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1 INTRODUCTION 

Cutting operations are still the most common ways of surface generation used in the 
manufacturing industry, constantly evolving and diversifying. In most cases, the cutting 
processes are accompanied by dynamic phenomena that have a significant detrimental impact 
on surface quality and cutting tool durability. Monitoring these phenomena can be done using 
complex techniques for estimating and measuring the various physical quantities associated 
with the chip formation process and the dynamic stiffness state of the machine tool (MT). 

Artificial intelligence (AI) is now one of the most intensely researched disciplines in computer 
science. Due to the large number of variables that can influence the occurrence of chatter 
phenomena, it is difficult, if not impossible, to develop quantitative analytical 
relationships/models capable of providing relevant information on the occurrence and control 
of this phenomenon. A possible alternative to this is the use of AI technologies. A major 
bottleneck in terms of implementing AI technologies in manufacturing is the training phase of 
the neural networks. In general, this stage of implementation requires a large number of 
samples, their availability and/or cost being one of the main drawbacks. 

The thesis proposes a developing platform focused on implementing AI based systems into 
manufacturing centers in order to control the dynamic phenomena of cutting processes by 
using the latest finite element simulation methods (CAE/FEM) and parametric explorations 
solutions (DSE). The obtained sample set was used in the last part of the research, where 
several variants of neural networks were tested. The tests aimed to identify and expose the 
main building and training parameters that directly intervene on computational and prediction 
performance, with a focus on the complexity difference of the two train data sets (𝐹𝑥 and 𝐹𝑦). 

1.1 Purpose and objectives 

The thesis is largely focused on the development of a complex platform for the implementation 
of artificial intelligence (AI) technologies in machine tools (MU), capable of detecting and 
controlling the occurrence of the self-vibration phenomenon. The primary purpose was to 
create, prototype, and validate the essential components needed to train neural networks in 
this environment utilizing concepts borrowed from the Digital Twin concept. 

Based on the current state of the art of the mathematical apparatus and techniques used in 
the analysis of dynamic processes, presented in the first part of the thesis, the methods for 
detecting and controlling the phenomena of self-vibration during cutting operations are 
critically analyzed. Based on the conclusions, it was possible to outline the problem from a 
constructive, physical and mathematical perspective by exposing the interdimensional 
relationships and limitations on the basis of which the physical phenomenon in question can 
be approached. Using AI technologies implies performing a preliminary training process, which 
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generally requires a large number of samples. The main objectives pursued in the thesis 
revolve around this critical stage by proposing synergistic approaches for the generation of 
these samples synthetically using the latest numerical techniques. Their generation involves 
decoupling the dynamic system into two critical components: the first component focuses on 
obtaining the forces induced by the chip formation process, and the other is the modal 
component of the complete system with which the disruptive source will engage. In order to 
obtain the first component, different estimation methods were explored, the final solution 
adopted being the use of finite element methods. A secondary objective resulting from the 
adoption of this solution is to optimize the computational efficiency by dimensional reduction 
of the numerical model used, while controlling the level of correlation. The scalability of the 
simulation method is ensured by means of a conversion solution, a solution that allows the 
application of the methodology of synthetic generation of dynamic samples on simple 
processes such as turning and on processes with a higher degree of complexity such as milling 
operations. In order to facilitate the effective exposure of the interdependencies of the 
parameters involved in the chip formation process, the number of possible combinations being 
very high, the use of modern parametric exploration methods was proposed. These methods 
have the ability to expose, through a reduced number of configurations, the main parameters 
of influence and the critical variation areas that might induce the appearance of harmonic 
vibrations during chip formation. The modal characteristic of the generator system can 
generally be determined experimentally or using various numerical estimation methods. The 
finite element simulation method offers the most flexibility in exploring various process 
configurations, but this method cannot always be applied to all machine tools, especially old 
ones. The availability of geometric and physical information is the main impediment to the use 
of these methods. Consequently, the present work focused on the development of an 
experimental system capable of measuring the transfer functions (accelerance, inertance) of 
the tool-tip. The objectives pursued in this stage are aimed at the development of the 
pretensioning devices of the generator system without interfering with the modal behavior. 
Advanced optimization techniques and parametric exploration were used here also that 
allowed the creation of the final measuring devices used to map the dynamic stiffness values 
on a physical CNC lathe, values subsequently coupled with the load spectra. In the final part of 
the work, different configurations of neural networks were explored, evaluated and proposed 
in order to estimate the states of dynamic stability for cutting processes. Essentially, the main 
objective was to expose the complexity of the training process and how both the number of 
samples and the hyper-parameters used can influence the final performances. A critical aspect 
resulting from this last stage of validation is that related to the trainning cost, an acceptable 
reaction speed of such a feedback loop system being strongly influenced by this aspect. 
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2 MACHINING DYNAMICS 
2.2 Dynamic stability of cutting processes 

Depending on the values of the dynamic stiffness of the components of the mechanical cutting 
system (cutting tool, tool holder, clamping system, workpiece, etc.), three types of vibrations 
can be distinguished [27]: 

a) Free vibrations; 
b) Forced vibrations; 
c) Self-Excited vibrations (chatter). 

In the case of free and forced vibrations, it is sufficient to determine the sources to correct or 
mitigate their negative effects. Direct interventions on the cutting regime or in the MU 
structure have scalable and immediate effects, with little chance of failure (analytical / 
kinematic modelling, elimination of non-conforming components from the cutting system). 

Self – excited vibrations are caused by periodic 
variation of the cutting forces produced by the 
interaction between the cutting tool and the 
workpiece. This type of vibration increases the 
instability of the system and leads to an 
increase effort to control the cutting regime. 
Depending on the dynamics of the generator 
system, three components of self – excited 
vibrations can be distinguished [27]: 

1. Friction component; 
2. Modal component; 
3. Regenerative component. 

The literature exposes self-vibrations caused by friction and regenerative ones as being 
predominant in the appearance of unwanted vibrations ( chatter ) in the cutting processes [28]. 
This hypothesis is relatively recent and still requires a lot of research to be accepted. Other 
works propose as main contributors modal and regenerative self-vibrations [29]. Friction-
induced self-vibrations (Fig. 2.22) are associated to the nonlinear cutting contact and the 
speed-dependent cutting forces. This particular case is called ” stick-slip ” which exponentially 
amplifies the system disturbances which can be compared to the resonance phenomena  [27] 
[28]. 

Modal self-vibrations or modal coupling represent the phenomenon by which two or more 
natural modes of vibration, close in frequency but in different directions, enter a cumulation 
process [27] [28]. 

 

Fig. 2.22 The effect of friction during turning (stick-slip) 
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Regenerative self-vibrations (Fig. 2.24) are 
caused by the chip formation process and 
generation kinematics. During the cutting 
process, the cutting tool (or more precisely the 
active part) dislodges sections of material that 
have at least one face generated by the 
previous pass. This face prints the 
instantaneous dynamic behavior of the 
mechanical system leading to the variation of 
the thickness of the section to be dislodged. 
The kinematics is the main influencing factor 
in this case. The spatial complexity of chip 
generation is directly proportional to the 
number of dimensions in which this phenomenon must be modeled (if we compare turning 
and milling operations, milling is often more difficult to model/control in terms of regenerative 
self-vibrations) [27] [29]. 

From this point, the present thesis 
focuses on turning and milling 
operations only beeing the most 
common used in practice for 
machining. It can be observed that in 
recent years the number of 
publications focused on the control of 
the self-vibration phenomenon in the 
MUs has dropped precipitously (Fig. 
2.25), signaling the appearance of a 
theoretical limit and/or technical dept. 
History says that these periods of stagnation are caused by the different developing speeds 
that the research fields involved have [27]. 

2.5 Conclusions 

Usually, estimating the dynamic stability is the first step by which useful information related 
to the behavior of the entire generating system can be extracted. Most of the classical 
methods used for this purpose involve the separation of the two main active components in 
chip forming models and MU stiffness estimation models. Analytical techniques such as 
stability lobe diagrams or Nyquist diagrams have been and continue to be the main tools of 
analysis even in the context of aggressive digitization that all industries go through or have 
passed through (Industry 4.0). 

 

Fig.  2.24 Regenerative vibrations caused by the variation of the 

chip section (g – previous; G – active pass) 

 

Fig. 2.25 Research evolution for the self-excited vibration phenomena in milling 

operations [27] 
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In this thesis some common methods by which analytical determinations can be applied for 
turning and milling operations have been set forth. The main components involved in the 
analytical estimation of the dynamic stability of MU are: the cutting forces coeficients, the 
dynamic system parameters, the cutting process parameters and the cutting tool geometry. 
An alternative to analytical methods for estimating dynamic stability in cutting processes is 
the use of numerical methods (finite element method analysis). The main components 
required to correctly model the deformation process are: discretization, material modeling, 
friction modeling, and chip separation modeling. All these components are constantly being 
improved by private companies and researchers, and current trends suggest an attempt to 
unify and automate them. 

The cutting processes have a suite of dynamic phenomena in their composition, each of which 
has the ability to influence more or less the precision of the operation. Vibrations are part of 
the category of the most important phenomena that must be studied and controlled (or 
avoided), because they have the ability to influence both the quality of the surface obtained 
and the durability of the cutting system and, in the extreme, can lead to the destruction of the 
entire generation system. 

Currently there are several established methods of vibration measurement, mostly requiring 
contact with piezoelectric sensors. This method offers, in addition to the advantages of a 
development that began more than half a century ago, also the disadvantage of the fact that 
its development has reached the maximum possible given the physical limitations. For this 
reason, current research is focused more on the part of signal pre-processing and/or 
conditioning/filtering, trying to maximize the optimization of information obtained from 
sensors by means of computing systems. 

If in the past the most expensive operation in the measurement chain was the storage and 
processing of the signals obtained from the sensors, nowadays this has become very 
accessible allowing the development of new digital means (acquisition systems and computer 
programs) capable of filtering, processing and extracting a wide range of information with 
relatively high precision given by complex mathematical algorithms impossible (or 
inaccessible) to execute in the past. 

In parallel with the development of the sensors went also the mathematical modeling of the 
vibrating phenomenon, this aspect being strongly correlated with the new developments in 
computing power. The development of a high-performance vibration measurement and / or 
control system for MUs involves research of both branches. New methods of trying to 
capitalize on original mathematical models are continuously developed and show promising 
results, suggesting a possible return to the subject in future research. 
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3 THEORETICAL AND EXPERIMENTAL STUDIES ON ACTIVE 
VIBRATION CONTROL IN MACHINE TOOLS 

The continuous development of sensors and processing technologies allows the advancement 
of methods and systems used for measuring cutting forces, often accompanied by specific 
sound signals, which allows the detection of stable or unstable regimes [88]. 
Table 3.1 Setups used for chatter detection [89] 

Operation Physical quantity Sensor Signal processing type Chatter detection criterion 

Milling Sound emission Microphone PSD Energy levels 

Turning Vibrations Accelerometers Cross coherence Coherence trend 

Milling Vibrations + Cutting 
Forces 

Eddy sensors 

Dynomometer 
PSD Qualitative analysis 

Milling Vibrations Laser Tool trajectory Qualitative analysis 

Turning Cutting Forces Dynomometer CER Qualitative analysis 

Milling Sound emission Microphone OPRS Threshold 

Milling Cutting Forces Dynomometer WT Threshold 

Milling Vibrations Eddy sensors OPRS, PS, PSD Threshold 

Grinding Sound emission + Cutting 
Forces 

Eddy sensors + 
Microphone Entropy Threshold 

Milling Sound emission + Cutting 
Forces 

Dynomometer + 
Microphone 

PSD Threshold 

Milling Cutting Forces Dynomometer FFT 
Distribution of spectral 
peaks 

Milling Vibrations Laser OPRS, PS, PSD Threshold 

Milling Sound emission Microphone PSD Threshold 

Table 3.2 illustrates some recent detection systems, 
organized according to the cutting operation, the 
physical quantity measured, the type of sensor, the 
signal processing technique and the detection 
criterion used. Both the frequency band used and 
the sensor positioning play a crucial role in correctly 
identifying this phenomenon. An appropriate 
frequency band for this type of measurement is 
between 100 and 5000 [ Hz ]. 

A general rule regarding sensor positioning is to be as close to the source as possible, but this 
is not always possible [ 89 ]. According to recent research, the most recommended sensors for 
milling operations are accelerometers, dynamometers and microphones ( Fig. 3.16 ). There are 
also cases where other sensors are more efficient, such as Eddy or laser sensors, but their 
positioning is difficult, especially for machine tools with complex kinematics. At the same time, 

 

Fig. 3.16 Usual sensor arrangement [90] 
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dynamometers also have important limitations such as the maximum working band which is 
somewhere around 1 [ kHz ]. Microphones have many advantages, such as high accuracy and 
low cost, but require a controlled operating environment due to the many noise-disrupting 
sources that can occur around the machine tool. 

3.4 Conclusions 

The first step to be taken in order to control self-excited vibrations (chatter) phenomena is 
their detection. Commonly, we can distinct the various types of detection methods based on 
cutting operation, measured physical quantity, sensor/s, type of signal processing and 
detection criterion. For turning monitoring, it is usually recommended to use accelerometers 
and spectral analysis of the signals. For the milling operations, the methods are a bit more 
complex commonly monitoring acoustic emissions and cutting forces through microphones 
and dynamometers respectively. In an attempt to unify the proposed solution/s, the thesis will 
use the common monitoring method in both turning and milling operations. 

The first vibration control devices were passive. Passive control is generally applied to machine 
tools by means of filters, but in general this control can also be achieved by means of a machine 
tool design optimization. The domain of the devices (absorbents) used to control cutting 
processes is quite limited. However, it should be noted that each type of absorber is capable 
of handling a certain type of excitation and reacts on predetermined frequencies with limited 
possibility of adjustment. 

Active vibration control systems in machine tools are being treated with great interest by the 
scientific and industrial community due to the multiple advantages they can bring. The first is 
the ability to continuously adjust the damping through the direct control of the cutting 
parameters or, indirectly, through the adjustments of the physical attenuation systems. If for 
passive approaches the dynamic model must be known in advance, in the case of active 
methods it can be determined experimentally by means of open or closed-loop systems. A 
unification of control models is thus possible which will ultimately lead to increased flexibility 
in their applicability. 
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4 EXPERIMENTAL STUDIES ON ACTIVE VIBRATION CONTROL IN 
MACHINE TOOLS USING ARTIFICIAL INTELLIGENCE 

4.2 Monitoring/control of cutting processes using AI 

The accelerated digitization movement (Industry 4.0) focused mainly on increasing 
productivity, reducing production costs and scrap has led to the emergence of automatic 
manufacturing centers. The systems have a multitude of automatic functions such as collision 
detection, process monitoring and certain types of optimizations. Most online optimization 
technologies ( even offline ) of the cutting process require a minimum level of measurement of 
dynamic signals. As a consequence, the identification and detection of self- excited vibration 
phenomena are topics often addressed by the scientific community. Based on what was 
discussed in Chapter. 3.1, it can be concluded that for the detection of the self-excited 
phenomenon in the cutting processes, measurements of cutting forces, accelerations, acoustic 
emissions or other electrical signals carrying characteristic information are used. These 
measured signals are evaluated in practice using various processing algorithms such as: Short-
Term Fourier Transform ( STFT ), Wavelet Transform ( WT ), Wavelet Packet Decomposition ( 
WPD ), Hilbert-Huang Transform ( HHT ), empirical mode decomposition ( EMD ), Variational 
Mode Decomposition ( VMD ) or Local Mean. At the fundamental level, these self- excited 
vibration detection systems must perform three basic steps: collecting dynamic signals, 
extracting dynamic features from the signal, and evaluating the dynamic state of the system. 
Practically, the information generated by the last step can become input data for any passive 
(Chapter. 3.2) or active (Chapter. 3.3) control system, the collection of data (input + output) can 
be further used for the development of a digital twin model very useful for other more 
advanced applications. 

The use of artificial intelligence in the detection/control of self-excited vibration phenomena 
in cutting introduces a new fundamental step, the training (and testing) of neural networks 
(see Chapter. 4.1). The data collection step aims to define as many sets of measurements as 
possible related to the state of the system. The use of a sufficiently large and representative 
set of samples in training the networks is essential for the generalization of the performance 
obtained in the end. Typically, for this type of application, the following types of neural 
networks are used: support vector machines (SVM), artificial neural networks (ANN), multilayer 
perceptron (MLP), unsupervised models, and DL-specific models such as convolutional 
networks (CNN). 

Table 4.2 reports the performances obtained by the latest scientific research in the field of 
detection and/or control of the self- excited phenomenon in cutting operations. As can be seen, 
the scientific community is testing many configurations/techniques often combined with 
other more or less empirical methods, which have led to promising results. Most studies are 
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performed in controlled environments, very different from normal operating conditions, while 
still using real cutting parameters to ensure the validity/scalability of the results obtained. 
Table 4.2  Performance reported in the most recent scientific studies related to the detection of self-excited vibration in machining [96] 

Signal processing type Model Operation Accuracy [%] 

WT MLP Milling 94 

WT SVM Turning 95 

EMD SVM Turning 95 

VMD SVM Milling 92.59 

WT CNN Milling 99 

STFT CNN Milling 98.9 

EMD AlexNet Milling 82 – 100 

Unfortunately, it is still not possible to make a clear distinction between the performances 
obtained by advanced methods that use artificial intelligence and classical methods (those 
that monitor the vibration level by applying a simple RMS operation on the amplitude level) 
[96]. 

4.3 Synthetic generation of training samples 

The main impediment in the implementation of technologies that use artificial intelligence is 
given by the large number of samples required by the training process. Ideally, the samples 
used for this process are generated experimentally because they can encompass all the 
features, known or hidden, leading to better accuracy of the predictions generated by the 
network. However, this is only possible for certain applications, such as facial recognition or 
handwriting recognition, because the nature of the samples is very common (pictures, songs, 
videos, etc). 

The specifics of the addressed problem, vibration control of machine tools, directly shape the 
fundamental structure that a sample must possess. In order to ensure data compatibility, it is 
necessary that the information, both input and output, be composed coherently based on the 
phenomena/parameters to be modeled by the neural network. 

The input data of this tensor is represented by the physical, dynamic and geometric 
characteristics of the monitored/controlled process. In the case of machining, these are: the 
material/physical properties of the workpiece, the material/physical properties of the cutting 
tool, the parameters of the cutting regime, the geometry of the cutting tool, etc. The output 
data, according to the proposed application, are: spindle speed (which can also be determined 
analytically from the input data), the feed (similarly, can be determined from the input data) 
and the vibration amplitudes related to the process in a discretized form. The discretization on 
frequency bands can be done depending on the performance of the network. Each band used 
for monitoring will essentially add another dimension to the tensor. It can be concluded that 
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using a large number of frequency bands can lead to high network performance. In reality, the 
number of bands used must be optimized because it exponentially influences the training time 
and the minimum required number of samples. 

4.3.1 Simulation of cutting process, cutting forces 

As shown in Chapter 2.2.1.1.1.1, the 
literature provides a variety of analytical 
models that can be used in the 
estimation of cutting forces, but they 
introduce many simplifying assumptions. 
An alternative is to use finite element 
simulations, discussed more fully in 
Chapter 2.2.1.1.3, but these methods 
introduce a new problem related to 
computational costs. A possible solution 
is to reduce the number of finite 
elements by switching from an oblique 
(3D) to an orthogonal (2D) simulation model. 

An original approach that further 
simplifies the finite element analysis 
for milling operations is presented in 
[37], by changing the type of 
generating motion from rotation to 
rectilinear, the improved method being 
independent of the number of teeth of 
the cutting tool. In essence, the 
method proposes: extracting the chip 
section generated by the passage of 
one cutting tool tooth; running the orthogonal simulation using the unwrapped chip; 
recomposing the overall cutting force behavior using the cutting tool geometry information; 
wrapping the results back from the polar coordinate system to the more suited MU cartesian 
coordinate system based on the kinematics of the cutting process and finally extracting the 
final forces that can be applied on the MU model as loads to get the structural response. 

Due to the unfolding process (Fig. 4.10), the thickness variation must be adjusted by means of 
a correction factor calculated using the linear velocities (relation 4.1). 

 𝑆𝑐(∅) =
𝑆𝑐1

𝑆𝑐2
 4.1 

where: 𝑆𝑐1 [m/s]→ instantaneous speed of two consecutive points on the trajectory, 1st tooth; 

 
Fig.. 4.10 The cycloidal trajectories of two consecutive teeth, workpiece 

perimeter with the start/end points and the instantaneous section 
generation [37] 

 
Fig. 4.12 Curve correction factor (left), the original and the compensated 

thickness (right) [37] 
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 𝑆𝑐2 [m/s]→ instantaneous speed of two consecutive points on the trajectory, 2nd tooth; 
 ∅ [°]→ the rotation angle of the cutting tool. 

The correction factor and the corrected thickness variation are shown in Fig. 4.12. 

The computational cost of a simulation using this method was 1.5 days. Compared to the 
equivalent oblique simulation of 13.5 days, a decrease of ~89 % of the calculation time resulted. 

4.3.2 Generating dynamic cutting samples using design space exploration techniques 

Starting from the sample structure, it can be deduced that the theoretical maximum number 
of unique samples that can be obtained is directly influenced by the total number of input 
variables and the variation domain of each variable (the desired and/or imposed resolution 
being the discretizing factor). We can call this set of input data the "design space" of the system 
under study. In the context of the present research, this space is defined by the main 
characteristics of the cutting regime that directly influences the dynamic behavior of chip 
formation. Generating a representative set of training samples is directly influenced by how 
this design space is explored in order to expose meta-dependencies with the intention of later 
inoculating them into control AI algorithms. How this exploration takes place directly 
influences both the total cost of generating the sample set and the final performance of the AI 
control algorithm. 

 
Fig. 4.21 DSE loop for synthetic cutting data generation [41] 

An alternative to random explorations are the Design Space Exploration techniques (DSE), 
capable of traversing these spaces in a semi-automatic, online fashion. These analyses 
evaluate the results obtained and constantly optimize subsequent configurations. 

A unique approach involving this kind of exploration, combined with cutting process simulation 
methods, was proposed in the work [41]. Similar to the paper [37], the applicability, scalability 
and validity of the method were exposed by means of an example, the longitudinal turning of 
AISI1045 steel. 
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Fig. 4.21 shows the detailed diagram of the optimization loop used to generate samples 
related to the case in question. As can be seen, the design space for this case is defined by the 
left side of the scheme, containing parameters marked in orange (𝑎, 𝑏, 𝑟, 𝑉, 𝑓 ș𝑖 𝑙𝑜𝑐). The rest 
of the parameters are used for the construction of the orthogonal simulation model, they 
remain constant. The limitation of the design space was done as follows: 𝑎 = −8 … + 8[°]; 𝑏 =

0 … 8[°]; 𝑟 = 0.02 … 0.1[𝑚𝑚]; 𝑉 = 1 … 120 [
𝑚

𝑚𝑖𝑛
] ; 𝑓 = 0.1 … 2[𝑚𝑚]. 

The objectives set for this case are specific to the type of sample that is desired to be 
generated: maximizing the material removal rate by means of the 𝑉 𝑎𝑛𝑑 𝑓 parameters with 
the minimization of the vibration amplitudes on all frequency bands. 

An empirical approach was used to validate the obtained data: the interpretation of the 
obtained data by means of the correlation factors calculated between various parameters, part 
of the design space, and the amplitudes obtained on the frequency bands (Fig. 4.24). Some 
clear mechanical trends are to be observed, such as the fact that the cutting speed 𝑉 influences 
both cutting forces 𝐹𝑥,𝐹𝑦 similarly, something to be expected. A sign change is observed 
between band 6 and 7. This change validates another hypothesis applied in the industry, which 
relates the increase in cutting speed to the improvement of dynamic stability. Another 
anticipated trend can be observed, related to the influence of the feed 𝑓; it acts predominantly 
in the direction of the force 𝐹𝑥. Furthermore, it can be seen that this assumption does not 
apply when analyzing band 3, the effect suggesting the occurrence of a harmonic 
phenomenon. 

 
Fig.  4.24 Correlation plot between the DSE inputs/outputs [41] 

Another very important parameter to investigate is the rake angle 𝑎. As can be seen, it has an 
inversely proportional correlation with both cutting forces, something anticipated, but the data 
suggests that it acts predominantly at low and medium frequencies. The same trend can be 
observed for the clearance angle 𝑏. 

The last parameter investigated individually is the nose radius 𝑟. As already mentioned, this 
parameter is associated with the cutting tool wear level. Analyzing the obtained data, this 
influence can be observed at high frequencies, but not so obviously at low frequencies. 
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4.4 Determining the dynamic transfer functions of machine – tools 

For the correct/complete description of the dynamic phenomenon in machining, it is not 
enough only to model the chip formation process. Next, the attention will be directed to the 
development of solutions that will allow the coupling of the simulated cutting forces with the 
dynamic characteristics of the machine tools. This coupling basically represents the 
determination of the stiffness 𝑘∗ and damping  𝑐∗ coefficients as functions of the cutting 
system parameters, applicable to the longitudinal turning operation. 

The experimental setup consists of a CNC lathe PO PY GIM PLG-42 on which a cutting tool with 
removable inserts is mounted, SVJBL 2020K 16 produced by the company SANDVIK. The 
modeling, analysis and measurements were carried out with the help of the suite of hardware 
and software solutions developed by Siemens (NX, Simcenter, Simcenter HEEDS MDO, 
Simcenter Testlab and Simcenter SCADAS XS). 

4.4.2 Modal evaluation of the cutting system for step turning operations with SVJBL 2020K 
16 cutting tool 

In order to be able to perform an assessment of the modal behavior of the longitudinal turning 
operation with the SVJBL 2020K 16 cutting tool, this research chapter focused on coupling the 
two main components that form the generator system, cutting tool and workpiece (Fig. 4.39). 

 
Fig. 4.39 Cutting tool – workpiece assembly – CAD model (left) – FEM model (right) 

The analyses carried out had the same goal: exposing the critical characteristics and important 
parameters that influence the way the dynamics of the generator system can interact with the 
self-excitation vibration phenomenon. 
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Geometrically, the workpiece is a solid bar with a diameter of 42 [mm] and a total length of 
230 [mm], both dimensions being constructively limited by the selected CNC lathe used in the 
experiments. 

The material properties used are identical to those used for the cutting tool. In addition to the 
parameters already studied, the variation of the cutting forces and the distance variation 
between the tool clamping area and the tool-tip (sc), in this study a new dimensional variation 
was introduced representing the distance between the tool-tip and the workpiece clamping 
(rp) (Fig. 4.39). The diameter is constant, but the rp parameter of the workpiace can vary in the 
0 ... 210 [mm] domain, limited by the length of the clamping system (20 [mm]) and the working 
space of the MU. 

The workpiece clamping was modeled in the finite element analysis as for the cutting tool, 
with the cylindrical area describing the clamping being fully constrained. A peculiarity in this 
modeling is the way in which the quasi-static cutting forces were applied to the model. In 
practice, the dynamics of the chip formation process generate cutting forces that load both 
components identically, with opposite sign. Since in this analysis the chip formation process is 
not simulated (more details in Chapter 2.2.1.1.3), the forces are introduced using an original 
method, which reduces the interaction area to one-dimensional (1D) elements of type RBE2 
and CBAR , on which a dedicated boundary condition is applied to model the forces usally used 
for bolts. 

 
Fig.. 4.41 The maximum influence of the cutting forces variation on the normal modes of the generator system 

Analyzing the obtained results (Fig. 4.41), it can be noted that each loading direction induces a 
significant change in the frequency of a different natural mode of vibration. The variation of 
the cutting force on the 𝐹𝑥 direction substantially modifies a natural mode of vibration that 
manifests itself through deformation predominantly in the 𝐹𝑦 direction, this mode being 
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strongly correlated with the 1st mode of vibration obtained in the isolated modal analysis done 
on the cutting tool. 

Regarding the variation of the cutting force in the 𝐹𝑦 direction, an equally significant influence 
can be observed on vibration mode 2, the bending mode in the Z direction. Analyzing the 
deformation shape for this case, it is observed that this mode is induced by the workpiece, 
without significant contribution from the cutting tool. 

 
Fig. 4.46 Sensitivity analysis – Kriging response surface for 

vibration mode 1 

 
Fig. 4.47 Sensitivity analysis – Kriging response surface for 

vibration mode 2 

 
Fig. 4.48 Sensitivity analysis – Kriging response surface for 

vibration mode 3 

 
Fig. 4.49 Sensitivity analysis – Kriging response surface for vibration 

mode 4 

In addition to the variation of 7th mode, the influence of the preload on the 𝐹𝑥 direction is also 
significant for modes 1, 2 and 10 (Fig. 4.41), the first two being bending modes that manifest 
predominantly on the workpiece, and mode 10 being a complex mode that indicates the 
appearance modal coupling between the two systems. 

Similarly, the influence of the preload on the 𝐹𝑦 direction is visible not only on mode 2. Natural 
vibration modes 1, 7 and 10 (Fig. 4.41) also show significant changes in terms of the frequency 



 

 

 21 

at which they manifest. Modes 1 and 7 are bending modes in the 𝐹𝑥 direction, but mode 5 
differs in its shape, being a torsional mode of the workpiece. 

A comparative analysis of the results obtained up to this point suggests the elimination of 
preload forces (generated by cutting forces) from the list of the most important parameters 
that can intervene/modify the modal behavior in the longitudinal turning process. The 
influences are visible, as shown in the individual analyses, but compared to those generated 
by the variation of two distances they are several orders of magnitude smaller. For a better 
visualization of the complexity of the influences of the two remaining parameters, a series of 
sensitivity analyses were deployed. These graphs are generated using a factorial Kriging 
interpolation, interpolations able to handle with sufficient precision the complexity of the 
calculated response space [102]. Analyzing the results obtained for the first mode of vibration 
(Fig. 4.46), it can be observed that the distance between the tool-tip and the workpiace 
clamping (sc) is predominant, but the influence of the other distance (rp) is notable. For the 2nd 
vibration mode (Fig. 4.47) the sc paramater is less importat, but an asymmetry in the influence 
of the rp parameter also results. Modes 3 and 4 (Fig. 4.48 and Fig. 4.49) show a similar 
asymmetry in terms of the influence of the rp but, at the same time, an inversion of the 
distribution with resonance peaks positioned bordering on the variation domains. 

4.4.3 Designing/prototyping the transfer functions measurement device for step turning 
operations on CNC PO PY GIM PLG-42 lathe 

From an operational point of view, the modal behavior of the generating system can only be 
fully calculated and/or measured when all structural components and connections are 
considered. Not all of these components make a significant contribution in the end, but 
removing them from the start is not recommended. 

Based on what was discussed in Chapter 4.4.2, it can be deduced that the use of finite element 
analysis is conditional on the modeling of the entire CNC PO PY GIM PLG-42 lathe to obtain 
the effective transfer functions. In the context of this research, it was decided to use the 
experimental method to determine these characteristics, because this method is more precise. 

For the realization of the prototype/s, finite element simulations were used again, these being 
used for the dimensioning, validation and optimization of the basic concepts. The main 
objective pursued in this part of the research was the creation of a device capable of modeling 
the state of tension induced by the logitudinal turning operation on the CNC PO PY GIM PLG-
42 lathe, using the SVJBL 2020K 16 cutting tool. In addition to the geometric accuracy, it was 
also imposed the development of a solution that allows the variation of the three analyzed 
parameters (cutting forces and the two distances sc and rp). 

It was decided to measure the transfer functions using different devices for the two directions. 
The device designed to measure the preload in the 𝐹𝑥 direction (Fig. 4.56) was made starting 
from the geometrical information of the cutting tool discussed in Chapter 4.4.1. 
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Fig. 4.56 Transfer function measurement prototype in the Fx direction – CAD model 

A strain gauge (BF350) placed on top of the cutting tool is used to actually measure the applied 
force. The preload condition is achieved by means of a pivoting configuration around the axis 
of rotation of the workpiace. 

 

Fig. 4.61 Transfer function measurement prototype in the Fy direction – CAD model 

To measure the preload forces in the 𝐹𝑦 direction, the same approach was used, with a simpler 
constructive solution, in the absence of the special conditions imposed by the free rotation of 
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the spindle. The device assumes the most faithful modeling of the SVJBL 2020K 16 cutting 
tool, with the addition of an area that allows the use of an M4 screw that allows the application 
of a force between the two components (Fig. 4.61) 

As can be seen, the workpiece model is reused for this configuration as well, it is not 
geometrically conditioned by any functional aspect. 

4.4.3.2 Instrumentation and calibration of the accelerance measurement devices with preload 
modeling 

As mentioned in the previous chapters, the measurement system developed for this research 
aims to measure the accelerance of the tool-tip point taking into account also the effect of the 
preload forces induced by the cutting process. In order to perform this type of measurement, 
it was decided to use the BF350 – 3AA strain gauges, functionally optimized in chapter 4.4.3.1, 
coupled with an acquisition system developed specifically for this application. System 
calibration was performed using configurations that allowed reproducing the clamping 
conditions on the tested machine tool (PO PY GIM PLG-42). 

 
Fig. 4.78 Transfer function device instrumentation with BF350-

3AA strain gauge – Fx direction 

 
Fig. 4.79 Transfer function device instrumentation with BF350-3AA 

strain gauge – Fy direction 

The instrumentation part involved the use of a Wheatstone bridge configuration, which in its 
complete form uses four active resistive elements. Due to geometric constraints, the use of 
the full bridge was not possible, the quarter-bridge configuration using only one active 
element being adopted. 

The digital conversion is performed by means of a specialized ADC module (Fig. 4.81), HX711, 
capable of quantifying the electrical behavior of the Wheatstone bridge with a resolution of 24 
[bit] (see Chapter 2.3.2.1). 

The entire digital process is programmed and managed via an Arduino Uno development board 
connected directly to the HX711 module, which transmits the final data to the computer. The 
software component specially developed for this application is available in Appendix 3 – 
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Firmware for the preload force measuring devices used to measure the accelerance on CNC 
PO PY GIM PLG-42 (C++). Inducing the state of tension in the devices required the use of a 
configuration that allowed the orientation of the clamps according to the intended directions 
and the application of known masses for calibration. The calibration focused on only one 
position applied on the cutting tool, sc = 32.2977 [mm], the stiffest. 

As can be seen in Fig. 4.80, the clamping of the measuring device in the 𝐹𝑥 direction was done 
by means of vises, obtaining the correct orientation with respect to the horizontal surface. The 
application of the loading force involved the use of the same type of M4 screw, connected to 
a loading table that self-aligns normal to the horizontal surface when left free. In the case of 
the measuring device in the 𝐹𝑦 direction (Fig. 4.81), the configuration is simpler, only one vise 
being used. 

 
Fig. 4.80 Calibration configuration of the measuring device - Fx 

direction 

 
Fig. 4.81 Calibration configuration of the measuring device - Fy 

direction 

The calibration procedure involved reading the digitized values in 22 load positions, starting 
from 0 [kgf] to values close to those corresponding to a load force of ~ 61 [kgf]. It was decided 
to calibrate the systems in the force range 0 ... 600 [N], the cutting force range valid for the 
studies to be carried out in this paper. The total load mass was validated for each position 
using an electronic balance placed on the same base surface of the system and which has a 
measurement accuracy of +/- 1 [g], the increment used being ~ 2.5 [kgf]. 

4.4.3.3 Performing experimental measurements 
Physical tests were performed on two configurations: one to measure the accelerance of the 
SVJBL 2020K 16 tool mounted on the tool holder system and the other to measure the 
accelerance of the tool-tip using the devices developed in the previous chapters. 

Data measurement, acquisition and post processing were done using an accelerometer 
manufactured by PCB (333B30), connected to a Siemens SCADAS XS system and using the 
Siemens Test Lab software solution (Fig. 4.86). The measurement of accelerance involves the 
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use of a modal hammer also produced by PCB (086C03) to generate the necessary energy 
reference. 

 
Fig. 4.86 Generic setup for measuring tool-tip inertances on the PO PY GIM PLG-42 CNC lathe 

In the first phase, the accelerance of the tool-tip point was mapped in the two directions, Fx 
and Fy, over the entire adjustment range of the machine tool X – Z. At the same time, 3 sc 
values were tested ( sc = 32.2977 [mm] (Fig. 4.88); 48.2977 [mm] and 61.2977 [mm] (Fig. 
4.89)), a parameter that presented significant influences on the dynamic behavior according to 
the analyzes carried out in Chapter 4.4.2. 

Instrumentation of the measured area involved removing the detachable components and 
mounting the accelerometer using a special glue. For the measurement in the 𝐹𝑦 direction, the 
accelerometer was mounted as close as possible to the tool-tip point, using the same special 
mounting glue (Fig. 4.90 and Fig. 4.91). The X – Z adjustment range was defined using as 
reference “0” the point of intersection between the spindle axis and the minimum X position 
allowed by the workpiece clamping system. 

The actual measurements involved striking the tip point area using the modal hammer, in the 
direction of interest and repeating each measurement 5 times to ensure the accuracy of the 
results. The results measured in the position X = 0 [mm] and Y = 0 [mm] can, theoretically, be 
compared with the results calculated in Chapter 4.4.1, because this point represents the 
position of maximum stiffness of the machine tool. If these results are analyzed in both 
directions, Fig. 4.96 and Fig. 4.97, it can be seen that the dynamic stiffness trends are 
compatible, but offset. The gap-related aspect can be explained simply by the major difference 
in stiffness of the two configurations; the simulations induce a massive stiffening of the 
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mechanical system, while the measurements introduce the real stiffnesses and dampings of 
the entire kinematic chain of the machine tool. 

 
Fig. 4.88 Inertance measurement in the Fx direction on the SVJBL 

2020K 16 cutting tool without preload – sc = 32.2977 mm 

 
Fig. 4.89 Inertance measurement in the Fx direction on the SVJBL 

2020K 16 cutting tool without preload – sc = 61,2977 mm 

 
Fig. 4.90 Inertance measurement in the Fy direction on the SVJBL 

2020K 16 cutting tool without preload – sc = 32,2977 mm 

 
Fig. 4.91 Inertance measurement in the Fy direction on the SVJBL 

2020K 16 cutting tool without preload – sc = 61,2977 mm 

For both directions, flexibility peaks independent and dependent on the 𝑠𝑐 parameter can be 
observed. Physically, the independent peaks can be associated with the dynamic behavior of 
the machine tool, and the dependent peaks with the isolated dynamic behavior of the cutting 
tool. 

The results obtained in this part of the research confirmed the need to add the 𝑋 –  𝑍 
parameters as variables in the design space proposed in Chapter 4.3.2. 

The measurement of the accelerance of the generator system with the preload modelling, 
using the specially designed devices, was performed following the same procedure. Different 
from the previous measurements is the fact that the workpiece is materialized in this case, an 
aspect that can influence the dynamics of the system through its simple mass. 

Due to the fact that the devices were calibrated only for the assembly configuration 𝑠𝑐 =

 32.2977 [𝑚𝑚], the measurements carried out do not expose the possible influences that this 
parameter may have on inertia. 

The system was designed to measure a single processing diameter of the semiconductor, 𝛷 =

 21 [𝑚𝑚], so the adjustment space 𝑋 –  𝑍 is defined in this case with 𝑋 constant.  
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Fig. 4.96 Inertances in the Fx direction for the minimum, average and maximum position (sc) of the SVJBL 2020K 16 cutting tool for the X 

= 0 mm; Z = 0 mm coordinates measured on the PO PY GIM PLG-42 CNC lathe and compared with the inertances calculated with FEM 

 
Fig. 4.97 Inertances in the Fy direction for the minimum, average and maximum position (sc) of the SVJBL 2020K 16 cutting tool for the X 

= 0 mm; Z = 0 mm coordinates measured on the PO PY GIM PLG-42 CNC lathe and compared with the inertances calculated with FEM 

Measurements were carried out on 5 positions of this parameter, 𝑍 =  30,60,90,120 and 
150 [𝑚𝑚], using the same reference. 

As can be seen in Fig.  104 and Fig.  4.105, the pretensioning device was mounted in the tool - 
holder, the accelerometer being arranged as close as possible to the area of the theoretical 
generator point. Similarly, the configuration for measuring inertances in the 𝐹𝑦 direction (Fig.  
4106 and Fig.  4.107) involved mounting the device in the revolver head and positioning the 
accelerometer in the correct direction of measurement. 
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Fig. 4.104 Fx inertance measuring device configuration with 

preload, scconstant = 32,2977 mm, Xconstant = 21 mm 

 
Fig. 4.105 Fx inertance measuring device configuration with 

preload, scconstant = 32,2977 mm, Xconstant = 21 mm 

 
Fig. 4.106 Fy inertance measuring device configuration with 

preload, scconstant = 32,2977 mm, Xconstant = 21 mm 

 
Fig. 4.107 Fy inertance measuring device configuration with 

preload, scconstant = 32,2977 mm, Xconstant = 21 mm 

The adjustment of the preload force is carried out by means of the M4 screws, the preset value 
being confirmed by the computer and the acquisition system. It was decided to measure the 
inertances for each configuration from 0 to 600 [N] with a 100 [N] step. 

The result for the first test configuration is shown in Fig.  4108 and Fig.  4.109 relating to 
inertances in the directions 𝐹𝑥 and 𝐹𝑦 respectively. Analysis of the results shows that the 
generator system shows significant variations in different pre-load states, but these are 
minimized by the dynamic characteristics of the entire system. 

For clarity, and with the same simplifying assumptions regarding how the constraints applied 
in the FEM/MEF analyses can influence the dynamics of the structural response, it was 
decided to add the inertity curve for the generator system simulation with pre-load of 532.2 
[N]. Similar to the isolated knife analysis, for both directions, dynamic trends are correlated. 
For the Fx case, two areas of interest can be observed, the decrease in rigidity around the 
frequency of ~1400 [Hz] and the correlation point of measurements with the simulated results 
from 3200 [Hz]. The decline in rigidity may have several explanations but in the context of this 
work this aspect is not relevant, important to understand is the phenomenon of 3200 [Hz]. For 
both directions, it can be noted that after reaching this critical frequency, compared to the 
calculated inertia, the gap is more pronounced. 
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Fig.  4.1 Inertances in the Fx direction measured on PO PY GIM PLG-42 CNC lathe with the pre-tensioning device for X = 21 mm   Z = 30 

mm coordinates, sc = 32.2977 mm compared with the closest FEM reference 

 
Fig.  4.2 Inertances in the Fy direction measured on PO PY GIM PLG-42 CNC lathe with the pre-tensioning device for X = 21 mm   Z = 30 

mm coordinates, sc = 32.2977 mm compared with the closest FEM reference 

 

4.6 Training and testing of neural networks with synthetic samples 

As presented in Chapter. 4.1 and Chapter.4.2, artificial intelligence uses a wide variety of 
solutions and methods to optimize training performance and prediction. 

The structure of the neural network studied in this chapter can be described through Fig. 4.128. 
The input layer contains only two neurons representing the two parameters, 𝑠𝑐 and 𝑟𝑝. The 
output layer consists of 20 neurons, each representing the RMS value of the acceleration on a 
frequency band to be estimated by the network. This structure is the basis of any system 
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solution for the detection and/or control of the phenomena studied by this paper, the 
complexity of the parametric space concerned being fundamental in its construction. The 
hidden layers can vary both in number and by the number of neurons defined on each layer. 
Choosing an optimal configuration for defining these hidden layers involves balancing 
prediction performance with computational costs. 

In a real engineering application, an active control system of any dynamic phenomenon implies 
a rapid and accurate response of the system coupled with a high capacity of correct self-
training, guided by configurations that generate new behaviors (samples). 

This research is focused on a small component of the proposed sample concept, the analysis 
of the whole system may be the subject of future advanced studies. A complete variant of the 
imagined system would assume the existence of this agent capable of correctly discriminating 
online measured signals on monitored/controlled systems and, if necessary, to trigger both 
corrective actions to avoid the occurrence of the phenomenon of autovibration and self-
training actions for actions without effect or those that worsen the dynamic state of the 
system. This summary description is based on the use of a reaction loop concept, where the 
validation and pre-training of the fundamental module for estimating the dynamic state of 
scaling processes is complementary. 

 
Fig. 4.128 Neural network structure for estimation of tool point accelerations 

Based on the synthetic data obtained in Chapter. 4.5.1, calculable and hybrid data using actual 
transfer functions measured in Chapter. 4.4.3.3, it was possible to construct a collection of 
6061 dynamic samples of the targeted cases in the MU’s geometric adjustment space given 
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by the parameters 𝑠𝑐 and 𝑟𝑝. Using this data set, several configurations of neural networks 
have been built and tested to expose their accuracy and critical aspects that can influence both 
precision and computational performance. 
Tabel 4.3  The main configurations tested in order to generate neural networks for predicting the accelerations of the generating system 

 

Based on the information of convergence, loss evolution and computational performance, 
configurations that influence beneficial training behaviors were selected and tested, 
eventually obtaining Table 4.3. This table (plus Annex 5) essentially shows the evolution of this 
process of manual exploration of the configuration and adjustment possibilities of neural 

Fx Fy Fx Fy Fx Fy
1 2 0 0 20 20 0.001 100 50 0.00 0.00 0.00 0.00 0.00 0.00
8 2 9 0 20 227 0.001 2000 50 77.38 97.41 82.76 97.75 83.46 96.97
9 2 9 0 20 227 0.0005 2000 50 81.51 95.74 78.64 97.67 83.55 97.48

11 2 9 0 20 227 0.0005 3000 75 75.71 97.17 80.61 97.94 86.91 97.18
13 2 9 0 20 227 0.00025 3000 100 78.29 97.57 79.86 97.48 79.60 97.64
16 2 4 5 20 157 0.0005 1000 50 76.94 95.78 76.95 97.61 75.10 95.52
18 2 4 5 20 157 0.0005 1000 100 70.75 97.63 66.12 97.65 76.52 97.32
19 2 4 5 20 157 0.00025 1000 100 72.81 97.39 73.61 97.32 67.42 97.52
22 2 15 0 20 365 0.001 1500 50 81.02 98.01 81.71 98.44 87.00 97.67
25 2 15 0 20 365 0.001 1500 75 80.38 97.14 84.05 97.75 87.41 97.85
26 2 15 0 20 365 0.001 2000 75 84.76 97.81 87.39 97.70 90.21 97.24
27 2 15 0 20 365 0.001 3000 75 86.82 97.23 84.02 98.55 88.96 97.38
28 2 7 8 20 265 0.001 100 50 75.29 95.75 78.17 97.80 77.12 96.41
29 2 7 8 20 265 0.001 500 50 75.77 97.65 76.38 97.50 85.39 96.71
30 2 7 8 20 265 0.001 1000 50 83.08 97.47 84.75 97.67 83.58 97.48
31 2 7 8 20 265 0.001 2000 50 78.43 97.51 85.74 97.42 81.79 98.13
35 2 7 8 20 265 0.001 2000 75 81.90 97.86 84.10 97.68 82.97 96.52
39 2 69 0 20 1607 0.0005 2000 50 89.54 98.76 87.50 98.24 90.43 99.07
42 2 69 0 20 1607 0.00025 4000 50 86.86 98.39 88.78 98.60 88.99 98.51
43 2 69 0 20 1607 0.0005 2000 75 89.87 98.46 89.41 98.32 88.14 97.64
44 2 69 0 20 1607 0.0005 3000 75 89.24 97.77 90.41 98.22 89.62 98.27
47 2 10 59 20 1879 0.0005 500 50 89.64 98.41 88.72 97.05 90.32 97.24
49 2 10 59 20 1879 0.00025 1000 50 90.36 98.14 86.78 97.12 89.26 98.43
50 2 10 59 20 1879 0.00025 2000 50 89.25 98.83 88.74 98.54 90.04 97.92
52 2 10 59 20 1879 0.00025 4000 50 87.92 98.45 90.43 99.00 85.51 97.93
59 2 20 49 20 2089 0.0005 2000 50 87.83 98.04 89.46 98.98 83.49 98.87
60 2 20 49 20 2089 0.0005 3000 50 88.92 97.87 86.66 98.66 90.32 99.14
61 2 20 49 20 2089 0.0005 4000 50 89.58 98.53 89.84 98.60 88.05 98.84
64 2 30 39 20 2099 0.001 1000 50 90.43 97.99 88.10 98.87 88.28 98.85
66 2 30 39 20 2099 0.0005 1000 50 88.88 98.79 90.02 97.59 88.27 98.45
68 2 30 39 20 2099 0.00025 2000 50 89.36 98.11 88.98 96.89 90.85 98.03
71 2 40 29 20 1909 0.001 500 50 88.23 98.12 84.71 96.65 88.06 98.66
72 2 40 29 20 1909 0.001 1000 50 89.71 98.77 87.38 98.51 88.32 97.70
74 2 40 29 20 1909 0.0005 2000 50 89.20 98.37 89.73 98.80 86.05 98.28
76 2 40 29 20 1909 0.0005 2000 100 87.98 97.89 89.90 98.55 89.12 97.49

Iteration

Neural network structure

Parameters
Output 

layer
Input 
layer

Hidden 
layer 1

Hidden 
layer 2

Accuracy [%]
Hyperparameters

ReLU LeakyReLU PReLU
Activation

Epoch
Batch 
Size

Learn Rate
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networks used in estimating dynamic load spectrum in cutting processes for data sets of 
varying complexity. 

To facilitate the identification of the constructive variants tested, in this study it was decided 
to use suggestive names, for example N2_N69_N20, representing a neural network with 
visible layers with 2 neurons on the input and 20 on the output, to which an invisible layer with 
69 neurons was added. 

The main configurations tested and the results obtained are presented in Table 4.3. The full 
version with all the tests performed can be found in Appendix 5 – Summary of all 
configurations tested on neural networks. Construction, hyperparameters, activations and 
reported accuracy. 

Hyperparameter optimization was done manually with the aim of achieving a prediction 
accuracy of 90% with a minimum computational cost. 

For the critical analysis of the computational performance of the 3 activation functions used 
in the training of neural networks, it was decided to use a normalized metric, the product 
between the number of training parameters and number of epochs used. 

It can be noted that for the 𝐹𝑥 direction, PReLU activation is the most effective, followed by 
ReLu activation. For the 𝐹𝑦 direction, the same activation function is confirmed as the most 
effective, followed by the LeakyReLU  activation. A significant difference appears, however, in 
this case; the PReLU activation shows an evolution that suggests the possibility of further 
improving the accuracy achieved by increasing the number of epochs. 

4.7 Conclusions 

The fourth industrial revolution (Industry 4.0) has aggressively introduced and promoted the 
use of digital technologies in order to increase the level of autonomy in machining centers. 
There was already a solid digital foundation implemented through computerized numerical 
control interfaces (CNC → Industry 3.0), but it did not have the ability to provide 
monitoring/control of complex dynamic phenomena such as chatter. Artificial intelligence is 
currently at the forefront of this revolution, with its presence in industrial (and not only) fields 
growing exponentially. 

Numerous teams of researchers are working intensively to implement and test these 
technologies for the detection and control of dynamic phenomena, reporting promising results 
in terms of accuracy. 

The implementation of these techniques involves the use of several mathematical devices 
such as STFT, WT, WPD, HHT, EMD, VMD or LMD, all used in the pre-processing of measured 
physical signals in order to make them compatible with the intelligent control system. 
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The main obstacle to implementing AI technologies is the size of the data set needed for 
training. In the context of chatter control in MUs, this problem becomes even more evident due 
to the high costs involved with physical testing. 

An alternative to physical testing is the use of finite-element simulations. Although the 
computing technology has evolved a lot in recent years, generating a suitable set of training 
data involves high computational costs that question the applicability of these methods in the 
AI training process. There is, however, a method to improve these computational 
performances by converting oblique scaling problems into orthogonal problems that can 
increase efficiency by ~90%. 

In order to properly reconstruct the dynamics induced by a more complex cutting process like 
milling, an innovative method of deployment/wrapping of the cutting result can be extended 
to any type of processing. 

Another critical aspect when it comes to generating the training set is related to defining and 
exploring the parametric space of interest. This step can be done randomly or using special 
exploration algorithms that can expose system interdependence much more efficiently. This 
research used a commercial solution, Siemens HEEDS MDO, in synergy with cutting 
simulations that allowed 25 cases to be generated in a short time with modest computational 
resources, validating the scalability of the method. 

Evaluation of the modal component of the entire generator system can be done through finite-
element simulations, but modeling difficulties often arise due to incomplete design 
information. The alternative is the use of physical tests, which are anyway more accurate 
compared to simulations. In both variants, the tool-tip inertances can be coupled to obtain the 
accelerations. 

The extension of the parametric space should, ideally, contain only the important parameters 
that might influence chatter apparition. In this regard, detailed sensitivity analyses were 
carried out for the cutting tool itself and for the workpiece–tool assembly. Based on the results 
obtained from the analysis reduced only to the assembly, it was concluded that the main 
parameter of influence for inertances is the rp parameter representing the distance between 
the tool-tip and workpiece clamping. 

Modal behaviors and the influences that various parameters have on accelerance present 
significant differences depending on the component of the cutting force (𝐹𝑛 = 𝐹𝑥; 𝐹𝑡 = 𝐹𝑦 
for longitudinal turning). The experimental determination of these transfer functions is usually 
done directly on the cutting tool, without the modeling of the workpiece and/or interactions. 

To more accurately model the modal behavior of the entire MU, it was decided to develop 
special system pretensioning devices, with the modeling of the workpiece and with the 
possibility of measuring the preload forces. Two separate devices were developed for each 
tested direction, with the design focused on the geometric fidelity of the SVJBL 2020K 16 
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cutting tool and overcoming the constructive/cinematic constraints found in the tested MU. 
(CNC PO PY GIM PLG-42). 

The original variants were optimized using another complex synergy of parametric exploration, 
where multiple static and dynamic solutions present in the Siemens SimCenter 3D digital 
solutions suite were used. The input variables aimed at optimizing the sensitivity of the 
instrumented areas. The measurement of the preload forces was carried out using strain 
gauges applied to key areas on the devices, with the development of the hardware and 
software solution required for the calibration process and use. Calibration was carried out 
using a single procedure, which allowed the correct orientation and loading of devices using 
known masses. The linearity of the results confirmed the validity of the procedure. 

The measurement of the inertances was done both for the general case, without having the 
cutting tool in contact with the workpiece, and for the case where the preloading devices are 
applied. Sensors developed by the PCB company were used, including the impact hammer, 
with data acquisition and processing solutions developed by Siemens. (Siemens TestLab). The 
main objective in this phase of the research was to map the dynamic state of the tool-tip 
(inertances) according to the geometric and functional parameters targeted by each test case, 
these being coupled with the spectra of the cutting forces determined in the first part of the 
work. Critical behaviors correlated with variation in the parameters investigated for both 
configurations were identified, confirming the need to extend the parametric space used to 
generate the training samples. In this phase of the research, it was also possible to compare 
the simulated results with those obtained from measurements, their interpretation validating 
the concept’s ability to capture complex dynamic behaviors even when using reduced modeling 
of the generator system. 

A noticeable, anticipated, important feature for both cases is the difference in the complexity 
of the dynamic response according to the direction. The variation of complexity in the 𝐹𝑥 
direction is much greater compared to the variation in the 𝐹𝑦 direction. This aspect drastically 
influences the structure and defining parameters of the AI solution, suggesting that this might 
be important for future researchers. 

The key component of the fundamental concept proposed in this PhD thesis is the validation 
of the applicability of AI technologies in order to estimate the unwanted dynamic behavior of 
the machine tools. Exposure to this feature was experimentally achieved by testing several 
models of neural networks with different structures and training parameters. As expected, the 
high degree of complexity of the variation of modal characteristics on the 𝐹𝑥 direction greatly 
complicates the process of determining the most efficient drive variant, with substantial costs 
on computational performance. At the same time, it was confirmed that for this application 
there is no standard approach that can be used in the construction of AI solutions, the exotic 
behaviors obtained attest to the volatile feature of the technology which can be interpreted 
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both negatively, by the difficulty of obtaining desired results, and positively by the high degree 
of flexibility. 
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5 FINAL CONCLUSIONS. ORIGINAL CONTRIBUTIONS. 
DISSEMINATION OF RESEARCH RESULTS. FUTURE RESEARCH 

5.1 General conclusions 

The doctoral thesis focused on the conduct of thorough theoretical and experimental studies 
on the basis of which innovative concepts with real-life applications were developed in the 
active control of dynamic phenomena in cutting processes, using artificial intelligence. The 
work proposes, tests and validates innovative methods, numerical models and experimental 
prototypes in a synergistic context, enabling the realization of a generic platform for the 
implementation of these technologies across a wide range of machine-tool and manufacturing 
processes. 

The doctoral thesis is structured in three parts. The first part of the work deals in detail with 
the current state of the mathematical apparatus and technologies that allow the analysis of 
dynamic phenomena in machining. Based on the findings of this investigation, it is decided to 
evaluate the current state of the methods for detecting and controlling the phenomenon of 
chatter. The results of the investigations showed a high degree of difficulty in understanding, 
modeling, measuring and controlling this phenomenon, and the findings directly contributed 
to the development of the solution proposed in the third part of the paper. Multiple research 
and experiments conducted allow us to formulate conclusions as follows: 

I. The analysis of dynamic phenomena in cutting processes involves the separate 
assessment of the fundamental mechanical components such as modal behavior, 
friction influence and self-generating phenomenon, the modal component being 
regarded as independent of the rest; 

II. Existing methods of vibration control in cutting operations involve, in the first phase, 
the detection of negative behaviors. Quantification of the phenomenon is carried out 
using a wide range of sensors and methods, the achievement of control being directed 
by techniques of varying degrees of complexity. From this analysis, it was concluded 
that an active control system with artificial intelligence would adopt an operating 
scheme similar to those present in reaction loop models, a reaction monitored by 
means of ‘agents’; 

III. The studies presented in the third part of the thesis were focusing strictly on the 
design, implementation and testing of all the components involved in the realization of 
the system development platform proposed. The main aspects pursued in this part 
were: 

a. Definition of constructive and control parameters to neural networks; 
b. Presentation of the pre/post-processing components needed in the 

implementation of solutions for active control of the chatter phenomenon 
based on the latest specialist work; 
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c. Defining the concept of the training sample, exposing the problems of 
computational efficiency when using oblique simulations; 

d. Developing an innovative solution to reduce the computational cost of 
simulating cutting processes, while ensuring the scalability of the proposed 
solution; 

e. Introduction of modern methods of parametric exploration with the aim of 
streamlining the number of simulations necessary to highlight parametric 
interdependencies; 

f. Progressive evaluation of the generating system with a view to showing the 
parameters that may induce substantial changes in the modal characteristics; 

g. Design and optimization of systems for measuring the accelerance of the tool-
tip with the application of preload forces; 

h. Instrumentation and calibration of measurement prototypes; 
i. Conducting experimental tests: 

i. focused on determining the transfer functions of the generator system 
with the SVJBL 2020K 16 cutting tool as reference; 

ii. focused on determining the transfer functions (accelerance) of the 
generator system with workpiece modeling and preload; 

j. Coupling simulated and measured accelerances with the spectral of cutting 
forces for comparison purposes; 

k. Construction, training and testing AI solutions, evaluating the performance and 
critical parameters. 

Based on the conclusions formulated and the experiments, a general conclusion can be 
formulated that proves the capability, flexibility, scalability and performance of the proposed 
methodology in the implementation of AI systems to cutting operations control processes. 
Consequently, it can be stated that the main objectives of the doctoral thesis have been 
achieved through the proposed development platform. 

5.2 Original contributions 

The originality of this doctoral thesis is guaranteed by the innovative nature that all the 
methods, structures and constructive solutions present. In short, personal contributions can 
be summarized as follows: 

• Presentation of the current state of the art in terms of the analysis the dynamic 
phenomena in cutting operations based on the latast literature; 

• Presentation of the current state of worldwide achievements in the active control of 
chatter phenomena in machine tools; 

• Exposing the difficulties of implementing artificial intelligence (AI) technologies on 
machine tools for the purpose of controlling dynamic phenomena; 
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• Proposing a new, innovative method of generating synthetic spectral samples for 
cutting forces using advanced simulation methods (Deform 3D, AdvantEdge). In this 
context, a new solution has been developed to reduce the complexity of the numerical 
model, applicable to most cutting operations; 

• Combining the cutting operation simulations methods with advanced parametric 
exploration techniques (Siemens HEEDS MDO), with further optimization of this new 
method of generating synthetic data through a computational relationship (4.6) 
adapting the minimum required length of the simulated dislocated chip; 

• Exposure the interdependence relationships of cutting regime parameters with direct 
influence on the distribution of vibrations in the frequency spectrum (Siemens HEEDS 
MDO); 

• Proposing a new method for monitoring the wear of the cutting tool using the 
simulated dynamic signatures of the system in the AI context (Siemens HEEDS MDO); 

• Reproduction of the SVJBL 2020K 16 cutting tool model using the Siemens NX CAD 
solution, converting it into a numerical model for the purpose of performing complex 
modal analysis, combining Siemens SimCenter 3D finite element analysis software 
solution with Siemens HEEDS MDO parametric exploration solution; 

• Construction of numerical parametric model describing longitudinal turning. 
Conducting a complex modal analysis using the same suite of software solutions 
exposing the main parameters with high potential of influence on dynamic behavior; 

• Designing and building two special devices used for measuring the accelerances of the 
tool-tip for the longitudinal turning operation on the PO PY GIM PLG-42 CNC lathe; 

• Development of a complex device optimization solution using a unique structure 
consisting of finite-element analyses based on the Siemens SimCenter 3D solution, in 
combination with Siemens HEEDS MDO parametric exploration solution and special 
heuristics. 

• Development of hardware and software elements used to quantify the pre-load level 
of the devices using BF350 – 3AA gauges, specialized modules ADC HX711 and the 
Arduino Uno R3 development board; 

• Development and execution of calibration procedures of devices developed for the 
purpose of measuring the accelerances of the tool-point, taking into account the 
quasistatic preload forces generated by the cutting process; 

• Mapping the accelerances of the SVJBL 2020K 16 cutting tool on the PO PY GIM PLG-
42 CNC lathe using PCB 333B30 acceleromentre along with the PCB 086C03 impact 
hammer, Siemens SCADAS XS acquisition system and Siemens TestLab post-
processing software solution; 

• Analysis the results obtained when measuring the inertances of the SVJBL 2020K 16 
cutting tool with the presentation of the main influence parameters and the degree of 
correlation; 
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• Measurement of the accelerances of the tool-tip mounted on the PO PY GIM PLG-42 
CNC lathe using the specially developed prototypes. Interpretation of results with 
presentation of the degree of correlation of the results with the simulated results and 
the parameters affecting the dynamic behavior. The same sensory and acquisition 
systems were used; 

• Coupling the inertance spectrums with the cutting forces in order to obtain final 
accelerations, presumably measurable in the case of a real application. Comparison of 
simulation results with hybrid results by combining measured accelerance with the 
spectrum of simulated cutting forces; 

• Implementation of the neural network generation program/module for the purpose of 
testing proposed implementation assumptions; 

• Intensive testing of different neural network configurations and training parameters 
showing the degree of accuracy depending on computational cost and the behavior 
complexity. 

5.3 Future research 

The subject of this doctoral thesis is complex. The proposed innovative elements and the 
results obtained are a contribution to the application of artificial intelligence technologies to 
the monitoring and control of manufacturing processes. Based on the concepts explored and 
the results obtained, several future development directions can be formulated such as: 

• 𝑙𝑜𝑐 parameter optimization – total length of the chip dislocated in the simulation using 
heuristics based on the angle of the shear plane, determined analytically; 

• Determination of MU transfer functions at the tool and workpiece clamping points in 
order to replace the ideal rigid boundary conditions applied in the finite element 
analyses used; confirmation of improved correlations; 

• Developing a generic software solution for calibration of preloading devices used to 
measure tool-tip inertances; 

• Expanding the parametric space used to validate the predictive performance of neural 
networks by adding cutting regime parameters; 

• Exploring/testing other types/structures of neural networks with other constructive 
and control parameters of the training process. 

5.4 Dissemination of the research results 

The results of the research carried out in the context of the present thes were capitalized over 
time by: 
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✓  publication of 4 scientific papers at international journals/conferences, 3 as first 
author and 1 in collaboration. Two papers are indexed in Web of Science and three in 
Scopus. 

✓  by making available source codes, obtained databases and measurement prototypes 
to be tested and/or extended for the purpose of developing other similar platforms. 
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