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Introduction

Novelty and importance of the research topic

Today’s world is overwhelmed by an unprecedented amount of data (Figure 1) often character-
ized by high dimensionality, which makes handling such large real-world datasets a tedious task.
The solution for an effective processing and analysis in this case is applying a pre-processing
task consisting of dimensionality reduction, which “mitigates the curse of dimensionality and
other undesired properties of high-dimensional spaces” [22].

Figure 1: The explosive growth of data [6].

In particular, one type of multidimensional data which is undergoing an explosive growth
is the remote sensing data. Remote sensing is generally defined as the field or practice of
gathering information from distance about an object (usually the Earth’s surface by measuring
the electromagnetic radiation) [17].

The constant developments in the area of Remote Sensing opens up new possibilities and at
the same time presents challenges regarding the analysis and processing of the large amounts
of multidimensional data [20]. Consequently, a key task in the field of hyperspectral image
analysis becomes managing this high volume of data; this task is currently performed by either
applying dimensionality reduction techniques or selecting a subset of the available spectral
bands [19].
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Figure 2: Data cube from an AVIRIS dataset

Dimensionality reduction (DR) techniques [64] are mathematical procedures that transform
the “high-dimensional data into a meaningful representation of reduced dimensionality” [65].
Dimensionality reduction techniques are also referred to as projection methods, and are the
widely used exploratory tools for applications in remote sensing due to a set of benefits that
are bringing for remote sensing data analysis [15].

Research objectives

The main goal of this thesis is the design, implementation, testing, validation and optimiza-
tion of a novel dimensionality reduction method, related to the Principal Component Analysis
technique.

The main motivation behind this research is the desire to contribute to multidimensional
data analysis by means of improving methods and techniques for dimensionality reduction,
data processing and analysis, visualization and knowledge extraction.

From this main objective, several related– specific objectives derive:

1. Identifying the current state of the dimensionality reduction techniques, following the
study of the literature, thus highlighting the key points that can benefit from innovative
solutions.

2. Designing a new dimensionality reduction method that will be able to address the short-
comings of the dimensionality reduction techniques, previously identified.

3. Implementing the new method.

4. Testing and validating the new method using both synthetic and real world data to prove
its efficiency, by comparing its results with other state-of-the-art methods.

5. Optimizing the new method in terms of both quality of the results and time of computa-
tion.
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Structure and organization of the doctoral thesis

Regarding the structure of the thesis, it is organized in six chapters and includes 62 figures,
47 tables and 195 bibliographical references.

� Introduction presents the opportunity and motivation of the approached topic, the main
objective and the specific objectives proposed for solving it within the doctoral research,
as well as the description of the thesis structure.

� Chapter 1, “Principal Component Analysis (PCA)” presents the current state-of-the-art
of the methods used for performing dimensionality reduction, with focus on the Principal
Component Analysis method, the most well-established dimensionality reduction tech-
niques. Its advantages and disadvantages, the range of its application in various domains
and various adaptations are summarized in this chapter.

� Chapter 2, “Geometrical Approximated Principal Component Analysis” introduces a
novel method, the gaPCA, as an alternative to the canonical Principal Component Anal-
ysis, based on a geometrical construction.

� Chapter 3, “Hyperspectral image analysis and classification” presents the results achieved
after validating the novel gaPCA method in the field of hyperspectral images, for pur-
poses of image analysis and classification. The performance of the gaPCA method was
evaluated using several different metrics, for both image quality assessment, quality of
the reconstruction, redundancy of the information, and accuracy of the classification and
the results have been benchmarked against the canonical PCA.

� Chapter 4, “Face recognition” presents the results of the novel gaPCA method in the
field of face recognition and its performances in terms of accuracy of the recognition, with
the canonical PCA as a benchmark, are discussed.

� Chapter 5, “Parallelization” presents the implementation of the novel gaPCA method
using parallel computing principles for accelerating the times of computation, in order to
obtain significant speed-ups and improved energy efficiency.

� Chapter 6, “Final conclusions and original contributions”, presents in a systematic
approach the conclusions of the previous chapters and reviews the original contributions
made in this doctoral thesis research and the issues addressed. It also presents a num-
ber of future research directions that will be pursued to continue and develop existing
contributions.
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CHAPTER 1

Principal Component Analysis (PCA)

According to the Merriam-Webster dictionary, the term “multidimensional” means “having or
relating to multiple dimensions or aspects” [8]. Although, in the strict meaning, data sets that
have more than two dimensions are considered multidimensional, the word “multidimensional”
is generally used only for data sets with more than three dimensions [21].

Dimensionality reduction is “the transformation of high-dimensional data into a meaningful
representation of reduced dimensionality” [37]. The goal is to find a new, reduced representation
that is able to represent the original data in a lower dimensional space in such a way that the
intrinsic key relations of the data are preserved.

Principal component analysis belongs to the family of Projection Pursuit (PP) methods [27],
a class of statistical non-parametric methods for data analysis proposed initially by Friedman
and Tukey in 1974 [27], which involves searching for directions in the multidimensional space
onto which the data can be projected to reveal meaningful low-dimensional understanding of
the data patterns and configuration.

1.1 Method description

The PCA algorithm produces a new set of variables, in which each one represents a linear
combination of the initial features [7]. This coordinates, which are also called principal com-
ponents (PCs), are perpendicular one to another and present a specific ordering (i.e. each PC
points in the direction given by the maximum variance and is orthogonal to each of the previous
PCs). The first PC is a vector in the original space, defined by the minimum average squared
Euclidean distance between itself and the data points. The second PC is another line in space,
orthogonal to the first and satisfying the same minimum squared Euclidean distance metric
and so on [61] (Figure 1.1).



6 PRINCIPAL COMPONENT ANALYSIS (PCA)

Figure 1.1: Principal component axis on a bidimensional correlated normally distributed cloud
of points

1.2 PCA applications

PCA can be applied in almost all scientific disciplines for task such as dimensionality reduc-
tion, knowledge extraction, noise-reduction, visualization, compression. For example, in the
field of image enhancement, PCA was used to perform contrast enhancement and denoising
for night images [57]. In biology, this method was used for the prediction of protein-protein
interactions [66]. In forestry, PCA was used for the analysis of soil-vegetation interrelationships
[24]. In sociology, PCA was used for the analysis of socioeconomic factors and their association
with malaria and arbovirus risk in Tanzania [29]. The benefits from using PCA, also extend to
other fields such as business [13], forensics and art restoration, for example.

1.3 PCA strong points and limitations

Among the main advantages of PCA ([63], [28], [34]), one can enumerate:

� PCA provides a reduced representation of the data, since only a few prinicpal components
are needed to retain most of the information in the original dataset.

� PCA allows the (partial) reconstruction of the input data. All dimensionality reduction
method loose some information, but PCA is recognized for its ability to minimize this
loss of information.

� PCA is generic. Since this method is not adjusted for a specific task, it has a high
flexibility and uses in a broad field of data and applications.
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� PCA efficiently reduces the correlation and redundancy in the data. The resulting
variables are uncorrelated one to another.

Nevertheless, there are also some issues related to PCA ([63], [28], [34], [61]) are:

� PCA makes the assumption that the largest variances are the most important. So,
principal components corresponding to greater variances are more interesting than those
with smaller ones. Considering that one of the PCA goals is to find the direction of
maximum variance of projection on each component (along with finding the projections
that minimize the reconstruction error), means that in certain cases data with less variance
can be ignored from the representation and wrongly labeled as ”noise”, although it may
actually be of interest;

� PCA’s flexibility also comes with a price, consisting in relatively higher computational
requirements as compared to, e.g., the fast Fourier transform, and also inherent difficulties
of parallelizing the algorithm for benefiting of the existing highly-parallel computing
platforms and technologies.

1.4 PCA adaptations and approximations

Several research have explored the best ways to overcome this limitations by extending,
adapting or even reinventing PCA. As a consequence, over the past decades several adaptations
of the canonical PCA method were developed, focusing on specific data types, structures and
applications [32], resulting in numerous PCA extensions or variants.

Various attempts to “robustifying” the canonical PCA method were proposed by the scientific
literature aiming at rendering the method more immune to outliers and as a result also to the
errors in the datasets [35][18]. Independent Component Analysis produces “a representation
of the new variables that are independent to each other, not only uncorrelated” [38]. The
Nonlinear PCA [62] addresses the linearity issue. Nonlinear PCA nonlinearly transforms the
ordinal data into quantitative data [52]. This method is based on backpropagation for training
a multi-layer perceptron (MLP), updating both the weights and the inputs [62].

1.5 Conclusions

This chapter provided an overview of the most well-established dimensionality reduction
techniques, the Principal Component Analysis, was presented, with focus on the method
description, advantages and limitations and its application in various domains.

This chapter states the importance of dimensionality reduction techniques, in particular PCA,
in various fields for processing large multidimensional datasets. In the context of Big Data and
the continuous provisioning of large amounts of data from sensors, acquisition devices, etc.,
there is an increasing amount of interest for such technique,s especially PCA based adaptations
that allow improved knowledge extraction capabilities. In light of the above, this doctoral



8 PRINCIPAL COMPONENT ANALYSIS (PCA)

research focused on developing enhanced algorithms for dimensionality reduction able to provide
new insights and extract meaningful information from multidimensional datasets.



CHAPTER 2

Geometrical Approximated Principal Component Analysis (gaPCA)

2.1 Introducing the novel gaPCA method

gaPCA is an innovative and original method that computes the principal components of a
given multidimensional dataset based on the direction given by the extremities of the distribu-
tion (the points in the dataset separated by the maximum distance), consequently providing an
estimation of the direction of the canonical principal components. The standard PCA method
computes the principal components based on the direction of the data’s maximum variance, by
calculating the eigenvectors of the covariance matrix of the dataset. The downside is, however,
that these eigenvectors (being characterized by the signal’s magnitude) have a tendency to
overlook the information given by the (apparently) minor elements in the dataset, which are
considered less contributive to the total variance.

A unique feature that differentiates gaPCA from the canonical PCA is the fact that the
ordering for the gaPCA components (which are each mutually orthogonal) is the one resulted
from the algorithm iterations (they are not ranked in any way), whereas in the case of canonical
PCA, they are ranked according to variance. Consequently, unlike standard PCA (where the
compressed information is found preponderantly in the first very few components), in the case
of gaPCA, this information is more dispersed among the first components [33].

2.2 Method description

The initial step of gaPCA consists of normalizing the input dataset, by subtracting the mean.
Given a set of n-dimensional points, P0 = {p01,p02, . . .} ⊂ Rn, the mean µ is computed and
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subtracted.

P1 = P0 − µ; (2.1)

The first gaPCA principal component is computed as the vector v1 that connects the two
points: v1 = e11 − e12, separated by the maximum Euclidean distance:

{e11, e12} = arg max
p1i,p1j∈P1

d(p1i,p1j) (2.2)

where d(·, ·) stands for the Euclidean distance.

The second principal component vector is computed as the difference between the two projec-
tions of the original elements in P1 onto the hyperplane H1, determined by the normal vector
v1 and containing o, the origin:

H1 = {x ∈ Rn| < v1,x >=< v1,o >} (2.3)

with < ·, · > denoting the dot product operator. P2 = {p21,p22, . . .} represents the projected
original points, computed using the following formula:

p2i = p1i + (< v1,o > − < v1,p1i >) · v1/||v1||2 (2.4)

As such, the i-th basis vector is calculated by projecting Pi−1 onto the hyperplane Hi−1,
finding the maximum distance-separated projections and calculating their difference, vi.

The gaPCA algorithm is comprised of 2 major iterative phases, with each phase being
executed several times, according to the intended number of principal components to be
computed:

1. Determining the projection vector defined by the two extremities of the dataset (separated
by the maximum distance);

2. Performing dimensionality reduction on the dataset by projecting it onto the subspace
orthogonal to the previous projection.

In order to reconstruct the original data, the components scores S (computed by projecting all
points onto the principal components) are computed (in a similar manner as for the canonical
PCA) by multiplying the original mean-centred data by the matrix of (retained) projection
vectors.

S = P1 · v (2.5)

The original data can be reconstructed by multiplying the scores S by the transposed principal
components matrix and adding the mean.

P0 = S · vT + µ (2.6)

The final result is the set of basis vectors V = {v1,v2, ...,vn}. The representation of n-
dimensional data using V is done using the dot product operator; thus, in the new representa-
tion, the i-th component ci of a vector x = [x1, x2, ..., xn] is computed as: ci =< x,vi >.
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2.3 gaPCA algorithm

Algorithm 1 contains the pseudocode for the gaPCA method.

Algorithm 1: gaPCA

Input: P1 = [p11, p12, . . . , p1m], k where:
m = number of pixels of the image ;
p1i = the pixel vector (n bands) of the i-th pixel ;
k = the number of principal components to be computed ;
Output: v = [v1, v2, . . . vk] ;
e11, e12 = computeMaximumDistance(P1);
v1 = (e11-e12) / ||v1|| ;
o = mean(P1);
for i← 2 to k do

Pi = computeProjectionsHyperplane(Pi−1, o, vi−1);
ei1, ei2 = computeMaximumDistance(Pi);
vi = (ei1-ei2)/ ||vi||;

end
return v

Algorithm 2 illustrates the pseudocode for the method that computes all the Euclidean
distances between each points of a matrix P .

Algorithm 2: computeMaximumDistance

Input:P = [p1, p2, . . . , pm] ;
Output: e1, e2 ;
e1 = 0;
e2 = 0;
distMax = 0;
for i← 1 to m− 1 do

for j ← i+ 1 to m do
dist = EuclideanDistance(P [i], P [j]) ;
if (dist > distMax) then

distMax = dist ;
e1 = P [i];
e2 = P [j] ;

end

end

end
return e1, e2

Algorithm 3 depicts the pseudocode for the routine that calculates the Euclidean projections
of each point of matrix P , on the hyperplane given by the orthogonal vector v and including
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the mean point of the dataset md.

Algorithm 3: computeProjectionsHyperplane

Input: P = [p1, p2, . . . , pm] , o, v ;
Output: R = [r1, r2, . . . , rm] ;
for i← 1 to m do

R[i] = P [i] + (< v, o > - < v, P [i] >) · v/||v||2;
end
return R

Algorithm 4 contains the pseudocode for the method that computes the Euclidean distance
between vector P and vector R.

Algorithm 4: EuclideanDistance

Input: P = [p1, p2, . . . , pm], R = [r1, r2, . . . , rm] ;
Output: d ;
d = 0 ;
for i← 1 to m do

d = d + (P [i]- R[i])2;
end
return sqrt(d)

Figure 2.1: PCA (blue) vs. gaPCA (red) axes on a 2D cloud of points.

Figure 2.1 and Figure 2.2 depict a graphical illustration of how gaPCA and canonical PCA
calculate the principal components for a randomly generated set of 2D points having a normal
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Figure 2.2: PCA (blue) axes vs. gaPCA (red) normed axes on a 2D cloud of points.

distribution. Figure 2.3 depicts the computation of the basis vectors for a generated three-
dimensional set of points.

2.4 Validation on synthetic data

For validating the gaPCA method on synthetic data, 100 random sets of 1000 two-dimensional
points each were generated, with a Gaussian distribution (this distribution was chosen since
it is widely accepted as a statistical model for most types of data, like for example optically
remotely sensed data [51]). The generated data was correlated with a correlation coefficient
ranging in steps of 0.1 from 0.5 to 1. For this experiments, the data was not mean-centered
prior to the computation of the gaPCA method.

In the case of each random generation, we assesed two types of metrics evaluating geometri-
cally the closeness between the canonical PCA and gaPCA:

(i) the angle formed by the first canonical PCA component and the gaPCA one, i.e. the
error angle determined by the line given by the points separated by the max distance and
the 1st PCA component;

(ii) the distance between the mean of the dataset and the midpoint of the segment given by
the points with the largest distance in the dataset.

Figure 2.4 illustrates three randomly-generated two-dimensional clouds of points (black)
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Figure 2.3: gaPCA axes (green) on a three-dimensional correlated cloud of points.

having different correlation coefficient values. For each dataset, the first 2 principal components
were computed, for both gaPCA (red) and canonical PCA (blue). A decrease in the angle
deviation towards very small values is noticeable for higher values of ρ. This phenomenon proves
that the accuracy of the PCA-approximation provided by gaPCA increases as the variables are
more correlated.

Figure 2.5 depicts the error angle and error distance as boxplot representations, varying with
the correlation coefficient ρ of the dataset. These results show that on average, both in metrics
(angle and distance) show a decreasing trend with increasing ρ.

2.5 Conclusions

In this chapter, an alternative PCA algorithm based on a geometrical construction was
introduced, namely the gaPCA method, which is based on the consideration that in a mul-
tidimensional dataset the segment connecting the furthest points gives a direction relatively
close to the one given by the first principal component. The preliminary validation of the
gaPCA method was presented, the baseline for comparison was the standard PCA algorithm.

Thus, gaPCA was validated on synthetic datasets consisting of two-dimensional point clouds
randomly-generated with a Gaussian distribution ensuring the normality condition. For a
comparative assessment of the gaPCA performance on the synthetic data, its results were
analysed versus the results of the standard PCA, by computing the error angle and error
distance between the principal component axes of the two methods. The results obtained show
that both error metrics, for most of the datasets are under 10%, which confirms a high fidelity
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(a) ρ=0.5

(b) ρ=0.7

(c) ρ=0.9

Figure 2.4: gaPCA vs. PCA axes for 2D datasets having various correlation coefficients (ρ).
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(a)

(b)

Figure 2.5: Angle (a) and distance (b) between gaPCA and PCA axes - boxplot representation.
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of the gaPCA method compared to the standard PCA, on synthetic data.
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CHAPTER 3

Hyperspectral image analysis and classification

The latest developments in the field of Remote Sensing (with regard to both airborne and
spaceborne hyperspectral images) opens the door to new technological capabilities and oppor-
tunities, together with their inherent challenges related to the processing and analysis of large
amounts of data. Hence, the increased availability of hyperspectral images is responsible for a
widening of the information spectrum, but also for a considerable increase in the computational
complexity that comes with large datasets. One of the main challenges is represented by the
requirement to handle a large number of hyperspectral bands, which consequently increases
substantially the processing time and the associated computational complexity. In this context,
the efficient and accurate reduction of the remotely sensed data (or the optimum selection
of the relevant hyperspectral bands for a particular application) represents a critical task in
hyperspectral image analysis [60].

PCA, as a well-established dimensionality reduction technique, is used in hyperspectral
imaging / remote sensing applications as a pre-processing method for several purposes. The
most widely-used applications for PCA in the domain of remote sensing, comprise of land and
image classification [60] [53], feature recognition [14] and change detection (identifying changes
in specific areas within multi-temporal images) [58], but also on image visualization [39] and
image compression [23].

In this context, this chapter presents the applications of the novel gaPCA method in the area
of hyperspectral remote sensing data analysis and visualization [45], [25], [47].

3.1 Performance evaluation

The gaPCA method’s results have been assessed qualitatively but also quantitatively. The
former criteria was applied for evaluating the principal components images (in terms of variance,
Mean Absolute Error -MAE, Gray level co-occurrence matrix -GLCM textural analysis metrics:

19
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contrast, entropy, energy), quality of the reconstruction (Signal to Noise Ratio -SNR, Peak
Signal to Noise Ratio -PSNR, Root Mean Square Error -RMSE, Spectral Angle Mapper -SAM
and Correlation Coefficient -CC) and redundancy of the principal components (by computing
the mutual information index - MI), while the latter approach involved assessing the land
classification accuracy obtained on the gaPCA principal components.

Given that PCA (among other similar algorithms) is efficaciously used in remote sensing
for reducing the dimensionality of the data (and thus reducing its redundancy), extracting
land cover information or for feature extraction [42], in this work an evaluation of the gaPCA
effectiveness in the field of land classification was performed, and the standard PCA algorithm
was used as a baseline (reference) for benchmarking.

For each data set, a different number of principal components was computed. This number
was determined in each case based on the requirement to attain a very high amount of variance
explained (e.g. 98-99%) through a minimum number of principal components. Based on
this rule, the following number of components was computed for each dataset: Indian Pines
– 10, Pavia University – 4, DC Mall – 3 and AHS – 3. The first principal components
computed by both gaPCA and canonical PCA correspond to the bands of the images on which
the classification was performed, using the ENVI software [4]. Regarding the classification
algorithms, for all datasets and both methods, the Maximum Likelihood Algorithm (ML) and
the Support Vector Machine Algorithm (SVM) were used. For evaluating the classification
accuracy in each case, a set of pixels was randomly generated from the input image and these
were visually inspected with regard to the groundtruth image of each dataset.

The actual classification accuracy score was computed using two metrics: the overall accuracy
(OA consisting of the number of correctly classified samples divided by the number of test
samples) and the kappa coefficient of agreement (k which stands for the percentage of agreement
corrected by the amount of agreement that could be expected due to chance). To evaluate the
statistical significance of the classification outcomes given by the two techniques, the McNemar’s
test [50] was performed.

3.2 Experimental results and discussion

3.2.1 GLCM textural analysis metrics

The GLCM textural analysis metrics were applied for evaluating the quality of the principal
component images calculated with both methods, since the land classification task is actually
performed on them. The aim of this analysis is to assess both the quality and the amount
of information of the principal component images corresponding to both methods, since these
factors influence the accuracy of the land classification results. The three GLCM metrics
computed (contrast, energy, entropy) were calculated on both gaPCA and standard PCA
component images, where the number of components calculated was the same for both methods,
and it was consistent with the number used in all experiments, (Indian Pines – 10, Pavia
University – 4, DC Mall – 3, AHS – 3).

Table 3.1 presents the values of the contrast metric calculated for each principal component
image and averaged, in both cases (gaPCA and standard PCA). In case of the Indian Pines
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and Pavia University datasets, the gaPCA principal components presented higher averaged
contrast values compared to the canonical PCA, while for the remaining datasets the trend
is reversed. The averaged energy metric values calculated on the principal component images
produced by both gaPCA and canonical PCA for all 4 datasets are displayed in Table 3.2.
The numbers illustrate that the gaPCA principal components score better in terms of image
quality (the equivalent of having lower energy values) than the canonical PCA for all datasets,
except the Indian Pines. With regard to the entropy metric, the results presented in Table 3.3
are perfectly correlated with the contrast metric numbers, with gaPCA having higher entropy
values (and thus better scores) than canonical PCA for DC Mall and AHS, while in the other
two cases the situation is reversed.

The GLCM analysis on the performance of both gaPCA and standard PCA showed that with
regard to the contrast and entropy metrics, the two method behave similarly, while the energy
metric proved a superior image spatial quality for the gaPCA principal components compared
to the standard PCA ones, a fact that would support better land classification results.

Table 3.1: GLCM contrast metric for both methods on all datasets.

Indian Pines Pavia University DC Mall AHS

PCA 0.96 0.14 0.25 0.17
gaPCA 0.34 0.12 0.32 0.18

Table 3.2: GLCM energy metric for both methods on all datasets.

Indian Pines Pavia University DC Mall AHS

PCA 0.14 0.58 0.29 0.23
gaPCA 0.21 0.53 0.20 0.21

Table 3.3: GLCM entropy metric for both methods on all datasets.

Indian Pines Pavia University DC Mall AHS

PCA 6.95 5.28 6.07 6.72
gaPCA 6.61 5.17 6.38 6.75

3.2.2 Quality of the reconstruction metrics

In this subsection, the aim was to evaluate the relationship between the reconstructed and
the original dataset. Because one of the main characteristics of the PCA method is its ability
to preserve the main features in the data, in just a few components, several well-established
metrics were used to assess the quality of the reconstructed images using both PCA and gaPCA.
In the first part of this subsection, the experiments aimed to evaluate the connection between
the number of principal components used for reconstruction and the quality of the information
preserved. The Indian Pines dataset was used for performing the comparative analysis. The
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number of principal components that have been used for reconstruction ranged between 1
and 200 for both methods, in order to better see how the number of principal components
used for the reconstruction affects the quality of the reconstructed image. The first metric
evaluated was the RMSE, computed between the initial image and the reconstructed one from
the canonical PCA and the gaPCA principal components. The results are displayed in Table
3.4 and represented in Figure 3.1(a).

Table 3.4: RMSE for the Indian Pines dataset.

1PC 2PC 10PC 100PC 200PC

gaPCA 0.06 0.05 0.02 0.00 0.00
PCA 0.22 0.13 0.08 0.05 0.00

The results show that the RMSE of gaPCA are significantly lower than those of PCA. While
the errors converge to zero for both methods, for gaPCA the results are slighlty better, especially
in the lower dimensional spaces (up to 10 PCs computed, which is often the case in real world
applications).

The second metric used was the SNR. The values computed between the initial image and
the reconstructed one from the PCA and the gaPCA principal components are displayed in
Table 3.5 and illustrated in Figure 3.1(b).

Table 3.5: SNR for the Indian Pines dataset.

1PC 2PC 10PC 100PC 200PC

gaPCA 13.47 15.39 24.84 42.19 275.66
PCA 10.97 24.33 26.46 35.86 303.67

One can see that gaPCA outperforms PCA in terms of SNR when one principal component
is used, and in the case of 100 principal components, for example, while PCA has better results
for 2 PCs and when all the PCs are used.

Table 3.6 and Figure 3.1(c) are showing the PSNR between the initial image and the recon-
structed one using both PCA and gaPCA principal components.

Table 3.6: PSNR for the Indian Pines dataset.

1PC 2PC 10PC 100PC 200PC

gaPCA 24.87 26.79 36.24 53.60 287.06
PCA 22.37 35.73 37.86 47.26 315.03

The results for the PSNR are similar with those achieved with the SNR metric. Again, gaPCA
shows better results when one principal component is used, and in the case of 100 principal
components, while PCA scores higher for 2 and 200 PCs.

In the second part of this subsection, the experiments aimed to asses the quality of the recon-
struction for all the datasets evaluated, using a fixed number of principal components, the same
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Figure 3.1: RMSE (a), SNR (b) and PSNR (c) computed between the original image and the
canonical PCA, respectively the gaPCA reconstructions.
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number that was used for classification (in Section 3.2.4). All the previous mentioned datasets
were used for performing the comparative analysis. The number of principal components used
for reconstruction was the same number of principal components that was used for classification:
10 for Indian Pines, 4 for Pavia University, 3 for DC Mall and 3 for AHS.

The SNR computed between the original image and the image reconstructed from the stan-
dard PCA or gaPCA principal components for all the four datasets is provided in Table 3.7
and in Figure 3.2.

Table 3.7: SNR for all datasets.

PaviaU Indian Pines DC Mall AHS

gaPCA 24.84 12.75 14.66 26.32
PCA 26.46 15.13 9.38 32.03
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Figure 3.2: SNR between the original and reconstructed images using PCA and gaPCA for all
datasets.

The results show similar scores for PCA and gaPCA in terms of SNR for all datasets.
Although the differences are not significant, for three datasets, PCA has better results, while
for the remaining one dataset, gaPCA scores better.

The SAM (in radians) computed between the original image and the image reconstructed
from the standard PCA or gaPCA principal components is provided in Table 3.8 and in Figure
3.3. The number of principal components used for reconstruction was the same as the one used
for classification: 10 for Indian Pines, 4 for Pavia University, 3 for DC Mall and 3 for AHS.

The SAM between the reconstructed spectra and the original ones is similar for both methods.
Although PCA scores slightly better in terms of SAM, the differences are very small.

The CC computed between the original image and the image reconstructed from the standard
PCA or gaPCA principal components is provided in Table 3.9 and in figure Figure 3.4.
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Table 3.8: SAM for all datasets.

PaviaU Indian Pines DC Mall AHS

gaPCA 0.03 0.18 0.08 0.04
PCA 0.02 0.14 0.03 0.02
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Figure 3.3: SAM between the original and reconstructed images using PCA and gaPCA for all
datasets.

Table 3.9: CC for all datasets.

PaviaU Indian Pines DC Mall AHS

gaPCA 0.998 0.951 0.994 0.944
PCA 0.999 0.997 0.999 0.923
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Figure 3.4: CC between the original and reconstructed images using PCA and gaPCA for all
datasets.

As the results show, for most of the datasets, the CC of gaPCA and PCA are in the same
range of values.

These numbers confirm that both gaPCA and canonical PCA produced similar results with
regard to the SNR, PSNR, RMSE, SAM and CC reconstruction metrics, a fact confirmed also
by the nearly identical slope shape in both cases and the behavior with respect to the number
of principal components involved in the reconstruction.

Moreover, the results highlight that gaPCA outperforms PCA when performing the recon-
struction with just the first principal components, while the situation is reversed with PCA
producing more accurate results when all the principal components are used.

3.2.3 Redundancy of the principal components metric

The Mutual Information score for both standard PCA and gaPCA principal components is
illustrated in Figure 3.5 as a matrix depicting the MI for each pair of components calculated
with the two methods on the Indian Pines data set. The figure highlights increased MI values
between the canonical PCA components (yellow and orange patches) compared to the gaPCA
ones, indicating that more common information is shared by the canonical PCA components and
consequently less new information is contained, which also has an impact on the classification
performance, a subject that will be addressed in detail in the following sections.

Since the gaPCA components are not ranked by any metric like in the case of standard PCA,
a certain degree of redundancy can be observed for the first few components, however as the
visual MI matrix representation highlights, more new information is contained by the gaPCA
components compared to the standard PCA ones.
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(a) PCA MI (b) gaPCA MI

Figure 3.5: MI representation for (a) canonical PCA vs. (b) gaPCA images of the Indian Pines
dataset.

3.2.4 Hyperspectral image classification

As a well-established dimensionality reduction method, the standard PCA is widely used
as a pre-processing routine in various Remote Sensing applications. Hence, the majority of
research in this field studied the usage of PCA for achieving efficient image classification [19]
[53], feature recognition [14] and identification of areas of change with multitemporal images
(change detection) [58], but also on image visualization [40] and image compression [16].

Given the wide application range of the standard PCA (and PCA-based methods) in the
field of Remote Sensing for dimensionality reduction, eliminating redundant data, land cover
information extraction or feature extraction [42], in this work the canonical PCA method was
selected as a reference for comparing and benchmarking the gaPCA method in the field of land
classification.

In order to ensure consistency in the research methodology, the number of principal com-
ponents computed for each dataset was chosen for ensuring the maximum variance amount
explained (98-99%) with the lowest possible number of principal components. By applying this
principle, the following number of components in each case were calculated: 10 - Indian Pines,
4 - Pavia University, 3 - DC Mall and 3 - AHS.

After computing the principal components using both the gaPCA and canonical PCA meth-
ods, land classification was performed on the principal component images on all 4 datasets, and
the performance in terms of classification accuracy of the gaPCA method was comparatively
evaluated with regard to the scores obtained by the canonical PCA and also the Nonlinear
PCA method.

For this research, several classification methods have been used: Maximum Likelihood,
Support Vector Machine and Neural Network. Each of these methods will be briefly described
below.

The classification results were quantitatively validated using two metrics: overall accuracy
(OA) and the Kappa coefficient (k). The assumption under test is that gaPCA produces
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superior land classification results in terms of classification accuracy compared to the canonical
PCA since it preserves a higher degree of spectral information than the standard PCA by not
being focused on maximizing the variance of the data, but the range.

Each of the two PCA-based methods (canonical PCA and gaPCA) compute a predefined
number of principal components which will be considered as the bands of the new multi-
dimensional image which becomes the subject (input) of the land classification task. The same
classification algorithms, Maximum Likelihood (ML) and Support Vector Machine (SVM), were
used for all datasets and for the images obtained from the principal components computed with
both methods. The classification accuracy in each case was evaluated by randomly generating
a set of pixels from the input image and performing a visual inspection of the classification
result vs. the groundtruth image of the dataset at the acquisition moment.

To evaluate the statistical significance of the classification results given by the two methods,
the McNemar’s test was performed for each classifier (ML and SVM).

3.2.4.1 Indian Pines data set

Performing land classification on the Indian Pines dataset is a difficult task given the consid-
erable number of classes in the scene, the 20 m spatial resolution (which is quite moderate), but
especially due to the high spectral similarity among the existing classes. This high similarity
is caused by the site’s configuration at the time of acquisition, with soybeans and corn (the
two main crops in the scene) being in a rather early growth stage at that moment. Figure in
Figure 3.6 (a) and (b) illustrates the classification results obtained with the canonical PCA
and the gaPCA methods, together with the site’s groundtruth image at the time of acquisition
(c). While the figure shows there is an abundance of mixed pixels which reflect in rather noisy
classified images (for both methods), the gaPCA’s classification map is visibly more accurate
than the one obtained by the canonical PCA method.

The classification accuracy results are presented analytically in Table 3.10, where the accuracy
of both methods are summarized for each class in the scene and overall classification accuracy is
also included, for both methods with both classification algorithms (ML and SVM). For testing,
a set of 2000 pixels was randomly generated. The results show that the overall accuracy is
higher for the gaPCA than the canonical PCA, which is also reflected by gaPCA scoring higher
accuracies for the majority of classes.

One reason behind the gaPCA better classification results is that, unlike the canonical PCA
method, it is not based on the hypothesis that the high variance features from the dataset are
responsible for ensuring an effective discrimination among different classes while low variance
features are discarded as redundant. This hypothesis is not always accurate, especially in land
classification applications where the scene is comprised of spectrally similar classes, as is the
case for Indian Pines. Here, one can notice the considerable differences in the scores for the two
methods for sets of similar class labels; more specifically, gaPCA proved to better discriminate
among the similar subsets (Corn, Corn notill, Corn mintill) and (Grass-pasture, Grass-pasture
mowed) than the canonical PCA, thus confirming its increased capacity of distinguishing among
similar spectral signatures.
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(a) PCA classified (b) gaPCA classified (c) Groundtruth

Figure 3.6: Canonical PCA (a) and gaPCA (b) images classified (Maximum Likelihood) vs. the
groundtruth image (c) of the Indian Pines dataset.

Table 3.10: Classification results for the Indian Pines dataset.

Class
Training

pixels
PCA
ML

gaPCA
ML

PCA
SVM

gaPCA
SVM

Alfalfa 32 98.7 80.5 18.2 18.2
Corn notill 1145 30.6 47.6 65.2 69.3
Corn mintill 595 51.6 69.2 34.9 46.1
Corn 167 84.9 100 31.4 37.7
Grass pasture 328 55.7 80.5 64.6 71.9
Grass trees 463 96.1 90.6 91.2 92.5
Grass pasture mowed 19 68.3 71.7 60 60
Hay windrowed 528 88.5 96.7 99.5 99.6
Oats 20 100 96.9 15.6 6.3
Soybean notill 681 83.7 77.1 40.9 56.1
Soybean mintill 1831 46.6 47.7 79.4 78.3
Soybean clean 457 36.9 77.7 11.8 36.1
Wheat 150 97.2 97 91.1 93.1
Woods 884 98.7 96.9 97.3 97.3
Buildings Drives 263 33.7 61.4 45.5 52.1
Stone Steel Towers 103 100 100 95.5 97.2
zML=25.1 (signif=yes) OA(%) 62.1 70.2 67.2 72.1
zSVM=24.8 (signif=yes) Kappa 0.57 0.67 0.62 0.68
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3.2.4.2 Pavia University dataset

For the Pavia University dataset, the classification results are depicted in Figure 3.7 based
on the principal component images calculated with the canonical PCA (a) and the gaPCA (b)
methods using the ML algorithm from Envi, compared to the scene’s groundtruth (c).

(a) PCA classified (b) gaPCA classified (c) Groundtruth

Figure 3.7: Canonical PCA (a) and gaPCA (b) images classified (Maximum Likelihood) vs. the
groundtruth (c) of the Pavia University dataset.

The complete classification results (including classification accuracy per class and the overall
accuracy), obtained based on a 1000 set of randomly generated pixels, using both algorithms
(ML and SVM) are presented in Table 3.11. These numbers show that, as in the case of the
Indian Pines dataset, gaPCA outperformed the canonical PCA in the overall accuracy and in
the classification accuracy for the majority of classes.

One can notice again that gaPCA is shown to have superior performance (higher classification
accuracy) than the canonical PCA in the case of classes comprised of small structures and
complex shapes, like asphalt or bricks. This is explained by the higher focus dedicated by
the gaPCA method to smaller object and spectral classes, thus decreasing the number of false
predictions for such cases, compared to the canonical PCA. For example, the confusion matrix
highlights misinterpretation in the case of the standard PCA method, e.g. bricks confused with
gravel, asphalt confused with bitumen.

Such confusions are caused by the increased spectral similarity between the respective classes,
and not due to their spatial proximity, as highlighted in Table 3.12. The figures support the
assumption that gaPCA has an enhanced ability to discriminate among similar spectral classes,
since unlike the canonical PCA it is not aimed preponderantly towards classes that dominate
the signal variance.
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Table 3.11: Classification results for the Pavia University dataset.

Class
Training

pixels
PCA
ML

gaPCA
ML

PCA
SVM

gaPCA
SVM

Asphalt (grey) 1766 60.5 61.5 67.2 78.3
Meadows (light green) 2535 68.3 80 65 86.9
Gravel (cyan) 923 100 100 33.3 40
Trees (dark green) 599 88.2 89.7 100 67.7
Metal sheets (magenta) 872 100 100 100 100
Bare soil (brown) 1579 77.8 79.4 53.2 68.3
Bitumen (purple) 565 89.7 89.7 89.7 55.2
Bricks (red) 1474 68.3 72 81.7 86.6
Shadows (yellow) 876 100 100 100 100
zML=4.87 (signif=yes) OA(%) 72.2 78 69 78
zSVM=5.97 (signif=yes) Kappa 0.65 0.72 0.61 0.72

Table 3.12: Confusion matrix for the Pavia University dataset.

Class True False

Asphalt (PCA) 60.5 Asphalt 29.5 Bitumen
Asphalt (gaPCA) 61.5 Asphalt 21.8 Bitumen

Meadows (PCA) 68.3 Meadows 25.8 Bare soil
Meadows (gaPCA) 80 Meadows 17.6 Bare soil

Bricks (PCA) 68.3 Bricks 25.6 Gravel
Bricks (gaPCA) 72 Bricks 24.3 Gravel

Considering these results, gaPCA is proven to have increased accuracy in classifying smaller
objects or spectral classes, reinforcing the assumption that it has a enhanced ability in retaining
information related to smaller signals’ variance.

3.2.4.3 DC Mall dataset

The classification results for the DC Mall dataset are depicted in Figure 3.8 based on the
principal component images calculated with the canonical PCA (a) and the gaPCA (b) methods
using the ML algorithm from Envi, compared to the DC Mall scene’s groundtruth (c).

A complete picture of the classification results in term of overall accuracy and accuracy per
each class, for both ML and SVM classification algorithms and both gaPCA and canonical PCA
methods is illustrated in Table 3.13. For performing the classification assessment, a set of 140
randomly generated pixels was used, and the results show gaPCA scoring higher accuracies than
canonical PCA (both overall accuracy and kappa coefficient). The gaPCA method performs
consistent with the other datasets, achieving superior accuracies compared to the standard PCA
in the case of small structures with complex shapes, like the Roofs & paths class (in which case
it outperforms canonical PCA with over 30. Another largely spectral class for which gaPCA
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(a) PCA classified (b) gaPCA classified (c) Groundtruth

Figure 3.8: Canonical PCA (a) and gaPCA (b) images classified (Maximum Likelihood) vs. the
groundtruth of the DC Mall dataset.

Table 3.13: Classification results for the DC Mall dataset.

Class
Training

pixels
PCA
ML

gaPCA
ML

PCA
SVM

gaPCA
SVM

Road (dark brown) 862 90 100 100 100
Trees (dark green) 413 75.9 82.7 75.9 75.9
Water (blue) 466 86.7 83.3 86.7 86.7
Grass (light green) 992 86.9 91.3 67.4 71.7
Shadows (black) 121 87.5 75 37.5 50
Roofs&paths(brown) 358 64.7 94.1 52.9 52.9
zML=2 (signif=yes) OA(%) 82 88 72 74
zSVM=1.13 (signif=no) Kappa 0.77 0.85 0.65 0.67
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scores better classification accuracy than the canonical PCA is Trees, confirming its greater
capability to preserve information associated to this specific class. Finally, gaPCA outperforms
canonical PCA with regard to the overall accuracy score with over 5%.

3.2.4.4 AHS dataset

In the case of the AHS dataset, the classification results obtained based on both gaPCA
and canonical PCA methods produced relatively homogeneous regions, as revealed by the
classification maps shown in Figure 3.9.

The complete classification results, both in terms of class accuracy and overall accuracy, for
the two methods using the ML and SVM classification algorithms are shown in Table 3.14.
These numbers, obtained after assessing the results vs. the groundtruth image based on a set
of 100 randomly generated pixels, report higher classification accuracies for the gaPCA method
for most classes in the scene.

These results also highlight the difference in classification accuracies for both methods with
regard to each class. As such, one can notice that in the case of the most extensively represented
classes (e.g. oil seed rape, maize, set aside:oil seed rape) both gaPCA and canonical PCA
performed very similarly. A slightly better accuracy is obtained by the canonical PCA in the
case of the winter wheat class, however when moving to preponderantly spectral classes such
as grassland or cutting pasture, gaPCA clearly outperforms its counterpart. The urban class is
the most difficult to classify and rather confusing due to its specific nature for this particular
scene (consisting of mixed structures such as buildings, local roads and the adjacent vegetation
in the rural area). Overall, the results confirm gaPCA’s ability to correctly classify smaller
spectral classes or classes with similar or mixed pixels.

(a) PCA classified (b) gaPCA classified (c) Groundtruth

Figure 3.9: Canonical PCA (a) and gaPCA (b) images classified (Maximum Likelihood) vs. the
groundtruth (c) of the AHS dataset.

The McNemar’s test (z score) was computed on the classification results for all datasets and it
confirms (with one isolated exception) that the gaPCA higher classification accuracy compared
to the canonical PCA is statistically significant.
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Table 3.14: Classification results for the AHS dataset.

Class
Training

pixels
PCA
ML

gaPCA
ML

PCA
SVM

gaPCA
SVM

Rape (dark yellow) 2786 93.3 93.3 93.2 97.7
Rape (light yellow) 1013 80 80 90 95
Maize (pink) 969 100 100 100 100
Winter wheat (orange) 4429 100 98.1 97.3 97.3
Pasture (light green) 1788 66.7 66.7 84.6 92.3
Grassland (dark green) 1242 60 80 52.4 95.2
Urban (grey) 1079 60 90 64 92
zML=1.97 (signif=yes) OA 90.6 93.8 90 96.6
zSVM=3.92 (signif=yes) Kappa 0.86 0.91 0.86 0.95

For achieving these results, all experiments were performed in Matlab R2018b and ENVI 5.5,
running on an Intel (R) Xeon (R) X3440 CPU with 2.53 GHz and 8 GB installed memory.

3.2.4.5 gaPCA comparison with other methods

An additional experiment was performed on the AHS dataset, aiming to compare the result
of the classification by means of neural networks (using Neumapper) of the standard PCA, the
gaPCA and the Nonlinear PCA method.

(a) PCA (b) gaPCA (c) NLPCA

Figure 3.10: Classified images of standard PCA (top), gaPCA (center) and Nonlinear PCA
(bottom) of the AHS dataset.

It is interesting to note the high similarities between methods for the most extensive repre-
sented classes of the scene (oilseed rape, maize, set aside: oilseed rape). Low differences arise in
the classes winter wheat, grassland and cutting pasture, while the urban class seems to be the
most confusing and difficult to classify also due to the specific of this class comprising a mix of
buildings, country roads and vegetation in a rural area. The gaPCA approach’s scores in terms



CONCLUSIONS 35

of classification are comparable with those achieved by the standard PCA and Nonlinear PCA
aproaches.

3.3 Conclusions

In this chapter, an original PCA-based method entitled “Geometric Approximated Prin-
cipal Component Analysis” (or gaPCA) was presented, and it’s performance was illustrated
in Remote Sensing applications involving land classification performed on multidimensional
hyperspectral images. The applications described involved applying gaPCA on four hyper-
spectral datasets for dimensionality reduction, and evaluating its performance and results both
qualitatively (by computing metrics to assess the quality of the principal component images
obtained using gaPCA) and quantitatively (assessing the accuracy of the land classification
task for each dataset). The evaluation of the gaPCA method was performed by calculating
several objective metrics and taking as a baseline for comparison the canonical PCA method.

With regard to the performance achieved by gaPCA on the hyperspectral image land clas-
sification task for the 4 datasets, this novel method outperformed the canonical PCA in each
case with regard to the overall accuracy computed for each dataset, and also scored higher than
its counterpart for the majority of classes. A detailed analysis of the results in terms of class
accuracy confirmed the initial hypothesis that gaPCA, unlike the standard PCA method, does
not disregard the information with small contribution to the overall signal variance, which is
considered as redundant or unimportant by the canonical PCA. Hence, gaPCA has a superior
ability to discriminate small objects or similar classes, a feature confirmed by its performance in
the experiments for the preponderantly spectral classes in each dataset, where it outperformed
the standard PCA.

To conclude, the experimental results and the analysis described in this chapter showed that
the novel gaPCA method is more suitable (than the canonical PCA) in Remote Sensing land
classification tasks involving hyperspectral images with small structures or objects that need to
be detected or where preponderantly spectral classes or spectrally similar classes are present.

The research and experiments presented in this chapter have been validated and disseminated
in the following publication:

� [46] A. L. Machidon, F. Del Frate, M. Picchiani, O. M. Machidon, and P. L. Ogrutan. Geo-
metrical Approximated Principal Component Analysis for Hyperspectral Image Analysis.
Remote Sensing, 12(11), 2020

� [45] A. L. Machidon, R. Coliban, O. Machidon, and M. Ivanovici. Maximum Distance-
based PCA Approximation for Hyperspectral Image Analysis and Visualization. In 2018
41st International Conference on Telecommunications and Signal Processing (TSP), pages
1–4, 2018 also indexed in IEEE Xplore Digital Library

� [47] A. L. Machidon, M. Ivanovici, R. Coliban, and F. Del Frate. A Geometrical Approx-
imation of PCA for Hyperspectral Data Dimensionality Reduction. In The ESA Earth
Observation Phi-week EO Open Science and FutureEO. ESA, 2018
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CHAPTER 4

Face recognition

4.1 Dimensionality reduction for face recognition

Another well-established application domain for the PCA method in the field of computer
science is the Eigenfaces project [68]. The usage of Principal Component Analysis in Face
Recognition applications was first advocated by Kirby and Sirovich [36], who illustrated how
PCA can be applied to form a set of basis features from a face images collection. Eigen-
faces or principal component analysis (PCA) methods have demonstrated their success in face
recognition, detection, and tracking [67]. Consequently, we applied gaPCA for face recognition
and compared the recognition accuracy with the one obtained by using standard PCA, on
four different face databases. In the rest of this chapter, we describe the datasets used, the
methodology involved in performing the experiments, the accuracy metrics used, and finally
present and analyze the experimental results obtained.

For analyzing the efficiency of the gaPCA and canonical PCA algorithms in the field of face
recognition, four well-known open-source face datasets were used: FEI [5], Yale [12], Cambridge
[3] and Labeled Faces in the Wild (LFW) [30]. For all four datasets we computed the eigenfaces
using both algorithms.

4.2 Methodology

4.2.1 FEI, Yale and Cambridge datasets

In this work the face recognition task was applied on the first 3 datasets, employing first the
canonical PCA method followed by the gaPCA. The eigenfaces resulted after computing each
method were utilized to search, for all the faces in each test set, for the most resembling face
in the related training set.

37
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For computing the similarity score, the following formula was used (based on the inverse
Euclidean distance).

The eigenfaces computed with the two methods (gaPCA and canonical PCA) were used to
identify, for each face in the test set, the best matching face in the training set, based on the
computed similarity score (introduced in the formula above). Finally, for both methods the
overall accuracy score was calculated, for each dataset.

4.2.2 LFW dataset

The fourth face recognition experiment involving the gaPCA method was performed on the
Labeled Faces in the Wild (LFW) dataset [30]. In this experiment, a sub-set of the LFW
dataset was used, encompassing the subjects for which at least 100 faces were available, leading
to a total of 1140 faces of 5 individuals. This subset was divided into a training set containing
70% of the total number of images, and a test set comprising of the remaining 30%. Both
the gaPCA algorithm and the canonical PCA counterpart were used (separately) to perform
dimensionality reduction on the training set and generate the corresponding eigenfaces. On
the resulting eigenfaces, a neural network classifier was applied on the training set on which
previously the dimensionality reduction was performed, applying the two PCA approaches
separately to obtain the eigenfaces. The resulting reduced-dimension dataset (comprising of
the eigenfaces calculated with each method) was used to train a neural network classifier, a
multilayer perceptron (MLP) with one hidden layer.

The classification accuracy was evaluated for three scenarios: training the MLP with the
eigenfaces generated by the canonical PCA, by the gaPCA method, or training it on the
original data (raw data, without applying any dimensionality reduction). Aside from the overall
classification accuracy, the evaluation also looked at the number of iterations required in each
case for the MLP classifier to be successfully trained.

4.3 Results and Discussion

4.3.1 FEI dataset

We performed a comparison between the standard Eigenfaces method (based on the classic
PCA approach) and our gaPCA method on the FEI face database [5], and used the Euclidean
Distance based metric for computing the recognition accuracy in both cases.

For performing face recognition, the database was divided in 2 subsets: a training subset
encompassing approximately 85% of the images and a test set with the rest of 15%. On
this training subset, the PCA algorithm was applied, both in its standard form and in the
approximated one. Figure 4.1 shows the first 10 eigenfaces obtained with the standard PCA
method, while Figure 4.2 displays the corresponding eigenfaces after the implementation of the
gaPCA on the training subset of 350 images from the FEI database.

The plot in Figure 4.3 shows the cumulative eigenvalues for the first 200 principal components.
As expected, the first 100-150 principal components encompass 95-98% of the variance of the
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(a) 1st PCA
eigenface

(b) 2nd PCA
eigenface

(c) 3rd PCA
eigenface

(d) 4th PCA
eigenface

(e) 5th PCA
eigenface

(f) 6th PCA
eigenface

(g) 7th PCA
eigenface

(h) 8th PCA
eigenface

(i) 9th PCA
eigenface

(j) 10th PCA
eigenface

Figure 4.1: First ten eigenfaces from the FEI Database obtained by Eigenfaces standard PCA
method.

(a) 1st

gaPCA
eigenface

(b) 2nd

gaPCA
eigenface

(c) 3rd

gaPCA
eigenface

(d) 4th

gaPCA
eigenface

(e) 5th

gaPCA
eigenface

(f) 6th

gaPCA
eigenface

(g) 7th

gaPCA
eigenface

(h) 8th

gaPCA
eigenface

(i) 9th

gaPCA
eigenface

(j) 10th

gaPCA
eigenface

Figure 4.2: First ten eigenfaces from the FEI Database obtained with the gaPCA method.
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images in the data set.

Figure 4.3: Percent of the variance explained by the first eigenvectors of the FEI dataset.

In Figure 4.4 we displayed the mean face obtained with the standard PCA (a) method and
the gaPCA (b) on the training subset of 350 images from the FEI database.

(a) Average
face PCA

(b) Average
face gaPCA

Figure 4.4: Average face from the FEI Database using the standard PCA (a) and the gaPCA
(b) method.

The face recognition results show that for a relatively high percent of the images tested, (98
% for standard PCA and 92% for gaPCA in the case of 150 eigenvectors retained) the face
image provided based on the similarity score comparison was correct (Table 4.1).

A slight decrease of these values is noticed for both methods (standard PCA and gaPCA) if
the number of principal components retained is lowered Figure 4.5. However, it is interesting
to notice that both methods score the same leap of percentages from 10 eigenvectors to 150
eigenvectors, namely 14 percents.

The analysis of the results shows that a very good performance (92% in accuracy) can be
achieved with the gaPCA model. In the particular case of the FEI database, the gaPCA
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Table 4.1: Face recognition accuracy for Standard PCA and gaPCA on the FEI face database.

Method
Face recognition

accuracy

PCA 98%
gaPCA 92%

Figure 4.5: Recognition accuracy vs. no. of eigenevectors for the FEI database of faces.
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performance was mainly evaluated against factors such as facial expression, hairstyles, adorns
(glasses, earrings, etc.). Other factors such as illumination and pose variation tend to be less
prominent in relatively controlled environments.

4.3.2 Yale dataset

For the Yale dataset, the same methodology was employed: the gaPCA method was com-
paratively validated with regard to its face recognition performance by comparing its accuracy
results with the ones obtained by the canonical PCA. As such, the eigenfaces of the Yale dataset
were computed using both methods. For conducting the assessment of the face recognition
performance, the dataset was divided into a training set (containing 135 images) and a test set
(comprised of the remaining 30 images). In light of the Yale dataset being rather small, the
top 20 eigenvectors were selected, both in the case of gaPCA and in the case of its counterpart.
The first 5 principal components of this dataset are illustrated in Figure 4.6 for both methods
(gaPCA – bottom, canonical PCA – top), while the face recognition accuracy results are
presented in Table 4.2.

(a) 1st PCA
eigenface

(b) 2nd PCA
eigenface

(c) 3rd PCA
eigenface

(d) 4th PCA
eigenface

(e) 5th PCA
eigenface

(f) 1st gaPCA
eigenface

(g) 2nd

gaPCA
eigenface

(h) 3rd gaPCA
eigenface

(i) 4th gaPCA
eigenface

(j) 5th gaPCA
eigenface

Figure 4.6: First five eigenfaces from the Yale Database obtained with the standard PCA (top)
and the gaPCA (bottom) method.

Table 4.2: Face recognition accuracy for Standard PCA and gaPCA on the Yale face database

Method
accuracy

Face recognition

PCA 76.66%
gaPCA 73.33%

The percentages are smaller for both methods in the case of the Yale database than in the
case of the FEI data set, mainly due to the large variation in pose positioning and illumination
of the faces. However, it is interesting to point out that gaPCA’s accuracy is nearly the same
as the accuracy scored by the standard PCA, in the case of 20 eigenvectors retained.
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4.3.3 Cambridge dataset

Figure 4.7 illustrates the first 5 principal components computed on the Cambridge dataset,
using both gaPCA (bottom) and canonical PCA (top).

(a) 1st PCA
eigenface

(b) 2nd PCA
eigenface

(c) 3rd PCA
eigenface

(d) 4th PCA
eigenface

(e) 5th PCA
eigenface

(f) 1st gaPCA
eigenface

(g) 2nd gaPCA
eigenface

(h) 3rd gaPCA
eigenface

(i) 4th gaPCA
eigenface

(j) 5th gaPCA
eigenface

Figure 4.7: First five eigenfaces from the Cambridge Database of faces obtained with the
standard PCA (top) and the gaPCA (bottom) method.

Table 4.3: Face recognition accuracy for Standard PCA and gaPCA on the Cambridge face
database.

Method
Face recognition

accuracy

PCA 94.14%
gaPCA 93.33%

The face recognition accuracies on the Cambridge dataset for both gaPCA and the canonical
PCA methods are presented in Table 4.3. For performing the face recognition task, the original
Cambridge dataset was divided into a training set, comprised of 280 images, and a test set,
containing the remaining 120 images. On the training set, the eigenfaces were calculated with
each of the two methods. The behavior of the recognition accuracy with the variation of the
number of eigenvectors retained is illustrated in Figure 4.8, which highlights a rather constant
accuracy for both methods regardless of the number of eigenvectors employed.

4.3.4 LFW dataset

For the LFW dataset, Figure 4.9 illustrates the first 5 eigenfaces computed with the canonical
PCA method, while the ones calculated with the gaPCA algorithm are displayed in Figure 4.10.
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Figure 4.8: Recognition accuracy vs. no. of eigenevectors for the Cambridge database of faces.

The classification accuracy for each of the 5 subjects involved in this experiment is presented
in Table 4.4, for the three scenarios: training the MLP classifier with the raw (original) data
(no PCA), with the data obtained by applying the canonical PCA or the one resulted after
employing the gaPCA method.

Table 4.4: Average Precision for 10 classification with NO PCA, standard PCA and gaPCA.

Personality NO PCA PCA gaPCA
C. Powell 78% 83% 81%
D. Rumsfeld 56% 70% 72%
G.W. Bush 86% 88% 85%
G. Schroeder 53% 74% 68%
T. Blair 67% 71% 68%

The results highlight that the gaPCA method scored an average overall accuracy of 75%,
very close to the 77% scored by the canonical PCA, and both methods outperformed clearly
the case where no dimensionality reduction method was employed on the dataset, in which case
the average overall accuracy is of only 68%. Moreover, the gaPCA outperformed its counterpart
for the specific class “D.Rumsfeld ”, for which it also scored higher than the NO PCA scenario.
With regard to how the dimensionality reduction influences the training process of the classifier,
the results in Table 4.5 present the number of iterations required for training in each of the
three scenarios detailed above. It can be easily noticed that by using either canonical PCA
or gaPCA to reduce the dimensionality of the training dataset, the classifier is trained almost
twice as fast.
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Figure 4.9: Eigenfaces of the LFW database using standard PCA.

Figure 4.10: Eigenfaces of the LFW database using gaPCA.
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Table 4.5: Number of iterations of the classifier with NO PCA, standard PCA and gaPCA

Dimensionlity reduction Number of iterations
No PCA 48.4

PCA 19.2
gaPCA 25

Training the classifier with the original, raw data requires 48 iterations, compared to just 25
when applying the gaPCA method as a dimensionality reduction technique, and only 19 is the
canonical PCA method is used.

4.4 Conclusions

This chapter presented the evaluation and validation of the gaPCA method in the field of
face recognition, in addition to the Remote Sensing applications described in the previous
chapters. For the experiments presented in this chapter, four datasets of faces openly available
for research purposes were used: FEI, Yale, Cambridge and LFW. The face recognition task
was performed for the first three datasets using the Eigenfaces approach: i.e. applying both
gaPCA and canonical PCA, separately, on the training dataset to compute the eigenvectors
and computing the similarity score for the test set images using a formula based on the inverse
Euclidean distance. The accuracy of the recognition was computed for both methods and the
comparative evaluation illustrated that gaPCA performed very similarly to its more established
counterpart, scoring for some cases equally, and in other cases slightly lower (under 10%) than
the canonical PCA.

In the case of the LFW dataset, face recognition was performed using a neural network
classifier, trained in three scenarios: on the original, raw data, on the data obtained using
the canonical PCA, and on the data resulted from applying gaPCA. The overall classification
accuracy results placed gaPCA virtually tied to the canonical PCA, with just 2% below in terms
of average precision, having even outperformed its counterpart for some classes. In addition,
the effectiveness of the gaPCA as a dimensionality reduction technique was confirmed also
quantitatively, by showing that applying gaPCA on the training set decreases substantially the
number of training iterations required by the neural network classifier.

The research and experiments presented in this chapter have been validated and disseminated
in the following publication:

� [49] A. L. Machidon, O. M. Machidon, and P. L. Ogrutan. Face Recognition Using
Eigenfaces, Geometrical PCA Approximation and Neural Networks. In 2019 42nd Inter-
national Conference on Telecommunications and Signal Processing (TSP), pages 80–83,
2019, indexed in the Web of Science (Proceedings paper) and in the IEEE Xplore Digital
Library.



CHAPTER 5

Parallelization

The recent technological advances in both sensors and computer technology have increased ex-
ponentially the volume of remote sensing data repositories. Because a significant amount of this
data is defined by a high degree of redundancy, it can be accurately reduced to a much smaller
number of variables without any substantial loss of information. This can be accomplished using
dimensionality reduction techniques [64], mathematical methods and algorithms that transform
the high-dimensional data into “a meaningful representation of reduced dimensionality” [65].
Such techniques however present a high computational complexity and require considerable
computing resources, an issue which can affect applications with strict timing constraint;
hence high-performance computing architectures are the most likely candidates for a time-
and resource-efficient implementation of such methods.

5.1 Parallel PCA methods

Due to the fact that projection pursuit methods execution time increases exponentially
with the dimensionality of data, these algorithms tend to be computationally intensive. This
motivated researches to find alternative approaches for pursuing interesting projections not
only in terms of data structures, but also in terms of computational resources [31], [56]. Many
efforts made by the scientific community in the past decade focused on developing parallel
implementations of a particular case of Projection Pursuit method, which is PCA, in order to
achieve increased performance fostered by parallel architectures such as multi-core CPUs or
GPUs.

47
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5.2 Original contributions

5.2.1 Parallelization of the gaPCA algorithm

This section presents the research efforts directed at developing parallel implementations of
the gaPCA algorithm on various computing architectures and using several programming and
scripting languages: C++, Matlab and Python for the multi-core CPU versions, and PyCUDA
and CUDA running on NVIDIA GPUs. To asses how each implementation and computing
platform impacts the performance with regard to execution time, a comparative time analysis
was performed that shows the net superiority of the parallel implementations with regard to
accelerating the computation and reducing the execution time.

Figure 5.1: Diagram showing gaPCA algorithm design and the two sub-routines with parallel
implementations.

The first step in elaborating the parallel implementations of the gaPCA algorithm was
profiling the code of the algorithm (the sequential, initial implementation) for analyzing how
time consuming each of the method’s sub-routines are, and thus establish what parts of the
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algorithm are most suitable for parallel implementations. The results of this code profiling
stage are illustrated in a schematic in Figure 5.1, where the contribution of each sub-routine
of the gaPCA method to the total execution time is highlighted. Considering that just the
computation of the Euclidean distances (which is according to Figure ?? around 94.39%) can
be the subject of parallel implementation, a maximum speedup of 20× can be expected, which
of course scales with the number of processors used.

The research efforts focus on two directions: on one hand, efficiently elaborating the parallel
implementations (SIMD, multi-threading and GPU-based) of the gaPCA method, on the other
hand providing a relevant analysis on the performance of these implementations with regard
to execution time and energy consumption by deploying them on several hardware platforms:
NVIDIA Jetson nano development board, Intel Xeon W3670 CPU, NVIDIA GeForce GTX
1050 Ti GPU, AMD Ryzen 5 3600 CPU and NVIDIA GeForce GTX 1650.

5.2.2 Matlab, Python and PyCUDA implementations

The initial Matlab implementation (Listing 5.1) [44] was elaborated using the specific in-
structions from the Matlab Parallel Computing Toolbox. The experimental runs were done in
Matlab R2019a, on the Linux Ubuntu 18.04 operating system.

function [ i extreme , j extreme , dist max ] e u c l i d D i s t (X)
{
[m, n ] = s ize (X) ;
pa r f o r i =1: m=1
[ d( i ) , j ( i ) ] = max( pd i s t2 (X( i , : ) ,X( i +1:m, : ) ) ) ;
end
[ dist max , ind ] = max(d) ;
i ex t r eme = ind ;
j ext reme = j ( ind )+ind ;
return
}

Listing 5.1: Matlab implementation for the Euclidean Distances function

The next two Python implementations employ a parallel execution of the gaPCA method on
a multi-core CPU and a NVIDIA GPU, respectively. Both are elaborated using the Python
Numba and Numpy libraries; the CPU multi-core parallel version uses the Numba JIT compiler,
while the GPU CUDA version was elaborated using the PyCUDA Python library [11].

@ j i t ( nopython=True , p a r a l l e l=True , n o g i l=True )
def e u c l i d D i s t (A) :
d i s t = numpy . z e ro s ( len (A) )
index = numpy . z e ro s ( len (A) )
for i in prange ( len (A)=1) :

temp dis t = numpy . z e ro s ( len (A) )
for j in prange ( i +1, len (A) ) :

temp dis t [ j ] = numpy . l i n a l g . norm(A[ i ]=A[ j ] )
d i s t [ i ] = numpy . amax( temp dis t )
index [ i ] = numpy . argmax ( temp dis t )
return (numpy . amax( d i s t ) , numpy . argmax ( d i s t ) , int ( index [ numpy . argmax ( d i s t ) ] ) )

Listing 5.2: Python implementation for the Euclidean Distances function
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5.2.3 CUDA implementation

In this work, the CUDA kernel was elaborated so that a block of threads calculates one
element of the distance matrix, with each thread calculating the square distance between
the corresponding elements of the two rows in the input matrix. To better highlight the
functionality of the kernel, this is also graphically illustrated in Figure 5.2. In this graphical
representation, the dataset a is the input matrix for which each row contains the pixels’ values
in every spectral band. One block of threads calculates the distance between rows i and j, with
each thread tidq computing (ai,q − aj,q)

2. Once all threads in a block completed their tasks
(passing a synchronization step), a parallel tree reduction mechanism is employed to compute
the total distances between the rows i and j of the input dataset a by adding up all the squared
values calculated by the threads.

Figure 5.2: Diagram showing the parallel implementation in CUDA of the Euclidean Distance
function.

Listing 5.3 shows the pseudocode for the CUDA kernel (the euclidean function). This function
takes as input matrix X and returns C, a three element array containing the maximum distance
(C[0]) and the indexes of the corresponding two furthest points from matrix X (C[1] and C[2]).

euc l i d ean kernel ( input X, output C) :
elem1 = X[ blockIdx . x , threadIdx . y ] ;
elem2 = X[ blockIdx . y , threadIdx . y ] ;
r e s u l t = ( elem1=elem2 ) *( elem1=elem2 ) ;
accum [ threadIdx . y ] = r e s u l t ;
Synchronize threads
Perform p a r a l l e l t ree=r educt ion and compute d i s t
i f ( d i s t>C[ 0 ] )
C[ 0 ] = d i s t ;
update indexes C[ 1 ] and C [ 2 ] ;
endif

Listing 5.3: Pseudocode for the CUDA kernel computing pairwise Euclidean distance between
the rows of the input matrix X

A shared memory vector entitled accumResult was added to the CUDA kernel; each thread
will compute its corresponding squared difference and store it this vector in the location
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determined by the thread’s index. The successful completion of this stage by all threads is
marked by a synchronization checkpoint (ensured by calling the syncthreads(); method);
next the parallel tree reduction is performed (as shown in Listing 5.4) which ultimately gives
the final distance value. After this final value is computed, one thread from each block (thread
with threadIdx.y = 0 was chosen, for uniformity) performs the comparison of this value with
the previous computed maximum distance, and if it is the case updates the stored maximum
distance accordingly, together with its stored indexes.

sync th r ead s ( ) ;
// Pa r a l l e l t ree=reduc t ion
for ( int s t r i d e = SIZE/2 ; s t r i d e > 0 ; s t r i d e >>= 1) {
i f ( ty < s t r i d e )
accumResult [ tx*SIZE+ty ] += accumResult [ s t r i d e + tx*SIZE+ty ] ;

s ync th r ead s ( ) ;
}

Listing 5.4: CUDA kernel code for parallel tree-reduction

5.2.4 C++ implementations

The first two C++ versions of the gaPCA algorithm are a basic single-core one and a multi-
threading version based on OpenMP, a “simple C/C++/Fortran compiler extension, which
allows adding multithreading parallelism into existing source code” [9]. The multi-threading
code is shown in Listing 5.5; the ”#pragma omp parallel” compiler directive defines the code
section designated for parallel execution, this directive causes the task allocation to threads
ahead of the section execution; more specifically, this directive allocates the computing tasks
to the existing active threads, so it does not “create” the thread pool. Each of the threads
launched simultaneously into execution computes a distance between two rows of the input
matrix (two pixels with their corresponding values in all spectral bands).

void p a r a l l e l D i s t ( short **X, int n , int m, int& index1 , int& index2 , long long
d)

{
long long d i s t [ n ] = { 0 } ;
int index [ n ] = { 0 } ;
#pragma omp p a r a l l e l num threads (12)
{
#pragma omp for
for ( int i =0; i<n=1; i++)
{
long long temp dis t [ n ] = {0} ;
for ( int j =i +1; j<n ; j++)
{
temp dis t [ j ] = s q u a r e d i f f (m,X[ i ] ,X[ j ] ) ;
}
d i s t [ i ] = *max element ( temp dist , temp dis t+n) ;
index [ i ] = d i s t ance ( temp dist , max element ( temp dist , temp dis t+n) ) ;
}
}
d = *max element ( d i s t , d i s t+n=1) ;
index1 = d i s t anc e ( d i s t , max element ( d i s t , d i s t+n=1) ) ;
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index2 = index [ index1 ] ;
}
Listing 5.5: Source code for the C++ multi-core function computing pairwise Euclidean distances

between the rows of the input matrix X

The third C++ implementation was elaborated by extending the multi-threading OpenMP
version with help of the SIMD instruction set. The goal was to take advantage of the Data
Level Parallelism (DLP) using the SIMD instructions which can work on wide vector registers
(ranging from 64 to 512 bits, depending on the SIMD instruction set extension employed:
MultiMedia eXtensions (MMX) [55], Streaming SIMD Extensions (SSE) [59], Advanced Vector
eXtensions (AVX) [41]). Using this approach, the highest efficiency (towards 100%) can be
achieved by ensuring that the input array has a size multiple of the vector register’s width
(4, 8, 16, or 32 16-bit data elements). The SIMD experiments described in this work were
performed on a AMD Ryzen 5 3600 CPU [1] which supports the AVX2 [2] SIMD instruction
set extension.

a l i g n a s ( m256i ) short ** ar r = ( short **) mal loc (ROWS * s izeof ( short *) ) ;
s td : : s i z e t sz = COLS;
for ( i =0; i<ROWS; i++)
ar r [ i ] = s t a t i c c a s t <short*>( a l i g n e d a l l o c (32 , sz *2) ) ;

Listing 5.6: Source code for the C++ alignment of a two-dimensional matrix of short

long long s q u a r e d i f f a v x ( int s i z e , short *p1 , short *p2 )
{
std : : s i z e t sz = s i z e ;
long long s = 0 ;
int i = 0 ;
for ( ; i + 16 <= s i z e ; i+=16 )
{
// load 256= b i t chunks o f each array

m256i f i r s t v a l u e s = mm256 load si256 ( ( m256i *) &p1 [ i ] ) ;

m256i s e cond va lue s = mm256 load si256 ( ( m256i *) &p2 [ i ] ) ;

// s u b s t r a c t each pa i r o f 16= b i t i n t e g e r s in the 256= b i t chunks
m256i s u b s t r a c t e d v a l u e s = mm256 sub epi16 ( f i r s t v a l u e s , s e cond va lue s ) ;

// mu l t i p l y each pa i r o f 16= b i t i n t e g e r s in the 256= b i t chunks
m256i m u l t i p l i e d v a l u e s l o = mm256 mullo epi16 ( subs t ra c t ed va lue s ,

s u b s t r a c t e d v a l u e s ) ;
m256i m u l t i p l i e d v a l u e s h i = mm256 mulhi epi16 ( subs t r a c t ed va lue s ,

s u b s t r a c t e d v a l u e s ) ;

s += sum avx ( m u l t i p l i e d v a l u e s l o , m u l t i p l i e d v a l u e s h i ) ;
}

for ( ; i < s i z e ; i++)
{
s+= pow( p1 [ i ] = p2 [ i ] , 2 ) ;
}
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return s ;
}
Listing 5.7: Source code for the C++ SIMD function computing pairwise Euclidean distances

The sum of the squared differences was calculated with another C++ function based on SIMD
instructions, displayed in Listing 5.8.

long long sum avx ( m256i a part1 , m256i a part2 )
{
short e x t r a c t e d p a r t i a l s u m s 1 [ 1 6 ] = {0} ;
short e x t r a c t e d p a r t i a l s u m s 2 [ 1 6 ] = {0} ;
mm256 storeu s i256 ( ( m256i *) &ex t ra c t ed pa r t i a l sums1 , a part1 ) ;
mm256 storeu s i256 ( ( m256i *) &ex t ra c t ed pa r t i a l sums2 , a part2 ) ;

long long sssum=0;
for ( int i =0; i <16; i++) {
int temp = ( ( e x t r a c t e d p a r t i a l s u m s 2 [ i ]<<16) | ( ( e x t r a c t e d p a r t i a l s u m s 1 [ i ] ) &

0 x f f f f ) ) ;
sssum+=temp ;
}
return sssum ;
}
Listing 5.8: Source code for the C++ multi-core function computing the sum of two 256-bit

registers

5.3 Results and discussion

To evaluate the gaPCA algorithm’s acceleration, we build a benchmark in which we measured
the amount of time the algorithm took to execute on every testcase of the two datasets
mentioned above, for 1, 3 and 5 principal components. For each of the above mentioned image
sizes, we ran the algorithm with the specified number of computed principal components, several
times for each test (in order to minimize the overhead time associated with the cache warming
[43]) and averaged the result.

5.3.1 Python vs. PyCUDA

Jetson Nano The first comparative assessment between the Python CPU multi-core and
GPU CUDA implementations was performed on the Jetson Nano platform.

The experimental runs were conducted on the first five image crops of the Pavia University
dataset, from 20×20 to 125×125 and all the spectral bands (103) and a number of 6 fixed
computed principal components. The algorithm ran 10 times for each image dimension. The
results are shown in Table 5.1 .
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Table 5.1: Timing analysis of gaPCA for varying image crop size of the Pavia University dataset
on the Jetson Nano platform.

Image
dimensions

CPU
(seconds)

GPU
(seconds)

Speedup

20x20 1.15 1.98 0.58×
40x40 15.40 5.26 2.93×
80x80 229.40 45.88 5×
100x100 556.94 104.45 5.33×
125x125 1347.41 235.59 5.72×

The results show that, as expected, the CUDA implementation achieves an average speed-up
of up to 5.72× faster than the CPU version for the biggest crop sizes (80×80, 100×100 and
125×125). The speed-up results obtained are also charted in Figure 5.3. It can be noticed that
for the smaller crop sizes the speed-up is lower (for 40x40 just below 3×) or the CUDA version
is even slower than the CPU for the smallest crop size (20×20, 0.58× speed-up). This is due to
the CUDA computational overhead (i.e. copying the data from CPU memory to GPU memory
and reverse). The impact of the overhead is reduced as the dataset size increases.
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Figure 5.3: Speedup between GPU and CPU gaPCA implementations on Jetson Nano.

Intel Xeon W3670 - GTX 1050Ti The second comparative assessment was performed
between the Python CPU multi-core and the GPU CUDA implementation on the Intel Xeon
W3670 - GTX 1050Ti platform.

The experimental runs were conducted on all image crops, of both Indian Pines (Table
5.2) and Pavia University (Table 5.4) dataset for a number of 1, 3 and 5 computed principal
components.
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Table 5.2: gaPCA GPU vs. CPU execution times (seconds) on Indian Pines for different image
sizes and number of principal components on the Intel Xeon W3670 - GTX 1050Ti platform.

Image
dimensions

GPU
1 PC

CPU
1 PC

GPU
3 PC

CPU
3 PC

GPU
5 PC

CPU
5 PC

20×20 0.45 0.68 0.45 1.18 0.72 1.28
40×40 0.57 1.45 1.01 3.18 1.68 4.55
80×80 2.68 14.61 7.40 33.97 12.02 52.68
100×100 5.46 33.84 15.94 80.12 25.66 126.00
145×145 20.45 154.37 61.25 353.37 102.20 561.91

Table 5.3: GPU vs. CPU speedup table for computing 1, 3 and 5 principal components for the
Indian Pines dataset on the Intel Xeon W3670 - GTX 1050Ti platform.

Image
dimensions

1 PC 3 PC 5 PC

20×20 1.51× 1.65× 1.80×
40×40 2.56× 3.15× 2.71×
80×80 5.46× 4.59× 4.38×
100×100 6.20× 5.03× 4.91×
145×145 7.55× 5.77× 5.50×

The results show that, once again, the CUDA implementation outperforms the Python CPU
one, with an average speedup of up to 7.55× faster than the CPU version. For the bigger crop
sizes of the Indian Pines dataset, the speedup is the most significant.

The speed-up results obtained are also charted in Figure 5.4.

Table 5.4 and Table 5.5 show the execution times and speedups for the CPU and GPU
implementations for the Pavia University dataset, on the Intel Xeon W3670 - GTX 1050Ti
platform. The speedup recorded is up to 11.78× for the GPU version of the algorithm as
compared to the CPU one. The speed gain is the most significant for the bigger crop sizes
of the Pavia University dataset. The reason is that the amount of floating point operations
resulting for small data are not enough to keep the GPU busy, but rather the memory transfer
to and from the GPU becomes the bottleneck and increases the total run time. As the image
sizes grows, parallelization on the GPU becomes more and more effective in terms of execution
times.

The speedup results obtained for the Pavia University dataset, on the Intel Xeon W3670 -
GTX 1050Ti platform are also charted in Figure 5.5.

5.3.2 Matlab vs. Python and PyCUDA

Table 5.6 shows the timing results for the three implementations, for each test case of the
Indian Pines dataset. Similarly, Table 5.7 shows the timing results for the test cases of the Pavia
University dataset. Figures 5.6 and 5.7 present the speedup between the three implementations
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Figure 5.4: CPU vs. GPU speedup plot for computing 1, 3 and 5 principal components for the
Indian Pines dataset on the Intel Xeon W3670 - GTX 1050Ti platform.
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Table 5.4: gaPCA GPU vs. CPU execution times on Pavia University for different image sizes
and number of principal components on the Intel Xeon W3670 - GTX 1050Ti platform.

Image
dimensions

GPU
1 PC

CPU
1 PC

GPU
3 PC

CPU
3 PC

GPU
5 PC

CPU
5 PC

20x20 0.23 0.67 0.40 1.14 0.64 1.25
40x40 0.25 1.18 0.68 2.72 1.12 3.80
80x80 1.06 8.70 3.20 26.15 5.35 42.04
100x100 2.16 21.41 6.72 62.27 11.23 102.05
200x200 29.44 343.98 90.17 984.66 150.96 1611.97
250x250 71.72 812.26 217.11 2373.87 362.32 3921.91
300x300 155.01 1719.58 444.90 4936.99 742,93 8179.16
400x340 335.10 3947.68 1007.32 11338.15 1679.32 18633.12
610x340 774.35 9035.44 2336.16 26188.72 3890.46 43145.17

Table 5.5: CPU vs. GPU speedup table for computing 1, 3 and 5 principal components for the
Pavia University dataset on the Intel Xeon W3670 - GTX 1050Ti platform.

Image
dimensions

1 PC 3 PC 5 PC

20x20 2.93× 1.80× 1.96×
40x40 4.64× 3.99× 3.38×
80x80 8.19× 8.17× 7.86×
100x100 9.90× 9.27× 9.09×
200x200 11.68× 10.92× 10.68×
250x250 11.33× 10.93× 10.82×
300x300 11.09× 11.10× 11.01×
400x340 11.78× 11.26× 11.10×
610x340 11.67× 11.21× 11.09×
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Figure 5.5: CPU vs. GPU speedup plot for computing 1, 3 and 5 principal components for the
Pavia University dataset on the Intel Xeon W3670 - GTX 1050Ti platform.
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(with the Matlab implementation taken as a baseline for comparison) for all the test cases of
the Indian Pines and the Pavia University, respectively.

For the first test case (Indian Pines), the Matlab implementation outperforms its Python
equivalent, being with up to 4.58× for the 40×40 image crops, while for the other image sizes
(80×80, 100×100 and 145×145) the Python implementation is faster. For the second test case
(Pavia University), we can notice that the Matlab implementation is faster than the Python
one with approximately 20% on average (ranging from 4% for the 200× 200 and 5 PCs dataset
to 42% for the 100× 100 and 1 PC dataset).

Crop
size

No. of
PCs

Matlab Python PyCUDA

40x40 1 0.275 1.260 0.153
40x40 3 0.832 2.802 0.449
40x40 5 1.448 3.519 0.756
80x80 1 8.326 6.797 0.769
80x80 3 24.678 18.265 2.319
80x80 5 40.990 29.333 3.884
100x100 1 22.090 14.531 1.592
100x100 3 66.377 41.929 4.843
100x100 5 110.449 68.647 8.004
145x145 1 104.134 64.498 5.843
145x145 3 313.070 181.152 18.036
145x145 5 521.057 298.212 30.137

Table 5.6: Indian Pines Matlab vs.Python vs. PyCUDA execution times (s).
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Figure 5.6: Indian Pines Matlab vs.Python vs. PyCUDA speedup for 1 PC (a) 3 PCs (b) and
5 PC (c) for various image dimensions.



60 PARALLELIZATION

Crop
size

No. of
PCs

Matlab Python PyCUDA

100x100 1 9.507 13.476 0.866
100x100 3 28.439 39.126 2.745
100x100 5 47.580 64.131 4.497
200x200 1 195.801 204.855 10.391
200x200 3 575.083 601.477 31.884
200x200 5 957.494 992.193 53.496
300x300 1 883.342 1027.397 50.905
300x300 3 2653.649 3036.512 155.068
300x300 5 4432.107 5030.831 260.203
610x340 1 4501.181 5453.752 267.402
610x340 3 13588.632 16035.242 806.866
610x340 5 22675.191 26702.160 1347.312

Table 5.7: Pavia University Matlab vs.Python vs. PyCUDA execution times (s).
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Figure 5.7: Pavia University Matlab vs.Python vs. PyCUDA speedup for 1 PC (a) 3 PCs (b)
and 5 PC (c) for various image dimensions.

5.3.3 C++ single core vs. multicore

The second comparative evaluation was performed between the execution times of several
C++ implementations: single core (SC), single core with AVX2 intrinsics (SC AVX2), multi-
core (MC) and multi-core using AVX2 intrinsics (MC AVX2). Table 5.8 shows the timing
results for the four implementations, for each test case of the Indian Pines dataset. Similarly,
Table 5.9 shows the timing results for the test cases of the Pavia University dataset.

The speedups between the four implementations (with the single core implementation taken
as a baseline for comparison) are shown in Figures 5.8 and 5.9, for all the test cases of the
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Indian Pines and the Pavia University, respectively.

Crop
size

No. of
PCs

C++ SC C++ SC AVX2 C++ MC C++ MC AVX2

40x40 1 0.947 0.206 0.169 0.047
40x40 3 2.858 0.620 0.480 0.120
40x40 5 4.749 1.035 0.796 0.211
80x80 1 15.147 3.317 2.502 0.663
80x80 3 45.274 9.942 7.534 1.674
80x80 5 75.451 16.389 12.457 3.012
100x100 1 36.834 8.070 6.108 1.605
100x100 3 110.570 23.834 18.452 4.560
100x100 5 184.189 40.409 30.627 7.871
145x145 1 162.853 35.185 27.017 6.797
145x145 3 491.379 105.084 81.027 18.816
145x145 5 814.208 175.127 135.510 32.400

Table 5.8: Indian Pines C++ Single Core (SC) vs. Single Core AVX2 (SC AVX2) vs. Multi
Core (MC) vs. Multi Core AVX2 (MC AVX2) execution times (s).
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Figure 5.8: Indian Pines C++ Single Core (SC) vs. Single Core AVX2 (SC AVX2) vs. Multi
Core (MC) vs. Multi Core AVX2 (MC AVX2) speedup for 1 PC (a) 3 PCs (b) and 5 PC (c) for

various image dimensions.

5.3.4 C++ multi core vs. CUDA

The final comparative evaluation was performed between the execution times of the three
parallel C++ implementations: multi-core (MC), multi-core using AVX2 intrinsics (MC AVX2)
and multi-core with CUDA programming (MC CUDA). Table 5.10 shows the timing results for
the three implementations, for each test case of the Indian Pines dataset. Similarly, Table 5.11
shows the timing results for the test cases of the Pavia University dataset.
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Crop
size

No. of
PCs

C++ SC C++ SC AVX2 C++ MC C++ MC AVX2

100x100 1 18.373 4.63084 3.030 0.805
100x100 3 55.185 13.9219 9.025 2.814
100x100 5 91.666 23.1688 15.277 4.565
200x200 1 293.311 74.8406 48.650 12.652
200x200 3 880.324 222.279 144.703 40.199
200x200 5 1472.080 371.005 243.616 68.642
300x300 1 1488.370 387.629 247.666 67.894
300x300 3 4489.640 1165.61 741.890 211.110
300x300 5 7438.200 1933.44 1240.140 363.606
610x340 1 7956.360 2053.12 1322.530 393.734
610x340 3 23962.794 6202.35 3975.840 1144.730
610x340 5 40190.385 10408.8 6605.060 1905.980

Table 5.9: Pavia University C++ Single Core (SC) vs. Single Core AVX2 (SC AVX2) vs. Multi
Core (MC) vs. Multi Core AVX2 (MC AVX2) execution times (s).
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Figure 5.9: Pavia University C++ Single Core (SC) vs. Single Core AVX2 (SC AVX2) vs. Multi
Core (MC) vs. Multi Core AVX2 (MC AVX2) speedup for 1 PC (a) 3 PCs (b) and 5 PC (c) for

various image dimensions.
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The speedups between the three implementations (with the standard multi-core implemen-
tation taken as a baseline for comparison) are shown in Figures 5.10 and 5.11, for all the test
cases of the Indian Pines and the Pavia University, respectively.

Crop
size

No. of
PCs

C++ MC C++ MC AVX2 C++ MC CUDA

40x40 1 0.169 0.047 0.113
40x40 3 0.480 0.120 0.202
40x40 5 0.796 0.211 0.239
80x80 1 2.502 0.663 0.585
80x80 3 7.534 1.674 1.619
80x80 5 12.457 3.012 2.654
100x100 1 6.108 1.605 1.324
100x100 3 18.452 4.560 3.835
100x100 5 30.627 7.871 6.343
145x145 1 27.017 6.797 5.609
145x145 3 81.027 18.816 16.690
145x145 5 135.510 32.400 27.770

Table 5.10: Indian Pines C++ Multi Core (MC) vs. Multi Core AVX2 (MC AVX2) vs. Multi
Core CUDA (MC CUDA) execution times (s).
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Figure 5.10: Indian Pines C++ Multi Core (MC) vs. Multi Core AVX2 (MC AVX2) vs. Multi
Core CUDA (MC CUDA) speedup for 1 PC (a) 3 PCs (b) and 5 PC (c) for various image

dimensions.

Figure 5.12 shows a comparison of all implementations in terms of speed-up compared to
the C++ single-core version taken as baseline. This comparative perspective confirms that the
two CUDA-based implementations (C++ MC CUDA and PyCUDA) yield the highest speed-
ups, followed closely by the C++ MC AVX2 version. The C++ MC CUDA is faster than the
PyCUDA version on average with 9.3% for Pavia and with aprrox. 30% for Indian Pines.
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Crop
size

No. of
PCs

C++ MC C++ MC AVX2 C++ MC CUDA

100x100 1 3.030 0.805 0.689
100x100 3 9.025 2.814 1.916
100x100 5 15.277 4.565 3.143
200x200 1 48.650 12.652 9.989
200x200 3 144.703 40.199 29.699
200x200 5 243.616 68.642 49.068
300x300 1 247.666 67.894 50.700
300x300 3 741.890 211.110 151.082
300x300 5 1240.140 363.606 251.730
610x340 1 1322.530 393.734 267.495
610x340 3 3975.840 1144.730 801.950
610x340 5 6605.060 1905.980 1336.010

Table 5.11: Pavia University C++ Multi Core (MC) vs. Multi Core AVX2 (MC AVX2) vs.
Multi Core CUDA (MC CUDA) execution times (s).
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Figure 5.11: Pavia University C++ Multi Core (MC) vs. Multi Core AVX2 (MC AVX2) vs.
Multi Core CUDA (MC CUDA) speedup for 1 PC (a) 3 PCs (b) and 5 PC (c) for various image

dimensions.
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Figure 5.12: gaPCA overall speedup comparison

5.3.5 Energy efficiency

For evaluating the energy consumption we measured the system power consumption during
the execution of each algorithm implementation for two test-cases: Indian Pines 100×100 and
Pavia University 200×200; in all cases 5 PCs were computed. The system’s power consumption
was measured using a PeakTech 1660 Digital Power Clamp Meter [10], which provides a
USB connection and dedicated software for data acquisition, thus increasing the accuracy and
reliability of the results.

Table 5.12 shows the energy consumption for the Matlab, Python and PyCUDA implemen-
tations versus the total execution time; the energy results are also displayed in Figure 5.13.
Similarly, the energy consumption for the C++ implementations are illustrated in Table 5.13
and Figure 5.14.

C++ MC CUDA implementation is shown to be slightly less energy efficient than the C++
MC AVX2 implementation (consuming 24.74% more energy in the Indian Pines test-case and
4.89% more energy in the Pavia University test-case) but it outperforms the C++ MC AVX2
implementation in terms of execution speed (being 24.07% faster for the Indian Pines test-case
and 39.89% faster for Pavia University). The difference in the increased energy consumption for
the two test-cases (24.74% Indian Pines vs. 4.89% Pavia University) can be explained by the
difference in the number of spectral bands (200 for Indian Pines vs. 103 for Pavia University),
which leads to the number of threads per block being used by the CUDA kernel (256 for Indian
Pines vs. 128 for Pavia University). These results are confirmed also in the case of the PyCUDA
implementation, which uses the same CUDA kernel.
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Dataset Size
No. of
PCs

Implementation Energy (J) Time (s)

Indian 100x100 5
Matlab 4595.29 110.449
Python 2409.06 68.647
PyCUDA 609.23 8.004

Pavia U 200x200 5
Matlab 34139.77 957.494
Python 34192.04 992.193
PyCUDA 3589.8 53.496

Table 5.12: Energy measurement results for the Matlab, Python and PyCUDA implementations.

Dataset Size
No. of
PCs

Implementation Energy (J) Time (s)

Indian 100x100 5

C++ SC 3672 184.189
C++ MC 1108.75 30.627
C++ SC AVX2 792 40.409
C++ MC CUDA 471.43 6.343
C++ MC AVX2 378 7.871

Pavia U 200x200 5

C++ SC 27512.87 1472.080
C++ MC 9242.40 243.616
C++ SC AVX2 7431.87 371.005
C++ MC CUDA 3491.43 49.068
C++ MC AVX2 3328.63 68.642

Table 5.13: Energy measurement results for the C++ implementations.
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Figure 5.13: Energy consumption for the Indian Pines (a) and Pavia University (b) datasets for
the Matlab, Python and PyCUDA implementations.
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Figure 5.14: Energy consumption for the Indian Pines (a) and Pavia University (b) datasets for
the C++ implementations.

5.4 Conclusions

The recent trends and advances in remote sensing and Earth observation in recent years have
led to the continuous acquisition of massive geospatial data of various formats. This raises
scientific challenges related to the processing, analysis, and visualization of remote sensing data,
with focus on algorithms and computing paradigms able to extract knowledge and meaningful
information both offline and in real time. Hence, the latest High Performance Computing
devices and techniques, like parallel computing, GPUs and enhanced CPU instructions sets like
AVX2 represent solutions able to provide significant gains in term of performance improvements
of various data intensive applications and algorithms.

We have presented the implementation of a PP-based geometrical Principal Component
Analysis approximation algorithm (gaPCA) for hyperspectral image analysis on multi-core
Central Processing Units (CPU), Graphics Processing Units (GPU) and multi-core CPU using
AVX2 intrinsics, together with a comparative evaluation of the implementations in terms of
execution time and energy consumption. The experimental evaluation has shown that all
parallel implementations have consistent speed-ups over the single core version: the C++
CUDA was on average 29.3× faster on Pavia and 24.8× faster on Indian Pines, while the C++
MC AVX2 version had an average speed-up of 21.2× for Pavia and 23.9× for Indian Pines
compared to the baseline C++ SC version. These timing results show not only the benefits
of using CUDA programming in implementing the gaPCA algorithm on a GPU in terms of
performance and energy consumption, but also considerable advantages in implementing it on
the multi-core CPU using AVX2 intrinsics. These two implementations were shown to be much
faster than the standard multi-core implementation, and also the most efficient with regard
to energy consumption. The C++ MC AVX2 version was shown to be the most efficient,
requiring on average 8.26× less energy when running the Pavia dataset and 9.71× less energy
when running the Indian Pines dataset compared to the baseline C++ SC implementation.
The C++ MC CUDA version had just slighlty lower results, being 7.88× more efficient on
Pavia and 7.78× more efficient on Indian Pines than the single-core implementation.

Consequently, this chapter highlights the benefits of using parallel computing, AVX2 in-
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trinsics and CUDA parallel programming paradigms for accelerating dimensionality reduction
algorithms like gaPCA in order to obtain significant speed-ups and improved energy efficiency
over the traditional CPU single-core or multi-core implementations.

The research and experiments presented in this chapter have been validated and disseminated
in the following publication:

� [44] A. L. Machidon, C. B. Ciobanu, O. M. Machidon, and P. L. Ogrutan. On Parallelizing
Geometrical PCA Approximation. In 2019 18th RoEduNet Conference: Networking in
Education and Research (RoEduNet), pages 1–6. IEEE, 2019 also indexed in IEEE Xplore
Digital Library

� [48] A. L. Machidon, O. M. Machidon, C. B. Ciobanu, and P. L. Ogrutan. Accelerating
a Geometrical Approximated PCA Algorithm Using AVX2 and CUDA. Remote Sensing,
12(12):1918, 2020



CHAPTER 6

Final conclusions and original contributions

6.1 Final conclusions

This doctoral research was focused on designing, implementing, testing, validating and opti-
mizing a novel Projection Pursuit method, namely the gaPCA method.

Following the research studies and experiments performed, presented in this thesis, the
following conclusions can be drawn:

� The novel gaPCA method is characterized by several specific advantages compared to
other similar methods in the Projection Pursuit family. gaPCA was confirmed to have
an improved ability to discriminate smaller signals or objects from the background of the
scene, and also given its algorithmic design, it is natively easily parallelizable which allows
it to be accelerated on the latest High Performance Computing architectures. The most
time-consuming subroutine in the gaPCA method is the Euclidean distance computation,
which was shown to be seamlessly executed using parallel computing platforms [44].

� The validation of the novel gaPCA method using quality metrics on remote sensing data
showed that when compared to the canonical PCA, both methods provide similar results
with regard to the contrast and entropy scores, while in the case of the energy metric the
gaPCA principal components are shown to have a superior image spatial quality, which
could potentially lead to better classification results.

� With regard to land classification accuracy, the gaPCA method had, on average, higher
results than the canonical PCA. gaPCA clearly outperformed its more well-established
counterpart for the preponderantly spectral classes, small objects or classes; in these
situations, the canonical PCA disregards the information with small contributions to
the overall signal variance, labeling it as redundant or “unimportant”, which diminishes
its capacity to distinguish small objects or classes with fine similarities. Subsequently,



70 FINAL CONCLUSIONS AND ORIGINAL CONTRIBUTIONS

gaPCA proved to be more appropriate for hyperspectral images with small structures or
objects that need to be identified or where generally spectral classes or spectrally similar
classes are encountered.

� In the face recognition experiment, when looking at the recognition accuracy numbers,
gaPCA performed equally or slightly lower (under 10%) with the canonical PCA. For
the case where face recognition was performed using a neural network classifier, gaPCA
scored again very close to its counterpart, with just under 2% in average compared to the
canonical PCA, with superior results for specific classes. Additionally, gaPCA was shown
to decreases the number of training iterations required for the neural network classifier.

� The gaPCA algorithm was implemented using multi-core Central Processing Units (CPU),
Graphics Processing Units (GPU) and multi-core CPU using AVX2 intrinsics, and a
comparative evaluation of the implementations in terms of execution time and energy
consumption was made. The experimental evaluation has shown that all parallel im-
plementations have consistent speed-ups over the single core version: the C++ CUDA
was on average 29.3× faster on Pavia and 24.8× faster on Indian Pines, while the C++
MC AVX2 version had an average speed-up of 21.2× for Pavia and 23.9× for Indian
Pines compared to the baseline C++ SC version. These results highlight that the
CUDA-based GPU implementation of the gaPCA method has significant advantages with
regard to computing performance (execution time) and energy consumption; in addition,
the multi-core CPU using AVX2 intrinsics implementation was shown to provide very
similar performances as the CUDA implementation. Consequently, the benefits of using
parallel computing, AVX2 intrinsics and CUDA parallel programming paradigms have
been highlighted for accelerating dimensionality reduction algorithms like gaPCA in order
to obtain significant speed-ups and improved energy efficiency over the traditional CPU
single-core or multi-core implementations.

� The energy consumption measurement results for the various single-core, multi-core and
CUDA-based gaPCA implementations showed on one hand that all parallel solutions
consume much less total energy than the single-core implementation and on the other,
that among all parallel implementation, the most efficient was the C++ MC AVX2 im-
plementation, followed closely by the C++ MC CUDA implementation and the PyCUDA
version.

6.2 Original contributions

Among the original contributions of this doctoral research, which conducted to the achieve-
ment of the objectives, we enumerate:

� A study on the current state of the algorithms and methods for multidimensional data
analysis

� The design and implementation of a new dimensionality reduction method [46]

� The validation of the novel gaPCA method on synthetic data [45]
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� The validation of the novel gaPCA method on remote sensing data visualization [45]

� The validation of the novel gaPCA method using quality metrics on remote sensing data
[46]

� The validation of the novel gaPCA method on remote sensing data classification [46][47]

� The validation of the novel gaPCA method in face recognition [49]

� The parallelization of the novel gaPCA method using multi-core Central Processing Units
(CPU), Graphics Processing Units (GPU) and multi-core CPU using AVX2 intrinsics
[48][44]

� A cross-platform and cross-language assesment of the of the gaPCA algorithm and its
multi-core and GPU implementations was performed [48][44]

� Energy consumption analysis of the various gaPCA single-, multi-core and CUDA imple-
mentations [48]

6.3 Future research directions

Regarding the future research directions that can capitalize on the obtained results, the
following can be mentioned:

� Extending the application range of the gaPCA method to the target detection field.

� Extending the application range of the gaPCA method to other types of multidimensional
data, like biomedical data, data recordings from sensors, traffic data, etc.

� Extending the comparison of the gaPCA method’s performances with other dimensional-
ity reduction methods like Linear Discriminant Analysis, Minimum Noise Fraction, etc.

6.4 Dissemination and validation of the research results

The results of the doctoral research obtained and presented in this thesis were validated by
the international scientific community and capitalized by publishing in journals and specialized
journals, as well as and in the volumes of prestigious international conferences.
Scientific articles published in Web of Science-indexed Journals:

� [46] A. L. Machidon, F. Del Frate, M. Picchiani, O. M. Machidon, and P. L. Ogrutan. Geo-
metrical Approximated Principal Component Analysis for Hyperspectral Image Analysis.
Remote Sensing, 12(11), 2020 (Impact Factor = 4.509)

� [48] A. L. Machidon, O. M. Machidon, C. B. Ciobanu, and P. L. Ogrutan. Accelerating
a Geometrical Approximated PCA Algorithm Using AVX2 and CUDA. Remote Sensing,
12(12):1918, 2020 (Impact Factor = 4.509)
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� [26] L. Fasano, D. Latini, A. L. Machidon, C. Clementini, G. Schiavon, and F. Del Frate.
SAR Data Fusion Using Nonlinear Principal Component Analysis. IEEE Geoscience and
Remote Sensing Letters, pages 1–5, 2019 (Impact Factor = 3.833) also indexed in IEEE
Xplore Digital Library

Scientific articles presented at peer-reviewed international conferences and in-
dexed in Web of Science - proceedings paper:

� [44] A. L. Machidon, C. B. Ciobanu, O. M. Machidon, and P. L. Ogrutan. On Parallelizing
Geometrical PCA Approximation. In 2019 18th RoEduNet Conference: Networking in
Education and Research (RoEduNet), pages 1–6. IEEE, 2019 also indexed in IEEE Xplore
Digital Library

� [49] A. L. Machidon, O. M. Machidon, and P. L. Ogrutan. Face Recognition Using Eigen-
faces, Geometrical PCA Approximation and Neural Networks. In 2019 42nd International
Conference on Telecommunications and Signal Processing (TSP), pages 80–83, 2019 also
indexed in IEEE Xplore Digital Library

� [45] A. L. Machidon, R. Coliban, O. Machidon, and M. Ivanovici. Maximum Distance-
based PCA Approximation for Hyperspectral Image Analysis and Visualization. In 2018
41st International Conference on Telecommunications and Signal Processing (TSP), pages
1–4, 2018 also indexed in IEEE Xplore Digital Library

Scientific articles and abstracts presented at other peer-reviewed conferences and
symposiums:

� [25] L. Fasano, F. Del Frate, D. Latini, A. L. Machidon, and C. Clementini. Classification
of Urban areas by Means of Multiband SAR Data Fusion. In European Space Agency 2nd
Mapping Urban Areas from Space 2018 - MUAS 2018. ESA, 2018

� [47] A. L. Machidon, M. Ivanovici, R. Coliban, and F. Del Frate. A Geometrical Approx-
imation of PCA for Hyperspectral Data Dimensionality Reduction. In The ESA Earth
Observation Phi-week EO Open Science and FutureEO. ESA, 2018

Contributions to the teaching activity during the PhD studies:

� [54] P. L. Ogrutan, A. L. Machidon, and A. Dinu. Is There a Link Between Creativity
and Multiculturalism in Education? TEM Journal, 8(2):577, 2019
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ANNEX A

Abstract

The PhD thesis entitled “Algorithms and statistical methods for multidimensional data analysis”
presents the design, implementation, testing, validation and optimization of a novel dimensionality
reduction method, related to the Principal Component Analysis (PCA) technique, namely the gaPCA
method (Geometrical Approximated Principal Component Analysis), and its applications in several
domains like Remote Sensing and Face Recognition. The thesis is structured in six chapters, in addition
to the Introduction. In the first chapter, the current state of the art on dimensionality reduction is
presented, with focus on the Principal Component Analysis method: advantages and disadvantages,
applications in various domains and adaptations. Chapter 2 introduces the gaPCA novel method
based on a geometrical construction as an alternative to the canonical Principal Component Analysis.
Chapter 3 presents the validation of gaPCA in the field of hyperspectral images for the purposes
of image analysis and classification. The performance of the gaPCA method was evaluated using
several metrics, for both image quality assessment, quality of the reconstruction, redundancy of
the information, and accuracy of the classification and the results were compared with the ones
from the canonical PCA. Chapter 4 describes the results of the gaPCA method in the field of face
recognition and its performance in terms of accuracy of the recognition, with the canonical PCA as
a benchmark. Chapter 5 presents the gaPCA implementations using parallel computing principles
on different hardware architectures, for accelerating the computation time to obtain speed-ups and
improved energy efficiency. Finally, Chapter 6 summarizes the conclusions of the previous chapters
and reviews the original contributions made in this doctoral thesis research. It also presents several
future research directions for extending the existing contributions.

Rezumat

Teza de doctorat intitulată “Algoritmi s, i metode statistice pentru analiza datelor multidimension-
ale” prezintă conceperea, proiectarea, implementarea, testarea, validarea s, i optimizarea unei noi
metode de reducere a dimensionalităt, ii, inspirată de Principal Component Analysis (PCA), s, i anume
metoda gaPCA (Geometrical Approximated Principal Component Analysis) s, i aplicat, iile sale ı̂n
diverse domenii precum Remote Sensing s, i recunoas,terea facială. Teza este structurată pe s,ase capitole,
pe lângă Introducere. În primul capitol este prezentat stadiul actual privitor la reducerea dimension-
alităt, ii, cu accent pe PCA: avantaje s, i dezavantaje, aplicat, ii ı̂n diferite domenii s, i diverse implementări.
Capitolul 2 introduce metoda inovativă bazată pe o construct, ie geometrică gaPCA, ca alternativă
la PCA. Capitolul 3 prezintă validarea gaPCA ı̂n domeniul imaginilor hiperspectrale cu accent pe
analiza imaginilor s, i clasificare. Performant,a metodei gaPCA a fost studiată prin evaluarea calităt, ii
imaginii, calităt, ii reconstruct, iei, redundant,a informat, iei s, i acuratet,ea clasificării, iar rezultatele au fost
comparate cu cele ale PCA. Capitolul 4 descrie rezultatele metodei gaPCA ı̂n domeniul recunoas,terii
faciale ı̂n ceea ce prives,te acuratet,ea recunoas,terii, având ca reper rezultatele obt, inute cu metoda
PCA. Capitolul 5 prezintă implementările gaPCA utilizând principii de calcul paralel pe arhitecturi
hardware diferite, pentru accelerarea timpului de calcul s, i ı̂mbunătăt, irea eficient,ei energetice. În cele
din urmă, capitolul 6 rezumă concluziile capitolelor anterioare s, i trece ı̂n revistă contribut, iile originale
realizate ı̂n această cercetare doctorală. Sunt prezentate de asemenea mai multe direct, ii viitoare de
cercetare pentru extinderea contribut, iilor existente.
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