Fibered charts on Y : (V;  ) ;  = (xA; y�) - such that � : (xA; y�) 7! (xA)

Interpretation in physics:
Y - con�guration space, X - parameter space (usually - spacetime)
Local sections  2 �(Y );  : (xi) 7! (xA; y�(xA)) - �elds

Arena for �eld theory: the jet bundles (JrY; �r; X):



Lagrangian of order r := a (�r)-horizontal form � 2 
n(JrY ) :

� = Ldnx;
with: L = L(xA; y�; y�i; :::; y�i1:::in); dnx := dx1 ^ ::: ^ dxn:

Action: SD : �(Y )! R:

SD() =
Z
D

Jr��;

where D � X - piece (=compact n-dim. submanifold with boundary).

Variations of SD - from 1-parameter groups f�"g of �bered automorphisms

Y
�"�! Y

� # #�

X
'"�! X

) �" :

(
~xi = ~xi(xj)

~y� = ~y�
�
xj; y�

�



Variations as Lie derivatives: � 2 X (Y ) - generator of f�"g )

�SD() =
Z
D

Jr�LJr��

First variation formula:

Jr�(LJr��) = J2r�iJ2r�E(�)� J2r�1�dJ� (1)

� E(�) 2 
n+1(J2rY ) - Euler-Lagrange form:

E(�) = �L
�y�

�� ^ dnx; �� := dy� � y�idx
i

� J� 2 
n�1(J2r�1Y ) - Noether current

�  2 �(Y ) is an extremal of S if: 8D � X piece, 8 compactly supported
variation supp(��) � D :

�SD() = 0



In coords.:  - extremal , Euler-Lagrange equations:

�L
�y�

� J2r = 0

Noether�s �rst theorem:

LJr�� = 0) Js�dJ� � 0

(� - equality along critical sections ).

Identi�cation of E(�); J� :
- integration by parts ! coordinates needed!

- via Lepage forms (Krupka, 1973)! coordinate-free, di¤. forms only

(see Sec. 1.4).



Natural bundles and natural (generally covariant) Lagrangians:
Mn - category of smooth n-dim manifolds, FB - category of smooth �ber
bundles.
Natural bundle functor:= a functor F :Mn ! FB; such that:
- 8 M 2 Ob(Mn) : F(M) is a �ber bundle over M ;
- 8 �0 :M !M 0 2Morf(Mn) ) the �bered manifold morphism F(�0) :
F(M)! F(M 0) covers �0:

Natural (generally covariant) Lagrangians = globally def. Lagrangians � 2

n(JrF(M)) s.th:

JrF(�)�� = �; 8� 2 Diff(M)

In terms of in�nitesimal generators:

LJrF(�)� = 0; 8� 2 X (M) (2)



1.2. Variational completion of di¤erential equations

References:
1. N. Voicu, D. Krupka, Canonical variational completion of di¤erential equa-

tions, Journal of Mathematical Physics 56, 043507 (2015).

2. N. Voicu: Source Forms and Their Variational Completions, in vol. The

Inverse Problem of the Calculus of Variations - Local and Global Theory, ed.

Dmitri Zenkov, Atlantis Press-Springer (2015).

3. M. Hohmann, C. Pfeifer, N. Voicu, Canonical variational completion and

4D Gauss�Bonnet gravity, European Physical Journal Plus 136, 180 (2021).



Aim: Given an arbitrary PDE/ODE system:
- �nd out whether it is locally variational;
- if not, transform it into a locally variational one, by adding a meaningful
correction term.

Motivation:
� Historically �rst variant of Einstein �eld eqs.:

Rij = 8��Tij (3)

! inconsistent with local energy-momentum conservation.
� Corrected version:

Rij �
1

2
Rgij = 8��Tij (4)

! variational, with Lagrangian function = "simplest scalar" R:

Q: Is there any systematic way of �nding the "correction term", based on
calculus of variations?



Setting: (Y; �;X) - �bered manifold, dimX = n:

Consider an arbitrary PDE system of order r over Y :

"�(x
A; y�; :::; y�A1:::Ar) = 0

! a local source form:

" := "��
� ^ dnx 2 
n+1(JrY ): (5)

Use: Vainberg-Tonti Lagrangian (Vainberg 1956, Tonti 1969):

�" = L"dnx

attached to " and to a given chart:

L"(xA; y�; :::; y�j1:::jr) := y�
1Z
0

"�(x
A; uy�; :::; uy�j1:::jr)du: (6)



Key property: Euler-Lagrange form E(�") = E��� ^ dnx of �" :

E� = "��
1Z
0

ufy�(H�� � �u) + :::+ y�B1:::Br(H
B1:::Br

�� � �u)gdu| {z }
��

;

where:

� �u : (xA; y�; y�j; :::; y�j1:::jr) 7! (xA; uy�; uy�j; :::; uy
�
j1:::jr

); u 2 [0; 1]:
� H - Helmholtz form of " - "obstructions from local variationality" of ":

De�nition 7, [1]: Canonical variational completion of " :

E(�") = "+ � (7)

) � = ���� ^ dnx 2 
n+1(JrY ) - completely expressed in terms of H:



Applications of canonical variational completion:

X Vacuum Einstein equations Rij �
1

2
Rgij = 0 - c.v.c. of Rij = 0; [1].

X Energy-momentum tensors in general relativity (symmetrization [1], La-

grangian for perfect �uid [2]).

X Linearly damped oscillations, [1].

X "Renormalized" (truncated) Gauss-Bonnet gravity theory - shown to be non-
variational, [3].

X Finsler gravity - see Chapter 3.



1.3. Energy-momentum tensor and energy-momentum
balance

Ref.: [1]. N. Voicu, Energy-momentum tensors in classical �eld theories � a
modern perspective, International Journal of Geometric Methods in Modern
Physics, 13, 1640001 (2016).

Ideas:
1. Use a "Hilbert-type" de�nition of energy-momentum tensors, in general
Lagrangian �eld theories (� Gotay&Marsden 1992, Fernandez&co. 2000) ;
2. Find a general energy-momentum balance law, valid in any natural �eld
theory of index 1 in the background variables.
3. Application: energy-momentum balance law in general metric-tensor/metric-
a¢ ne theories.



Setting:
� Con�guration manifold:

Y = Y (b) �M Y (m);

where Y (b), Y (m) - natural bundles overM (b - "background",m - "matter").
� A generally covariant Lagrangian:

� = �b + �m 2 
n(JrY )

� Assumption: Natural lift lb : X (M)! X (Y (b)); � 7! �(b) - of order 1 :

�(b) = �i@i + (C
�
i�
i + C

�j
i�
i
;j)

@

@y�
:

Euler-Lagrange form of �m :

E (�m) = E(b) + E(m):



Lemma 8, [1]: There is a unique splitting:

hiJs+1�E
(b) = B(�) + hd(T (�)); 8� 2 X (M); (8)

such that T : X (M) ! 
n�1(Js+1Y ); B : X (M) ! 
n(Js+2Y ) are
F(M)-linear mappings with horizontal values (h : 
(Js+1Y ) ! 
(Js+2Y )

- horizontalization morphism).

� T - energy-momentum tensor, B - balance function.

In �bered coords
�
xi; y�; yI

�
on Y :

T = T jidx
i 
 i@jd

nx; T ji = C
�j
i
�Lm
�y�

: (9)

First variation formula revisited:Z
D

Js+2�B(�)+
Z
@D

Js+1�(T (�)�J �) �
(m)

0; ((m) := proj
Y (m)

�):



Theorem 10, [1] (Coordinate-free energy-momentum balance law): For
any piece D � M and any � 2 X (M) with support contained in D; there

holds: Z
D

Js+2�B(�) �
(m)

0: (10)

Theorem 11, [1]:
(i): Energy-momentum balance law in coordinates: 

djT
j
i � (C

�
i � y�i)

�L
�y�

!
� Js+2 �

(m)
0:

(ii) Relation with Noether currents:Z
@D

Js+1�T (�) �
(m)

Z
@D

Js+1�J l(�):



Example. General metric-tensor theories:

Y (b) =Met(M)�M T pq (M); �m = Lm
q
jdet gjdnx:

Denote: y� 2 fgij; yi1:::ipj1:::jq
g - background variables and

T� =
1q
jdet gj

�Lm
�y�

; T
j
i =

1q
jdet gj

T ji = C
�j
i T�: (11)

Energy-momentum balance law:

(y�;iT� + T
j
i;j) � J

s+2 �
(m)

0; i = 1; :::; n: (12)

In particular, in metric-a¢ ne theories: y� 2 fgij; N i
jk := Ki

jk � �
i
jkg :

(T
j
i;j +N

j
kh;i

�Lm
�N

j
kh

) � Js+2 �
(m)

0: (13)



1.4. A special property of Lepage equivalents of
Lagrangians

[1]. N. Voicu, S. Garoiu, B. Vasian, On the closure property of Lepage equiv-
alents of Lagrangians, Di¤erential Geometry and its Applications 81, 101852
(2022).

Main idea: For general Lagrangians � 2 
n(JrY ) of order r � 1; build two
local Lepage equivalents with the closure property:

E(�) = 0 , d�� = 0:

Application: Having a well de�ned Lepage formulation of Hamiltonian �eld
theory.

(Only) previously known examples of �� with closure property:
X mechanics (dimX = 1) - Poincaré-Cartan form;
X �rst order Lagrangians (Krupka 1977, Betounes 1984).



Setting: (Y; �;X) - �bered manifold, � 2 
n(JrY ) - Lagrangian

De�nition (Krupka, 1973): �� 2 
n(JsY ) - Lepage equivalent of �; if:
(i)

R
D
Jr�� =

R
D
Jr���; for all ;D.

(ii) The �rst contact comp. p1d�� is a source form (, �s+1;0-horizontal).

Euler-Lagrange form/Noether currents in terms of ��:

E(�) = p1d��; J� = iJs���:
Principal Lepage equivalent �� =: �� (Krupka, 1981) - no closure property:

�� = Ldnx+ (
r�1X
k=0

f
AB1:::Bk
� ��B1:::Bk) ^ i@Ad

nx; (14)

fB1:::Br+1 = 0; f
B1:::Bk
� =

@L
@y�B1:::Bk

� dAf
AB1:::Bk
� : (15)



F Our idea, [1]: Use ��0; for a conveniently chosen �
0 equivalent to �:

Consider � 2 
n(JrY ) - arbitrary Lagrangian.

I. Canonical Lepage equivalent ��: Decompose � locally as:

� = �V T + hd�; (16)

where �V T - Vainberg-Tonti Lagrangian of E(�) and set:

�� := ��V T + d�: (17)

Properties of canonical Lepage equivalent:
1. Closure property E(�) = 0 , d�� = 0.
2. �� - uniquely de�ned by �:
3. Generally �� - just locally de�ned. Yet, in tensor �eld theories with second
order Euler-Lagrange equations, �� - globally well de�ned.



II. Minimal Lepage equivalent �� : If � - order-reducible, then use:

� = �0 + hd�; �� := ��0 + d�; (18)

(where �0 - of minimal order).

Properties of minimal Lepage equivalents:

1. Closure property.

2. If � - second order, reducible ) �� - of order 1.

3. In general, �� -not unique.

Example: Hilbert Lagrangian � 2 
4(J2Met(M)); � = R
q
jdet gjd4x :

��g = ��g = ��g: (19)



2 Geometry of Finsler spacetimes



2.1. De�nitions and basic geometric objects

[1]. M. Hohmann, C. Pfeifer, N. Voicu, Mathematical foundations for �eld

theories on Finsler spacetimes, Journal of Mathematical Physics 63, 032503

(2022).

[2] M. Hohmann, C. Pfeifer, N. Voicu, Finsler gravity action from variational

completion, Physical Review D 100, 064035 (2019).

Aim of the section: Present the notion of Finsler spacetime as de�ned in
[1] and a minimal list of related notions, to be used in the sequel.



Setting: M - n-dim. connected, orientable, C1-smooth manifold

�
�

TM := TMnf0g slit tangent bundle.

� An open subset Q � TMnf0g is a conic subbundle if:
- for 8x 2M; Qx := Q\ TxM is non-empty;
- conic property: (x; _x) 2 Q ) (x; � _x) 2 Q; 8� > 0:

� (Bejancu&Farran, 1990): Pseudo-Finsler space = (M;L), where:
L : A ! R - smooth on a conic subbundle A � TM and:
(i) L(x; � _x) = �2L(x; _x), 8� > 0;

(ii) g��(x; _x) =
1

2

@2L

@ _x�@ _x�
is nondegenerate on A.

A - set of admissible vectors.



De�nition 25, [1] A 4-dim. pseudo-Finsler space is a
�



�
	Finsler spacetime if:

9 a conic subbundle T � A; with connected �bers Tx on which:
X L > 0, g has Lorentzian signature (+;�;�;�)
X L can be continuously extended as 0 to @T .

Physical interpretations:
� Interval : ds2 = L(x; dx) = gij(x; _x)dx

idxj

� Tx := future-pointing timelike cone at x.
� Observer space at x 2M : O := f(x; _x) 2 T j L(x; _x) = 1g :



� Finslerian metric tensor:

g : A ! T 02M; (x; _x) 7! g(x; _x) = gij(x; _x)dx
idxj

� Hilbert form on A0 := Ar L�1(0) :

! := F�i(x; _x)dx
i; F = jLj1=2

� Arc length of a non-null admissible curve c : [a; b]!M (� proper time):

l(c) =

bZ
a

q
L(c(t); _c(t))dt =

bZ
a

q
gij(x; _x)dxidxjdt =

Z
Im(c; _c)

!; (20)

(!) The positive 2-homogeneity of L ensures that l(c) - well-de�ned.

Geodesics of (M;L) : �xi(s) + 2Gi(x(s); _x(s)) = 0

Canonical nonlinear connection TA = HA� VA ! coe¤s: Gij =
_@jG

i:

Local adapted basis of TA: f�i = @i �G
j
i
_@j; _@i := @ _xig:



Examples of Finsler spacetime functions L :

X Lorentzian (quadratic in _x):

L(x; _x) = a��(x) _x
� _x�

X Randers L = �F 2; with � = sign(F ); where:

F (x; _x) =
q
jax ( _x; _x)j+ bx ( _x) :

X Bogoslovsky/Kropina (VSR,VGR - Cohen&Glashow):

L(x; _x) = �ja��(x) _x� _x�j1�q(b�(x) _x�)2q;

where: � = sign(a��(x) _x� _x�):

X Quartic metrics (! birefringence - Pfeifer&Wohlfarth, Perlick etc.):

L(x; _x) = �
q
j(a�� (x) _x� _x�) (h�� (x) _x� _x�)j;

where � = sign(:::):



Homogeneity of Finslerian geometric objects

� L - homog. of degree 2 ) g;Gij etc. ! all homogeneous of some degree.

Fiber homotheties:

�� :
�

TM !
�

TM; ��(x; _x) = (x; � _x) (� > 0)

- generated by the Liouville vector �eld

C = _xi _@i: (21)

De�nition 30, [1]: A tensor �eld T 2 �(T pq(A)) is k-homogeneous, if:

8� > 0 : ���T = �kT:

� Anisotropic tensor �elds T : A ! T
p
q(M) d-tensor �elds T 2 �(T pq(A))

(for which k-homog. is de�ned).



2.2. The positively projectivized tangent bundle PTM+

(The projective sphere bundle)

1. On arbitrary manifolds M; dimM = n. De�ne:

PTM+ :=
�

TM=� (22)

where: (x; _x) � (x; u), 9� > 0 : u = � _x:

� PTM+ - smooth, orientable (2n� 1)-dim. manifold, natural bundle over
M; with �bers ' Sn�1.
� (

�
TM; �+; PTM+;R�+) - principal bundle, with projection:

�+ :
�

TM ! PTM+; (x; _x) 7! [(x; _x)]: (23)

� 0-homogeneous objects on
�

TM � geom. objects on PTM+ :
� Homogeneous local coords of [(x; _x)]: (xi; _xi) (unique up to a factor)
(see Chern-Chen-Lam 1999).



2. On Finsler spacetimes (M;L): The set of non-null admissible directions:

A+0 =
n
[(x; _x)] 2 �+(A)j L (x; _x) 6= 0

o
has a contact structure - the Hilbert form !+ = _@iFdx

i:

� Canonical volume form: d�+ := �

3!
!+ ^ (d!+)3 (� := sign(det g)).

� Reeb vector �eld on A+0 : `+ = li�i; li =
_xi

F
:

Proposition 38, [1] (Set of future pointing timelike directions T +):
De�ne T + := �+(T ) � A+0 : Then:
1. �+ : O ! T + is a di¤eomorphism.
2. If �+ 2 
7(T +) - compactly supported and � :=

�
�+
��
�+; then:Z

T +
�+ =

Z
O
�: (24)



2.3. Finsler spacetimes, Finsler spaces, Lorentzian
manifolds: a brief comparison

References:
[1] N. Voicu, Conformal maps between pseudo-Finsler spaces, International
Journal of Geometric Methods in Modern Physics 15(01), 1850003 (2018).
[2] A. Fuster, S. Heefer, C. Pfeifer, N. Voicu, On the non metrizability of
Berwald Finsler spacetimes, Universe 6 (5), 64 (2020).

Main aim: Show that:
1. Finsler spacetimes may strikingly di¤er from positive de�nite Finsler spaces
2. Yet: Finsler spacetimes share with Lorentzian ones some essential features
(! OK for physics!)

Focus on: projective and conformal structures.



On the non-metrizability of Berwald-Finsler spacetimes, [2]:

(M;L) is called of Berwald type if Gi - quadratic in _x :

Gi = Gijk(x) _x
j _xk

, Gijk de�ne a symmetric a¢ ne connection on M; whose autoparallels are
geodesics of (M;L).

Theorem (Szábó,�s Metrizability Theorem, 1981): Let (M;F ) be a (pos-

itive de�nite,
�

TM -smooth) Finsler space of Berwald type. Then, there exists
a Riemannian metric a on M such that the a¢ ne connection of the Berwald
space is the Levi-Civita connection of a.

Consequence: Parametrized geodesics of (M;F ) = same as those of (M;a).



Results in [2]:

Necessary condition for pseudo-Riemann metrizability: horizontal Chern-Rund
Ricci tensor components Rij := R k

i jk must be symmetric:

Rij = Rji:

Example: Berwald spacetime function on R4 with Rij 6= Rji :

L(x; _x) = ax( _x; _x)s
�p(k +m s)p+1;

a = 2dx0
dx1+x1 �(x2; x3) dx0
dx0+dx2
dx2+dx3
dx3; b = dx0;

where: s :=
(bx( _x))2

ax( _x; _x)
) ) L - non-Lorentz metrizable.

Theorem 42: If (M;L) is Berwald with A =
�

TM , then:

Rij = Rji:



Conformal symmetries of a pseudo-Finsler space (M;L), [1].

� 2 Diff(M) - conformal symmetry if 9� :M ! R - smooth, s. th.

L � d� = e�L: (25)

Particular case: � = 0 ) � - isometry of (M;L).

Remark: /9 Liouville-type classi�cation of conformal symmetries of (�at)
pseudo-Finsler spaces. Examples, [1]:

M := Rk � Rn�k; L := L�1L
1��
2 ; (26)

with L1 =
��� _x1 _x2::: _xk���2=k ; L2 - arbitrary ! in�nite-dim. conformal group.

Theorem 44, [1] (Pseudo-Finslerian extension of Weyl Theorem): If a
conformal symmetry of a connected pseudo-Finsler space (M;L) preserves un-
parametrized geodesics of (M;L), then � = const:



Other results in Lorentzian geometry which extend to Lorentz-Finsler:
Conformal/Killing vector �elds for (M;L) = generators of conf. symme-
tries/isometries of L:

Proposition 47, [1]: Any essential (= non-Killing, for any e�L) conformal
vector �eld must be lightlike, i.e., L � � = 0; at least at a point.
(pseudo-Riemannian case - see Kuhnel 2008).

Theorem 48, [1]: Assume a Lorentz-Finsler space (M;L) admits a Killing
vector �eld � with the property that L(x; �(x)) � 0, 8x 2M: If � = 0 at one
point x 2M; then � vanishes identically.
(pseudo-Riemannian case - Sanchez, 1997)

Theorem 49, [1]: If � is a Killing vector �eld for a Lorentz-Finsler space
(M;L); having an isolated zero at some point x 2 M; then: dimM - even
and L � � takes all possible signs on each neighborhood of x:
(pseudo-Riemannian case - Sanchez, 1997).



2.4. Inequalities from Finsler and Lorentz-Finsler
norms

Reference:

[1] N. Minculete, C. Pfeifer, N. Voicu, Inequalities from Lorentz-Finsler norms,
Mathematical Inequalities and Applications 24(2), 373�398 (2021).

Main idea:
Finsler geometry is actually behind many notorious inequalities. Such as the
arithmetic-geometric mean one...

Consider: (M;L) - pseudo-Finsler space, x 2M:

T � TxM ' Rn+1 - open, connected conic subset on which L > 0:

Pseudo-Finsler norm: F =
p
L : T ! (0;1) :



Cauchy-Schwarz and reverse Cauchy-Schwarz inequalities

(Bao-Chern-Shen, 2000/Minguzzi 2015, Aazami&Javaloyes 2016):

I. L - positive de�nite ) Cauchy-Schwarz (fundamental) inequality:

dFv(w) � F (w) , gv(v; w) � F (v)F (w):

II. L - Lorentzian ) reverse Cauchy-Schwarz inequality:

dFv(w) � F (w) , gv(v; w) � F (v)F (w):

Remark, [1]: Ineqs. still hold in the pos. semidef./degenerate-Lorentzian case.



Examples of reverse Cauchy-Schwarz inequalities, [1]:

1) Aczél�s inequality: ai; bi > 0)

(a0b0 � a1b1 � ::::� anbn)2 � [
�
a0
�2 � �a1�2 :::� (an)2][�b0�2 � �b1�2 :::� (bn)2]:

2) Popoviciu�s inequality. If p > 1;
1

p
+
1

q
= 1; ai; bi > 0)

a0b0 � a1b1 � :::� anbn �
�
(a0)q�

�
a1
�q�:::� (an)q�1q ��b0�p� �b1�p�:::� (bn)p�1p :

3) Arithmetic-geometric mean inequality:

�0 + ::::+ �n

n+ 1
� (�0�1:::�n)

1
n+1 ; 8�i 2 R�+: (27)

4) Weighted arithmetic-geometric mean inequality:
nX
i=0

aiv
i � (v0)a0(v1)a1:::(vn)an; ai � 0; vi > 0: (28)



Example of (positive de�nite) CS inequality - H½older inequality:

a0b0 + a1b1 + ::::+ anbn �
��
a0
�q
+ :::+ (an)q

�1
q
��
b0
�p
+ :::+ (bn)p

�1
p ;

Playing to discover new inequalities:
1) Use a Kropina deformation of Miknowski metric � )

2�(v; w) � w0

v0
�(v; v) +

v0

w0
�(w;w):

2) A Finslerian extension of Aczél�s inequality:

[�(v)�(w)� ĝv(v; w)]
2 � [�2(v)� F̂ 2(v)][�2(w)� F̂ 2(w)];

where: F̂ - pos. def. Finsler, � 2 
1(Rn+1).

See [1] for more examples (triangle/reverse triangle ineqs.)...



3 Finsler-based �eld theory



3.1. The general framework

Ref.: [1]. M. Hohmann, C. Pfeifer, N. Voicu, Mathematical foundations
for �eld theories on Finsler spacetimes, Journal of Mathematical Physics 63,
032503 (2022).

Main results:

1. Construct general con�guration bundles (Y;�; X), allowing:
- k-homogeneous Finslerian geometric objects as sections;
- well de�ned �bered automorphisms;
- compactly supported variations;
) best option: X := PTM+:

2. Analyze the common features of (Y;�; PTM+) and of Lagrangians
built upon them.



Structure of �bered manifolds over PTM+

Consider: (M;L) - Finsler spacetime, (Y;�; PTM+) - �bered manifold )

Y
��! PTM+ �M�!M: (29)

Fibered automorphisms of (Y;�; PTM+) :



Bundles having k-homogeneous Finslerian geometric objects as sections:
A k-homogeneous (Finslerian) geometric object= a local section:

�
 : Q !

�
Y ; (x; _x) 7! (x; _x; y(x; _x)) ;

of some �ber bundle (
�
Y ;

�
�;

�
TM;Z) obeying:

� (x; � _x) =
�
x; � _x; �ky

�
; 8� > 0:

Necessary cond.: 9 an action H : R�+�
�
Y !

�
Y by �bered automorphisms:

H(�; �) = H� 2 Aut(
�
Y ); H�(x; _x; y) =

�
x; � _x; �ky

�
; (30)

Then: k-homogeneity = equivariance:
�
Y

H��!
�
Y

�
 " " �
�

TM
���!

�
TM

H� �
�
 =

�
 � ��:



F Idea: "factor away" the action of R�+ from both
�
Y and

�
TM:

Theorem 58 (The orbit space Y ): Consider a �ber bundle (
�
Y ;

�
�;

�
TM;Z),

equipped with action H : R�+ �
�
Y !

�
Y as in (30). Then:

1. The orbit space Y =
�
Y =�of the action is a �ber bundle over PTM

+; with
typical �ber Z and projection:

� : Y ! PTM+; � [x; _x; y] = [x; _x] :

2. k-homogeneous sections
�
 : Q !

�
Y ; where Q �

�
TM is a conic subbundle,

are in a one-to-one correspondence with local sections  : �+(Q)! Y:

Figure: local trivializations on
�
Y and Y:



Fibered homogeneous coordinates on Y (unique up to positive rescaling):

[x; _x; y] 7!
�
xi; _xi; y�

�
(31)

:= local coords of an arbitrarily chosen representative of the class [x; _x; y].

Examples:
1. Finsler (2-homogeneous) functions L : A ! R )

�
Y =

�
TM � R; H�(x; _x; L̂) = (x; � _x; �

2L̂); 8� > 0: (32)

Sections of Y : [(x; _x)] = [x; _x; L(x; _x)]; that is:

L = L̂ �  � �+:

2. 0-homogeneous metric d-tensors g : A ! T 02 (
�

TM))
�
Y = T 02 (

�
TM); H�(x; _x; y) = (x; � _x; y); 8� > 0:

Other examples: d-tensors, connections.



Finsler �eld Lagrangians, action, extremals:

Finslerian �eld: = a (local) section  2 �(Y ).
Field Lagrangian of order r:= a �r-horizontal 7-form � 2 
7(JrY ):

�+ = �d�+; (33)

where: d�+ = (any) invariant volume form on PTM+:

Property (0-homogeneity): _xi _di� = 0:

Action attached to �+ and to a piece D+ � PTM+:

SD+ : �(Y )! R; SD+() =
Z
D+

Jr��+

) tools in Chapter 1 can be consistently applied.



3.2. The energy-momentum distribution tensor

Setting: Use L as the background variable (section of: Yg = (
�

TM � R)=�)
� Con�guration bundle

�
Y;�; PTM+

�
:

Y := Yg �PTM+ Ym

where: Ym - �ber bundle over PTM+; Ym - natural over M .

� Canonical lifts � of �0 2 X (M) = double lifts:

�0 2 X (M) 7! � 2 X (PTM+) 7! � 2 X (Y ): (34)

� Natural matter Lagrangians:

LJr��
+
m = 0;

for all � as in (34).



Theorem 61 (Existence of energy-momentum distribution tensor �): Let
�+m 2 
7(JrY ) be a natural Finsler Lagrangian and Eg(�+m) 2 
8(Js+1Y )
(s + 1 � 2r), the Yg-component of its Euler-Lagrange form. Then, there
exist unique F(M)-linear mappings � : X (M)! 
(Js+1Y ); B : X (M)!

(Js+2Y ); with horizontal values, such that:

hiJs+1�Eg(�
+
m) = B(�0) + hd�(�0); 8�0 2 X (M): (35)

Energy-momentum scalar T :

Eg(�+m) =: �
1

2
T L̂�1� ^ d�+; �

j
i := TL̂

�1 _xj _xi; (36)

where: � := dL̂� L̂;idx
i � L̂�id _xi; _xi :=

1

2
L̂�ij _xj:

Energy-momentum distribution tensor:

�(�0) = (�
j
i�
i)i�jd�

+ = T!+ 
 i`+d�
+:

Balance function: B(�0) = ��
j
ijj�

id�+:



Theorem 65: For any local section  = (L; m) 2 �(Yg �PTM+ Ym) such
that

supp(Jr��+m) � T +: (37)

and m - critical for the action, there hold:
1. Averaged energy-momentum conservation law: At any x 2 M and in
any corresponding �bered chart:Z

T +x

(�
j
ijj � J

s+1)d�+x �(m) 0; (38)

where d�+ =: d4x ^ d�+x :
2. Relation to Noether currents: For any �0 2 X (M):Z

@T +(D0)

Js+1��(�0) �(m)
Z

@T +(D0)

Js+1�J �; (39)

where � denotes the canonical lift of �0 to Y:



Energy-momentum tensor density on M :

If supp(Jr��+m) � T + (e.g.,  has compact support supp () � T +), then:

T ij(x) :=
Z
O+x

(�ij � Js+1)j(x; _x)d�+x ; 8x 2M : (40)

) integral is �nite, T ij - comps. of a tensor density on M:



3.3. Concrete model: Finsler gravity sourced by a kinetic gas

Refs.:
[1] M. Hohmann, C. Pfeifer, N. Voicu, Finsler gravity action from variational
completion, Physical Review D 100, 064035 (2019).
[2] M. Hohmann, C. Pfeifer, N. Voicu, Kinetic gases as direct gravity sources,
Physical Review D 101, 024062 (2020).
[3] M. Hohmann, C. Pfeifer, N. Voicu, The kinetic gas universe, European
Physical Journal C 80, 809 (2020).

Main results:
1. Construct a concrete, correctly de�ned vacuum action, starting from a
physical principle+canonical variational completion.
2. Construct a matter action (kinetic gas) ) �eld eq.&energy-momentum
distribution.
Advantage: description of the gravitational �eld, fully taking the velocity
distribution of sources into account.



1. Construction of vacuum action:

Geodesics of a Finsler spacetime r _c _c = 0

(r : X (M)�X (M)! X (M) - given by the canonical nonlinear connection)

Geodesic deviation equation: r _cr _c� = R( _c; �);

Finslerian Ricci scalar : R := trace(R) = Riik _x
k

Postulated vacuum �eld equation (Rutz 1993):

R = 0: (41)

Rutz eqn. is not variational ! build the "closest" variational eq.



Canonical variational completion of Rutz�s equation, [1]:

� Dynamical variable: L 7! �(Yg); Yg := (
�

TM � R)=�
� Canonical volume form on A+0 � PTM+ : d�+ = !+^d!+^d!+^d!+

� Source form: " = (RL�1)� ^ d�+ 2 
8(J4Yg)
) Vainberg-Tonti Lagrangian:

�+g = L̂�1Rd�+:

Variational completion of Rutz�s equation
(= same eq. as Pfeifer&Wohlfarth 2011):

1

2
gijR�i�j � 3(L�1R)� gij(Pijj � PiPj + (rPi)�j) = 0; (42)

where P = Pidx
i - trace of Landsberg tensor.



2. Kinetic gases in general relativity (see Sarbach-Zannias 2014):

�



�
	Kinetic gas = a large number N of interacting point particles, described by

a smooth 1-particle distribution function:

' = ' (x; _x) :



Worldlines = piecewise smooth normalized geodesics  ! ((s); _(s)) 2 O
X O - observer space of a Lorentzian metric

O := f(x; _x) 2 TM j gx( _x; _x) = 1; _x- future pointingg
X Assumption: ' (x; �) : Ox ! R has compact support, 8x 2M:

XNumberN� of particle trajectories (; _) crossing a hypersurface � � O :

N� =
Z
�

'd
: (43)

X Gravitational �eld - from Einstein-Vlasov equations:

R�� � 1
2
Rg�� =

8�G

c4
T��; T��(x) :=

Z
Ox

m' _x� _x�d�:

X For collisionless gases ) Liouville equation:

`(') = 0:



Our approach, [2]:

F Idea: Couple ' directly to gravity (no _x-averaging!)
! this is possible in Finsler geometry.

� Rewrite ' : O ! R as a function on J4Yg :

'+ : J4Yg ! R; '+(J4[(x; _x)]) := '(x; _x):

� Construct matter action on J4Yg as:

Sm;D := �mN� = �m
Z
D
'd� = �m

Z
�+(D)

('+ � J4)d�+;

with: D � O (piece).

� Matter Lagrangian: �+m := �m'+d�+ - generally covariant.



Total Lagrangian: �+ =
1

2�2
�+g + �+m:

Theorem 68: The Euler-Lagrange equation attached to �+ is:

1

2
gij(LR0)�i�j � 3R0 � gij(Pijj � PiPj + (rPi)�j) = �2m' : (44)

Energy-momentum distribution tensor comps.:

�ij = m'+L̂�1 _xi _xj: (45)

Energy-momentum density on M - components (supp('(x; �)) - compact!):

T ij(x) := m
Z
O+x

('+lilj) � J6 d�+x = m
Z
Ox

'liljd�x (46)

- formally similar to pseudo-Riemannian (GR) approach.



Averaged e.-m. conservation law (38) becomes:Z
Ox

`(')ljd�x = 0: (47)

Particular cases:

1. Collisionless gases:
- Pointwise covariant conservation law of � = Liouville equation:

`(') = 0:

2. Lorentzian spaces (M;a):
- Averaged energy-momentum conservation law (38) ,

T ij;i = 0:



3.4. Cosmologically symmetric Finsler spacetimes

Reference:
[1]: M. Hohmann, C. Pfeifer, N. Voicu, Cosmological Finsler spacetimes, Uni-

verse 6 (5), 65 (2020).

Main results:
1. Use the Copernic principle to identify the Lie algebra of generators of
cosmological symmetry (& general form of Finsler functions with cos-
mological symmetry.)
2. For cosmologically symmetric Berwald spacetime functions! complete
classi�cation.



Cosmological (Copernic) principle:
At largest scales, the Universe is: homogeneous ("same at all points"):
and isotropic ("same in each direction"):

Consider: (M;L) - Finsler spacetime.
Global time function = a smooth t :M ! R such that
� dt(X) > 0; 8X 2 �T and
� the spatial slices �T := fp 2M jt(p) = T = constantg are connected.



De�nition, [1]: (M;L) - cosmological Finsler spacetime if:

1. It admits a global time function t :M ! R and
2. All spatial slices �T obey:

(i) �T - homogeneous: 9 a Lie group G of isometries of (M;L) acting

transitively on each slice �T :

8T 2 R; 8q1; q2 2 �T9' 2 G : '(q1) = '(q2)

(ii) �T - isotropic: at all p 2 �T : the isotropy group at p :

Gp := f 2 Gj (p) = pg

acts transitively on the projective space PTp�T :

8 [v1] ; [v2] 2 PTp�T : 9'p 2 Gp : d'p ([v1]) = [v2] :



Theorem 72, [1]: For a cosmologically symmetric Finsler spacetime (M;L) :

dimG = 6; dimGp = 3:

Proposition 73, [1]: The identity component of Gp is isomorphic to SO(3):

Remark (Kobayashi&Nomizu, 1963) :

�T - homogeneous, Gp ' SO(3)
!) �T admits a G-invariant Riemannian

metric h:

Consequences:
1. h - maximally symmetric ) h has constant sectional curvature �;

2. L and h have the same Killing vector �elds X(k); k = 1; :::; 6:
3. One can use spherical coords. (t; r; '; �) given by h:



Theorem (� Hohmann&Pfeifer 2016): If (M;L) - cosmologically symmetric

Finsler spacetime, then:

L = L(t; _t; w); w2 =
_r2

1� kr2
+ r2

�
_�
2
+ sin2 � _'2

�
:

Theorem 75, [1] (Classi�cation of cosmologically symmetric Berwald
spacetime functions): If (M;L) - cosmological Berwald spacetime, then L

falls into one of the following classes:

a) pseudo-Riemannian spaces: L(x; _x) = aij(x) _x
i _xj :

b) nontrivially Finslerian: of the form:

L(t; _t; w) = _t2B2(t)�

 
w

_tB(t)

!
:

where B;� - arbitrary real functions and � 2 f0;�1g.



4 Outlook and perspectives

I. A geometric toolkit for the calculus of variations:

1. Geometric formulation of higher order Hamiltonian �eld theory (Hamilton-de
Donder equations), based on canonical Lepage equivalents.

2.Energy-momentum tensors:
- Extend (if possible) the de�nition of energy-momentum tensors in Ch.1 to the
case when the di¤erential index of Y (b) is greater than 1 (e.g., in purely a¢ ne
theories).
- Obtaining a general construction of a conserved gravitational energy-
momentum pseudotensor, in general �eld theories.

3. Extending the Vainberg-Tonti Lagrangian construction - e.g., using other
groups of �ber automorphisms.



II. Finsler spacetimes:

Classes of Finsler spacetimes which are relevant for solving the Finsler gravity

�eld equation (44):

- Spacetimes with (�; �)-metric.

- Spacetimes with _x- compactly supported Ricci scalar R(x; �); in particular,
Ricci-�at ones R = 0:

- Compactly supported deviations from Lorentzian metrics a:

- Weakly Landsberg spacetimes. Weak unicorns.

- Berwald spacetime functions with special properties (e.g., spherical symmetry,
�

TM -smoothness etc.).



III. Finslerian �eld theory:

1. Solutions of the Finslerian �eld equation:
- Vacuum spatially spherically symmetric solutions.
- Cosmologically symmetric solutions of the (non-vacuum) �eld equation (44).
- Linearized Finslerian perturbations of Lorentzian metrics.

2. Comparison of Finslerian equation with the Einstein-Vlasov equations.

Focus on: cosmologically symmetric case ?) dark energy.

3. Build models for: electromagnetic �eld, ultrarelativistic gas.

4. Finsler geometry as the geometry of modi�ed dispersion relations:
Cotangent bundle formulation of Finsler �eld theory framework, geometry of
curved momentum spaces.




