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CHAPTER 1

Introduction

1.1 Motivation and importance of research

The PhD thesis explores the application of Transfer Entropy (TE) across three do-

mains—neural networks for image classification, convolutional neural network compression

under rate distortion theory, and graph convolutional networks—showcasing TE’s effec-

tiveness in enhancing, monitoring, and evolving algorithms. The research highlights TE’s

versatility in identifying asymmetric information dependencies, demonstrating significant

benefits and few limitations. TE’s integration with complex deep neural architectures

facilitates model optimization and self-tuning, although choosing appropriate estimation

methods can be challenging. With neural networks growing in complexity and parameter

count, TE emerges as a tool to extract performance gains, diagnose architectural issues,

and mitigate overfitting, despite difficulties in fine-tuning and computational demands.

1.2 Original Contributions

Our research has demonstrated the potential of incorporating TE feedback into various

neural network architectures, from simple feedforward networks [65] to more complex

CNNs [66], [67] and GCNs[68]. The FF+FB algorithm has shown promising results in

terms of training efficiency, stability, and performance. When examined TE as a metric

for describing the information planes that show the compression evolution in feedforward

networks and CNNs [67], TE has shown all the established properties of the Information

Bottleneck method and additional novel properties. In CNNs for image classification tasks,

our improvements reduced the number of epochs needed for established accuracy limits.

In GCNs, we have successfully used the relational properties of the dataset to improve

the validation accuracy. Although there are still open questions and areas for further

investigation, our work contributes to ongoing efforts to improve neural network training
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and understanding of information flow within these systems.

1.3 Thesis Structure

The thesis ”Automated Data Analysis” is structured into two major segments: theoretical

foundations covered in Chapters 2 and 3, and published findings detailed in Chapters

4 through 7. Chapter 2 delves into the core concepts of information theory, including

entropy, Kullback-Leibler divergence, and Granger causality, elucidating their roles in

capturing different facets of information content and flow in complex systems.

Chapter 3 builds upon these fundamentals by introducing Transfer Entropy, Infor-

mation Bottleneck, and Graph Neural Networks, which are central to the research. It

discusses computational challenges in estimating information-theoretic measures, partic-

ularly Transfer Entropy, and the impact of discretization on neural network activations.

The chapter also examines the Information Bottleneck method within the context of

neural networks, exploring its implications for generalization and training dynamics, while

acknowledging its limitations. Graph Neural Networks (GNNs) and Graph Convolutional

Networks (GCNs) are introduced as powerful tools for handling graph-structured data.

The chapter outlines the mathematical underpinnings of GCNs, their architecture, and

challenges such as oversmoothing and heterophily, along with mitigation strategies.

The published results section begins with Chapter 4, introducing a novel training

algorithm for feedforward neural networks called FF+FB. This algorithm uses TE as a

feedback mechanism to enhance learning performance by measuring information transfer

between neurons and modulating feedback connections during training. Experiments on

standard datasets show improvements in convergence speed and accuracy compared to

conventional feedforward networks.

Chapter 5 extends this approach to Convolutional Neural Networks (CNNs), integrat-

ing TE feedback connections into the training process. Results on image classification

datasets illustrate accelerated convergence and improved accuracy, albeit with added

computational overhead. Chapter 6 applies Transfer Entropy within the Information

Bottleneck framework to analyze information flow in neural networks, revealing insights

into information compression and its correlation with network performance.

Finally, Chapter 7 presents TE-GGCN, a method that integrates a Transfer Entropy

control mechanism into the GGCN algorithm to enhance accuracy and tackle oversmoothing

and misclassification issues, especially in heterophilic datasets. The experimental results on

various datasets confirm improved accuracy, albeit with increased computational demands.

Throughout the thesis, the integration of Transfer Entropy showcases its potential to

optimize information flow, accelerate convergence, and improve accuracy, underscoring its

utility as a powerful tool in neural network research and development.
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CHAPTER 2

Information Theory Concepts

2.1 Entropy

Entropy, in the context of information theory and statistics, is a measure of the uncertainty

or unpredictability of a system’s state. It quantifies the amount of information needed to

describe the state of a system or the expected value of the information in a message [53].

Entropy can be viewed as a statistical measure of variance and chaos in a system.

High entropy indicates a high degree of unpredictability or disorder in the system’s state,

reflecting a more chaotic system. Conversely, low entropy suggests a more ordered or

predictable system. In the context of information theory, entropy represents the minimum

number of bits required to encode the transmission of states in a message without loss of

information.

To briefly summarize the estimation of entropy-related tools, we provide a simple

experiment. Visualizing the entropy of the discrete random variable X, which is part of a

standard normal distribution, X ∼ N (µ, σ2), with µ = 0, σ = 1, we obtain Figure 2.1. In

this plot we have discretized the values of X into bins.

Additional estimation techniques will not be detailed in this section, since we will be

dealing with similar methods in the TE and Relative Entropy (KL) sections. Also, the

above equations were defined since they have a strong connection with TE via the indirect

relation with Mutual Information.

2.2 Mutual Information

Using the same notation as in Section 2.1 we can define the mutual information of the two

variables X and Y as the amount of common information contained in both X and Y ; we

can define MI using Shannon’s entropy with the following [84]:
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Figure 2.1: Binned representation for a variable drawn from a standard normal distribution.
The entropy is calculated algebraically by computing probabilities on each bin.

I(X;Y ) = H(X) +H(Y )−H(X, Y ) = H(Y )−H(Y | X) = H(X)−H(X | Y ) (2.1)

MI is a symmetric value; therefore, it does not indicate the direction of information

flow which is in contrast to TE (TEX→Y ̸= TEY→X). Moreover, MI measures general

dependencies between X and Y without temporal dynamics, while TE considers the

temporal evolution of the variables while focusing on the temporal transitions. However,

the directionality inferred by the TE offers no indication of convergence. Also, an important

note here is that, when using TE, the direction of the information asymmetry can be

ensured only when the TE value is zero [42].

In the course of our experiments involving the calculation of TE and MI, we adopted

efficient estimation techniques due to the prohibitive computational demands of algebraic

computation. We utilized the Scikit-Learn library, for MI estimation in neural network

layer interactions aimed at enhancing accuracy and training efficiency. Among the various

MI estimation methods, histogram-based approaches offer simplicity but are sensitive to bin

size and suffer from dimensionality curses, while k-nearest neighbor methods, adaptively

address data density variations. Variational approaches, have streamlined MI computation

for neural networks through backpropagation, excelling with large, high-dimensional

datasets but requiring meticulous parameter tuning. Dual density ratio estimation,
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avoiding direct density estimation, has shown practical advantages, particularly in high-

dimensional scenarios. Despite the plethora of estimators, each encounters challenges

related to distribution shapes and input variable relationships, with sparse interactions and

long-tailed distributions posing significant biases. High MI variables necessitate substantial

sample sizes for precision, with neural estimators demonstrate proficiency in handling

high MI values. Our investigations across diverse neural architectures revealed consistent

patterns mirroring these estimation complexities.

2.3 Kullback-Leibler Divergence (Relative Entropy)

The Kullback-Leibler (KL) divergence, introduced by Kullback and Leibler in 1951 [52],

measures the asymmetrical information loss when approximating distribution Q with

P . Essential in AI for optimizing models, particularly in variational inference, Bayesian

models, and unsupervised learning, it is pivotal for classification tasks. Defined as

DKL(P∥Q) =
∑

x∈X P (x) log P (x)
Q(x)

, estimating KL divergence in high dimensions or with

unknown distributions requires methods like Monte Carlo estimation, histogram-based

methods, kernel density estimation, variational methods, and neural network-based tech-

niques such as VAEs and GANs. Comparing KL divergence with cross-entropy, the latter

can be seen as the sum of the true entropy H(y) and the KL divergence DKL(y∥ŷ). In
classification tasks, minimizing cross-entropy effectively minimizes the KL divergence,

aligning the predicted distribution with the true one, due to H(y) being a constant for

one-hot encoded true labels. This statistical foundation supports the widespread use of

cross-entropy in classification problems for its effectiveness in quantifying prediction errors

relative to ground truth.
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CHAPTER 3

Background

3.1 Transfer Entropy

Transfer Entropy (TE), introduced by Thomas Schreiber [81], is a measure for directional

information transfer, extending Shannon’s entropy to analyze complex systems dynamically

without assuming linearity. TE is critical in AI, notably in feature selection for time series

forecasting, examining information flow within neural networks, and studying dynamics in

computational neuroscience. Unlike Granger causality (GC), which assumes linear and

Gaussian relations between time series, TE captures non-linear relationships. GC, initially

for econometrics, measures causality through vector autoregression models, distinguishing

between unrestricted and restricted forms. Despite initial interest in integrating GC for

adjusting weights in neural networks based on correlations between neuron activations,

empirical tests showed limited effectiveness, partly due to dataset shuffling and batch

training. However, GC showed stability when used as a parameter in gradient descent,

albeit requiring more epochs for comparable accuracy.

ter,nj,i =
∑

sr,n+1
i , sr,ni , sr,nj

p(sr,n+1
i , sr,ni , sr,nj ) log

p(sr,n+1
i , sr,ni , sr,nj ) p(sr,ni )

p(sr,n+1
i , sr,ni ) p(sr,ni , sr,nj )

(3.1)

TE distinguishes itself from mere correlation by incorporating temporal precedence,

a crucial criterion for inferring causality [82]. While causality examines the impact of

interventions, information transfer measures predictability of state transitions [61]. TE

quantifies directional information flow using the Kullback-Leibler distance, measuring

deviations from the generalized Markov property. In multilayered neural networks, TE

assesses the volume of information transferred between layers during training, where

the output of one layer influences the next. The expanded TE formula (3.1) calculates

probabilities for neuron activations, reflecting the causal relationship between layers. TE’s

ability to evaluate dependencies between neurons or groups thereof makes it valuable for
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measuring data compression quality in neural networks [67]. Through TE, researchers

can gain insights into the intricate dynamics of neural network information processing,

enhancing understanding and optimization of AI models.

Estimating Transfer Entropy

Accurate computation of TE for extensive time series data poses significant computational

challenges, particularly due to the complexity of entropy-based measure estimations [26].

Three predominant methods address these challenges: k-Nearest Neighbors (k-NN), Dis-

cretization, and Kernel Density Estimation (KDE). k-NN estimates probabilities based

on distances to nearest neighbors, handling high-dimensional spaces and nonlinear de-

pendencies efficiently but is sensitive to k and distance metrics. Discretization simplifies

probability computations by binning data, reducing computational load but risks informa-

tion loss due to discretization bias. Binarization, a specific form of discretization, proved

effective for our studies [65–67], enabling efficient TE computation for neural network

applications despite minor accuracy trade-offs.

Kh(x) =
1

h
K

(x
h

)
(3.2)

KDE offers smoother probability estimates, placing kernel functions on data points and

summing them to estimate density (f̂(x) = 1
n

∑n
i=1Kh(x − xi) = 1

nh

∑n
i=1K

(
x−xi

h

)
).

However, KDE faces exponential growth with dimensionality and is sensitive to bandwidth

selection (3.2). In our study [68], a KDE-based tool [39] facilitated flexible and robust

TE computation, leveraging K-D trees for efficient KDE in high dimensions. K-D trees

partition the data space, improving KDE efficiency to O (n log n+m · n · Csearch ) for

low-dimensional, short inputs, where n is the number of data points, m is the number of

nearest-neighbor searches, and Csearch is the search cost. We found a lag of 1 optimal for

enhancing accuracy in Graph Neural Networks (GNNs).

A comprehensive review of TE computation tools revealed difficulties in achieving

consistent outputs across libraries, even with small datasets. Notably, the baseline frame-

work proposed by [59], optimized for binary data, encountered performance issues when

interfaced with Python from its original Java implementation. Nonetheless, this frame-

work served as a foundational reference for our binarization strategy, which significantly

accelerated TE computation while accommodating the slight error bias introduced by

data simplification. The exploration of these methods underscores the ongoing quest for

efficient and accurate TE estimation in complex datasets, highlighting the importance of

choosing the right estimation method based on the characteristics of the data and the

specific requirements of the application.
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3.2 Information Bottleneck

The Information Bottleneck (IB) theory, intermittently explored in machine learning and

AI, offers insights into neural network behaviors and foundation models. Rooted in Rate

Distortion Theory, pioneered by Shannon [85] and refined by others [18, 23], this theory is

pivotal in communications and engineering, with applications in machine learning from

an information-theoretic viewpoint. Neural networks learn input distributions through

estimations, involving lossy processes and quantization steps that introduce distortion. The

distortion-rate trade-off is depicted in Figure 3.1, illustrating the compromise between rate

(R) and distortion (D), with 0 distortion corresponding to 100% accuracy. Neural network

performance, including accuracy and generalization, is inherently limited by architectural

constraints affecting distortion metrics.

Rate

Distortion

D

R

Lossless Coding D = 0

Figure 3.1: This plot has been inspired from Bernd Girod’s class on Image and Video Com-
pression handouts: EE368b Image and Video Compression Rate Distortion Theory no. 2

Rate Distortion Theory seeks the minimum rate required for accurate inference through

a neural network, given a distortion threshold. Considering X ∼ N (µ, , σ2), with R

bits encoding a symbol from X and d(x, y) = (x2 − y2) as the squared error distortion

measure, the rate distortion function minimizes Mutual Information (MI) between X and

reconstructed Y under the distortion constraint. The optimization targets all conditional

distributions p(x | y) satisfying E[d(X, Y )] ≤ D, aiming to minimize MI while reducing the

rate necessary to meet a predefined distortion level. Shannon’s lower bound for squared

error distortion is given by encapsulating the theory’s objective to balance information

preservation and transmission efficiency in neural network learning processes.
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Information Bottleneck Method

The Information Bottleneck (IB) method, distinct from Rate Distortion Theory, focuses on

identifying the most pertinent information from one variable for predicting another. This is

achieved by introducing a bottleneck variable T , representing the compressed representation

of X, to store as much information as possible about Y (3.3). The parameter β balances

the compression and prediction.

minPT |X (I(X;T )− βI(Y ;T )) (3.3)

Extensive research ([2, 14, 29, 31, 43, 79, 83, 89, 90, 94, 95]) has explored IB in neural

networks, constructing information planes from layer activations to reveal fitting and

compression phases, demonstrating the importance of maintaining a balance between

compression and prediction for improved accuracy.

Studies have directly utilized IB in various mechanisms, from model selection to

improving training time, accuracy, and generalization performance ([14, 79]). Deeper

architectures are found to offer better trade-offs for image classification tasks, attributed

to their capacity to preserve more relevant information. The Blahut-Arimoto algorithm

([4, 7]) facilitates the computation of IB for variables X and Y with positive I(X;Y ).

Clustering algorithms modified with IB achieve higher compression levels ([90]), while

complexity-performance trade-offs are optimized ([27]). Deep learning breakthroughs

([95]) reveal distinct training phases tied to network performance, with stochastic gradient

descent’s random diffusion behavior aiding compression.

IB’s role in compression and prediction is nuanced, with activation functions signif-

icantly impacting compression capabilities ([79]). Compression is often observed only

in classification layers, with higher layer indices exhibiting lower MI variance. IB as a

layer-wise loss function ([22]) and precise I(X;T ) estimation ([29]) enhance understanding

of class clustering and compression mechanisms. Multi-view unsupervised learning ([25])

extends IB’s utility, while generalization errors correlate with IB degree ([43]). Advance-

ments in generative models ([88]) and linear regularized DNNs on Gaussian classification

tasks ([34]) further elucidate IB’s multifaceted role in deep learning architectures and

algorithms.

3.3 Graph Neural Networks

Graph Neural Networks (GNNs), a frontier in deep learning, excel in handling relational and

graph-related data, addressing tasks from node classification to link prediction and graph

generation ([5, 6, 13, 15, 20, 21, 32, 33, 37, 40, 41, 44, 58, 73, 74, 78, 80, 91, 98, 105, 114,

115, 118, 119]). Architecturally, GNNs encompass a spectrum from Graph Convolutional
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Networks (GCNs) to Graph Attention Networks (GATs), Graph Autoencoders (GAEs),

Graph Generative Adversarial Networks (GGANs), Graph Recurrent Neural Networks

(GRNNs), Graph Transformers, Graph Isomorphism Networks (GINs), and specialized

GNNs utilizing edge or node features ([47, 48, 96, 99, 106, 111, 113]). Methodologically,

they range from spectral-based to spatial-based, message-passing neural networks (MPNNs),

deep learning, reinforcement learning, transfer learning, inductive and transductive learning

methods, adapting to various graph complexities.

Sperduti et al. [92] initiated graph-like neural networks, evolving to Gori et al.’s

Graph Neural Network [30]. Scarselli et al. [80] refined the framework, integrating

topology and node features. Bruna et al. [9] introduced spectral networks, paving the

way for localized spectral filtering by Defferrard et al. [17], culminating in Kipf et al.’s

seminal work [48] that simplified architectures for semi-supervised classification, setting

the foundation for contemporary GCNs. Innovations continue, with studies enhancing

spectral convolutions and signal processing in graphs ([17, 50, 54, 87]). GNNs’ versatility

and scalability across interdisciplinary applications have surged research interest, making

them indispensable for complex, interconnected data tasks. The forthcoming section delves

into graph convolutional networks, their challenges, and solutions, guided by Kipf et al.’s

contributions [48] to Yan et al.’s recent advancements [108].

3.3.1 Graph Convolutional Neural Networks

Summarizing graph components: G = (V,E) denotes a graph with node set V and edge

set E; adjacency matrix A reflects node connections; degree of node vi, di, is its edge sum;

degree matrix D has diagonal elements Dii =
∑

j Aij; incidence matrix K shows vertex-

edge connections; X ∈ Rn×o represents node feature matrix with o as feature dimension;

xv signifies node (v)’s feature vector; X(l) and x(l) denote layer l feature matrices.

Graph Laplacian Matrix

The graph Laplacian matrix, pivotal in graph networks and signal processing, encapsulates

node connectivity and signal smoothness. Derived as L = D − A, it mirrors the second

derivative of a function, assessing value changes between connected vertices.
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Figure 3.2: A positive graph signal on top of a Petersen graph (from [87]). Each node has an
associated signal that is proportional with the blue bar height.

Visualized as a ’flexible cover’ responsive to vertex signals, as illustrated in Figure

3.2, the Laplacian’s eigenvectors vary with frequency across the graph ([87]). Beyond

measuring connectivity and diffusion, it’s crucial for cluster identification in graph analysis.

Graph Convolutions

Graph convolutions, unlike traditional CNNs, grapple with the irregular structure of

graph data, lacking predefined node order or consistent neighbor counts [56, 57, 87, 112].

Transforming graph structure into the spectral domain facilitates convolutional operations,

offering several advantages: decoupling inputs into frequencies for tailored processing,

computational efficiency via graph Laplacian diagonalization, invariance to node ordering,

global structure capture, and design flexibility for frequency-specific filters. However,

spatial locality is less exploited spectrally, and dynamic graphs necessitate frequent

spectral decomposition recalculations. Spectral graph convolutions involve transforming

signals into the frequency domain, applying filters, and reverting to the spatial domain,

utilizing the graph Fourier transform x̂ = U⊤x and its inverse x = Ux̂. Convolution in

the vertex domain corresponds to spectral domain multiplication ŷ = ĝ ⊙ x̂, with spectral

filters approximated using truncated Chebyshev polynomials for computational efficiency

(gθ(Λ) ≈
∑K

k=0 θkTk(Λ̃), gθ ⋆x ≈
∑K

k=0 θkTk(L̃)x). This approximation allows direct spatial

domain computation, avoiding costly eigendecomposition, bridging the gap between graph

Laplacians and convolutions, and enabling scalable Graph Convolutional Networks (GCNs)

[17, 48].

In essence, the graph Laplacian’s eigendecomposition underpins the graph Fourier

transform, facilitating spectral representation and processing of graph signals. Efficient

convolution and filtering are achieved through spectral domain multiplication, with poly-

nomial approximations streamlining computations for large-scale graph analysis, thus
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enhancing GCN scalability and applicability.

Multi-layer GCNs

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(3.4)

Multi-layer Graph Convolutional Networks (GCNs), pioneered by Kipf et al. [48], apply

layer-wise convolutions to aggregate node features from local neighborhoods, bridging

spectral and convolutional approaches without direct spectral methods. Simplifications

include limiting Chebyshev polynomials to order (K=1) and employing a specific parame-

terization to avoid oversmoothing [8, 77, 108], introducing a renormalization trick to tackle

exploding/vanishing gradients [46]. The convolution propagation rule (3.4) balances node

influence on neighbors, using self-linked adjacency matrices and learnable weights. Filters,

represented as Θ ∈ RC×F , process input signals X ∈ RN×C via normalized aggregation

and parameter multiplication (Z = D̃− 1
2 ÃD̃− 1

2XΘ). Multi-layer GCNs generalize this

process, incorporating activation functions, as illustrated in Figure 3.3, depicting node

feature aggregation through convolutional layers, where node A updates its properties

using aggregated features from its neighborhood, showcasing message passing in GNNs.

A

B

D

CNN(1)

NN
(0)

NN(0)

NN (0)

A

C

B
A

F

E

A

𝑿𝑨

𝑿𝑪
𝑿𝑨
𝑿𝑩

𝑿𝑬

𝑿𝑭

𝑿𝑨

𝒉𝑩
(𝟏)

𝒉𝑪
(𝟏)

𝒉𝑫
(𝟏)

2nd layer

𝒉𝑨
(𝟐)

0th layer1st layer

Figure 3.3: Node feature aggregation using a two layers convolution(graphic from [110]). Node
A updates is own properties using aggregated features from all the other nodes.

Oversmoothing, Heterophily and Homophily

In [68] we tackled some of the well-known and still open problems in the GNN world:

oversmoothing on the architecture and optimization end, and heterophily and homophily
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on the graph’s connectivity properties on the other end. The latter two are attributes of

the components of a graph such as nodes or subgraphs. All three have a critical impact

on a GCN discriminative capabilities.

Oversmoothing

Oversmoothing is a phenomenon observed in GCNs where node representations become

increasingly similar as the number of layers increases. It is not solely a product of the

dataset, such as densely connected graphs, but it is also a result of the GCN architecture.

This convergence to a non-informative limit hinders the performance of deep GCNs,

especially on heterophilic graphs where nodes with different labels are connected [12, 56, 77].

Although oversmoothing can benefit regression and classification tasks in small amounts,

excessive smoothing can be detrimental [77]. In other words, aggregation of neighborhood

information can lead to nodes in close proximity being represented too similarly, even if

they belong to different classes. As layers increase, the receptive field expands, potentially

averaging out unique node features [72].

Mathematically, the oversmoothing problem can be understood through the eigenvalue

spectrum of the graph Laplacian. In deep GCNs, the eigenvalues associated with the graph

Laplacian can become too large, causing the feature vectors to converge to a constant

vector [56]. This convergence is exacerbated by the depth of the network, as deeper layers

amplify the smoothing effect.

Heterophily

Heterophily refers to the characteristic of a graph in which connected nodes are likely to

have different labels or features [100, 116]. This property presents a challenge to traditional

GCNs that perform well on homophilic graphs, where connected nodes tend to share

similar attributes [100].

Traditional GCNs, designed with an implicit assumption of homophily, struggle to

handle heterophilic graphs due to their dependence on neighbor aggregation for label

prediction[64, 100], [63, 116]. The design of traditional GCN models can be considered

ill-posed for heterophilic graphs, as their implicit use of homophily can exacerbate both

oversmoothing and the negative effects of heterophily [100, 108, 116]. When applied to

heterophilic graphs, these GCNs can experience performance degradation because the

aggregation process mixes information from nodes with different labels, leading to less

informative representations [63, 64, 101].
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Homophily

Homophily is the tendency for nodes with similar characteristics, such as labels or features,

to be connected in a graph [1, 63, 64, 116]. Many GNNs implicitly rely on this assumption,

leading to limitations in the handling of heterophilic graphs [63, 64].

And probably the obvious question by now is if these properties are caused by GCN

design, inherent to datasets, or both? The occurrence of oversmoothing, heterophily, and

homophily stems from both the inherent properties of graph datasets and the design of GCN

models. Both heterophily and homophily are dataset characteristics. Real-world graphs

often exhibit varying degrees of heterophily, depending on the nature of the relationships

between nodes [63], [101]. Homophily is prevalent in social networks, citation networks,

and other domains where similar entities tend to connect [64], [63], [75].

Mitigations

From the theoretical bounds of the heterophily and homophily, these are not inherently

bounded; yet they are bounded by the GCN design and the characteristics of the dataset.

These are still active research areas. For example [69] suggests that the choice of kernel

in spectral graph convolutions can influence the degree of oversmoothing. Similarly, the

concept of ”mixing time” in random walks on graphs can provide insights into how quickly

heterophily or homophily can manifest in GCN predictions [11]. [12] showed that designing

deeper GCNs with fewer layers can help reduce oversmoothing, while [96] introduced

graph attention mechanisms to selectively focus on important neighbors and mitigate

oversmoothing [55].

However, the impact of these properties can be mitigated through specialized GNN

models and techniques. These include adaptive aggregation schemes [75, 100], considering

edge directions and node dissimilarities, incorporating high-order neighbor information

[100, 104, 120], employing techniques like ego-embedding and neighbor-embedding sep-

aration [75], graph attention [96], graph sampling [75, 100, 104] have shown important

improvements. GCNs can leverage homophily for better performance on homophilic

graphs by emphasizing local neighborhood aggregation. However, excessive expectation

of homophily presence can be detrimental to heterophilic graphs [120]. Oversmoothing

can be bounded by limiting the number of GCN layers, adding residual connections and

dilated convolutions, employing residual connections, using skip links, implementing new

normalization strategies, or incorporating edge dropout [108], or consider models that can

use both local and global contexts [120]. These techniques help preserve node feature

diversity and prevent convergence to a constant value [107, 108].

Although beneficial in homophilic settings, excessive homophily expectations should be

avoided. Techniques like adaptive channel mixing can help balance between aggregation,
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diversification, and identity channels to address different homophily situations [62, 63].

In conclusion, understanding and addressing oversmoothing, heterophily, and homophily

is crucial for developing effective GCN models. While oversmoothing can be mitigated

through architectural modifications, handling heterophily and leveraging homophily ef-

fectively require specialized techniques and adaptive approaches. Future research should

focus on developing more robust and generalizable GCN models that can effectively learn

from graphs with varying levels of homophily and heterophily.

3.3.2 Graph Regularization Techniques

Addressing oversmoothing, heterophily, and homophily in Graph Convolutional Networks

(GCNs) is pivotal for enhancing their discriminative capabilities. Oversmoothing, charac-

terized by increasingly indistinguishable node representations in deeper layers, undermines

GCN performance, especially in heterophilic graphs where nodes of differing labels are

connected [12, 56, 77]. Mathematically, it arises from the graph Laplacian’s eigenvalue

spectrum, where excessively large eigenvalues lead to feature vector convergence [56].

Heterophily, the tendency for connected nodes to have dissimilar labels, challenges tradi-

tional GCNs designed under homophily assumptions, leading to performance degradation

[64, 100]. Conversely, homophily, where similar nodes are connected, is often implicitly

relied upon by GCNs, posing limitations in heterophilic graph handling [63, 64]. Mitigation

strategies include adaptive aggregation schemes, edge-aware mechanisms, high-order neigh-

bor consideration, and techniques like ego-embedding and graph attention [75, 96, 100].

Regularization techniques, particularly Laplacian-based and non-Laplacian-based methods,

play a crucial role in bounding oversmoothing, with Laplacian regularization promoting

similarity among neighbors [3, 109] and PairNorm [117] maintaining pairwise feature dis-

tances across layers. DropEdge [76], a non-Laplacian technique, introduces edge removal

for data augmentation, enhancing robustness and preventing overfitting in deep GCNs.

The interplay between oversmoothing, heterophily, and homophily in GCNs is multi-

faceted, influenced by both dataset properties and GCN architecture. Oversmoothing’s

manifestation can be exacerbated by the GCN design, especially in densely connected

graphs, leading to a loss of node feature distinctiveness [72]. Heterophily and homophily,

intrinsic dataset characteristics, challenge GCN assumptions, necessitating adaptive ap-

proaches for effective performance. Laplacian-based regularization techniques, like the one

proposed by Ando et al. [3], aim to maintain label similarity among neighbors, offering

benefits in feature preservation but with limited impact on GNNs already capturing struc-

tural information. PairNorm, a non-Laplacian regularization method, ensures consistent

pairwise feature distances, preventing feature mixing across clusters without altering the

network architecture [117]. DropEdge, by inducing edge removal, augments data diversity

and combats oversmoothing in deep GCNs, indirectly modifying the Laplacian to maintain
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feature diversity [76].

In summary, the challenges posed by oversmoothing, heterophily, and homophily in

GCNs underscore the need for adaptive and regularization strategies. Laplacian-based

techniques, such as the graph Laplacian regularizer, aim to preserve graph structure

by encouraging feature similarity among adjacent nodes [102, 121]. PairNorm’s node-

level and edge-level penalties promote local and global graph structure preservation,

ensuring feature vectors remain smooth across the graph. DropEdge’s edge removal

mechanism introduces randomness and diversity, preventing overfitting and oversmoothing

in deep GCN architectures. Future research directions should focus on developing more

sophisticated regularization and adaptive aggregation schemes to enhance GCN robustness

and generalizability across diverse graph properties.
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CHAPTER 4

Transfer Entropy with Shallow

Neural Networks

This chapter introduces an innovative training algorithm, FF+FB, for feedforward neural

networks that harnesses causal relationships through Transfer Entropy (TE) feedback,

aiming to enhance learning efficiency [65]. TE, traditionally used to quantify effective

connectivity between neurons [24, 60, 86, 97], is repurposed to measure information transfer

between adjacent layers, amplifying connection relevance. Unlike previous applications of

TE in neural networks [35, 71], our approach integrates TE directly into the backpropaga-

tion weight update process, refining the standard algorithm by incorporating a feedback

mechanism that considers the TE between neuron pairs.

FF+FB is structured in two stages: Stage (I) computes TE values during training,

storing them for all neuron pairs; Stage (II) retrains the network using these stored values,

modifying the gradient descent to incorporate the TE feedback (Eq. 4.1). This adaptation

accelerates the learning process and improves accuracy, as evidenced by the XOR problem,

where FF+FB achieves 100% training accuracy in significantly fewer epochs than FF (7-10

times less, on average 62.2 epochs vs. 349.9 epochs). On ten UCI datasets [19], FF+FB

also demonstrates superiority, reaching target accuracies faster and achieving higher test

set accuracy in most cases.

∆wl
ij = −η

∂C

∂wl
ij

(1− telj,i) (4.1)

Hyperparameters play a crucial role in FF+FB ’s performance. The learning rate η

and binning threshold g require careful tuning; FF+FB often benefits from smaller η

values, indicating a more targeted learning approach. However, small η and g can trap

the network in local minima, necessitating a judicious choice of g via grid search. Control

experiments, including modifications to the te values and their weighting, confirm the
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algorithm’s robustness and highlight its adaptability in compensating for suboptimal η

selections.

FF+FB ’s computational overhead, primarily in Stage (I), is offset by its superior

training efficiency and accuracy gains. The algorithm’s performance on the car and glass

datasets, despite initial challenges, validates its competitiveness with established packages

like Weka. Practical considerations suggest that the increased computational cost during

training stage (I) is inconsequential for inference tasks, as trained weights can be stored,

encapsulating the te values. This makes FF+FB viable for real-world applications, even

with large datasets, as te values computed in Stage (I) can be reused in Stage (II) without

additional overhead. Alternative TE estimation techniques might alleviate computational

burdens in such scenarios [10].

In conclusion, FF+FB represents a significant advancement in neural network training

algorithms, leveraging TE to quantify and enhance causal relationships between neurons.

It not only reduces the number of epochs required for training and improves accuracy

but also offers stability and resilience to local minima, as shown in the plots from the

full version of the thesis. Optimizing the (g) threshold can mitigate the impact of other

hyperparameters, suggesting a pathway to more efficient model tuning. The potential for

FF+FB to facilitate knowledge extraction and explanations from trained networks, albeit

left as an open problem, underscores its broader implications for understanding neural

network decision-making processes.
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CHAPTER 5

Transfer Entropy in

Convolutional Neural Networks

Our work extends the application of Transfer Entropy (TE) to Convolutional Neural

Networks (CNNs), aiming to enhance training mechanisms and interpretability [66]. TE,

a measure of directional information transfer, quantifies relationships between neuron

outputs in adjacent layers, acting as a smoothing factor that stabilizes the learning process

and accelerates convergence. Unlike symmetric mutual information, TE’s asymmetry

aligns with the causal nature of neural network layers. Inspired by [35], our novel approach

integrates TE directly into backpropagation, updating weights according to the TE between

neuron pairs. This differs from Herzog et al.’s method, which used TE for structuring

feedback connections post-training [36]. Our experiments on CNNs with TE feedback

demonstrate improved performance and stability, particularly in the last two fully connected

layers, akin to fine-tuning classification mechanisms (Figure 5.1).

TE computation in CNNs, particularly for large timeseries, is computationally intensive

[26]. We optimize the TE integration by limiting timeseries lengths and using a sliding

window technique over batches, which maintains accuracy while managing overhead.

The window length s, which ideally matches the batch size, facilitates smoother TE

values and favorable accuracy trends. Our focus on the last two fully connected layers,

as opposed to convolutional layers, reduces computational demands while significantly

impacting accuracy, akin to dropout’s effect but with a performance enhancement focus.

Experimentally determined parameters and the adaptive nature of TE as a meta-parameter

contribute to the algorithm’s robustness and stability.

The experimental results which can be read on the complete thesis, showcase the

efficiency of TE in accelerating CNN training to reach target accuracies with fewer epochs.

We observed that using TE feedback for an additional layer pair improves performance but

at a cost of exponentially increasing computational overhead. The optimal performance-
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Figure 6. During the feedforward step, we compute time series I and J, and the te matrix, as shown by
the green arrows. When the backward step propagates the errors, we then use the te matrix in the weight
updates as shown in the Algorithm 1.
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Figure 7. Evolution of the te standard deviation values on the first 4 epochs for the SVHN+TE dataset, for
the pre-softmax layer. Each data point in the plot represents a batch. The rest of the TE values have a similar
shape, and decrease slowly during training. We observe the spikes of the TE values at the beginning of each
epoch due to the training set randomization. During the first epoch the TE values are not calculated for the
first batches in order to prevent anomalous values, hence its value is close to 0.

During training, at the beginning of each epoch, we noticed an increased instability, visible237

through the high variation and values of the gradients, as seen in Figure 7. These observation238

apply for all datasets and networks, with or without the TE added. The TE values also exhibit239

instability and have larger values at the beginning of each epoch. However, the TE values show240

smaller values during the first epochs due to the selected threshold value that matches larger241

weights values from subsequent epochs. During each epoch and also during the whole training242

process, the slope of the gradients gradually decreases, and the TE variation also decreases.243

To validate the TE impact, we set a target accuracy to be reached by both implementations244

with/without TE. We observed the implementation that reaches the target accuracy w.r.t. the245

number of epochs needed, as well as the average time per epoch. These results show which of246

the two implementation requires less epochs to reach a target accuracy on the test set. For a fair247

Figure 5.1: During the feedforward step, we compute timeseries I and J , and the te matrix, as
shown by the green arrows. When the backward step propagates the errors, the te matrix is
used in the weight updates.

overhead trade-off is application-dependent, requiring careful consideration of TE’s role as

a slowly changing meta-parameter. Our experiments with pre-trained networks, where

only the last two layers undergo TE correction, yield inconsistent results, indicating the

importance of TE’s synchronized integration with the backpropagation process.

In conclusion, our study confirms TE’s utility in enhancing CNN training, particularly

in the final layers, mirroring its effectiveness in simple feedforward networks [65]. The

computational overhead is mitigated by focusing on a subset of neuron pairs, aligning

with biological neural systems’ feedback structures [28, 93]. TE’s role as a smoothing

factor and its periodic activation contribute to the stability and generalization of the

learning algorithm, similar to the hierarchy of parameters in learning neural causal models

[45]. Our findings suggest that TE’s integration could have evolutionary parallels in real

neural systems, optimizing relevance in feedforward pathways [36]. Future research could

explore TE’s impact on deeper network architectures and its potential for enhancing

interpretability in CNNs.

The experiments carried out on a range of well-established datasets (CIFAR-10 [51],

FashionMNIST [103], STL-10 [16], SVHN [70], and USPS [38]) using a standardized CNN

architecture and hyperparameters underscore TE’s effectiveness. The positive influence

of TE feedback on training stability and accuracy is evident, with notable gains even

when using a fraction of neuron pairs (10%) from the last two fully connected layers. This

efficiency hints at the potential for TE to serve as a tool to understand and optimize

the dynamics of neural networks, akin to the insights gained from the study of biological

neural systems. The trade-off between TE’s benefits and computational overhead is a key

consideration, guiding the optimal use of TE in real-world applications.
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CHAPTER 6

Transfer Entropy in Information

Bottleneck

MI and TE offer distinct insights into neural network dynamics, and TE uniquely captures

directional and temporal information flow [67]. Our study pioneers the use of TE to

quantify information transfer between neural layers, revealing its potential to enhance

training efficiency and shed light on the compression-generalization relationship. By

measuring TE across adjacent layers, we observe a fitting-compression pattern akin to the

Information Bottleneck (IB) principle, with TE values peaking early and diminishing as

training advances. This trend supports the hypothesis that initial epochs focus on fitting,

followed by a compression phase where the network refines and retains generic features.

TE’s dynamic nature as a metric, particularly its sensitivity to network architecture and

efficiency, aligns with the notion that optimized architectures facilitate better compression

[22, 29].

Experimentally, we employed shallow feedforward networks and CNNs optimized for

various datasets, including UCI’s glass, ionosphere, seeds, divorce, liver disorders, and

Iris, alongside FashionMNIST, STL-10, SVHN, and USPS for CNNs ([65, 66]). TE was

computed for all adjacent layers and neurons, with the first 5% of each epoch excluded to

stabilize neuron activations. Dynamic thresholding, based on a 95th percentile of activation

values, ensured TE’s relevance throughout training. The observed trend of decreasing TE

over epochs and the confirmation of higher TE in final layers for shallow networks parallel

the compression phases identified in IP analyses [79, 89]. In CNNs, focusing on the last two

fully connected layers (including softmax), we replicated these findings, observing steep

but smooth TE trajectories for larger datasets. We recommend observing the depicted

training evolution in the plots presented in the full version of this thesis.

The direct correlation between network performance metrics—accuracy and loss—and

TE fluctuations underscores TE’s potential as a diagnostic tool. During the fitting phase,
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TE rapidly declines, mirroring loss reduction and inversely tracking accuracy, before

stabilizing in a compression phase with minimal variance. This pattern, consistent across

datasets and architectures, supports the notion that TE reflects a network’s learning

dynamics and compression capabilities. In efficient architectures, TE exhibits smoother

lines with distinctive evolution patterns, suggesting that optimized structures achieve

better interlayer compression [22, 29].

TE’s sensitivity to network architecture and its evolution during training offer insights

into the training process’s nuances, beyond accuracy and parameter count. It emerges as a

promising adaptive parameter, potentially reducing the number of training epochs needed.

However, the computational overhead associated with TE calculation, particularly for

larger datasets and deeper networks, necessitates strategic selection of layers for analysis.

Our findings on TE’s utility in diagnosing training hurdles and its inverse relation to loss

and accuracy align with IB’s theoretical framework, validating TE as a viable alternative

for IP analysis.

In conclusion, our study demonstrates a strong connection between TE evolution and

network performance metrics, suggesting its role in diagnosing training dynamics and

optimizing compression. While TE complements the IB principle by offering a dynamic,

layer-specific perspective, its practical integration as a training enhancement or diagnostic

metric requires careful consideration of computational costs. Future research could explore

TE’s potential in guiding network architecture design and its role in developing more

interpretable and efficient neural models. The observed trends in TE, alongside accuracy

and loss, provide a richer understanding of how neural networks learn and compress

information, potentially informing the development of more robust training algorithms

and cost functions [2, 49].
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CHAPTER 7

Transfer Entropy in Graph

Convolutional Networks

Our study [68] investigates Graph Convolutional Networks (GCNs) from a practical

standpoint, focusing on generalization performance and addressing challenges such as

oversmoothing and heterophily. We propose the TE-GGCN method, which integrates

TE as a postconvolution control mechanism to improve node feature discrimination and

classification accuracy. Unlike homogeneous GCN enhancements, TE-GGCN selects nodes

with high heterophily and degree, computing TE to adjust their features, thus boosting dis-

criminative capabilities without overhauling the convolutional process. This strategy, while

computationally demanding, particularly for high-degree nodes, demonstrates effectiveness

in mitigating oversmoothing and improving accuracy across various GCN models.

The GGCN method [108] re-calibrates edge weights based on node degrees and adjusts

edge features for heterophilous and homophilous relationships. Our TE-GGCN builds

upon this by computing node heterophily rates (using Hv =
1

|N(v)|
∑

u∈N(v) 1 (lu ̸= lv)) and

selecting the top 5% heterophilic nodes, further narrowing to the highest 10% degree nodes

among them. TE is calculated for these nodes using the usual TE equation, influencing

weight updates using the Hi,j = Hi,j +max(TEYj→Xi
) post-convolution. This selective

approach ensures computational feasibility while maximizing accuracy gains, as TE values

amplify classification precision for nodes transitioning between classes.

In our experiments, TE-GGCN was evaluated on a diverse set of real-world and

synthetic citation network datasets, showcasing a range of homophily and heterophily

levels. Our implementation, based on PyTorch and Torch Geometric, achieved competitive

or superior accuracy compared to the original GGCN model, particularly on low-homophilic

datasets like Texas, Wisconsin, and Cornell. However, the computational overhead varied

significantly, with PubMed and Squirrel requiring up to five times more training time

due to their high-degree nodes. Computing TE within each convolutional layer offered
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higher accuracy but was impractical due to prohibitive computational costs. For validation

accuracy results we recommend examining the full version of this thesis.

TE-GGCN’s performance hinges on its ability to identify and correct high node vari-

ances, applying the highest calculated TE value as a feature adjustment post-convolution.

This method, consistent with our prior research [66, 67], improves existing GCN models

without requiring complex modifications. The trade-off between accuracy and computa-

tional overhead is manageable, offering a practical avenue to improve GCN performance

on classification tasks.

In conclusion, TE-GGCN showcases the potential of TE as a sensitive metric for

identifying similar connectivity patterns and distributions among node features. By

incorporating TE values alongside heterophily and degree metrics, we refine GGCN’s classi-

fication capabilities, particularly for nodes prone to misclassification. This straightforward

enhancement to GCN models, while computationally intensive for dense graphs, offers

a flexible method to boost accuracy without disrupting established GCN mechanisms.

Future directions could explore computational optimizations to extend the applicability of

TE-GGCN to larger, more complex datasets while maintaining its performance benefits.
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CHAPTER 8

Final Remarks

This chapter summarizes the key findings and contributions of our research across multiple

studies. Our work has focused on improving neural network training algorithms, particularly

through the use of Transfer Entropy (TE) feedback and its applications in various neural

network architectures.

We introduced the neural training algorithm FF+FB, which utilizes TE to quantify

the relationships between neurons and uses it as feedback to improve certain neural

connections. This method has demonstrated several advantages: it generally requires fewer

training epochs while achieving higher accuracy compared to standard feedforward (FF)

networks; exhibits more stable behavior during the training process; it is less susceptible

to local minima. In addition, the use of TE feedback has shown potential in reducing

the effort required to optimize hyperparameters: the threshold parameter g can decrease

the importance of other hyperparameters, such as the learning rate η and the number

of hidden neurons. This approach may facilitate easier design and training of network

architecture.

Following FF+FB findings, our research was extended to Convolutional Neural Net-

works (CNNs), where we found:

• It is efficient to consider only the interneural information transfer of a random subset

of neuron pairs from the last two fully connected layers

• Information transfer within these layers has the most significant impact on the

learning process

• Many inter-neural information transfer connections appear redundant, allowing the

use of only a fraction of them

We observed that TE acts as a smoothing factor in our models since it becomes active

periodically, not after each input sample is processed. Also TE can be considered a slowly
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changing meta-parameter, relating to the hierarchy of quickly-changing vs. slowly-changing

parameters in learning neural causal models.

Our research also extended to Graph Convolutional Network (GCN) method through

our TE-GGCN algorithm, where:

• We demonstrated improvements by leveraging node heterophily, degree metrics, and

TE values

• Utilized TE as a measure of high node variances, applying the highest TE value

calculated in a forward pass as an adjustment to node features, post-convolution

• This TE-based correction, applied prior to the softmax classification layer, offers a

versatile and easy way to improve existing GCN implementations

Our approach could potentially facilitate the extraction of knowledge and explanations

from trained networks using the causality paradigm, although this remains an open problem

for future research. The observations regarding information transfer in neural networks,

particularly in CNNs, can be further discussed from a neuroscientific perspective, drawing

parallels to structures in the vertebrate brain. Our findings align with speculations that

evaluation of the relevance of different feedforward pathways could have been a phylo- or

ontogenetic driving force for the design of feedback structures in real neural systems.

Although TE feedback accelerates the training process by reducing the number of

required epochs, it adds computational overhead to each epoch. The optimal balance

between these factors is application-dependent. The addition of TE in the learning

mechanism generates new hyper-parameters, raising questions about potential overfitting

and generalization performance. However, our experiments suggest that TE’s role as a

slowly changing meta-parameter may mitigate these concerns. While our work primarily

focused on TE, future research could explore alternative cost functions, as some researchers

have suggested that Information Bottleneck (IB) loss may not always behave optimally.
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sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns.

In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,

Advances in Neural Information Processing Systems, volume 35, pages 18527–18541.

Curran Associates, Inc., 2022.

33



[9] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. Spectral networks and locally con-

nected networks on graphs. In International Conference on Learning Representations

(ICLR2014), CBLS, April 2014, 2014.
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