

Contents

Doctoral thesis subject 1

Research objectives 2

Thesis structure 4

Developing simulation environments 5
GridSim . 6
Raspberry PI Robot . 11
Agile Scout AMTU . 12

2D path planning 16
Problem definition . 16
AI Behavior Arbitration (AIBA) . 17
NeuroTrajectory . 21

OctoPath - extending to 3D representation 23
OcTrees . 24
Octomap . 25
RNN Encoder-Decoder . 27
Performance evaluation . 29

Personal contributions 32
Comprehensive literature review . 32
Simulation environment development . 33
Algorithm development . 33
Evaluation and benchmarking . 34

Dissemination of research results 34

Conclusions and future work 36

Doctoral thesis subject

The present work proposes a learning-based algorithm that enables efficient and accurate path
planning for mobile robots and autonomous vehicles. Autonomous driving represents a transfor-
mative shift in the automotive industry, promising to enhance safety, efficiency, and convenience in
transportation. As technology advances, it is poised to revolutionize not only personal transporta-
tion but also logistics, public transit, and other sectors reliant on vehicular mobility. The evolution
towards fully autonomous vehicles encompasses a broad spectrum of technological innovations, in-
cluding sensor fusion, machine learning, path planning, and real-time system integration.

Recent developments in the fields of deep learning and artificial intelligence have aided the au-
tonomous driving domain’s rapid advancement. Autonomous vehicles (AVs) are robotic systems that
can navigate without the need for human intervention. The deployment of AVs is predicted to have
a major impact on the future of mobility, bringing a variety of benefits to daily life, such as making
driving simpler, increasing road network capacity, and minimizing vehicle-related crashes.

Autonomous driving technology integrates a variety of advanced systems to enable vehicles to
navigate and operatewithout human intervention. These systems include sensor fusion, which com-
bines data frommultiple sensors (e.g., LiDAR, radar, cameras) to create a comprehensive understand-
ing of the vehicle’s surroundings. Machine learning and AI are utilized to interpret sensor data, make
decisions, and learn from driving experiences to improve performance over time. Path planning in-
volves developing optimal routes and making real-time adjustments to navigate dynamic environ-
ments. Real-time system integration ensures that all vehicle systems work harmoniously and re-
spond instantly to changes in the environment.

Despite significant advancements, several critical challenges impede the widespread adoption of
autonomous vehicles. Ensuring the robustness and reliability of perception systems under diverse
environmental conditions, such as varying weather, lighting, and road conditions, is a significant hur-
dle. Designing interfaces and protocols for seamless interaction between autonomous vehicles and
human users, including drivers, passengers, and pedestrians, remains complex. Developing compre-
hensive regulatory standards and legal frameworks that address liability, safety, and ethical consid-
erations is also essential.

Protecting autonomous vehicles from cyber threats that could compromise safety and privacy is
a crucial concern. Addressing ethical dilemmas related to decision-making in unavoidable accident
scenarios and understanding the broader societal impact of autonomous vehicles are necessary. Ad-
ditionally, understanding and mitigating the effects of automation on employment, urban planning,

1

and public policy is critical.

The development of autonomous driving technology is intrinsically linked to advances in mobile
robotics. Mobile robots have long served as the experimental bedrock for autonomous navigation
systems, providing crucial insights into real-time decision-making, environment perception, and dy-
namic path planning. Techniques for mapping and understanding complex environments developed
for mobile robots are directly applicable to urban driving scenarios. Algorithms for obstacle avoid-
ance and path optimization in mobile robots are foundational to vehicle autonomy. Strategies for
processing sensor data and making split-second decisions in mobile robots are essential for safe
autonomous driving.

Looking forward, the future of autonomous driving is expected to be shaped by several key ad-
vancements. Continued improvements inAI algorithmswill enhance the decision-making capabilities
and reliability of autonomous systems. Advances in sensor technology, such as higher-resolution
LiDAR andmore sophisticated radar systems, will improve environmental perception and safety. En-
hanced communication between vehicles, infrastructure, and other road users will facilitate more
efficient and safer transportation networks.

Autonomous vehicles will become integral components of smart city infrastructures, contribut-
ing to optimized traffic management and reduced urban congestion. The ongoing development of
regulatory standards will provide clearer guidelines and facilitate the deployment of autonomous
vehicles. Greater collaboration between researchers, industry stakeholders, and policy makers will
drive innovation and address the multifaceted challenges of autonomous driving.

The path towards fully autonomous driving is both exciting and challenging, with substantial
progress dependent on continued interdisciplinary research and collaboration. By leveraging ad-
vancements in mobile robotics and addressing inherent challenges, the realization of safe and ef-
ficient autonomous vehicles will move closer to becoming a reality. This transformation promises to
reshape transportation, improve safety, and create newopportunities across various sectors, herald-
ing a new era in mobility.

Research objectives

Themain objective of this research is to develop, implement, and rigorously test a learning-based
algorithm that enables efficient and accurate path planning for mobile robots and autonomous vehi-
cles. By leveraging the latest advancements in deep learning and artificial intelligence, this objective
aims to enhance the vehicle’s ability to autonomously navigate through dynamic and unpredictable
environments. The algorithm should be able to process sensory data and generate optimal routes in
real-time, considering both static and dynamic obstacles.

2

Achieving this objective will result in the development of a validated, efficient, and reliable
learning-based path planning algorithm. This will significantly improve the autonomous vehicle’s
ability to navigate complex environments, ensuring safe and optimal routes. The successful imple-
mentation of such an algorithm is crucial for the broader adoption and integration of autonomous
vehicles in everyday transportation systems, ultimately enhancing road safety, efficiency, and con-
venience.

Based on this primary objective, the following specific objectives were identified and categorized
into four distinct categories:

1. Comprehensive literature review

• Conduct an in-depth study of existing literature in the fields of autonomous navigation
and path planning.

• Identify current methodologies, technologies, and gaps in the research related to au-
tonomous vehicles.

2. Simulation environment development

• Create a simulation tool to establish a controlled testing environment for the proposed
algorithms.

• Ensure the simulation tool accurately represents real-world driving scenarios to validate
the effectiveness of the algorithms.

3. Algorithm development

• Combine data frommultiple sensors, such as LiDAR, radar, and cameras, to create a com-
prehensive understanding of the vehicle’s surroundings.

• Ensure the sensor fusion approach enhances the perception accuracy and reliability of the
autonomous vehicle.

• Develop, implement, and test a learning-based algorithm to enable efficient and effective
path planning for mobile robots and autonomous vehicles.

• Develop a secure development environment on the NVidia AGX Xavier board.

• Focus on integrating deep learning models and artificial intelligence techniques to en-
hance the robustness and accuracy of path planning.

• Develop optimal routes and make real-time adjustments to navigate dynamic environ-
ments.

4. Evaluation and benchmarking

• Ensure the path planning algorithms can handle both static and dynamic obstacles effi-
ciently.

• Include various performance metrics and testing scenarios to ensure the reliability of the
system in diverse conditions.

3

• Ensure the proposed algorithms perform optimally on various datasets and adapt to dif-
ferent driving conditions.

These objectives aim to ensure the development of a robust, reliable, and secure system for ad-
vanced path planning in autonomous vehicles, leveraging the latest advancements in sensor fusion
and artificial intelligence.

Thesis structure

The thesis is organized in the following way:
Chapter 1provides anoverviewof the autonomousdriving research topic, whichdefines theback-

ground and explains its scientific significance. Furthermore, the chapter emphasizes the issues to be
addressed, the primary goals, as well as the actions and methods utilized throughout the research
activity. Finally, the chapter ends by summarizing the overall structure and content of the thesis.

A broad introduction of deep learning technology is presented in Chapter 2. The fundamental ar-
tificial neural network designs, such as convolutional and recurrent neural networks, as well as the
idea of deep reinforcement learning, are covered in this chapter. In addition, current deep learning
trends for path planning and behavior arbitration, as well as those for driving scene perception and
localization, are discussed in depth. Furthermore, the programming aspect of deep learning is cov-
ered at the end of the chapter, with a focus on two well-known Python frameworks: Tensorflow and
PyTorch.

Chapter 3 describes all of the experimental platforms that were used and built during the the-
sis study, detailing the development of critical tools and systems for autonomous robot research.
It begins with an overview of the GridSim simulation environment, which is a self-driving simulator
engine that uses a car-like robot architecture to create occupancy grids using simulated sensors. In
addition, GridSim is used to investigate the performance of two deep learning approaches: deep rein-
forcement learning and driving behavioral learning using genetic algorithms. The Raspberry Pi Robot
prototype, which is built on a rear-wheel drive and front-wheel steering system, is then detailed,
comparable to models in smart vehicle competitions. The steps of the prototype’s development, as
well as testing performed with the final version with Lidar and camera, are all documented. Finally,
themain robotic platform utilized to test and prove the algorithms outlined in this thesis is given. The
robot is a skid-steeredwheeledmobile robot platform equippedwith e-Cam130A quad cameras and
a 360-degree, 40-channel Hesai Pandar Lidar. Following that, a timeline of the robot’s development
and the experiments which were performed is provided.

The key algorithms created during this thesis are presented in Chapter 4 and Chapter 5, which
serve as the thesis’s backbone. Chapter 4 begins with a brief description of two-dimensional grid

4

based representation and continues with a statement of the issue, path planning for autonomous
cars, which denotes an autonomous vehicle’s capacity to discover a route between two places,
namely a starting position and a target location. Following that, the presentation will focus on the
idea of behavior arbitration, which will be given from the standpoint of driving scene description,
analysis, and modeling, as well as simulation outcomes. In addition, the perspective of trajectory
estimation as a cognitive learning problem is discussed. It contains information on how to train a
deep neural network to anticipate local ego-vehicle state trajectories via neuroevolutionary training.
The solution, coined Neuro-Trajectory, is a multi-objective neuroevolutionary method to local state
trajectory learning for autonomous driving, in which a perception-planning deep neural network es-
timates the intended state trajectory of the ego-vehicle across a restricted prediction horizon. The
motion planning problem is sometimes referred to as a sequence to sequence mapping challenge or
a sequence creation task.

Chapter 5 details the extension to a 3D representation of the input measurements and sensor
fusion, namely OcTrees. Because they feature time-dependent feedback loops, recurrent neural net-
work designs are used to solve such a problem. OctoPath is the outcome, which is a self-supervised
encoder-decoder deep neural network that predicts the local optimum course for the ego-vehicle.
The installation of OctoPath on an Nvidia AGX Xavier, as well as performance measurement scenar-
ios and results, are also discussed.

Finally, Chapter 6 summarizes the key findings and draws the ultimate conclusions. It also high-
lights individual contributions, dissemination of the research results, namely patents and papers, and
outlines future research directions, focusing on enhancing sensor integration, improving algorithm
robustness, and addressing ethical and safety considerations in autonomous driving.

Developing simulation environments

Simulators provide unparalleled scalability, enabling developers to run thousands of test scenar-
ios simultaneously. This scalability is crucial for the thorough validation of path planning algorithms,
as it allows for extensive testing across a wide range of conditions and parameters. By leveraging
the computational power available in modern simulators, developers can perform large-scale eval-
uations that would be impractical or impossible in the real world. This capability accelerates the
development process and enhances the robustness and reliability of the algorithms.

In real-world testing, reproducing specific scenarios with exact conditions is often challenging.
Simulators, however, offer precise control over all aspects of the testing environment, ensuring that
scenarios can be replicated consistently. This reproducibility is vital for debugging and refining al-
gorithms, as it allows developers to repeatedly test specific conditions and reliably compare results.

5

Consistent reproducibility ensures that improvements and optimizations can be accurately assessed,
leading to more effective and reliable path planning solutions.

Simulators provide comprehensive data collection capabilities, capturing detailed information
about every aspect of the vehicle’s performance and the environment. This data is invaluable for
analyzing the behavior of path planning algorithms, identifying weaknesses, and making informed
improvements. Developers can access rich datasets that include sensor readings, vehicle dynamics,
environmental conditions, and interaction with other entities. Such detailed data collection is often
difficult and expensive to achieve in real-world testing but is readily available in simulation environ-
ments.

The ability to rapidly iterate and test changes in a simulated environment significantly acceler-
ates the development cycle. Developers can quickly implement new features, test their impact, and
refine the algorithms based on feedback from the simulation results. This rapid iteration is crucial for
keeping upwith the fast-paced advancements in autonomous vehicle technology. Simulators enable
developers to experiment with innovative ideas and incorporate cutting-edge techniques into their
path planning algorithms more efficiently.

Using simulators for developing path planning algorithms offers numerous advantages, including
a controlled environment, enhanced safety, cost efficiency, scalability, reproducibility, comprehensive
data collection, and an accelerated development cycle. These benefits collectively contribute to the
development of robust, reliable, and effective path planning algorithms for autonomous vehicles. By
leveraging the power of simulation, developers can overcomemanyof the challenges associatedwith
real-world testing and advance the capabilities of autonomous driving systems.

GridSim

The developed driving simulator is coined GridSim and it is described as an autonomous driving
simulator which uses the non-holonomic robot car kinematics. It has been developed from scratch
to support development and validation of autonomous driving systems. It contains a menu which
allows the switching between multiple scenarios which are easily represented and loaded into the
simulator as backgrounds.

The simulated sensors have a field of view (FOV) of 120 degrees. They react when an obstacle
is sensed, by marking it as an occupied area. The static obstacles are a priori mapped to the back-
grounds as lists of polygons. The simulated sensors continuously check if the perception rays are
colliding with the given polygons. The dynamic obstacles are represented by traffic cars, which have
their trajectory randomly generated from a uniform distribution of the possible free spaces inside
the given scenario. The longitudinal velocity and the steering angle’s rate of change is included in the
trajectory. All GridSim features were built using Python and the PyGame library.

The single-track kinematic model is further described. The positions of the front and rear wheels
are pf and pr , respectively, while α is the heading angle describing the facing direction of the vehicle,
defined by angle between vectors êx and pf − pr . For the sake of clarity, a no-slip assumption for
the wheels on the driving surface has been considered. The slipping of the wheels can be modelled
by adding the inertial effects generated by the ground on the vehicle’s tires, similar to Pacejka’s tyre

6

model.
Thewheels rotate freely about their axes of rotation, while the steering ismodeled through angle

δ as an extra degree of freedom on the front wheel. The vehicle obeys the ”non-holonomic” assump-
tion, expressed as a differential constraint on the motion of the car. The non-holonomic constraint
restricts the vehicle frommaking lateral displacements, without simultaneously moving forward.

The forward speed is:

vr = ṗr ·
(pf − pr)

||pf − pr||
, (1)

where vr is the magnitude of ṗr with the correct sign to indicate forward or reverse driving.
The differential constraints written in terms of the motion of pf , where the front wheel forward

speed vf is used:

ẋf = vf cos(α+ δ), (2)

ẏf = vf sin(α+ δ), (3)

α̇ =
vf
l
sin(δ). (4)

The speed of the front wheel vf is related to the speed of the rear wheel vr by:

vr
vf

= cos(δ). (5)

The planning and control problems for thismodel involve selecting the steering angle δwithin the
mechanical limits of the vehicle δ ∈ [δmin, δmax] and forward speed vr within an acceptable range
vr ∈ [vmin, vmax].

Continuity of the steering angle can be imposed by augmenting the previous model with the
steering rate of change:

ẋf = vf cos(α+ δ), (6)

ẏf = vf sin(α+ δ), (7)

α̇ =
vf
l
sin(δ). (8)

δ̇ = vδ. (9)

In addition to the limit on the steering angle, the steering rate can now be limited to:

vδ ∈
[
δ̇min, δ̇max

]
. (10)

7

GridSim was used to study the performance of two simulation-based autonomous driving ap-
proaches based on occupancy grids: deep reinforcement learning and neuroevolutionary driving us-
ing genetic algorithms. The synthetic data utilized as input for both control systems, the DQN agent
and the Neuroevolutionary agent, is represented by the simulated Occupancy Grids (OGs). The algo-
rithms are evaluated on the following scenarios: highway (with twodifferent sensorsmodels), curved
road, inner-city, and seamless model, each with its own set of constraints and increasing difficulty.
The desired behavior of the proposed Neuroevolutionary agent is encoded in a two elements fitness
function describing amaximum traveled distance (defined as the remaining distance to the previously
defined goal) and a maximum forward speed, bounded to a specific interval.

We have built in GridSim a user interface suitable for creating and training various deep learning
topologies. The interface also supports data preprocessing, labeling and annotation. For implemen-
tation, we have evaluated three different AI libraries, namely Caffe2, Cognitive Neural Toolkit (CNTK)
andTensorFlow. Wedecided to use TensorFlow, because it has the advantage of supporting fine grain
network layers that allow users to build new complex layer types without implementing them in a
low-level language. This back-end for the neural networks representations is mixed together with
the Keras API and it is written in Python. GridSim can be used in both CPU and GPU configurations.

In order to reduce the time necessary for the training process, we have used the following hard-
ware setup: a desktop computer equipped with an Intel Core i7 7700K CPU, 64 GB RAM, and a high-
performanceNVIDIAGeForce GTX 1080 Ti graphics card. A script implementationwas also necessary
for saving the output coordinates of the artificially generated input data. This data is is used in replay
mode for training.

The user interface was integrated into the GridSim environment menu, such that the modes can
be switched between replay, record, and training, with each one having access to the five different
scenarios. There is a large number of configurable parameters, such as the resolution of the simu-
lator, occupancy grid precision, number of traffic participants, ego car’s maximum speed and turning
radius, etc.

DNNs are usually trained via gradient-based learning algorithms, such as backpropagation. Neu-
roevolutionary training strategies can rival backpropagation-based algorithms, such as Q-learning
and policy gradients, on difficult DRL tasks. The idea which is explored in this work is to evolve the
weights of a deep neural network by using a population-based genetic algorithm, with altered breed-
ing rules.

Because the deep network’s response is quantified using a multi-objective loss function, its
weights are learnt using evolutionary computation. The training aims to compute optimal weights
for a collection of deep neural networksϕ(·;Θ) by simultaneously optimizing their fitness functions.
This learning procedurewas first proposed by the authors for training a generative one-shot learning
classifier.

Traditional training approaches use algorithms such as backpropagation and a scalar loss func-
tion, in order to compute the optimal weight values of a single network. In the case of evolutionary
training, ϕ(·;Θ) represents a collection ofK deep networks, each network having a corresponding
set of weightsΘi:

8

ϕ(·;Θ) =
[
ϕ1(·; Θ1), ϕ2(·; Θ2), ..., ϕi(·; Θi), ..., ϕK(·; ΘK),

]T
(11)

The weights of a single deep network are stored in a so-called solution vector Θ =[
θ1, θ2, ..., θn,

]T
, composed of n decision variables θi, with i = 1, ..., n and θ ∈ Rn. θi represents

a weight parameter in a single network.

Algorithm 0.1 Neuroevolutionary agent in GridSim
procedure Train(G)

encoded_w ← encode_w(net_topology)
ppl← init_gen(encoded_w)
while not end of all generations do

while not end of generation do
weights← decode_weights()
dist, vel← fitness_eval(weights)
gen_score[i]← dist, vel

end while
ppl← tournament_sel(gen_score, ppl)
ppl← uniform_mate(α, ppl)

ppl← gaussian_mutate(β, ppl)

end while
elite_first← k_best_selection(1, ppl)
validate_elite(elite_first)

end procedure

Using genetic algorithms, the weights Θ of a population of ϕ(·;Θ) deep networks, where an
individualΘ is a solution vector containing the weights of a network ϕ(·; Θ), were evolved. The first
step in the training consists of running a forward pass through the population of networks, thus
obtaining values for the multi-objective fitness function L(·). After completing forward passes for
all networks population, we use the tournament selection algorithm to select the best individuals.

The tournament selection algorithm assures that a number of elite individuals, with the best ac-
curacy, carry on to the next generation unmodified. For exploring the decision space S, we used an
uniform crossover between 2 individuals from a batch of individuals, with an independent probability
α of happening. Furthermore, a mutation operation is applied on the same batch, but with an inde-
pendent probabilityβ. The next generation of individuals’ genes are subjected to an additiveGaussian
noise σ:

θ′ = θ + σ;σ ∈ [−3, 3] (12)

The [−3, 3] interval for the Gaussian noise was chosen with respect to the sigmoid function used
for activating neurons in the deep networks. Namely, the interval aims to not oversaturate the values

9

of the weights by reaching maximum or minimum values returned by a sigmoid. The new population
is evaluated and the process repeats itself forG generations.

Firstly, the decision space of the Neuroevolutionary Agentwas reduced to three actions (turn left,
turn right and no action), starting from the original decision space of eight actions (accelerate, turn
left, turn right, brake, accelerate + turn left, accelerate + turn right, reverse/negative acceleration and
no action).

This first simplified version of the environment alsomaintains the velocity of the simulated car at
a constant rate, and uses a seamless road model which has no t-junctions or intersections. By using
the mentioned environment, the genetic algorithm selects the best combination of weight parame-
ters for a feed forward neural network.

In the beginning, the fitness function was defined with only one metric, which is the traveled
distance. The neural network performs an action in the simulator and the fitness function gets up-
dated with the new value. This distance is computed as the Euclidean distance (measured in pixels)
between the starting position and the new position, obtained after taking the predicted action. The
selection criteria of the genetic optimizationwas based on the traveled distance, having the objective
to maximize it:

ρ = f(δ) (13)

To build the next generation of individuals, the following equation was used:

Θi+1 = max(ρ) + rand(Θi) + Cx(Θi) + µ(Θi) (14)

The input of the neural network is a vector described by the values of the occupancy grid gener-
ated by the synthetic beams of the radar sensor model. The number of sensor beams is also config-
urable and can be increased to any resolution necessary.

After the desired behavior was met, and the car was able to navigate the seamless generated
model by itself, we performed incremental updates to the decision space, until reaching five actions
(accelerate, turn right, turn left, brake and no action). We have also removed the constant velocity,
and starting from thismodel we included a new objective to bemaximized in the fitness function, the
velocity of the car:

ρ = f(δ, θ) (15)

The internal metric used by the simulator is ppu (pixels per unit). This defines how many pixels
go into a single unit, and we use this value to correlate the simulator velocity to the real world mea-
surement of meters/second. The unit can be defined as a fixed number of frames, or a fixed number
of seconds. We have defined our unit as a single frame, with the simulator running as 30 frames per
second, thanks to PyGame’s internal renderer.

We imposed a reachable top speed threshold of 30ppu, and then we trained the model to adapt
the brake action to the environment, in order to not crash in the steep curves of the generated seam-

10

less environment. After 26 generations the model could navigate without crashing with an average
speed of 15ppu.

After passing each incremental step of complexity, the action space up was increased up to the
dimensionality of eight actions, together with the vector size of the sensor input, thus reaching the
original complexity of the DQN environment.

Raspberry PI robot

The Raspberry Pi robot is based on the ER-SER85080C chassis. This features a rear-wheel-drive
front-wheel steering mechanism, similar to the models in smart car competitions. The floor plates
are made of aluminum alloy, which greatly improves the strength of the body. It is composed of two
1500 RPM DC Motors for each rear wheel, with a maximum speed of 4.5 m/s and a motor deceler-
ation ratio of 1:10. The steering is performed via a DS3119 switch motor, with a steering torque of
20kg. It also comeswith separate encoders for each rearmotor, with the following precision settings:
the wheel turns one revolution, the 30-speed reduction ratio can output 1560 jump edges, whereas
the 10-speed reduction ratio can output 520 jump edges.

Testing path planning algorithms on amobile robot controlled by a Raspberry Pi involves a series
of carefully designed experiments to evaluate the robot’s ability to navigate and perform tasks effi-
ciently. These tests should cover various aspects of path planning, including obstacle avoidance, nav-
igation accuracy, real-time processing, and adaptability to dynamic environments. Below are some
key tests that can be performed to assess the path planning capabilities of such a mobile robot.

The basic navigation test aims to verify the robot’s ability to navigate from a starting point to a
destination point using the planned path. To conduct this test, a simple environment with a prede-
fined start and end point is set up. The path planning algorithm is then programmed to generate a
path between these points. Upon execution, the robot’s ability to follow the path is observed, with
measurements taken for the time required and the accuracy of reaching the destination. This test
ensures that the robot can reach the destination accurately, withminimal deviation from the planned
path, and within a reasonable time frame.

Obstacle avoidance is crucial for autonomous navigation. In this test, obstacles of various shapes
and sizes are randomly placed in the robot’s environment. The path planning algorithmmust account
for these obstacles and re-plan the path as necessary. By executing the algorithm and observing the
robot’s behavior in real-time, developers can assesswhether the robot successfully avoids obstacles
while reaching the destination. The evaluation criteria include the robot’s ability to avoid collisions,
smoothly reroute around obstacles, and maintain a reasonable time to reach the destination.

Assessing the robot’s ability to adapt to moving obstacles is the focus of the dynamic obstacle
test. Moving obstacles, such as other mobile robots or manually controlled objects, are introduced
into the environment. The path planning algorithm must include real-time path re-planning capa-
bilities to adapt to these changes. By executing the algorithm and observing the robot’s real-time
adaptations, the test evaluates how effectively the robot avoids moving obstacles and maintains its

11

course. Key factors include the effectiveness of avoidance maneuvers, real-time re-planning effi-
ciency, and minimal interruptions or delays in reaching the destination.

The precision navigation test evaluates the robot’s ability to navigate through narrow passages
and complex environments. A test environment with narrow passages, tight corners, and complex
pathways is created. The path planning algorithm is programmed to navigate through this chal-
lenging environment. Upon execution, the robot’s performance is observed, focusing on its ability to
maintain the planned path within narrow and complex spaces. Evaluation criteria include accurate
navigation through narrow passages, minimal collisions with boundaries, and the smoothness and
continuity of motion.

The sensor reliability test verifies the reliability and accuracy of the sensors used for path plan-
ning. The robot is equipped with various sensors, such as ultrasonic and infrared for environment
detection. Each sensor is tested individually to ensure accurate readings and reliable performance.
These sensors are then integrated into the path planning algorithm. By executing the algorithm in
different environments and lighting conditions, the test assesses sensor reliability. Consistent and
accurate sensor readings, reliable performance across different environments, and proper integra-
tion and utilization of sensor data in path planning are the key evaluation criteria.

Measuring the energy consumption of the robot during path planning and navigation is the ob-
jective of the energy efficiency test. The power usage of the Raspberry Pi and the robot’s motors is
monitored during operation. A series of path planning tasks of varying complexity are executed, and
the energy consumption for each task is recorded. The analysis focuses on the correlation between
path complexity, obstacle avoidance, and energy usage. The evaluation criteria include efficient en-
ergy consumption during navigation, the impact of path planning complexity on energy usage, and
the optimization of path planning for energy efficiency.

The real-world scenario test evaluates the robot’s performance in a real-world environment with
real-life obstacles and scenarios. A test environment that mimics a typical operational scenario for
the robot, such as a household setting or office environment, is set up. The path planning algorithm
is programmed to navigate through this environment. By executing the algorithm and observing the
robot’s behavior in real-world conditions, the test assesses the robot’s robustness and adaptability.
Successful navigation and task completion in a real environment, effective handling of unexpected
obstacles, and adaptability to changes are the key evaluation criteria.

Testing path planning algorithms on a mobile robot controlled by a Raspberry Pi involves a com-
prehensive set of experiments designed to evaluate various aspects of the robot’s navigation capa-
bilities. These tests ensure that the path planning algorithm is robust, efficient, and reliable in diverse
environments and conditions. By systematically conducting these tests, developers can refine and
optimize their algorithms, ultimately enhancing the performance of autonomous mobile robots.

Agile Scout AMTU

The Agile Scout robot is an advanced mobile robotic system designed for a variety of applica-
tions, including exploration, surveillance, search and rescue, and environmental monitoring. Its de-

12

velopment focuses on combining agility, adaptability, and robustness to operate effectively in diverse
and often challenging environments. The following sections provide a detailed description of its key
features and capabilities.

At the core of the Agile Scout robot’s design is its exceptional mobility. It is typically equipped
with a set of highly versatile wheels or tracks that allow it to navigate over uneven terrain, obstacles,
and steep inclines with ease. Some models may also feature articulated legs or hybrid designs that
combine wheels and legs to further enhance maneuverability. This flexibility enables the robot to
move swiftly and efficiently in both indoor and outdoor settings, making it suitable for tasks that
require rapid deployment and extensive area coverage.

The Agile Scout robot is outfittedwith a comprehensive suite of sensors that provide it with a rich
understanding of its environment. These sensors often include LIDAR, ultrasonic sensors, infrared
cameras, and high-resolution visual cameras. LIDAR is particularly useful for creating detailed 3D
maps of the surroundings, which is crucial for navigation and obstacle avoidance. The combination
of these sensors allows the robot to detect and recognize objects, measure distances, and identify
potential hazards in real-time.

One of the standout features of the Agile Scout robot is its advanced autonomy. Effective com-
munication is essential for the Agile Scout robot, especially in applications like search and rescue or
surveillance. The robot is equipped with robust communication systems that enable it to transmit
data back to a control center in real-time. This data includes video feeds, sensor readings, and sta-
tus updates, allowing operators to monitor the robot’s progress and make informed decisions. The
control interface is typically user-friendly, offering bothmanual control options and autonomous op-
eration modes. This dual capability ensures that human operators can intervene when necessary,
while still benefiting from the robot’s autonomous functions.

The versatility of the Agile Scout robotmakes it suitable for awide range of applications. In explo-
ration and environmentalmonitoring, it can be used to gather data in hazardous or inaccessible areas,
providing valuable insights without putting human lives at risk. In search and rescue missions, its
agility and sensor capabilities allow it to locate and assist victims in disaster-stricken areas. Surveil-
lance and security applications benefit from the robot’s ability to patrol large areas autonomously,
detect intrusions, and relay real-time information to security personnel.

The Agile Scout robot represents a significant advancement in mobile robotics, combining agility,
advanced sensing, autonomy, and robust communication to perform a variety of critical tasks. Its
ability to navigate complex environments, coupled with its autonomous capabilities, makes it an in-
valuable tool in fields ranging from exploration and environmental monitoring to search and rescue
and surveillance. As technology continues to evolve, the Agile Scout robot is poised to become even
more capable, further expanding its range of applications and effectiveness in mission-critical sce-
narios.

Agile scout is a SSWMR (skid-steer wheeledmobile robot). The followingmodel assumptions are
taken into account:

1. The robot’s mass center is at the geometric center of the body frame;

13

2. Each side’s two wheels rotate at the same speed;

3. The robot is operating on a firm ground floor with all four wheels in contact with it at all times.

We define an inertial frame (X, Y) (global frame) and a local (robot body) frame (x, y). Presume
the robot movies in a plane with linear velocity v = (vx, vy, 0)

T and rotates with an angular velocity
ω = (0, 0, ωz)

T , both expressed in the local frame. If q = (X,Y, θ)T is the state vector defining the
robot’s generalized coordinates (position X and Y, as well as the orientation θ of the local coordinate
frame with respect to the inertial frame), then q̇ = (Ẋ, Ẏ , θ̇)T is the vector of generalized velocities.

The relationship between the robot velocities in both frames is then calculated as follows:
Ẋ

Ẏ

θ̇

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1



vx

vy

ωz

 . (16)

Because it only specifies free-body kinematics, Equation (16) places no limits on the SSWMR
plane movement. As a result, the relationship between wheel velocities and local velocities must
be analyzed. For simplicity, the thickness of the wheel is neglected and is assumed to be in con-
tact with the plane at point Pi, as according to the initial model assumption nr. 3. In comparison to
other wheeled vehicles, the SSWMR has a non-zero lateral velocity. This property stems from the
SSWMR’smechanical structure, which necessitates lateral skidding if the vehicle’s orientation shifts.
As a result, the wheels are only tangent to the path when ω = 0, that is, when the robot travels in a
straight line. It is important to consider all wheels together when developing the kinematic model.

Letωi and vi, with i = 1, 2, 3, 4 denote thewheel angular and center linear velocities for front-left,
rear-left, front-right, and rear-right wheels, respectively. Thus, we have:

ωL = ω1 = ω2, ωR = ω3 = ω4. (17)

We can use the previous equation to state the direct kinematics on the plane:
vx

vy

ωz

 = f

[
ωlr

ωrr

]
, (18)

where v = (vx, vy) is the vehicle’s translational velocity with respect to its local frame, ωz is its
angular velocity, and r is the radius of the wheel.

The instantaneous centers of rotation (ICR) of the left-side, right-side, and robot bodyaredenoted
as ICRl, ICRr , and ICRG, respectively, while themobile robotmoves. ICRl, ICRr , and ICRG are
all known to lie on a line parallel to the x-axis. We define the x-y coordinates for ICRl, ICRr , and
ICRG as (xICRl

, yICRl
), (xICRr , yICRr), and (xICR, yICR), respectively. The sides’ angular velocity

is equal to the velocity of the robot body ωz . We further obtain the following geometrical relations:

xICR = xICRl
= xICRr = − vy

ωz
(19)

yICR =
vx
ωz

, (20)

14

yICRl
=

vx − ωlr

ωz
, (21)

yICRr =
vx − ωrr

ωz
. (22)

From Equations (19)–(22), the kinematics relation (18) can be represented as:


vx

vy

ωz

 = Jω

[
ωlr

ωrr

]
, (23)

where the elements of matrix Jω are determined by the ICR coordinates on the left and right sides:

Jω =
1

yICRl
− yICRr


−yICRr yICRl

xICR −xICR

−1 1

 . (24)

Since the SSWMR is symmetrical in our case, we can obtain a symmetrical kinematics model. As
a result, the ICRs are symmetrically distributed on the x-axis, and the matrix Jω can be written as
follows:

Jω =
1

2yICR0


yICR0 yICR0

0 0

−1 1

 , (25)

where yICR0 = yICRl
= −yICRr represents the side ICR values. Considering that, for our symmet-

rical model, vl = ωlr and vr = ωrr, the relations between the angular wheel velocities and the robot
velocities are as follows: 

vx = ωlr+ωrr
2 = vl+vr

2

vy = 0

ωz =
−ωlr+ωrr
2yICR0

= −vl+vr
2yICR0

. (26)

Based on Equation (26), the control signal u can be written as:

u =

[
vx

ωz

]
= r

 ωl+ωr

2
−ωl+ωr

2yICR0

 . (27)

The last equation shows that the pair of angular velocities ωl and ωr , as well as velocities vx and
ωz , can technically be viewed as a control kinematic input signal. The accuracy of relation (27), on the
other hand, is heavily reliant on longitudinal slip, and it can only be used if this phenomenon is not
dominant. Furthermore, the parameters r and yICR0 can be calculated experimentally to ensure that

15

the angular robot velocity is accurately estimated in relation to the angular velocities of the wheels.

2D path planning

The ability of an autonomous car to find a route between two points, that is, a start position
and a desired location, represents path planning. According to the path planning process, a self-
driving car should consider all possible obstacles that are present in the surrounding environment
and calculate a trajectory along a collision-free route. As stated before, autonomous driving is a
multi-agent setting where the host vehicle must apply sophisticated negotiation skills with other
road users when overtaking, giving way, merging, taking left and right turns, all while navigating
unstructured urban roadways. The literature findings point to a non trivial policy that should handle
safety in driving. Considering a reward function R(s̄) = −r for an accident event that should be
avoided and R(s̄) ∈ [−1, 1] for the rest of the trajectories, the goal is to learn to perform difficult
maneuvers smoothly and safe.

Traditionally, DNNs are trained using differentiablemethods based on single-objective cost func-
tions. Although multiple losses can be aggregated into a single cost function via weighting, the gra-
dient descent step in the backpropagation algorithm will adjust the network’s weights based only
on the single-objective loss. Weighting multiple losses also introduces additional hyperparameters
(typically manually defined) required to weight each individual loss.

Another approach to multi-objective optimization in deep learning is Multi-Task Learning (MTL),
where the objectives are given as tasks. The network model either shares its layers between
weighted tasks (hard parameter sharing), or each single task is used to train a separate model (soft
parameter sharing). In the latter case, the parameters between the models corresponding to the
given tasks are regularized in order to encourage the parameters to be similar. As stated before, the
hard parameter sharing paradigm is still pervasive for neural-network basedMTL. In contrast toMTL,
we use a Paretomulti-objective optimization technique which independently optimizes a population
of DNNs, where the training of each individual is not influenced by the other individuals. In this way,
we ensure a better exploration of the parameters space during training, while avoiding additional
weighting hyperparameters.

Problem definition

Given a sequence of 2D occupancy grids (OG) ~X : R2 × τi → R2 × τo, the position of the ego-
vehicle ~p<t>

ego ∈ R2 in ~x<t> and the destination coordinates ~p<t>
dest ∈ R2 in occupancy grid space at

time t, the task is to learn a local trajectory for navigating the ego-vehicle to destination coordinates
~p<t+τo>
dest . τi is the length of the OGs input sequence, while τo is the number of time steps for which

16

the trajectory of the ego-vehicle is estimated.
In other words, with ~p<t>

0 being a coordinate in the current OG observation ~x<t>, we seek a de-
sired local navigation trajectory of the ego-vehicle from any arbitrary starting point ~p<t>

0 to ~p<t+τo>
dest ,

with the following properties:

• the traveled path ||~p<t>
0 − ~p<t+τo>

dest || is minimal;

• the lateral velocity, given by the steering angle’s rate of change vδ ∈
[
δ̇min, δ̇max

]
is minimal,

signifying a minimal value for v<t,t+τo>
δ ;

• the forward speed, also known as longitudinal velocity, v<t,t+τo> is maximal and bounded to
an acceptable range [vmin, vmax].

The vehicle is modeled based on the single-track kinematic model of a robot, with position state
~y<t> = (p<t>

x , p<t>
y) and no-slip assumptions. px and py represent the position of the vehicle in the

2D driving plane, respectively. The heading is not taken into consideration for trajectory estimation.
We observe the driving environment using OGs constructed from fused LiDAR and radar data.

Green and red pixels represent free-space and obstacles, respectively, while black signifies unknown
occupancy. A single OG corresponds to an observation instance ~x<t>, while a sequence of OGs is
denoted as ~X<t−τi,t>. These observations are axis-aligned discrete grid sequences, acquired over
time interval [t− τi, t] and centered on the sequence of vehicle states ~Y <t−τ,t>.

AI Behavior Arbitration (AIBA)

Autonomous Vehicles (AVs) are robotic systems that can guide themselves without human op-
erators. Such vehicles are equipped with Artificial Intelligence (AI) components and are expected to
change dramatically the future of mobility, bringing a variety of benefits into everyday life, such as
making driving easier, improving the capacity of road networks and reducing vehicle-related acci-
dents.

Most likely, due to the lack of safety guarantees and legislation, as well as the missing scalability
of Autonomous Driving (AD) systems, fully autonomous vehicles will not travel the streets in the
near future. Nevertheless, over the past years, the progress achieved in the area of AI, as well as the
commercial availability of Advanced Driver Assistance Systems (ADAS), has brought us closer to the
goal of full driving autonomy.

The Society of Automotive Engineers (SAE) has defined standard J3016 for different autonomy
levels, which splits the concept of autonomous driving into 5 levels of automation. Levels 1 and 2 are
represented by systems where the human driver is required to monitor the driving scene, whereas
levels 3, 4 and 5, with 5 being fully autonomous, consider that the automated driving components
are monitoring the environment.

An AV must be able to sense its own surroundings and form an environment model consisting
of moving and stationary objects. Afterwards it uses this information in order to learn long term

17

driving strategies. Thesedriving policies govern the vehicle’smotion andautomatically output control
signals for steering wheel, throttle and brake. At the highest level, the vehicle‘s decision-making
system has to select an optimal route from the current position to the destination.

Themain reason behind the human ability to drive cars is our capability to understand the driving
environment, or driving context. In the followings, we will refer to the driving context as the scene
and we will define it as linked patterns of objects. In this paper, we introduce AIBA (AI Behavior Arbi-
tration), an algorithm designed to arbitrate between different driving strategies, or vehicle behaviors,
based on AIBA’s understanding of the relations between the scene objects.

A driving scene consists of objects such as lanes, sidewalks, cars, pedestrians, bicycles, traffic
signs, etc., all of them being connected to each other in a particular way (e.g. a traffic sign displays
information for a driver). Driving behavior prediction is a key part of an AV’s decision-making process.
The task of identifying the future behavior of the scene’s objects is not a trivial one, since this type
of information cannot be directly measured or communicated, being considered latent information.
To be able to perform behavior prediction for the surrounding vehicles, an AV can use mathematical
models which consider the variation in the objects’ movement and describe the driving scenario from
the view point of the ego-car.

Such kind of models use several types of information, i.e. vehicle kinematics, the relationship
between the ego-car and the surrounding entities, the interactions with other vehicles and a-priori
knowledge. Vehicle kinematics and the relations with road entities were considered by almost all
existing studies.

Usually, most models for behavior arbitration are tailored for one specific scenario. Neverthe-
less, AVs must drive through dynamically changing environments in which a diversity of scenarios
occur over time. Multiple scenario-specific models activate a corresponding model according to the
characteristics of the scenario. AIBA is a system for behavior arbitration in AVs, which constructs a
description and understanding model of the driving scene. Our idea is to model the human driver
(HDr) understanding process of the driving scene, in order to achieve an optimal behavior arbitration
solution. We describe the mechanism of the HDr thinking and transpose it to an approximate model.

The driving scene description is given from a human driver’s perspective, and it formulates prop-
erties derived from the definitions of classes, subclasses and objects which represent the core of
an abstraction model, based on the authors’ previous work. The main idea behind AIBA is to model,
or formalize, the HDr understanding process and afterwards transform it into a formal model for
behavior arbitration in AV.

A human driver is able to perceive the scene’s objects and observe them. This means that the
HDr identifies the concepts and the different properties of the objects. The different scene objects
are linked between them, and the links definition is a first step in the knowledge process, which
means it establishes the subjects of interest and also the importance level of each subject. The HDr
scene understanding synthesis contains the following steps: identifying the link between the objects,
allocating models to each link, running the models and afterwards finding a strategy to act. In fact,
the HDr creates an implicit system and simulates it.

Two types of links can be observed: internal links, considered to be the set of links between the

18

observer (the HDr) and all the observed objects, and external links, represented by the set of links be-
tween the objects present in the scene. From theHDr point of view, the links have differentmeanings
and importance, or significance. Specifically, a human driver knows the traffic rules and how to get to
his destination. These rules will determine traffic priorities, thus making the HDr to attach a greater
importance to those links which are more important to his strategy.

In the next step, a description is established for each link. During the driving, the HDr adapts, or
refines, the mentioned description by observation. The driver, by using the importance of the links,
simulates a scene description. If we analyze the aim of driving scene understanding, we will observe
that its origins are the stability in time and space. More precisely, the human driver has a driving task
which can be accomplished if the possibility of locomotion is preserved in the current position and
during a specific time. Intuitively, the stability is related to the objects in the scene and can be reached
by understanding the scene. This understanding does not solve the driving problem, but offers the
information upon which the human driver decides to act on a certain behavior.

The previous analysis of the driving scene understanding can be described like a process which
consists of the following steps:

1. Perceiving the objects (cars, traffic signs, lanes, pedestrians, etc.) and obtaining the object
properties (the pedestrian intention is to cross the road).

2. Defining the links (the scene network) between the objects and their importance (i.e. the car in
front is important, the pedestrian which intends to cross the road is very important, etc.).

3. Adding models to the mentioned links.

4. Simulating the model of the most significant links, and proposing driving behaviors which will
be verifiedwith the other significant links until the appropriate behavior (which allows the driv-
ing task) is found.

Entities like objects, links, or networks, which have been introduced in the previous section, have
correspondences in the modeling process. Our intention is to approximate the HD understanding
process through a formal representation. More precisely, this assignment mimics an input/output
process: using a perceived scene, the AIBA model must output a description which offers all the
information needed within the AD system to arbitrate the driving behavior.

Within AIBA, the first action is to transform the scene in to a collection of objects. This operation
is accomplished by the following generative function:

obj_gen : Σ×K → Ω (28)

where Σ is the perceived scene;K is the set of known object classes and Ω is the set of objects.
Having an initial collection of classes, the generator function from Eq. 45 transforms the scene

entities into a collection of objects. The following object classes are taken into consideration: traffic
participants, pedestrians and buildings. The set of classes are a priori set within AIBA.

19

The complexity of this process, even for the set of road classes, is seen in many types of roads
which exist around the world. In order to reduce the scene’s complexity, we split them in two major
classes, static objects (lanes, traffic signs, buildings, etc.) and dynamic objects (cars, pedestrians,
etc.).

Two kinds of definitions are here significant: the generic definition where the proximity and the
properties arementioned, and the extensive definition where the definition of the object (or a picture
of it) is indicated or shown. This observation enables us to associate image recognition methods
(which correspond to the extensive definition) with a generic definition collection.

Eq. 45 can be generalized when measurements (speed of the cars, distance between cars, size
of traffic signs etc.) are associated with the scene description:

obj_gen : Σ×K ×M → Ω, (29)

whereM is the set of measurements. The generated objects Ω contain a structure of class specific
properties and methods. The methods reflect the possible interactions of the objects with the ego-
car.

The second step in AIBA’s workflow defines the links between a HDr and an object, as well as
between the objects themselves, respectively:

link_gen : Ω× T → Λ, (30)

where T is the set of task trajectory properties and Λ is the set of links’ significance.
Because the links are computed in termof stability around a particular point of the task trajectory,

the significance is correlatedwith specific threats. Driving a car is subject to implicit negotiationbased
on traffic rules. Themost important links are those related to agents which, according to these rules,
have priority. Eq. 30 can be imagined as an expert system which will analyse all these links from the
mentioned point of view, while outputting different marks:

obj_gen : Σ×K ×M × T → Ω× Λ. (31)

Each recognized object provides methods which refer to the ego-car - object interactions. Infor-
mation about possible threats on the task stability can be obtained by simulating the behaviors, and
also how to select the appropriate driving behavior for avoiding these threats:

thr_sim : ΩS ×H → Θ×B, (32)

ΩS =
{
Oi|Oi ∈ Ω;SOi,Oj ≥ Smin

}
(33)

H =
[
tc tc + δ

]
(34)

whereΩS is the set of important objectsOi, which are linkedwith other objectsOj with a significance
SOi,Oj ∈ Λ, greater than a minimum (a priori imposed) significance Smin. H is the time horizon, tc

20

is the current time, δ is the simulation time, Θ is the set of the threat levels and B is the set of
recommended behaviors for the ego-car.

thr_simwill simulate, for each important objectOi, a collection of behaviorsOi_Mi,k(P,H) and
a predicted threat levelΘi,k :

Oi_Mi,k(P,H) =

[
Θi,k

βi,k

]
(35)

where P is the set of object properties and βi,k is the behavior of the ego-car which will eliminate
the threat.

In order to solve all links’ threats, several strategies can be chosen. If we adopt the HDr under-
standing description from the previous section, the behavior which solves the maximum threat is
simulated for the other threats, obtaining the optimal behavior of the ego-carΘmax = Θi∗,k∗ :

(i∗, k∗) = argmax
i,k

Θi,k (36)

whereΘi,k are the threat levels.
The last step in AIBA’s modelling system is the transformation of the optimal behaviorΘmax into

a natural language explanation:

dsc : Λ×B → ∆ (37)

∆ = ΩS × E (38)

E = e1 × e2 × ...× enS (39)

where ∆ is the set of descriptions, ei is the explanation of the significance associated to an object
and nS is the number of significant objects.

NeuroTrajectory

This thesis’ approach to local state trajectory learning is to reformulate the autonomous driv-
ing problem as a cognitive learning task. The above problem can be modeled as a Markov Decision
Process (MDP)M = (S,A, T, L), where:

• S represents a finite set of states, ~s<t> ∈ S being the state of the agent at time t. To encode
the location of the agent in the driving OG space at time t, we define ~s<t> = ~X(~p<t−τi,t>

ego),
which denotes an axis-aligned discrete grid sequence in interval [t − τi, t], centered on the
ego-vehicle positions’ ~p<t−τi,t>

ego .

• A represents a finite set of trajectory sequences, allowing the agent to navigate through the
environment, where ~Y <t+1,t+τo> ∈ A is the predicted trajectory that the agent should follow

21

in the future time interval [t + 1, t + τo]. A trajectory ~Y <t+1,t+τo> is defined as a collection of
estimated trajectory state set-points:

~Y <t+1,t+τo> = [~y<t+1>, ~y<t+2>, ..., ~y<t+τo>]. (40)

• T : S×A×S → [0, 1] is a stochastic transition function, where T~s<t+τo>

s<t>,~Y <t+1,t+τo>
describes the

probability of arriving in state~s<t+τo>, after performing amotion along trajectory ~Y <t+1,t+τo>.

• ~L : S×A×S → R3 is a multi-objective fitness vector function which quantifies the trajectory
quality of the ego-vehicle:

~L~s<t+τo>

~s<t>,~Y <t+1,t+τo>
=

[
l<t+τo>
1 l<t+τo>

2 l<t+τo>
3

]
. (41)

Each element in Eq. 41 is defined as:

l<t+τo>
1 =

τo∑
i=1

||~p<t+i>
ego − ~p<t+i>

dest ||
2
2 (42)

l<t+τo>
2 =

τo∑
i=1

v<t+i>
δ (43)

l<t+τo>
3 =

τo∑
i=1

v<t+i>
f ∈ [vmin, vmax] (44)

Intuitively, l<t+τo>
1 represents a distance-based feedback, which is smaller if the car follows a

minimal energy trajectory to ~p<t+τo>
dest and large otherwise. l<t+τo>

2 quantifies hazardous motions
and passenger discomfort by summing up the lateral velocity of the vehicle. The feedback function
l<t+τo>
3 is the moving longitudinal velocity of the ego-vehicle, bounded to speeds appropriate for
different road sectors, such as v<t,t+τo> ∈ [80kmh, 130kmh] for the case of highway driving.

Considering the proposed state estimation scheme, the goal is to train an optimal approxima-
tor, defined here by a deep network, which can predict the optimal state trajectory ~Y <t+1,t+τo> of
the ego-vehicle, given a sequence of occupancy grid observations ~X<t−τi,t> and the multi-objective
fitness vector from Eq. 41.

We learn an optimal state trajectory by combining Convolutional Neural Networks (CNN) with
the robust temporal predictions of Long Short-Term Memory (LSTM) networks. The two types of
neural architectures are combined as follows. An observation ~x<t> is firstly processed by a CNN,
implemented as a series of convolutional layers, aiming to extract relevant spatial features from the
input data. The CNN outputs a feature-space representation for each observation in ~X<t−τi,t>. Each
processed spatial observation in the input interval [t − τi, t] is flatten and passed through two fully
connected layers of 1024 and 512 units, respectively. The input sequence into an LSTM block is rep-
resented by a sequence of spatially processed observations, denoted as CNN<t−τi,t>. The same
network topology can be trained separately on synthetic, as well as on real-world data. As trainable
network parameters, we consider both the weights of the LSTM networks, as well as the weights of
the convolutional layers.

22

For computing the state trajectory of the ego-vehicle, we have designed the deep neural network,
where OG sequences are processed by a set of convolutional layers, before being feed to different
LSTM network branches. Each LSTM branch is responsible for estimating trajectory set-points along
time interval [t + 1, t + τo]. The choice for a stack of LSTM branches over a single LSTM network
that would predict all future state set-points comes from our experiments with different network
architectures. Namely, we have observed that the performance of a single LSTM network decreases
exponentially with the prediction horizon τo. The maximum value for which we could obtain a stable
trajectory using a single LSTMnetworkwas τo = 2. As shown in the experimental results section, this
is not the case with our proposed stack of LSTMs, where each branch is responsible for estimating a
single state set-point.

In order to train the deep network on as many corner cases as possible, we have constructed a
training dataset based on real-world occupancy grid samples ~X<t−τi,t>, as well as on synthetic se-
quences ~̂X<t−τi,t>. Synthetic data is generated in our OG simulator GridSim. As trainable network
parameters, we consider both theweights of the LSTMnetwork, aswell as theweights of the convo-
lutional layers. The synthetic and real-world data streams are processed by a convolutional network,
before being fed to LSTM networks via two fully connected layer of 1024 and 512 units, respectively.
The same network topology can be trained separately on synthetic, or real-world data.

OctoPath - extending to 3D representation

Since motion planning can also be viewed as a sequence to sequence mapping problem, or as a
sequence generation task, RNNs have been proposed for modeling the driving trajectories. Different
from conventional neural networks, RNN contain a time dependent feedback loop in its memory cell.
In order to use RNNs for predicting a future trajectory, each separate point is considered a state,
which further implies that the whole trajectory is represented as a sequence. The transition from
one state to any another is strictly constrained by the topology of the network].

Most of the RNN solutions proposed for solving the task of trajectory estimation need a discrete
environment model. In this thesis, the proposed environment model is based on octrees and uses
probabilistic occupancy estimation. The main advantages of using this model are that it explicitly
represents not only occupied space but also free and unknown areas and that it enables a compact
memory representation and configurable resolutions. As opposed to Neuro-trajectory, which has
been presented in the previous section, theworld is nowsensed in 3Dusing an octree representation,
and we no longer use convolutional layers for processing the input sequences, as this intermediate
representation has been taken over by the fixed state vector between the encoder and the decoder
of our architecture.

23

In this thesis, the path planning component from the perception-planning-action pipeline is ad-
dressed. The currently proposed method, coined OctoPath, is self-supervised and aims to com-
bine the configurable resolution of an octree-based environment model with a classification-based
encoder-decoder RNN architecture. It takes as input a sequence of sensor measurements, together
with the current segment of a reference trajectory, building upon the RNN encoder-decoder archi-
tecture which has shown excellent performance for sequence-to-sequence tasks.

OcTrees

Most robotic applications require an environment model that includes free, occupied, and un-
mapped zones and is efficient in terms of runtime and memory use. Range measurement mistakes
are common in sensor models, and reflections or dynamic barriers can generate seemingly random
results. When building an accurate model of the environment from noisy data, the underlying uncer-
taintymust be taken into consideration. Multiple erroneous readings can then bemerged to produce
a credible estimate of the real condition of the environment.

The octree data structure represents three-dimensional objects. An octree is a spatial decompo-
sition in which the tree’s root is recursively split by two in each coordinate direction until each cell can
contain a maximum number of items. In other words, it is a hierarchical data structure for 3D spatial
subdivision that ismost frequently used to recursively subdivide a given 3D region into eight octants.
The octree organizes its items hierarchically, avoiding the depiction of empty space.

Ok : [0, 1]d → Dk ⊂ R3 (45)

The root node or cell is the initial node of an octree. The root node or cell points to eight elements
or cells, each of which may point to another eight elements or cells, and so on. Every node on an
octree is the space of a cubic volume known as a voxel, and the minimum voxel size determines
the octree’s textitresolution. The last level reached is known as the leaf level, and it contains the
leaf components or cells. If every cell above the leaf level points to a cell, the octree is said to be
complete. If the inner nodes are kept, the tree may be chopped down at any level to get a more
coarse subdivision. Octrees avoid one of the major flaws of fixed grid systems in robotic mapping:
the fact that the environment should not be known beforehand, and that the environmental model
only comprises the measured volume.

When referring to a laser range finder, for example, the endpoints of the sensor generate occupied
space, while the detected region between the sensor and the endpoint is considered to be free space.
The occupied space is mapped from the point cloud data packets at the corresponding distance in
space for our input LiDAR data. As a result, we use LiDAR data to generate an octree environment
model, which depicts free-space (driving area) and inhabited areas in three dimensions.

A central property of our approach is that it allows for efficiency of occupied and free space while
keeping the memory consumption low, which is essential for our model car hardware. The octrees
have fixed sizes, as required by the neural network input, based on the field of view of the LiDAR sen-
sor. The nodes which are neither occupied nor free (these are always beyond the detected obstacles)

24

are marked as unknown and initialized with zero 0 to prevent them from influencing the inference
result. Additionally, we can configure the resolution to a lower value, to reduce the processing times
and memory usage even further. Tree structures are the primary methods used in prior point cloud
compression algorithms. Numerous approaches store data in an octree and perform entropy cod-
ing with hand-crafted entropymodels such as adaptive histograms, parent context, and estimations
based on planar approximations or neighbour proximity

In its most basic form, octrees can be used tomodel a Boolean property. In the context of robotic
mapping, this is usually the occupancy of a volume. If a certain volume is measured as occupied, the
corresponding node in the octree is initialized. Any uninitialized node could be free or unknown in this
Boolean setting. To resolve this ambiguity, we explicitly represent free volumes in the tree. These are
created in the area between the sensor and themeasured end point, e.g., along a ray determinedwith
raycasting. Areas that are not initialized implicitly model unknown space. Using Boolean occupancy
states or discrete labels allows for compact representations of the octree: If all children of a node
have the same state (occupied or free) they can be pruned. This leads to a substantial reduction in
the number of nodes that need to be maintained in the tree.

In terms of data access complexity, octrees require an overhead compared to a fixed-size 3D grid
due to the tree structure. A single, random query on a tree data structure containing n nodes with a
tree depth of d can be performed with a complexity of O(d) = O(logn). Traversing the complete tree
in a depth-first manner requires a complexity of O(n). Note that, in practice, our octree is limited to a
fixed maximum depth dmax. This results in a random node lookup complexity of O(dmax) with dmax
being constant. Therefore, for a fixed depth dmax, the overhead compared to a corresponding 3D
grid is constant.

Octrees can be represented in a hierarchical tree structure or a pointerless linear tree structure.
A hierarchical tree structure’s cell list includes the root cell, intermediate cells and leaf cells. Each cell
includes pointers to parent and child cells. The point location and neighbor search operations would
follow pointers to traverse the tree. A linear tree structure’s cell list includes only leaf cells. Each cell
has a locational code which is used as a search key for cell location. Locational codes are composed
of the cells’ minimum coordinates.

Octomap

OctoMap uses a probabilistic approach to map the environment. Instead of binary occupancy
grids that mark areas as either free or occupied, OctoMap assigns a probability value to each node,
indicating the likelihood that the volume is occupied. This probabilistic representation accounts for
sensor noise and uncertainty, leading to more robust and accurate maps.

The hierarchical nature of the octree allows OctoMap to represent large environments efficiently.
Higher-level nodes cover larger volumes and can be subdivided into smaller, more detailed nodes
as needed. This approach enables the framework to adapt its resolution dynamically, providing high
detail in areas of interest while maintaining coarse representation in less critical regions.

25

Themathematical frameworkofOctoMap is basedonBayesianprobability theory,whichprovides
a systematic way to update the occupancy probabilities of nodes based on sensor measurements.

The occupancy probability of a node is updated using the Bayesian update rule. Given an ini-
tial probability P (O) and a new measurement with probability P (M |O), the updated probability
P (O|M) is computed as:

P (O|M) =
P (M |O)P (O)

P (M)
(46)

Where:

• P (O) is the prior probability of the node being occupied.

• P (M |O) is the likelihood of the measurement given the node is occupied.

• P (M) is the probability of the measurement.

To simplify the computation, OctoMap uses the log-odds representation of probabilities. The
log-odds value l of a probability p is defined as:

l = log
(

p

1− p

)
(47)

Using log-odds, the Bayesian update rule becomes a simple additive operation:

l(O|M) = l(O) + l(M |O)− l(M) (48)

This representation allows for efficient and numerically stable updates. The implementation of
OctoMap involves several key components and algorithms to build andmaintain the octree structure.
When a new sensor measurement is received, it is inserted into the octree. The measurement is
typically a 3D point cloud obtained from sensors such as LIDAR or stereo cameras. Each point in the
cloud updates the occupancy probabilities of the nodes it intersects, based on the sensor model.

Raycasting is used to update the occupancy probabilities along the sensor rays. For each point
in the point cloud, a ray is cast from the sensor origin to the point. Nodes along the ray are updated
to reflect the probability of being free, while the endpoint node is updated to reflect the probability
of being occupied. This approach ensures that free space is accurately modeled. OctoMap supports
dynamic updates, allowing the map to change as the environment changes. Nodes can be added,
removed, or updated based on newmeasurements. This capability is crucial for environments where
objects may move or appear/disappear over time.

For autonomous navigation, OctoMap provides a detailed 3D representation of the environment,
enabling path planning and obstacle avoidance. Robots can use themap to navigate through complex
and cluttered spaces, avoiding obstacles and finding optimal paths. The hierarchical octree structure
allows OctoMap to represent large environments efficiently, using less memory and computational
resources compared to voxel grids. The ability to dynamically adjust the resolution further enhances
efficiency.

26

Theprobabilistic approach ofOctoMapaccounts for sensor noise anduncertainty, leading tomore
accurate maps. The use of log-odds for probability updates ensures numerical stability and efficient
computations. OctoMap’s ability to handle dynamic environments and integrate various sensormod-
els makes it highly flexible. It can be adapted to different types of sensors and scenarios, providing
robust performance across a wide range of applications.

OctoMap is a powerful and versatile framework for 3Dmapping in robotics and autonomous sys-
tems. Its probabilistic, hierarchical representation of the environment enables efficient, accurate, and
flexible mapping, making it suitable for a wide range of applications. Whether used for autonomous
navigation, robotic manipulation, exploration, or SLAM, OctoMap provides the tools needed to build
andmaintain detailed 3Dmaps in real-time. As research and development in robotics continue to ad-
vance, OctoMap remains a crucial component for creating intelligent and capable autonomous sys-
tems.

RNN Encoder-Decoder

In contrast to traditional neural networks, an RNN’s memory cell comprises a time-dependent
feedback loop. A recurrent neural network itself can be “unrolled” τi + τo times to produce a loop-
free architecture that matches the input length, if we consider an input sequence [x<t−τi>, ..., x<t>]

which is time dependant, togetherwith an output sequence [y<t+1>, ..., y<t+τo>]. Unrolled networks
have τi + τo + 1 similar or even identical layers, which means that each layer has the same learned
weights.

This architecture is comprised of two models: a stack of several recurrent units for read-
ing the input sequence and encoding it into a fixed-length vector, and a second one for decoding
the fixed-length vector and outputting the predicted sequence. The combined models are known
as an RNN Encoder-Decoder, which is designed specifically for sequence to sequence problems.
Given the input sequence ~X<t−τi,t>, a basic RNN encoder computes the sequence of hidden states
(h1, h2, h3, . . . , hN):

ht = tanh (Uxhxt + Uhhht−1) , (49)

where the twomatricesUxh andUhh are the weightmatrix between the input layer and hidden layer,
and the weight matrix of recurrent connections in a given hidden layer, respectively.

The vanishing gradient experienced during training is the major challenge when using simple
RNNs. The gradient signal can be multiplied an infinite number of times, up to the number of time
steps. As a result, a classical RNN cannot capture long-term dependencies in sequence data. The
gradient of the network’s output will have a hard time propagating back to affect the weights of the
earlier layers if the network is very deep or processes long sequences. The weights of the network
will not be successfully modified as a result of gradient vanishing, resulting in very small weight val-
ues.

To counter these challenges, in our work, we use a set of Long Short-Term Memory (LSTM) net-
works for both the encoder and the decoder. LSTMs solve the vanishing gradient problem by adding

27

three gates that control the input, output, andmemory state, as opposed to classical recurrent neural
networks.

Θ = [Wi, Ui, bi] parametrizes an LSTM network, where Wi embodies the weights of the gates
andmemory cellsmultipliedwith the input state,Ui represents theweights controlling the network’s
activations, and bi contains the bias values of the neurons. A network output sequence is defined as
a desired ego-vehicle optimal trajectory:

Y <t+1,t+τo> = [y<t+1>, y<t+2>, ..., y<t+τo>], (50)

where y<t+1> is a predicted trajectory set-point at time t + 1. τi and τo are not necessarily equal:
τi 6= τo.

The LSTM encoder takes the latest octree samples ~X<t−τi,t>, as well as the reference trajectory
sequence ~Z<t−τi,t+τo>

ref for the current time step t, and produces an intermediate fixed-size vector ct
that preserves the temporal correlation of the previous observations. The hidden state of the LSTM
encoder ht is calculated using the following equations:

zt = σ(Uxzxt + Uhzht−1), (51)

rt = σ(Uxrxt + Uhrht−1), (52)

h̃t = tanh(Uxhxt + Urh(rt ⊗ ht−1)), (53)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t, (54)

where σ represents the sigmoid activation function. zt, rt, and h̃t are the update gate, reset gate, and
candidate activation, respectively. Uxz , Uxr , Uxh, Uhz , Uhr , and Urh are the related weight matrices.
The notation⊗ represents an element-wise multiplication operator.

The LSTM decoder takes the predicted trajectory sample to produce the subsequent trajectory
samples, producing the entire future trajectory ~Y <t+1,t+τo> for the current time step, given the
context vector ct as input. ~Y <t+1,t+τo> is defined as a sequence variable Y with data instances
[y<t+1>, ..., y<t+τo−1>, x<t+τo>] in a specific time interval [t + 1, t + τo]. Each predicted sequence
variable’s probability is calculated as follows:

p(yt|X, yt−1) = g (Uo(Eyt−1 + Usst + Ucct)) , (55)

where g is a softmax activation function. st is the current hidden state of the decoder, and yt−1

represents the previous target symbol, whileE denotes the embedding matrix.
The earlier target sequence variable yt−1 and the context vector ct are also inputs to the decoder,

which uses a single unidirectional layer to compute the hidden state st:

z′t = σ(UyzEyt−1 + Uszst−1 + Cczct), (56)

r′t = σ(UyrEyt−1 + Usrst−1 + Ccrct), (57)

s̃t = tanh(UysEyt−1 + Urs(r
′
t ⊗ st−1) + Ccsct), (58)

st = (1− z′t)⊗ st−1 + z′t ⊗ s̃t, (59)

28

where z′t, r′t, and s̃t are the update gate, reset gate, and candidate activation, respectively. Uxx and
Cxx are the related weight matrices.

The decoder retains the best sequence candidates in the algorithmwhen creating the future tra-
jectory sample for each time step. As a result, using the octree input framework, the proposedmodel
would predict the most likely hypotheses of the vehicle trajectory. As analogy to machine transla-
tion problems, a point coordinate inside an octree is a character, an octree is a word, and the se-
quence of input octrees represents an sentence. Our experiments show that an encoder-decoder
RNN produces an acceptable trajectory and that its prediction accuracy is improved in comparison to
traditional prediction methods.

Performance evaluation

OctoPath was compared to the baseline hybrid A* algorithm, to a regression-based approach,
and to a CNN learning-based approach. We put the OctoPath algorithm to the test in two distinct
environments: (I) in the GridSim simulator and (II) in a real-world navigation environment, both indoor
and outdoor, using the the AMTU robot. The AMTU is an AgileX Scout 2.0 platformwhich acts as a 1:4
scaled car, equipped with a 360° Hesai Pandar 40 Lidar, 4× e-130A cameras providing a 360° visual
perception of the surroundings, a VESC inertial measurement unit, GPS, and an NVIDIA AGX Xavier
board for data processing and control. The state of the vehiclewasmeasured usingwheels odometry
and the Inertial Measurement Unit (IMU).

All experiments aimed at solving the trajectory estimation problem, which was to calculate a
trajectory for safely navigating the driving environment without performing the motion control task.
To implementmotion control, the predicted stateswere used as input to amodel predictive controller,
which computed the necessary vx and ωz control signals for the the AMTU. The motion controller’s
design and implementation are beyond the scope of this paper.

The hybrid A* algorithm employs a modified state-update rule to apply a variant of the well-
known A* algorithm to the vehicle’s octree environment model. The search space (x, y, θ) is dis-
cretized, just like in traditional A*, but unlike A*, which only allows visiting cell centers, the hybrid
version of the algorithm associates a more continuous state of the car with each grid cell, allowing
also trajectory points that are not in the exact center of the octree cell.

In the case of trajectory prediction as a regression problem, the goal is to achieve a direct pre-
diction of continuous future positions without any discretization. Because the average prediction
minimizes the regression error, such methods have a bias to output the average of several options,
thus rendering it inaccurate.

The Neural RRT* algorithm, is a novel optimal path planning algorithm based on convolutional
neural networks. It used the A* algorithm to generate training data, considering map information
as input, and the optimal path as ground truth. Given a new path planning problem, the model can
quickly determine the optimal path’s probability distribution, which is then used to direct the RRT*
planner’s sampling operation. The performance of the algorithm varies under different values of the
clearance to the obstacles and step size. A wider clearance indicates that the planned route is far

29

from the obstacles, while a smaller clearance indicates that the planned path is closer to them. We
have used a fixed step size of 2 and a robot clearance value of 4.

We use the Root Mean Square Error (RMSE) between the predicted and the recorded trajectory
in the 2D driving plane:

RMSE =

√√√√ 1

τo

τo∑
t=1

[
(p̂<t>

x − p<t>
x)2 + (p̂<t>

y − p<t>
y)2

]
, (60)

where p̂<t>
x , p̂<t>

y are the points on the predicted trajectory, and p<t>
x , p<t>

y are the points on the
ground truth trajectory, respectively. We set the prediction horizon τo = 10.

The workflow of the experiments is as follows:

• collect training data from driving recordings;

• generate octrees and format training data as sequences;

• train the OctoPath deep network;

• evaluate on simulated and real-world driving scenarios.

This experimental setup resulted in 15 km of driving in GridSim, over 1 km of looped indoor nav-
igation and over 2 km of outdoor navigation outside of Transilvania University of Brasov’s IHTPSD
(Institute of High Tech Products for Sustainable Development). The robot navigated indoor and out-
door environments while avoiding static and dynamic obstacles.

Table 1: Errors between estimated and ground truth trajectories in simulation and real-world navi-
gation testing scenarios.

Scenario Method ēx[m] max(ex)[m] ēy[m] max(ey)[m] RMSE[m]

GridSim Hybrid A* 1.43 3.21 2.71 4.01 2.71
simulation Regression 3.51 7.20 4.71 8.53 5.10

Neural RRT 1.27 3.01 2.35 2.98 2.48
Octopath 1.16 2.31 1.72 2.75 2.07

Indoor Hybrid A* 1.21 4.33 1.33 3.88 1.74
navigation Regression 1.90 5.73 2.31 4.98 2.75

Neural RRT 1.01 3.29 0.98 2.16 1.44
Octopath 0.55 1.08 0.44 0.87 0.69

Outdoor Hybrid A* 1.35 4.67 1.44 4.44 1.98
navigation Regression 2.41 8.42 2.77 8.98 3.01

Neural RRT 1.05 2.52 1.06 3.24 1.17
Octopath 0.71 1.46 0.57 1.17 0.88

GridSim is a self-driving simulation engine that generates synthetic occupancy grids from simu-
lated sensors using kinematic models, which are then used to produce input octree data. The user

30

interface was integrated into the GridSim environment menu, such that the modes can be switched
between replay, record, and training, with each one having access to the five different scenarios.
There is a large number of configurable parameters, such as the resolution of the simulator, occu-
pancy grid precision, number of traffic participants, ego vehicle’s size, maximum speed, or turning
radius.

The goal is to get from a starting position to a given destination while avoiding collisions and
driving at the desired speed. The Z coordinate of all obstacle and free space points is set to zero to
adjust the encoder-decoder network’s input data to the GridSim environment. The testing scenar-
ios generated using the GridSim simulation environment were not used during the training of the
network.

For the various types of roads and traffic environments found in the synthetic testing database,
the performance assessment of the benchmarked algorithms is summarized in the top part of the
Table 1. Themean position errors (ēx, ēy), aswell as theRMSEmetric fromEquation (60) is illustrated.

The indoor navigation experiment was performed using the AMTU skid steer wheeled mobile
robot vehicle, with different indoor navigation tasks. The reference routeswhich the car had to follow
were composed of straight lines, S-curves, circles, and a 75 m track on the main hallway of Transil-
vania University of Brasov’s Institute for Research.

The testing room for the indoor experiment was the same as the one that was used for gathering
training data, but the reference routes and the obstacles were placed differently. The main hallway
was not used for gathering training data.

The first set of 10 trials were performed without any obstacles present on the reference routes,
while the second 10 trials set contained static and dynamic obstacles. Fifty-four thousand training
samples have been collected in the form of LiDAR data and vehicle states. The path driven when
collecting datawas considered as a reference trajectory andwas created in a self-supervisedmanner.

The outdoor navigation experiment was performed outside of Transilvania University of Brasov’s
IHTPSD (Institute of High Tech Products for Sustainable Development). The reference route which
the car had to follow was composed of a full loop around the institute and was created using a GPS
tool. The route itself is around 500 m long, and we ran it 4 times.

The outdoor reference path which was used for training the network was recorded as the driven
path when collecting the sensory data. When testing the network, the reference path was gener-
ated using our vehicle mission planner tool. The static obstacles were mainly parked cars, while the
dynamic obstacles were moving cars or people.

The mean and standard deviation of the position error (computed as RMSE), left side for indoor
navigation, and right side for outdoor navigation. The position errors are shown in Table 1 for all
scenarios: simulation, indoor navigation and outdoor navigation. The mean (ēx, ēy) and maximum
(max(ex), max(ey)) position errors, as well as the RMSEmetric from Equation (60), are shown. When
compared toOctoPath, Neural RRThas the lowest deviations, but, fromthenon-learningapproaches,
Hybrid A* performs the best, indicating that it is a good candidate for non-learning trajectory esti-
mation.

In the performed experiments, the hybrid A* algorithm behaved better than the regression ap-

31

proach, mostly because of the structure of the octree environment model input data. This makes A*
strictly dependent on the precision of the obstacle representation in the surrounding environment.
Besides, the jittering effect of OctoPath may be a side effect of the decoder output’s discrete nature.
It will, however, provide a reliable ego-vehicle trajectory prediction over a given time horizon.

The e-CAM130A synchronized quad cameras will be used in future research to perform a full
semantic segmentation on the received point cloud and to extend the validation of our approach to
more use-cases. Learning-based approaches have proven that they can deliver better results in the
long run than conventional methods. This improvement would be achieved by training onmore data,
which would include a greater number of corner cases.

Personal contributions

Based on the objectivesmentioned at the beginning, the personal contributions fall into the same
four categories, which are detailed as follows:

1. Comprehensive literature review: particular emphasis on deep learning techniques and high-
lighting their transformative impact on the autonomous driving field.

2. Simulation environment development: providing a controlled environment for testing and val-
idating the algorithms, ensuring safe and repeatable experimentation.

3. Algorithm development: sensor fusion for enhanced perception and learning-based path plan-
ning algorithms.

4. Evaluation and benchmarking: Comprehensive evaluation and benchmarking against estab-
lished methods, proving the efficacy and reliability of the developed methods.

Comprehensive literature review

The review successfully outlines the transformative potential of autonomous driving, emphasiz-
ing its impact on safety, efficiency, and convenience in transportation. It highlights the rapid advance-
ments in technology, such as sensor fusion, machine learning, and path planning, which are critical
for the development of autonomous vehicles. The chapter also identifies key challenges, including
environmental robustness, human-vehicle interaction, regulatory frameworks, and cybersecurity. By
addressing these challenges through interdisciplinary research and collaboration, the chapter sets a
solid foundation for the thesis, aiming to advance the field of autonomous driving through innovative
path planning algorithms and sensor integration techniques.

To summarize, the main contributions of this category are:

32

• Conducted a thorough literature review to identify and evaluate existing methodologies and
technologies in autonomous navigation and path planning, highlighting key advancements and
persistent challenges.

• Identified critical gaps and limitations in current research, providing a foundation for the devel-
opment of innovative solutions in autonomous vehicle navigation.

Simulation environment development

This section details the experimental platforms developed and utilized during the thesis research.
It covers the creation of the GridSim simulation environment, which was instrumental in testing the
proposed deep learning approaches for autonomous driving. It also describes the development and
testing of the Raspberry Pi Robot prototype and the AMTU platform, highlighting their roles in vali-
dating the proposed algorithms. By providing a robust simulation and testing environment, it ensures
that the path planning algorithms can be rigorously evaluated under realistic conditions, thereby en-
hancing their reliability and performance in real-world scenarios.

The primary contributions of this category are:

• Developed a robust simulation tool (namely GridSim) designed to emulate real-world driving
conditions, facilitating the controlled testing and validation of proposed algorithms.

• Ensured the simulation tool accurately represents diverse and dynamic real-world scenarios,
enhancing the reliability of algorithm testing.

• Development of the prototype Raspberry-PI Robot and of the main robotic platform used for
experiments, the AMTU skid-steered wheeled mobile robot.

Algorithm development

This section covers the development of path planning and behavior arbitration algorithms for au-
tonomous vehicles. It introduces the concept of grid-based representation and addresses the chal-
lenges of navigating complex environments. It elaborates on the behavior arbitration mechanism,
which involves driving scene description, analysis, and modeling. The Neuro-Trajectory approach, a
multi-objective neuroevolutionarymethod, is presented as a solution for local state trajectory learn-
ing. By effectively combining cognitive learning tasks with neuroevolutionary training, this chapter
contributes significantly to advancing the capabilities of autonomous vehicles in dynamic and unpre-
dictable environments.

Afterwards, it extends the research to a 3D representation using OcTrees, enhancing the spatial
perception andpathplanning capabilities of autonomous vehicles. It discusses the implementationof
the OctoPath system, a self-supervised encoder-decoder neural network designed for predicting op-
timal vehicle paths in 3D environments. By transitioning from 2D to 3D representations, this chapter

33

demonstrates a significant improvement in the accuracy and reliability of path planning algorithms,
contributing to more robust and efficient autonomous driving solutions.

In summary, this category’s primary contributions are:

• Designed and implemented a comprehensive sensor fusion framework integrating data from
LiDAR, cameras, and IMUs.

• Demonstrated significant improvements in perception accuracy and reliability, contributing to
the autonomous vehicle’s situational awareness in behavior arbitration.

• Developed, implemented, and rigorously tested a novel learning-based algorithm for efficient
and accurate path planning in 2D grids

• Developed OctoPath, a self-supervised encoder-decoder deep neural network that predicts
the optimal path for the vehicle, efficiently handling 3D spatial data, allowing for accurate and
scalable trajectory predictions in complex environments.

Evaluation and benchmarking

The key contributions of this category are:

• Developed a secure and efficient development environment on the NVidia AGX Xavier board,
ensuring optimal performance and security of the implemented algorithms.

• Established various performance metrics and testing scenarios to rigorously evaluate the reli-
ability and efficiency of the developed algorithms.

• Ensured the proposed algorithms perform optimally across diverse datasets and adapt effec-
tively to different driving conditions, demonstrating versatility and robustness.

• Highlighted the practical implications of the research, showcasing its potential to enhance the
safety, efficiency, and reliability of autonomous vehicles in real-world applications.

Dissemination of research results

The dissemination of the research results has been pivotal in advancing the field of autonomous
vehicles and intelligent systems. Several patents have been filed regarding some of the technologies
and methodologies developed during this research:

• Grigorescu, S., Trasnea, B., Vasilcoi A., Training of a convolutional neural network, World Intel-
lectual Property Organization, Patent no. WO2021008798A1, 2020.

34

• Grigorescu, S., Macesanu, G., Cocias, T., Trasnea, B., Ginerica, C., Generating training images
for machine learning-based object recognition systems, European Patent Office, Patent no.
EP3343432A1, 2018.

• Vasilcoi A., Radu P., Marina L., Trasnea, B., Grigorescu, S., Convolutional neural network with
reduced complexity, European Patent Office, Patent no. EP3343432A1, 2020.

• Trasnea, B., Grigorescu, S., Trajectory estimation for vehicles, European Patent Office, Patent
no. EP3839830A1, 2021.

Several publications in international scientific journals and conference proceedings resulted from
the work done during the PhD studies. Three research papers have been published as first author,
and important contributions to another eight have been made, as follows:

• Trasnea, B., Ginerica, C., Zaha, M., Macesanu, G., Pozna, C. and Grigorescu, S., OctoPath:
An OcTree-Based Self-Supervised Learning Approach to Local Trajectory Planning for Mobile
Robots. Sensors, 21(11), p.3606, 2021. DOI: 10.3390/s21113606

• Trasnea, B., Pozna, C. and Grigorescu, S.M., AIBA: An AI Model for Behavior Arbitration in Au-
tonomous Driving. InMulti-disciplinary Trends in Artificial Intelligence: 13th International Con-
ference, MIWAI 2019, Kuala Lumpur, Malaysia, Proceedings (Vol. 11909, p. 191). Springer
Nature, November 17–19, 2019. DOI: 10.1007/978-3-030-33709-417

• Trasnea, B., Marina, L.A., Vasilcoi, A., Pozna, C.R. and Grigorescu, S.M., GridSim: A vehicle kine-
matics engine for deep neuroevolutionary control in autonomous driving. In 2019 Third IEEE
International Conference on Robotic Computing (IRC) (pp. 443-444). IEEE, February 2019. DOI:
10.1109/IRC.2019.00091

• Grigorescu, S., Trasnea, B., Cocias, T. and Macesanu, G., A survey of deep learning tech-
niques for autonomous driving. Journal of Field Robotics, 37(3), pp.362-386, 2020. DOI:
10.1002/rob.21918

• Marina, L.A., Trasnea, B. and Grigorescu, S.M., A multi-platform framework for artificial in-
telligence engines in automotive systems. In 2018 22nd International conference on system
theory, control and computing (ICSTCC) (pp. 559-564). IEEE, October 2018. DOI: 10.1109/ic-
stcc.2018.8540753

• Marina, L.A., Trasnea, B., Cocias, T., Vasilcoi, A., Moldoveanu, F. and Grigorescu, S.M., Deep Grid
Net (DGN): A deep learning system for real-time driving context understanding. In 2019 Third
IEEE International Conference on Robotic Computing (IRC) (pp. 399-402). IEEE, February 2019.
DOI: 10.1109/IRC.2019.00073

• Grigorescu, S.M., Trasnea, B., Marina, L., Vasilcoi, A. and Cocias, T., Neurotrajectory: A neuroevo-
lutionary approach to local state trajectory learning for autonomous vehicles. IEEE Robotics
and Automation Letters, 4(4), pp.3441-3448, 2019. DOI: 10.1109/lra.2019.2926224

35

• Grigorescu, S., Cocias, T., Trasnea, B., Margheri, A., Lombardi, F. and Aniello, L., Cloud2Edge
Elastic AI Framework for Prototyping and Deployment of AI Inference Engines in Autonomous
Vehicles. Sensors, 20(19), p.5450, 2020. DOI: 10.3390/s20195450

• Grigorescu, S., Zaha,M., Trasnea, B. andGinerica, C., EmbeddedVision for Self-Driving on Forest
Roads. IEEE Computer Vision and Pattern Recognition conference (CVPR), Workshop Demo on
Embedded Vision. June 2021.

• Grigorescu, S., Ginerica, C., Zaha, M., Macesanu, G. and Trasnea, B., LVD-NMPC: A
Learning-based Vision Dynamics Approach to Nonlinear Model Predictive Control for Au-
tonomous Vehicles. International Journal of Advanced Robotic Systems. May 2021. DOI:
10.1177/17298814211019544

• Ginerica, C., Zaha, M., Gogianu, F., Busoniu, L., Trasnea, B. and Grigorescu, S. Obser-
veNet Control: A Vision-Dynamics Learning Approach to Predictive Control in Autonomous
Vehicles. IEEE Robotics and Automation Letters, 6(4), pp.6915-6922, 2021. DOI:
10.1109/LRA.2021.3096157

Parts of the research results were also presented at the 2019 European Robotics Forum in
Bucharest, Romania, where over 50 exhibitors displayed their prototypes, goods, and services
and visitors learned about Europe’s most sophisticated robotics industry, research institutes, and
projects.

Conclusions and future work

The research began with an extensive review of technological advancements andmethodologies
underpinning autonomous driving systems, focusing on the transformative impact of deep learning
techniques. It detailed the application of Convolutional Neural Networks (CNNs) for object detection,
image recognition, and scene segmentation, and Recurrent Neural Networks (RNNs) for sequence
prediction and behavior modeling. Furthermore, Deep Reinforcement Learning (DRL) is explored for
developing policies that enable autonomous vehicles to learn optimal driving strategies through en-
vironmental interaction.

Applications of these technologies have been thoroughly examined, particularly in driving scene
understanding, path planning, behavior arbitration, and sensor fusion. The practical implementation
employsPython frameworks like TensorFlow, Keras, andPyTorch to develop anddeploy deep learning
models. The study then transitioned to experimental platforms, startingwith the development of the
GridSim Simulator for testing autonomous driving algorithms in a controlled environment.

36

The primary robotic platform, AMTU, equippedwith e-Cam130A quad cameras and a 360-degree
Hesai Pandar LiDAR, validated the algorithms under realistic conditions. The thesis details the iter-
ative development and experimental process, integrating and testing key algorithms on these plat-
forms to bridge the gap between theoretical research and practical deployment.

The research culminated in theadvancementof autonomousvehicle trajectory prediction through
the NeuroTrajectory and OctoPath algorithms. NeuroTrajectory uses a neuroevolutionary approach
with multiobjective Pareto optimization to learn local state trajectories from occupancy grids. Oc-
toPath, employing self-supervised learning with an octree-based environment model, predicts local
trajectories efficiently, demonstrated to operate in real-time on the Nvidia AGX Xavier.

OctoPath’s adaptability to different environmental resolutions and its capability to handle three-
dimensional spatial data highlighted its effectiveness in dynamic environments. Comparative anal-
yses validated OctoPath as a robust method for local trajectory prediction, emphasizing its practical
applicability in both simulation and real-world scenarios.

The research projects completed throughout the PhD program show that deep learning has a
lot of potential in the automotive and robotics industries. However, based on current research and
this thesis’ contributions, there are a few challenges and constraints that need to be solved. Path
planning remains a critical challenge in autonomous vehicle navigation. Future research should focus
on developing more sophisticated algorithms that can handle dynamic and complex environments.
Potential areas include:

• Multi-agent path planning: exploring coordination strategies amongmultiple autonomous ve-
hicles to optimize traffic flow and reduce congestion.

• Enhanced sensor fusion techniques: investigate newmethods for combining data fromdiverse
sensors (e.g., LiDAR, radar, cameras) to improveenvironmental perception andobject detection.

• Energy-efficient algorithms: designing algorithms that maximize computational efficiency
while minimizing energy consumption, crucial for electric vehicles.

• High-performance computing integration: leveraging advancements in hardware, such as
GPUs and FPGAs, to enhance the processing capabilities of embedded systems.

• Latency reduction: developing low-latency communication protocols to ensure timely data ex-
change between vehicles and infrastructure.

• Robustness in adverse conditions: develop algorithms that can maintain high performance in
challenging conditions such as heavy rain, fog, or snow.

• Predictive maintenance algorithms: developing machine learning models that predict and pre-
vent system failures before they occur.

Additionally, greater consideration should be given to combining and optimizing deep neural net-
work designs. In addition, alternative hybrid loss functions and training techniques, such as adver-
sarial setup, should be investigated. In conclusion, the future of autonomous vehicle research is rich

37

with opportunities for innovation and improvement. By addressing these directions, researchers can
contribute to the development of safer, more efficient, and user-friendly autonomous systems.

38

	Doctoral thesis subject
	Research objectives
	Thesis structure
	Developing simulation environments
	GridSim
	Raspberry PI Robot
	Agile Scout AMTU

	2D path planning
	Problem definition
	AI Behavior Arbitration (AIBA)
	NeuroTrajectory

	OctoPath - extending to 3D representation
	OcTrees
	Octomap
	RNN Encoder-Decoder
	Performance evaluation

	Personal contributions
	Comprehensive literature review
	Simulation environment development
	Algorithm development
	Evaluation and benchmarking

	Dissemination of research results
	Conclusions and future work

