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1. Introduction

Introduction
Deep Neural Networks in Cardiac Diagnosis
Vascular Diseases
Valvular Diseases
Inflammatory Cardiac Diseases
Thesis Structure and Content

1.1 Introduction
Cardiac diseases persist as a primary contributor to global morbidity and mortality, highlight-

ing the imperative for precise and prompt diagnosis. Recent advancements in medical imaging and
computational methodologies have facilitated significant improvements in the accuracy of diagnos-
tics and the quality of patient care. Deep Neural Networks (DNNs), in particular, have been at the
forefront of this technological progress, showcasing exceptional proficiency in the analysis of intri-
cate medical datasets. This paper delves into the utilization of DNNs for the diagnosis of vascular,
valvular, and inflammatory cardiac conditions, specifically concentrating on coronary artery disease,
aortic stenosis, andmyocarditis. Through the adoption of deep learning techniques, researchers and
healthcare professionals are able to detect nuanced patterns within medical imagery that traditional
methods might overlook, thus paving the way for advancements in cardiac care that are both more
precise and personalized.

1.2 Deep Neural Networks in Cardiac Diagnosis
Deep learning techniques empower computationalmodels to learn data representations through

multiple processing layers, enabling them to abstract information at different levels [1]. At the heart
of these deep learning methods are Artificial Neural Networks (ANNs), which are essential for their
operation. ANNs are comprised of numerous artificial neurons, as illustrated by a basic example in
Figure 1.1.

Within an ANN, each artificial neuron processes multiple inputs into a single output. These in-
puts are individually weighted, summed, and often adjusted by an additional bias term before being
processed through a nonlinear function. The capability of ANNs to layer multiple neurons enables
the modeling of complex nonlinear input-output relationships, crucial for generating precise predic-
tions. As we can see in Figure 1, the ANN takes as input some characteristics about the patient and
learns to predict the 10 year cardiovascular risk. Despite their origins in the late 1950s [1] and early
applications in medical imaging by 1995 [2], ANNs did not gain their current popularity until recently.
This shift is largely attributed to both methodological advancements and the increased availability
of computational resources, overcoming previous limitations of shallow network architectures that
could not effectively model the intricate relationships in medical images. Nowadays, with the advent
ofmore accessible computational power, researchers are developing ANNswith dozens or even hun-
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Figure 1.1: Illustration of an ANN that predicts the 10 year cardiovascular risk.

dreds of layers, facilitating the direct analysis of medical images without the need for prior feature
extraction.

The selection of a neural network’s architecture is determined by the specific problem it is de-
signed to solve. The term ”architecture” in this context refers to the configuration of the neural
network, including the number and arrangement of layers and neurons, as well as their intercon-
nections. For tasks in image analysis, Convolutional Neural Networks [3] (CNNs) are frequently the
architecture of choice. Unlike traditional ANNs, CNNs significantly reduce the quantity of parame-
ters (weights) by employing shared weights across different locations in the image. This reduction
is achieved through the application of convolution operations, thereby earning the designation ”con-
volutional” neural network. An example of a convolution neural network applied on a medical image
is depicted Figure 1.2. CNN architectures typically incorporate both convolutional layers and pooling
layers. Pooling layers, which do not possess weights, serve to downsample the input data, often by
a factor of 2, decreasing the image’s resolution but enlarging the field of view for the layers that fol-
low. This enlargement is instrumental for CNNs in integrating greater contextual information from
images. For tasks such as image classification or regression, convolutional networks often conclude
with fully connected layers, which resemble those found in standard ANNs and aim to consolidate
the extracted feature information into a singular predictive output. In applications requiring image
segmentation, such as segmenting the left or right ventricle in cardiovascular imaging, CNN archi-
tectures can be specially tailored. These specialized architectures, capable of accepting an image as
input and directly producing a segmented output at the image scale, are referred to as Fully Convo-
lutional Networks (FCNs). One FCN network architecture is known as U-Net, with many applications
in medical imaging [4].

Another neural network architecture employed in medical imaging is the Recurrent Neural Net-
work (RNN) [5]. RNNs utilize a feedback loopmechanism, enabling the network to retain information
from previous inputs and incorporate it into the processing of future sequences, thereby creating a
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Figure 1.2: Simple illustration of a CNN.

memory effect that is essential for processing sequential data, including applications in electrocar-
diography, textual analysis, or cine-MRI studies. An RNN operates by processing the initial element
of a sequence to generate a prediction, then iteratively combines its previous output with the subse-
quent sequence element for future predictions, as illustrated in Figure 1.3. RNNs represent a class of
sophisticated dynamic models capable of handling temporal dependencies; however, their training
poses significant challenges. The difficulty arises from the phenomenonwhere gradients propagated
back through the network during training either increase or decrease exponentially with each time
step. As a result, across numerous steps, these gradients tend to either explode or vanish [6], com-
plicating the network’s effective training.

Building on the discussion of neural network architectures such as ANNs, CNNs, RNNs, it is es-
sential to delve into their deployment within the medical diagnosis and imaging context, framed by
supervised and unsupervised learning paradigms [7]. In the realm of supervised learning, these neu-
ral networks are trained with labeled medical datasets, where each input (e.g., an MRI image) is as-
sociated with a specific diagnosis or outcome. This method is particularly valuable for diagnostic
tasks, where precise predictions—such as identifying the presence of tumors or classifying different
stages of a disease—are critical. Supervised learning enables these networks to learn from his-
torical, annotated medical data, enhancing their accuracy in diagnosing new cases. In contrast, un-
supervised learning allows neural networks to analyze medical images without predefined labels,
offering a powerful tool for discovering novel patterns or anomalies that may not have been previ-
ously known. This approach is beneficial for segmenting complexmedical images, identifying patient
groupings based on disease markers, or even uncovering new diagnostic indicators within medical
data. Unsupervised learning in medical imaging can lead to the development of new diagnostic cri-
teria and the exploration of uncharted territories in patient data, facilitating a deeper understanding
of diseasess Both learning paradigms significantly contribute to advancing medical diagnosis and
imaging, tailoring neural network architectures to meet the specific needs of medical profession-
als and researchers. By leveraging supervised learning, neural networks can achieve high precision
in diagnostic tasks, while unsupervised learning offers the potential for breakthrough discoveries in
understanding and classifying diseases, showcasing the versatile application of these technologies
in enhancing patient care and medical research.

In this section, we present a comprehensive overviewof the latest advancements in utilizing deep
learning algorithms for cardiovascular imaging. The discussion is structured by imaging modality,
with a primary focus on ultrasound, CT, and MRI, while also covering other modalities in a collective
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Figure 1.3: Simple illustration of a RNN network. The curved arrows highlight the feedback loop of
RNNs.

manner.
Deep learning has made significant strides in the field of cardiovascular ultrasound, with ap-

plications spanning detection, classification, segmentation, tracking, and the generation of reports.
Moradi et al. [8] pioneered a technique that leverages a deep learning model to understand the rela-
tionship between electronic medical records and echocardiography images, facilitating the selection
of pertinent medical records for specific echocardiography images. In work by Chen et al. [9], a Con-
volutional Neural Network (CNN) was employed to accurately segment the left ventricle from five
distinct 2D perspectives, demonstrating the superior segmentation capabilities of multiview CNNs.
Carneiro et al. [10] first applied an Artificial Neural Network (ANN) to predict landmarks critical for
outlining the left ventricle’s segmentation contour. This method was later expanded to include left
ventricle tracking and enhanced through the integration with multi-atlas registration techniques for
refined segmentation. Dong et al. [11] and Ghesu et al. [12] have successfully combined deep learn-
ingwith conventional techniques for segmenting the left ventricle and aortic valve, respectively, with
the approach by Ghesu et al. [12] achieving a segmentation quality improvement of over 40% com-
pared to previousmethodologies. The task of disease classification using echocardiography has been
investigated by Diller et al. [13], Jun et al. [14], and Zhang et al. [15], with the study by Zhang et al.
[15] reporting strong classification performance utilizing a comprehensive dataset comprising more
than 14,000 echocardiograms. Additionally, deep learning has proven effective for the classification
of time points and views in ultrasound sequences, as evidenced by the methodologies developed
by Dezaki et al. [16] and Abdi et al. [17] for identifying end systolic and end diastolic frames, and
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evaluating the quality of echo series, respectively.
In the realm of CT imaging, deep learning techniques are employed for a variety of critical tasks,

including the localization and segmentation of anatomical features, serving vital clinical needs in both
noncontrast CT scans and coronary CT angiography (CCTA). Commandeur et al. [18] successfully ap-
plied Convolutional Neural Networks (CNNs) to delineate epicardial and thoracic adipose tissue in
noncontrast cardiac CT images, delivering precise segmentation across a broad patient base. Zreik et
al. [19] introduced a multiscale, patch-based CNN approach for segmenting the left ventricular my-
ocardium, proving its effectiveness in the accurate quantification of volumes. Wuet al. [20] leveraged
a Long Short-TermMemory (LSTM) Recurrent Neural Network (RNN) for the task of segment labeling
within the coronary artery tree, opening new avenues for the identification of plaque and stenosis.
Furthermore, the role of deep learning extends to the detection of atherosclerosis in noncontrast
CT scans, with studies by Wolterink et al. [21] and Lessmann et al. [22] showcasing the successful
identification of coronary artery and aortic calcifications through CNN-based strategies.

Deep learning’s application to MRI has been predominantly centered on segmentation tasks,
especially concerning cardiac structures to evaluate cardiac function, with contemporary methods
reaching the accuracy level of human experts [23]. Before the advent of deep learning, segmen-
tation relied heavily on techniques such as multi-atlas registration and deformable shape models.
Initial forays sought to combine deep learning with these traditional methods [24, 25, 26, 27]. How-
ever, the focus has shifted towards leveraging Convolutional Neural Networks (CNNs) in recent ad-
vancements [28]. Bernard et al. [28] conducted a review of cardiac MRI analysis techniques, finding
widespread use of CNNs for automatic segmentation and the classification of pathologies, marking
a significant evolution in the field. Innovations include the adoption of both 2D and 3D U-nets for
enhanced segmentation accuracy [29]. Vigneault et al. [29] contributed to this progress by improv-
ing the segmentation of the left and right ventricular cavities. The Kaggle Data Science Bowl in 2015
[30] motivated a surge in segmentation-focused methods aimed at evaluating the left ventricular
ejection fraction (LVEF) [31, 32, 33]. Beyond segmentation, deep learning’s utility in cardiovascular
MRI also covers scar tissue identification [34, 35, 36], quality assessment, precise localization, and
image reconstruction [37, 38, 39, 40, 41], offering a quicker and more practical solution compared
to traditional manual tracing of cardiac structures [42]. Deep learning has also shown promise in
pinpointing specific time frames within cardiac cine-MRI and in MRI imaging without the need for
breath-holding [39, 40], and it has demonstrated superiority over compressed sensing techniques
in reconstructing dynamic cardiac MRI images [41].

Deep learning’s impact extends beyond traditional imaging modalities, as evidenced by pioneer-
ing efforts in nuclear cardiology by Betancur et al. [43, 44], who leveraged Convolutional Neural
Networks (CNNs) for the diagnosis of obstructive diseases throughmyocardial perfusion imaging us-
ing single-photon emission computed tomography, analyzing a large dataset of over 1,600 patients
from multiple medical centers. This innovation in nuclear cardiology is part of a broader application
of deep learning across various imaging techniques. In the domain of intraoperative x-ray imaging,
deep learning enhances functionality through real-time image denoising [45], accurate stent seg-
mentation [46], and the synchronization of preoperative cardiac models with intraoperative x-ray
fluoroscopy [47]. Similarly, in intravascular optical coherence tomography, CNNs are instrumental for
plaque detection and classification [48, 49, 50], vessel lumen segmentation for stenosis assessment
[51], and the derivation of heartmotion from intraoperative videos [52]. These advancements under-
score deep learning’s transformative potential in improving diagnostic accuracy, procedural planning,
and execution across multiple modalities, including nuclear cardiology and intraoperative imaging
techniques. Together, these applications illustrate the versatility and comprehensive utility of deep
learning in enhancing the diagnosis and treatment planning in a wide array of clinical settings, bridg-
ing the gap between various imaging modalities and paving the way for integrated, precision-driven
healthcare solutions.
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1.3 Vascular Diseases
Vascular disorders represent a diverse array of conditions that impair the function and structure

of blood vessels, including arteries, veins, and lymphatics, leading to substantial global health care
challenges due to their widespread prevalence and the significantmorbidity andmortality they cause
[53]. These pathologies interfere with the vessels’ capacity to efficiently circulate blood throughout
the organism, encompassing a range from arterial obstruction due to atherosclerotic plaque forma-
tion to venous thromboembolic incidents and inflammation-induced vasculitis. Among these, Pe-
ripheral Artery Disease (PAD) emerges when atherosclerotic plaques accumulate in the peripheral
arteries, eliciting claudication and ischemic manifestations in the lower extremities. Carotid artery
disease, characterized by stenosis of the carotid arteries, escalates the risk for cerebrovascular ac-
cidents. Venous conditions such as varicose veins and Deep Vein Thrombosis (DVT) originate from
venous incompetence and thrombotic episodes. Aortic aneurysms, inclusive of both thoracic and
abdominal variants, represent significant rupture hazards. Vasculitis denotes the inflammatory al-
terations within the vessel walls, impacting diverse organs and tissues.

The diagnostic process for vascular diseases incorporates clinical evaluations alongside imaging
methodologies. Non-invasive imaging techniques like ultrasound facilitate the immediate observa-
tion of hemodynamics and vascular structure. Conversely, invasive diagnostic approaches such as
catheter angiography are indispensable for detailed arterial examination. Advanced imaging tech-
nologies, including Computed Tomography (CT) and Magnetic Resonance (MR) Angiography, provide
intricate anatomical insights.

The etiology of vascular diseases is multifactorial, with modifiable risk elements like tobacco
use, dyslipidemia, hypertension, and diabetes mellitus playing a significant role. Conversely, non-
modifiable determinants such as genetic factors and chronological aging also influence susceptibility
to these disorders.

Therapeutic interventions for vascular diseasesprioritize lifestyle alterations, pharmacologic treat-
ment, and surgical or endovascular techniques. Lifestyle modifications, including cessation of smok-
ing and adoption of regular physical activity, are fundamental in managing risk factors. Pharma-
cotherapies aimed at modulating lipid metabolism and inhibiting platelet aggregation contribute to
slowing disease progression. Meanwhile, invasive remedies, such as angioplasty and the insertion
of stents, prove efficacious in re-establishing perfusion in obstructed conduits.

1.3.1 Coronary Artery Disease

Cardiovascular disease (CVD) continues to be the primary global cause of death and disability,
largely attributed to atherosclerosis, an inflammatory condition that leads to arterial obstruction and
frequently progresses to coronary artery disease (CAD) [54, 55]. Despite the established predictive
value of traditional risk factors such as age, sex, and diabetes [56], along with genetic predisposi-
tions [57], the prediction of clinical outcomes like ischemic tissue damage remains challenging when
relying solely on these indicators [58, 59, 60].

The development of coronary collateral circulation (CCC), characterized by the formation of natu-
ral bypass routes or collateral arteries, is crucial in alleviating ischemic tissue damage and enhancing
survival rates [61, 62, 63, 64, 65]. Yet, the detection methods for CCC have not kept pace with its
clinical significance. To address this issue, we propose an innovative technique employing deep neu-
ral networks to identify CCC from invasive coronary angiography (ICA) images, the gold standard for
diagnosing CAD [66].

Previous efforts to detect CCC from ICA have been scarce, with related research focusing on the
assessment of collateral physiology under conditions of total occlusion [66], vessel segmentation for
collateral scoring in brain CT angiography [67], and the development of automated collateral scoring
algorithms [68]. Furthermore, deep learning has been applied to evaluate collaterals in patients with
ischemic stroke using CT angiography [69], although the dynamic nature of coronary vessels during
cardiac cycles poses a significant challenge for CCC detection [69].
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Deep learning techniques have also been extensively applied in analyzing ICA and CTA images for
a variety of cardiovascular applications, including coronary artery segmentation [70], calcium scoring
[71], and predicting cardiovascular hemodynamics for bypass surgery planning [72].

1.4 Valvular Diseases
Valvular heart disease encompasses a spectrumof pathologies affecting the cardiac valves, com-

promising their function [73]. The human heart consists of four chambers and an equal number
of valves: the mitral, tricuspid, aortic, and pulmonary valves, which play a pivotal role in regulating
hemodynamics [74].

The array of conditions classified under valvular heart disease includes regurgitation, stenosis,
and atresia. Regurgitation is defined by the inability of a valve to close completely, resulting in the
backward flow of blood. Stenosis refers to the narrowing of a valve orifice, impeding the forward flow
of blood, whereas atresia describes a complete absence of a valve opening. Any of the cardiac valves
may be afflicted by these disorders, affecting the overall efficiency of the cardiovascular system.

The etiology of valvular heart disease is varied, ranging from congenital anomalies and infectious
agents such as endocarditis, to degenerativemodifications associatedwith aging, and complications
of other cardiovascular diseases includingheart failure andatherosclerosis. Rheumatic heart disease,
a sequelae of rheumatic fever following streptococcal infections, remains a significant global health
issue, albeit its prevalence has diminished in areas with accessible antibiotic therapy.

Clinical manifestations of valvular heart disease are diverse and may include dyspnea, thoracic
discomfort, fatigue, vertigo, arrhythmias, and edema resulting in suddenweight gain. Symptomatol-
ogy and severity are highly variable, with some individuals remaining symptom-free until the disease
progresses to an advanced stage.

The diagnostic evaluation of valvular heart disease frequently beginswith auscultation to identify
abnormal cardiac sounds or murmurs. Echocardiography stands as a cornerstone in the diagnostic
imaging of these conditions, offering detailed insights into valve morphology and functionality.

The therapeutic management of valvular heart disease is multifaceted, typically involving phar-
macological treatment alongside surgical intervention. Medications aim to mitigate symptoms and
manage concurrent conditions such as hypertension. Nonetheless, in severe cases, surgical correc-
tion or valve replacement becomes imperative. The choice between traditional open-heart surgery
and less invasive surgical options is contingent upon the specific valve involved and the patient’s
general health status.

1.4.1 Aortic Stenosis

Aortic stenosis (AS) is a common valvular heart disease observed in 2% to 5% of the elderly popu-
lation, presenting significant clinical challenges amidst an aging demographic [75]. Echocardiography
is the foremost non-invasive technique for evaluating AS and guiding therapeutic decisions [75]. The
primary cause of AS is linked to degenerative changes, with current therapeutic strategies limited to
aortic valve (AV) replacement due to the absence of medical treatments capable of decelerating the
disease’s progression [76]. Present guidelines for AV replacement are mainly based on the sever-
ity of the condition and patient symptoms, which may neglect essential factors like detailed lesion
analysis [77]. Particularly, low flow and low gradient AS, which accounts for 35-40% of cases, intro-
duces diagnostic dilemmas that could result in suboptimal therapeutic interventions, underscoring
the necessity for refined diagnostic methodologies [78].

The integrationof echocardiographic datawith clinical insights into artificial intelligence (AI) frame-
works appears promising for augmenting the precision of AS severity evaluations and therapeutic
planning [79]. Nevertheless, the comprehensive evaluation of AS requires extensive echocardio-
graphic measurements, leading to protracted examination times [79]. Recent research underscores
the capacity of AI, especially deep learning (DL), to autonomously identify and quantify echocardio-
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graphic indices [80, 81, 82, 83]. However, an automated or AI-driven method for a complete AS
evaluation using echocardiography has yet to be established [84].

The exploitation of AI and advancements inDLmethodologies have the potential to transform the
diagnostic and therapeutic landscape of AS. Applying AI algorithms to automate the detection and
analysis of echocardiographicmetrics could significantly streamline diagnostic procedures and refine
therapeutic decisions. Such progress promises to enhance patient care and optimize the allocation
of healthcare resources in treating this widespread cardiovascular ailment.

1.5 Inflammatory Cardiac Diseases
Inflammatory cardiac diseases represent a group of pathologies characterized by inflammation

within the heart, manifesting in conditions such as pericarditis, endocarditis, and myocarditis [85].
These diseases, though relatively uncommon, span a spectrum from mild to critical, necessitating
individualized therapeutic strategies and potentially extended convalescence. The primary anatom-
ical regions of the heart affected by these conditions include the endocardium, myocardium, and
pericardium. Specifically, endocarditis is characterized by inflammation of the heart’s inner lining, in-
cluding its chambers and valves. Myocarditis involves inflammation of the cardiac muscle, adversely
affecting its contractile function, while pericarditis is the inflammation of the enclosing pericardial
sac.

Risk factors for these inflammatory cardiac conditions encompass a range ofmedical states such
as diabetes and HIV/AIDS, alongside medical interventions like catheterization and exposure to ra-
diation therapy. Common symptomatic presentations include thoracic pain, dyspnea, and pyrexia,
with the specific clinical picture dependent on the inflammation’s location. Infectious agents, notably
viruses and bacteria, are the predominant causes, although autoimmune diseases, environmental
exposures, and certain pharmacological agents may also precipitate cardiac inflammation. Poten-
tial complications arising from unaddressed inflammatory cardiac diseases include thromboembolic
events, cardiac insufficiency, arrhythmias, and disseminated infections.

The diagnostic approach to these conditions is multifaceted, integrating physical assessments,
review of patient history, and diagnostic imaging modalities such as cardiac computed tomography
(CT), electrocardiogram (EKG), echocardiography, and magnetic resonance imaging (MRI). Therapeu-
tic management is directed towards symptomatic relief, eradication of infection, and minimization
of myocardial stress, employing agents like corticosteroids, antibiotics, and anti-inflammatory med-
ications. In instances of severe disease, interventions may extend to pericardial effusion drainage
or surgical procedures. Preventative measures focus on mitigating known risk factors, enhancing
oral hygiene to diminish the risk of endocarditis, and seeking earlymedical consultation for indicative
symptoms.

The prognosis and outlook for patients with inflammatory cardiac diseases are contingent upon
the condition’s severity and the promptness of medical intervention. While certain cases may re-
solve with conservative management or spontaneous remission, others may necessitate advanced
treatment modalities, including ventricular assist devices or cardiac transplantation.

Management of life with inflammatory cardiac diseases demands compliance with pharmaco-
logical regimens, regular medical follow-ups, and immediate reporting of novel symptoms. Urgent
medical care should be sought for new onset chest pain, indicative of potential severe cardiac com-
plications.

1.5.1 Myocarditis

Myocarditis, defined by the inflammation of the myocardium, significantly impacts myocardial
contractility and electrophysiological properties, with potential progression to heart failure and ar-
rhythmogenic events [86]. Its etiology is complex, encompassing infectious etiologies such as viral
infections (e.g., COVID-19, parvovirus), systemic inflammatory and autoimmune conditions, as well
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as adverse reactions to medications [87]. The clinical presentation often includes chest pain, fa-
tigue, and shortness of breath [88], underscoring the importance of early cardiological evaluation for
prompt identification and intervention. In advanced cases, endomyocardial biopsymay be necessary
for definitive diagnosis [89]. The therapeutic approach tomyocarditis involves a combination of sup-
portive care, management strategies for heart failure, targeted antimicrobial therapy against iden-
tified pathogens, and immunosuppressive treatments for pronounced inflammatory reactions. The
importance of early detection and therapeutic initiation cannot be overstated in mitigating adverse
outcomes. While cardiovascular magnetic resonance imaging (MRI) is instrumental in diagnosing
myocarditis, its analysis requires substantial expertise, introducing potential for laborious processes
and subjective interpretation [90]. To surmount these diagnostic challenges, there has been a push
towards the development of automated diagnostic systems leveraging sophisticatedmachine learn-
ing algorithms to augment diagnostic precision and minimize interpretative variability [90]. Deep
learning (DL), with its capacity for intricate feature discernment through multiple layers, presents a
promising approach for myocarditis identification via cardiovascular MRI [91]. The adoption of Few-
shot learning (FSL) techniques, which operate effectively with minimal data inputs, further bolsters
diagnostic performance [8]. Recent innovations in DL applied to myocardial disease (MCD) diagnosis
have shown notable advancements. For instance, Sharifrazi et al. [88] introduced a Convolutional
Neural Network-Keras Custom Layer (CNN-KCL) model, attaining a remarkable 97.41% accuracy in
MCD detection from cardiovascular MRI. Similarly, Shoeibi et al. [92] applied cycle-Generative Ad-
versarial Network preprocessing and leveraged pre-trainedmodels to achieve a 99.33% accuracy uti-
lizing the EfficientNet V2 framework. Additionally, Moravvej et al. [93] investigated the application of
deep reinforcement learning (RL) forMCDdiagnosis, proposing the RLMD-PAmethod, which showed
improved accuracy and efficiency.

1.6 Thesis Structure and Content

This thesis investigates the application of Deep Learning (DL) techniques across various domains
of medical imaging, focusing specifically on the diagnosis of cardiac-related conditions (vascular,
valvular and inflammatory cardiac diseases). The document is meticulously organized into six chap-
ters, each serving a distinct purpose within the overarching theme of leveraging DL for medical diag-
nostics

The first chapter sets the stage with an introduction into cardiac diseases, emphasizing the
prevalence and impact of vascular, valvular, and inflammatory conditions on global health. It then
transitions into a discussion on the evolution of diagnostic techniques, charting the course from con-
ventional methodologies to the cutting-edge advances brought about by DL technologies. This nar-
rative not only highlights the technological strides but also underscores the potential of DL to rev-
olutionize the diagnostic landscape by enhancing the precision and predictability of cardiac disease
diagnosis. Moreover, this introduction outlines the thesis’s core objective: to delve into the appli-
cation of DL in medical imaging for cardiac diagnostics, aiming to illuminate its capabilities and chal-
lenges. It proposes to scrutinize the effectiveness of DL in improving the diagnosis of complex cardiac
conditions, thereby contributing to the advancement of personalized medicine and patient care.

The second chapter focuses on applying DL for predicting Fractional Flow Reserve (FFR) using
Optical Coherence Tomography (OCT) and angiographic images. This chapter describes the steps
involved in developing and validating DL models tailored for this purpose. Starting with data collec-
tion and preprocessing, it moves on to detail the training process of these models, highlighting how
they’re designed to accurately interpret OCT and angiographic images to predict FFR values. The core
aim here is to improve the diagnosis and treatment planning for patients with cardiac diseases by of-
fering a non-invasive method to assess coronary artery conditions. Through a methodical approach,
this chapter presents the outcomes of applying DL models in medical imaging, discussing both their
effectiveness and the challenges encountered during the process. Thework contributes to the ongo-
ing efforts in enhancing cardiac diagnostics, aiming to provide a reliable tool that can support clinical
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decisions without the need for invasive procedures.
The third chapter explores the challenge of detecting collateral circulation within coronary an-

giographies through the lens of DL. The section begins by detailing the compilation of the dataset
used for training and validation, emphasizing the critical role of high-quality, clinically relevant data
in the development of effective DL models. It then transitions into a technical exposition of the pro-
cess involved in designing, training, and refining DL models specifically engineered to identify signs
of collateral circulation from angiographic images. The chapter meticulously examines the validation
of these models against the diagnoses of clinical experts, providing a rigorous assessment of their
accuracy and reliability. Through this analytical journey, the chapter aims to highlight the potential of
DL to augment the current methodologies used in diagnosing coronary artery diseases, particularly
in complex caseswhere traditional imaging techniquesmay fall short. Furthermore, this chapter dis-
cusses the implications of successful collateral circulation detection for patient treatment plans and
outcomes, underscoring the significance of this advancement in cardiac care. By tackling the chal-
lenges and showcasing the successes in applying DL to this aspect of cardiac diagnostics, the chapter
contributes valuable insights into the potential of machine learning technologies to improve medical
imaging and, consequently, patient care.

The fourth chapter delves into the realm of DL for the intricate task of aortic valve detection,
state classification, and aortic stenosis assessment using echocardiography images. The chapter
commences by outlining the process of gathering and preparing echocardiography data, setting the
stage for the development of DL models specifically designed for the nuanced detection and classi-
fication of aortic valve conditions. The narrative then progresses to detail the innovativemethodolo-
gies employed in creating these DL models. It explains the selection of model architectures that are
most suited to capture the subtle features indicative of various aortic valve states and the severity
of aortic stenosis. Emphasis is placed on the iterative process of model training, fine-tuning, and
validation, highlighting the critical role of accuracy and reliability in the diagnostic capability of these
models. By presenting a comprehensive exploration of the challenges and breakthroughs in applying
DL to aortic valve diagnostics, this chapter contributes significantly to the broader narrative of en-
hancing cardiac care through advanced imaging technologies. The insights shared here aim to pave
the way for further innovations in the field, ultimately improving patient outcomes in the manage-
ment of valvular heart diseases.

The fifth chapter investigates the application of DL in automating the detection of myocardi-
tis using Cardiac Magnetic Resonance Imaging (CMRI) scans. It begins by discussing the data col-
lection process, emphasizing the significance of diverse and clinically representative CMRI views to
train the DL models effectively. The chapter then details the methodology behind developing DL
models capable of distinguishing myocarditis from CMRI scans, exploring the preprocessing tech-
niques used to enhance image quality and the selection of model architectures optimized for this
task. The narrative further delves into the model training process, elucidating the strategies em-
ployed tomaximize themodels’ diagnostic accuracy. Special attention is given to the selection of the
most informative CMRI views for myocarditis detection and the exploration of features critical for
the models’ decision-making processes during inference. This section assesses the reliability and
accuracy of the DL models in diagnosing myocarditis, highlighting their potential to augment current
diagnostic methodologies by providing rapid and non-invasive detection capabilities. By showcasing
the challenges, successes, and implications of this research, it contributes valuable perspectives on
the integration of DL into cardiac diagnostics.

The final chapter synthesizes the findings and insights garnered from the application ofDL across
various cardiac diagnostic challenges addressed in the preceding chapters. This final chapter offers
a reflective overview of the research journey, summarizing the key contributions of the thesis to the
field of medical imaging and cardiac diagnostics. It emphasizes how DL models have been meticu-
lously developed and validated to improve the diagnosis of cardiac diseases, from predicting FFR and
detecting collateral circulation to identifying aortic valve issues and diagnosingmyocarditis using ad-
vanced imaging techniques. Looking forward, the chapter outlines the avenues for future research,
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acknowledging the limitations encountered in the current study and suggesting strategies to over-
come them. It proposes areaswhere further investigation could yield significant advancements, such
as improving model interpretability, exploring the application of DL in other cardiac conditions, and
integrating these technologies into clinical practice.
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2. Towards a Deep-Learning Approach for Predic-
tion of Fractional Flow Reserve from Optical Co-
herence Tomography and X-ray Angiography1

Introduction
FFR from OCT
FFR from OCT and X-ray Angiography
Discussion and Conclussions

2.1 Introduction

Cardiovascular disease (CVD) is the number one cause of death worldwide, and coronary artery
disease (CAD) is themost prevalent CVD, accounting for 42% of these deaths. In CAD patients, plaque
builds up in the coronary arteries and limits the blood flow to the myocardium, especially when the
demand is increased (exercise, stress). In severe cases, this can lead tomyocardial infarction, or even
death.

X-ray coronary angiography (XA) represents the gold standard in CAD imaging [94]. Optical co-
herence tomography (OCT) is used in certain scenarios in conjunction with XA. OCT has the highest
resolution among all invasive imaging modalities, allowing for a precise intra-vascular evaluation of
stent apposition and expansion [95, 96, 97] thus, representing a paramount tool for PCI (percuta-
neous coronary intervention) optimization [98]. Nonetheless, its ability to assess the functional sig-
nificance of a stenosis is not negligible [99].

The purely anatomical assessment of CAD, independent from themedical imagingmodality, does
not fully capture the functional significance of coronary stenoses. In view of the limitations of the
anatomical evaluation of CAD, Fractional Flow Reserve (FFR) has been introduced as a functional
index. FFR is defined as the ratio of flow in the stenosed branch at hyperemia—a condition of stress,
with maximum coronary blood flow—to the hypothetical hyperemic flow in the same branch under
healthy conditions. This can be shown to be closely approximated by the ratio of hyperemic cycle-
averaged pressure distal to the stenosis to the cycle-averaged aortic pressure [100]. An FFR value
≤ 0.8 is considered to be positive, i.e., the patient requires invasive treatment, such as percutaneous
coronary intervention (PCI-stenting) or coronary artery bypass graft (CABG). An FFR value > 0.8 is
considered to be negative, i.e., typically only optimal medical therapy is prescribed. Several clinical

1The following section contains work published in:
• Hatfaludi, Cosmin-Andrei, et al. “Towards a deep-learning approach for prediction of fractional flow reserve from

optical coherence tomography.” Applied Sciences 12.14 (2022): 6964. https://doi.org/10.3390/app12146964

• Hatfaludi, Cosmin-Andrei, et al. “Co-registered optical coherence tomography and X-ray angiography for the
prediction of fractional flow reserve.” The International Journal of Cardiovascular Imaging (2024): 1-11. https:
//doi.org/10.1007/s10554-024-03069-z

The textwere quoted verbatim from the above references, which represents previously publishedwork of the author, under
the PhD research program.
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trials have demonstrated the superiority of FFR-guided decision-making [101], which represents the
current gold standard. However, although providing obvious advantages, studies indicate that the
use of FFR is still relatively low due to the need to administer hyperemia-inducing drugs, additional
costs, and the extended duration and invasive nature of the procedure [102]. Hence, computational
approaches for FFR prediction have been introduced, relying either on computational fluid dynamics
(CFD) or on artificial intelligence (AI).

Blood-flow computations, performed using CFD, when used in conjunction with patient-specific
anatomical models that are extracted from medical images, have been proposed for diagnosis, risk
stratification, and surgical planning[97]. Model-based assessment of coronary stenoses has been
previously performed using such techniques in several clinical studies, based on anatomical mod-
els that are reconstructed from coronary computed tomography angiography (CCTA) [103, 104, 105,
106], XA [107, 108, 109, 110, 111], or OCT [112, 113, 114, 115]. Computed FFR has been the main
quantity of interest in these studies, all of which showed that computed FFR has good diagnostic
accuracy compared to invasively measured FFR. The CFDmodels consist of partial differential equa-
tions, which can be only numerically solved, leading to a large number of algebraic equations. Due
to the time-consuming process that is employed for reconstructing the anatomical model, and the
computationally intensive aspect of the CFDmodels [116, 117], they are not used for intra-operative
assessment and planning, where near real-time performance is required.

Alternatively, artificial intelligence-based solutions may be employed that are capable of provid-
ing results in real-time. To develop such solutions, a large database is required for the training phase,
containing pairs of input-output data. The input data are represented by the anatomical informa-
tion, while the output are invasive FFR [118]. Once the training phase has been finalized, the online
usage provides results instantaneously. Such supervised machine learning (ML) algorithms are rou-
tinely employed in medical imaging applications, e.g., organ segmentation [119]. Moreover, machine
learningmodels can also be employed to reproduce the behavior of non-linear computationalmodels
[120],[121].

Recently, machine learning models for the prediction of FFR based on CCTA[122], XA [123], OCT
[124], and intravascular ultrasound (IVUS) [125] have been introduced. All these approaches rely on
the extraction of features describing the vascular geometry, specifically the arterial lumen, and, in
some studies, also on patient features.

With the study herein, we aim to predict the invasively measured FFR, exploiting the measured
radius of the coronary lumen using the data of both OCT and angiography. In contrast to prior ma-
chine learning methodologies applied to the prediction of FFR, our approach diverges by employing
unprocessed, dimensionality-reduced anatomical data as input features, as opposed tomanually en-
gineered features. A second pivotal aspect of our investigation pertains to our targeted examination
of intermediate coronary lesions, wherein the conventional visual assessment of CAD using XA fails
to provide a definitive clinical verdict. Consequently, our dataset encompasses a substantial cohort
of lesions characterized by FFR values that closely approximate the critical threshold of 0.8, thereby
intensifying the complexity inherent to the prediction task.

Deep-learning (DL) is a class of machine learning algorithms that uses multiple layers to extract
higher level features from the raw input [126]. The FFR prediction task can be formulated either as
a regression problem (predict the exact value of FFR) or as a classification problem (predict the FFR
class, e.g., binary classification: ≤0.8 or >0.8). There are several types of neural networks that are
suitable for the FFR prediction, amongst others:

• fully connected neural network, commonly referred to as artificial neural networks (ANNs). Po-
tential disadvantages of ANNs are the large number of trainable parameters, which leads to the
requirement of large training datasets, and the difficulty in capturing the inherent properties in
1D/2D/3D data structures

• convolutional neural networks (CNNs). Compared to ANNs, CNNs can capture the inherent
properties in 1D/2D/3D data structures, but still require relatively large training sets. Also,
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fixed size input data are required if the network is not fully convolutional.

• recurrent neural networks (RNNs) [127]. RNNs have the advantage that a variable length in-
put sequence can be processed, but they may be affected by vanishing and exploding gradient
issues.

Few-shot learning (FSL) is a type of learningwhere the prediction is performed based on a limited
number of samples[128]. In a study that was published by Yang et al., the models that were used
for FSL were classified into four categories: multitask learning, embedding learning, learning with
external memory, and generative modeling.

OCT images were previously used in a variety of DL-based applications: stent strut detection
[129, 130], stent strut segmentation [131, 132, 133], coronary calcification segmentation [134, 135],
atherosclerotic plaque characterization [136], and lumen segmentation [137]. Furthermore, DL-
based approacheswere employed also in studies addressing other types of optical signals [138, 139].

Herein, we evaluate the performance of ANNs, CNNs, and RNNs in both regression and classifica-
tion formulations. Additionally, we also consider the use of FSL, focusing specifically on prototypical
networks [140], a subcategory of the embedding learningmodels, considered the state of the art for
classification tasks. Our method relies on both OCT and Angiographic images. In the clinical environ-
ment, the clinical expert takes the diagnosis and treatment decision after inspecting images of both
modalities.

2.2 DL based Prediction of FFR from OCT

2.2.1 Materials and Methods

2.2.1.1 Data Set

This was a single-center, retrospective study that was carried out at the Clinical Emergency Hos-
pital, Bucharest, Romania. The study complied with the Declaration of Helsinki for investigation in
human beings. The study protocol was approved by the local ethics committee and each patient
signed an informed consent form before the enrolment in the study.

Patients at least 18 years old, with stable angina, and an indication for diagnostic XA due to inter-
mediate or high likelihood of obstructive coronary artery disease, were considered. Further inclusion
criteria were: at least one lesion with 40% to 80% diameter stenosis by visual assessment, and in-
vasive FFR measurement considered required by the operator for clinical decision-making. Patients
were excluded if theywere unable to provide informed consent, had significant arrhythmia (heart rate
over 120 bpm), suspected acute coronary syndrome, atrial fibrillation, low systolic pressure (below
90mmHg), contraindication to beta blockers, nitroglycerin or adenosine, a non-cardiac illness with a
life expectancy of less than 2 years, pathological aortic valve, rest state angina, or myocardial infarct
during the last 6 months. Additionally, aorto-ostial lesions were excluded from the study. A total of
80 patients were included in the study.

Coronary angiography (SiemensArtis Zee, Forchheim, Germany)wasperformedafter iso-centering
in posterior-anterior and lateral planes, via a transradial (preferred) or transfemoral approach. In all
cases, a 6 French diagnostic catheter was used after intracoronary injection of glyceryl trinitrate ac-
cording to routine practice in the hospital, with manual contrast injection and cine acquisition at a
frame rate of 15 frames/second. OCT imaging was performed using a frequency-domain OCT sys-
tems (St. Jude Medical/Abbott, St. Paul, MN, USA). The fiber probe was pulled back at a constant
speed and cross-sectional images were generated with a spacing of 0.2 mm. The acquisition of
physiological data for FFR calculation was performed according to conventional practice [141] with a
commercially available FFR measurement system (PressureWire Aeris; St. Jude Medical, Minneapo-
lis, MN, USA). The 0.014 coronary wire with a pressure tip was advanced until the pressure sensor
passed the orifice of the guiding catheter. Transcatheter aortic and intracoronary pressure tracings
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were equalized. Subsequently, the guidewire was advanced into the respective coronary artery un-
til the pressure sensor passed the index lesion. Hyperemia was induced by the administration of
adenosine either intravenously at a constant rate of 140 �g/kg/min, or as an intracoronary bolus (100
�g for the right and 200 �g for the left coronary artery); the pressure recording was started, and the
FFR was determined. A total of 102 coronary lesions in 80 patients underwent FFR analysis. This
invasively measured FFR represents the ground truth that is used during the training of the deep
neural networks, as described in the following.

The OCT data were exported from the OCT workstation available onsite. All OCT slices are RGB
images, and the exported data contains the automatically detected coronary lumen, which is overlaid
on the image and depicted in green. The spacing between the slices is 0.2 mm, and the number of
slices per acquisition is constant at 376. Figure 2.1 displays the data pre-processing workflow start-
ing from the exportedOCT imageswith automatically detected lumen contour. First, the contours are
automatically extracted by processing the green channel as follows: a threshold representing 90%
of the maximum intensity value is used to create a binary image, and all the contours are extracted
[142]. We then retain the contour which surrounds the center of the image: if there aremultiple such
contours, we pick the one with the largest area. Next, we use an in-house developed application to
collect manual input that is provided by the clinical expert:

• selection of the proximal start and distal end slice, which define the coronary artery region of
interest. Slices representing the catheter are excluded, alongside other sliceswith sub-optimal
image quality (e.g., blood artifacts);

• rejecting/correcting erroneous contours within the selected slice-range: the automatically de-
tected contours may be incorrect on certain slices, typically in bifurcation regions and/or if the
lumen has a profoundly non-circular shape (e.g., concave shape). Erroneous bifurcation con-
tours are rejected, while erroneous contours in the stenosis region are corrected (required in
less than 10% of the OCT acquisitions).

Figure 2.1: OCT data processing workflow, including FFR prediction using a deep neural network.

Next, the data are pre-processed: the inside area of each non-rejected lumen contour in the se-
lected slice-range is computed and the effective radius is determined (considering an equivalent cir-
cular contour with identical area). The radius of rejected contours is set using linear interpolation
that is applied on the radiuses of the closest neighboring contours that have not been rejected. The
radiuses are then arranged in a 1D sequence, starting with the proximal slice of the selected slice-
range. Since the OCT slices are equidistant, only the radius values are used as input. For the further
processing using deep neural networks, the 1D radius sequence is padded to a size of 376 (maximum
length of an OCT sequence), and z-score normalization is performed [143]. The mean and standard
deviation of each acquisition are computed, and then a globalmean and global standard deviation are
computed for the training set by averaging the mean and standard deviation values of the acquisi-
tions that are included in the training set. The acquisitions in the validation/test split are normalized
using the values that are employed for the training set. The 1D sequence of normalized radius values
is used as input for the deep neural network predicting FFR.
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2.2.1.2 Deep Neural Network Based FFR Prediction

Different types of neural networkmodels are considered for the prediction of the invasivelymea-
sured FFR, ANNs, CNNs, and RNNs, applied with different approaches:

• a regression approach: models predict a rational number representing invasive FFR

• a classification approach: models predict the class of the FFR value (positive, i.e., FFR ≤ 0.8, or
negative, i.e., FFR > 0.8)

• a FSL approach: similar to the classification approach.

As ANN, we used a fully connected neural network with 4 hidden layers, and the rectified linear
unit (ReLU) [144] as the activation function for the hidden layers.

As CNN, we used a fully convolutional neural network (1D convolutions) with eight layers. For the
hidden layers we used ReLU as activation function, and batch normalization was employed [145].
For the regression and the classification approach we added a final fully connected layer to perform
the prediction. For the FSL approach, this layer is not required.

As RNN,we included a bidirectional gated recurrent unit (GRU) [146] layer on top of the previously
described fully convolutional neural network (referred to as CNN + RNN in the appendix). This avoids
the padding requirement. The CNN layers learn the relevant features from the input, and then the
RNN performs the final prediction based on those features. Training a fully RNN network was not
possible considering the small size of the available dataset. For the regression and the classification
approach we added a fully connected layer after the bidirectional GRU to perform the prediction. For
the bidirectional GRU, we used ReLU as the activation function.

No activation function was used on the last layer for the regression approach, and the sigmoid
function [147] was chosen for the classification approach. For the FSL approach, the output of the
network is represented by the features from the last hidden layer. The class is then determined by
the smallest Euclidean distance between the output of the network and the two class clusters. These
are defined by the mean features of the training set samples of each class.

For the classification and FSL approaches, all the samples with invasive FFR ≤ 0.8 represent the
positive class and all the samples with invasive FFR > 0.8 represent the negative class. Since the
dataset consists of only 102 invasive values, themodels are evaluated using the leave-one-out cross
validation strategy that is applied at the patient level [148]. For each fold, the samples of one patient
are moved to a validation set, while the model is trained for a fixed number of epochs (300) on the
samples of the remaining patients. The classification accuracy is computed for each epoch, and the
epoch leading to the highest accuracy on the entire dataset, i.e., all folds, is chosen for reporting the
statistics. Additionally, only during training of the classification-based approaches, we also ignored
the samples with invasive FFR values in the range 0.79−0.81 (six samples). By removing these sam-
ples that are close to the cut-off point, the model is able to learn to better discriminate between the
classes. For all the models we used the Adam optimizer [149], mean squared error as a loss func-
tion for the regression approach, and cross entropy [150] for the classification and the FSL approach
(more details are included in Appendix A.2.). All the architectures were optimized using grid search
[151], applied for: number of layers, number of neurons per layer, dropout percentage, and the learn-
ing rate. The implementation is based on Python, and the PyTorch [152] library for DLmodel training
and inference.

To allow for a fair assessment of the performance, an ensemble approach is considered for each
configuration: each of the proposed models is trained 20 times using different random seeds. For
each configuration, the 20 models are then combined into one ensemble model. For regression ap-
proaches, the ensemble prediction for one sample is themean value of the predictions of all 20mod-
els. For classification and FSL approaches, the ensemble prediction for one sample is themean value
of the probabilities of all 20 models. This allows for a more robust assessment of the model perfor-
mance, which is independent from the random seed that is used during training. The value 20 was
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chosen following experimentswhich indicated that the ensemblemodel performance did not change
when using larger values.

For all the ensemble models, we performed the receiver operating characteristic (ROC) analysis
[153] and we computed the area under the curve (AUC) score [154]. Based on the ROC curves, we
selected for each ensemble model the optimal cut-off point as being the point closest to the point
(0, 1) [155]. The reported model performance metrics are based on the optimal cut-off point. The
formula that is used to determine the point closest to (0, 1) is [156]:

ER(c) =
√
(1− Se(c))2 + (1− Sp(c))2 (2.1)

where ER is the closest point to (0, 1), c is a cut-point, Se is sensitivity, and Sp is specificity.
Similar to other studies, we further consider theminimum lumen diameter (MLD) and percentage

diameter stenosis (%DS) as simple baseline references to assess the performance of the DL models.
The %DS is computed as follow:

DS = (1−−rmin/ravg)×100 (2.2)
Where rmin is the minimum radius of the sequence, ravg is the average of the proximal and distal

reference radius values of the lesion, as extracted from the OCT data.
For both MLD and %DS, we also apply the leave-one-out cross validation strategy at the patient

level, as follows: for each fold, a threshold value is chosen which balances sensitivity and specificity
on the respective training set, and then this threshold is applied to classify the test sample(s).

To evaluate the results, we computed the diagnostic statistics (accuracy, sensitivity, specificity,
negative predictive value (NPV), and positive predictive value (PPV) [157] for all approaches, and ad-
ditionally the mean absolute error (MAE), mean error (ME), and the mean squared error (MSE) for
the regression approach. For the diagnostic statistics we additionally computed the 95% confidence
intervals.

2.2.2 Results

2.2.2.1 Population Characteristics

Baseline patient and lesion characteristics are summarized in Table 2.1 and Table 2.2: 80 patients
(66 male, 14 female) with 102 lesions were included in this study. The mean patient age was 60.5 ±
11.2 years. The mean FFR was 0.80 ± 0.08, and 48 of the lesions were hemodynamically significant
according to the criterion FFR ≤ 0.80.

Table 2.1: Baseline patient characteristics and risk factors.

Male 66 (82%)
Female 14 (18%)
Age (years) 60.5 ± 11.2 years
Race All Caucasian
Weight 81.93 ± 16.15 kg
Height 172.13± 8.05 cm
Diabetes 27 (33.75%)
Hypertension 60 (75%)
Hypercholesterolemia 62 (77.5%)
Smoking history 42 (52.5%)
Family history of CAD 3 (2.9%)
Previous myocardial infarction 46 (45%)
Previous Angina 64 (80%)
Ejection fraction 48.28 ± 6.31%
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Table 2.2: Baseline lesion characteristics (n = 102).

Index Artery
Left Anterior Descending artery (LAD) 57
Left Circumflex artery (LCx) 20
Right Coronary Artery (RCA) 25
Fractional Flow Reserve
Mean ± SD 0.80 ± 0.08
Median (IQR) 0.83 (0.75-0.86)
FFR ≤ 0.80 48
FFR <0.75 25
0.75 ≤ FFR ≤ 0.85 47
FFR >0.85 30

2.2.2.2 Invasive FFR Prediction Performance

Figure 2.2 displays theROC curve, theAUC scores including their 95% confidence intervals (CI), and
the closest point to (0, 1) for all the approaches. The best three approaches based on AUC score are
regression CNN, FSL RNN, and FSL CNN. Interestingly, the AUC score is superior for the regression
CNN approach, but the FSL CNN approach has the closest point to (0, 1), i.e., the best diagnostic
performance statistics, as shown below.

Figure 2.2: The ROC curve, AUC score, and the closest point to (0, 1) for all approaches. Values in the
parentheses represent the 95% confidence intervals computed as in [158].

The performance and statistics of the various ensemble DL models and approaches considered
herein are displayed in Table 2.3.

In terms of diagnostic performance, the FSL approach is performing better than classical regres-
sion and classification, while in terms of AUC, the CNN regression is superior to othermethods. Since
the 95% confidence intervals overlap, the differences are statistically not significant. FSL algorithms
have been designed for optimal performance on small datasets where they tend to perform better
than classic models. The best performing architecture is the one that is based on CNN. Furthermore,
the training accuracy suggests that overfitting is not present for eight of the nine approaches. For
the classic CNN-based classification, the model seems to overfit, even though different attempts
were made to address this: L2 regularization and dropout. For comparison, MLD has an accuracy of
67.64%, a sensitivity of 64.81%, and a specificity of 70.83%. The %DS has an accuracy of 63.72%, a
sensitivity of 62.96%, and a specificity of 64.58%. Each ensemble model consists of 20 models that
were trained with different seed values. Table 2.4 displays the mean accuracy, the standard devi-
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Table 2.3: Diagnostics and performance statistics of the considered ensemble DL models and ap-
proaches. Values in the parentheses represent the 95% confidence intervals.

Ap-
proach

En-
sem-
ble
Arch.

Train
Accu-
racy
[%]

Accu-
racy
[%]

Sensi-
tivity
[%]

Speci-
ficity
[%]

NPV
[%]

PPV
[%]

AUC
[%]

MAE ME MSE Corr.

Re-
gres-
sion

ANN 73.7 64.7
(55.1-
73.3)

61.1
(47.8-
80.1)

68.8
(54.7-
80.1)

61.1
(47.8-
73.0)

68.8
(54.7-
80.1)

66.2
(55.8-
76.7)

0.062 0.007 0.105 0.273

CNN 85.9 75.5
(66.3-
82.8)

74.1
(61.1-
86.7)

77.1
(63.5-
86.7)

72.5
(59.1-
82.9)

78.4
(65.4-
87.5)

82.1
(73.9-
90.2)

0.082 -
0.008

0.015 0.342

RNN 69.7 68.6
(59.1-
76.8)

77.8
(65.1-
89.6)

58.3
(44.3-
71.2)

70.0
(54.6-
85.4)

67.7
(55.4-
78.0)

70.1
(60.0-
80.1)

0.072 0.022 0.011 0.261

Clas-
sifica-
tion

ANN 78.4 70.6
(61.1-
78.6)

70.4
(57.2-
83.3)

70.8
(56.8-
81.8)

68.0
(54.2-
79.2)

73.1
(59.7-
83.2)

68.6
(58.4-
78.9)

- - - -

CNN 98.7 72.5
(63.2-
80.3)

75.9
(63.1-
88.7)

68.8
(54.7-
82.1)

71.7
(57.5-
85.9)

73.2
(60.4-
86.0)

75.5
(66.2-
84.8)

- - - -

RNN 73.8 69.6
(60.1-
77.7)

64.8
(51.5-
79.0)

75.0
(61.2-
85.1)

65.5
(52.3-
76.6)

74.5
(60.5-
84.7)

75.1
(65.7-
84.5)

- - - -

FSL
ANN 78.9 72.5

(63.2-
80.3)

79.2
(65.7-
92.3)

66.7
(53.4-
79.8)

78.3
(64.4-
88.1)

67.9
(54.8-
81.0)

70.2
(60.0-
80.4)

- - - -

CNN 78.6 77.5
(68.4-
84.5)

72.9
(59.0-
86.8)

81.5
(69.2-
89.6)

77.2
(64.8-
89.0)

77.8
(63.7-
91.5)

76.3
(66.9-
85.7)

- - - -

RNN 75.6 75.5
(66.3-
82.8)

72.9
(59.0-
86.8)

77.8
(65.1-
90.0)

76.4
(63.7-
89.1)

74.5
(60.5-
88.7)

77.2
(67.0-
87.4)

- - - -

ation (std) of the accuracy, the minimum accuracy (min), and the maximum accuracy (max) for the
validation dataset when employing the default operating points/thresholds of 0.8 for regression and
0.5 for classification. While all variations are quite small, the smallest std is obtained for the mod-
els that are based on FSL, which further underlines the robustness of this approach. Additionally,
we computed the ensemble model mean uncertainty by averaging the uncertainty of the ensemble
model for each examination [159]. The ensemble model uncertainty for regression approaches is
the standard deviation of the predictions of all models for one sample. An intuitive approximation
for the ensemble model’s uncertainty for classification and FSL approaches was chosen as: where
y(i) is the ensemble model prediction for each sample and N is the number of samples; this uncer-
tainty measure is the distance between the output probability and the predicted class label (0 or
1), therefore, predictions such as 0.1 or 0.9 are considered “confident” while others such as 0.4 or
0.6 are considered more “uncertain”. This approximation is feasible since ensemble models usually
have well-calibrated outputs [159]. The ensemble uncertainty results of the regression approaches
are not directly comparable to the ensemble uncertainty results for the classification and FSL ap-
proaches, and it has been also shown [159] that regression-based uncertainty that is computed as
the ensemble predictions’ standard deviation is not well-calibrated as the MSE training loss “is not a
scoring rule that captures predictive uncertainty” [159]. For the regression approaches, RNNs tend
to have the smallest uncertainty. For classification and FSL approaches the uncertainty is similar for
five of the approaches, while FSL CNN has a much smaller uncertainty.

The reason the default thresholds were employed in Table 2.4 is that selecting a best-operating-
point with respect to some metrics and some held-out test-set is part of a post-processing stage;
uncertainty estimates, however, depend solely on two factors: the input samples (i.e., input noise,
out-of-distribution, etc.) and the learned model (here, the training procedure, the network architec-
ture, and especially the training set have a large influence); the ground-truth label of a test input
sample has no influence on the prediction uncertainty. Therefore, for an unbiased assessment, un-
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Table 2.4: Diagnostic performance statistics of the considered ensemble DLmodels and approaches.

Accuracy

Approach Ensemble Arch.
Mean

[%]

Std

[%]

Min

[%]

Max

[%]

Uncertainty

[%]

Regression
ANN 61.57 4.55 53.92 70.59 4.48
CNN 61.76 2.65 55.88 65.69 12.91
RNN 63.19 3.82 54.9 71.57 2.25

Classification
ANN 68.43 1.69 65.69 72.55 32.55
CNN 67.75 3.1 63.73 73.53 32.9
RNN 68.04 1.71 64.71 71.57 31.69

FSL
ANN 66.67 3.34 59.8 72.55 30.9
CNN 75.59 1.2 72.55 76.47 2.77
RNN 74.46 1.37 71.57 76.47 34.71

certainty measures of all the approaches were computed from the raw ensemble predictions and
compared with the mean accuracy that was obtained from using the default thresholds.

2.3 Discussion and Conclusions

2.3.1 Deep Learning-Based Prediction of FFR

As more data are emerging from studies that are based on artificial intelligence and computa-
tional modelling, the incremental diagnostic value of predicted coronary functional diagnostic indices
over the traditional XA-based visual or quantitative lesion grading is becoming more evident.

In this study, we have presented a novel approach for predicting Fractional Flow Reserve (FFR)
through the application of deep learning, utilizing data fromboth optical coherence tomography (OCT)
and angiography imagingmodalities. It is noteworthy thatwe did not impose specific acquisition pro-
tocols for either OCT or angiography. Our investigations have demonstrated the promising potential
of this method in the evaluation of functionally significant stenoses. We explored various models
and methodologies, ultimately finding that the model, which combines OCT and angiographic data,
exhibited superior performance. This is to be expected since the two imaging modalities are com-
plementary. OCT has the highest image resolution, but the vessel length captured in the image is
limited to 7.5cm. Furthermore, due to various artefacts (blood, etc.) typically only a shorter length
fulfils image quality criteria. As a result, especially in case of multiple serial lesions, not all lesions
are included in the OCT sequence that is input to the deep neural network, and there is a loss in FFR
prediction accuracy. Angiographic on the other hand data has no limitation in terms of vessel length,
but the image resolution is much lower. Hence, while all relevant lesions are included in the angio-
graphic sequence that is input to the deep neural network, the accuracy of the radius information is
sub-optimal. Additionally, angiographic images are 2D projections of the 3D vessel structure, which
may further hide or distort certain anatomical details. It is important to also emphasize that the sta-
tistical analysis revealed no significant differences in the results obtained with the different input
data settings (substantial overlap in their respective 95% confidence intervals). This is also given by
the relatively small dataset size.

Thus, the main findings of this study can be summarized as follows: (1) DL-based FFR predic-
tion from reduced-order raw anatomical data is feasible in a dataset that is focused on intermediate
lesions for which the visual anatomical assessment of CAD based on XA does not allow for a clear
clinical decision, and with no restriction on the type of lesions that were included in the study, and
on the OCT acquisition; (2) DL-based FFR prediction provides superior diagnostic performance com-
pared to baseline approaches based on MLD or %DS; (3) the FFR prediction performance increases
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quasi-linearly with the dataset size, indicating that a larger training datasetwill likely lead to superior
diagnostic performance.

Thediagnostic accuracyof 77.5% (OCT) and84.3% (angio+OCT) achievedherein is lower compared
to that of other studies focusing on FFR prediction from OCT, which reported an accuracy ranging
between 88% and 95% [114, 115, 124, 160, 161]. There are two main aspects that are responsible
for this difference. First, the complexity of the dataset that is processed herein is higher than that of
other studies: 46% of the samples have an invasive FFR value ranging between 0.75 and 0.85, while
in other studies these grey zone lesions represented between20% and44%of the entire dataset [114,
115, 124, 160, 161].

Secondly, past studies focusing on FFR prediction from OCT either rely on computational fluid
dynamics (CFD) [114, 115, 160, 161], or on ML-based approaches including hand-crafted features
[124]. By applying a deep neural network directly on the raw data that are represented by the ef-
fective radius along the centerline of the vessel of interest, we allow the model to automatically
learn powerful features for FFR prediction. The results that were obtained in other application areas
(healthcare or others) demonstrate that classic machine learning (ML) techniques and hand-crafted
features typically outperform DL-based approaches when the training set is small, but, conversely,
the DL-based approaches outperform classic ML-based approaches when the size of the trainset in-
creases significantly [160]. The results in Figure 4, depicting the accuracy as a function of the dataset
size, confirm that a larger datasetwill enable a better performance: the performance of the DLmodel
increases quasi-linearly with the dataset size. As shown in Table 3, the diagnostic performance of
the proposed model is already considerably higher outside of the 0.75–0.85 FFR value interval.

To increase the prediction performance of DL models, different types of regularization are em-
ployed in the literature: mathematical expressions added to the loss function (L1, L2 regularization)
[161], dropout (used to randomly drop out neurons during training) [162], and data augmentation
[163]. Herein, we have used L2 regularizations and dropout. Data augmentation, i.e., generating
new samples by perturbing the input data, is difficult to perform when training against invasively
measured FFR, since the approximation of the ground truth values is not straightforward. We have
considered data augmentation by adding a small amount of noise to the 1D radius sequence used as
input, but the results have not improved.

A DL- or ML-based prediction of FFR was considered also in studies relying on other types of
medical images (CCTA, XA). Kumamaru et al. [164] proposed a DL model to estimate invasive FFR
from CCTA. They had a dataset containing 207 measurements from 131 patients and have obtained
an accuracy of 75.9% in predicting an abnormal invasive FFR (≤0.8). Another interesting approach
was proposed by Zreik et al. [165], they used DL in an unsupervised manner and obtained an overall
accuracy of 78% on CCTA data. They obtained an accuracy of 66% for FFR < 0.7, 75% for an FFR
between 0.7 and 0.8, 79% for an FFR between 0.8 and 0.9, and 73% for an FFR > 0.9. Itu et al. [122]
proposed a DLmodel that was trained on ground truth values computed with a CFD-based approach
on a database of synthetically-generated coronary anatomies. They achieved an accuracy of 83.2%
on CCTA data.
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3. Deep Learning Based Detection of Collateral Cir-
culation in Coronary Angiographies1

Introduction
Data and CCC detection
Experimental results
Discussions and conclussions

3.1 Introduction

3.1.1 Introduction

Cardiovascular disease (CVD) is the leading cause of mortality and morbidity for the entire world
population [54]. The most frequent cause of CVD is atherosclerosis [55], an inflammatory disease
that gradually obstructs arteries and has life-threatening effects when present in the coronary cir-
culation, i.e. leading to coronary artery disease (CAD). While traditional CAD risk factors (e.g., age,
gender, diabetes, etc.) [56], as well as genetical risk factors [57] are highly predictive of the onset
of CVD, mortality and morbidity is determined by clinical events such as the occurrence of ischemic
tissue damage, which cannot be well predicted from traditional CAD risk factors [58, 59, 60].

One of the factors which helps to avoid ischemic tissue damage, is the development of coronary
collateral circulation (CCC) [61]. CCC is characterized by natural bypasses (collateral arteries) which
start to form as a result of progressive blood vessel lumen constriction and blood flow restrictions.
Recent clinical studies have demonstrated that well-functioning CCC can independently predict low-
ered mortality and improved survival rates [62, 63]. The protective effect translates to improved
left ventricular (LV) function, decreased remodelling, and a lower risk of life-threatening arrhythmias
[64]. Thus, CCC can be regarded as a survival advantage [65].

Technical methods to automatically detect CCC currently lack behind studies on the clinical ben-
efits of CCC. We aim to bridge this gap by introducing a novel method to detect the presence of CCC
using deep neural networks on invasive coronary angiography (ICA) images. CCCdetection represents
an important prerequisite for assessing themorbidity rate for patientswith CAD.Moreover, ICA is the
gold standard in CAD. To the best of our knowledge, this is the first study to attempt CCC detection
on ICA.

1The following section contains work published in:
• Hatfaludi, Cosmin-Andrei, et al. “Deep learning based detection of collateral circulation in coronary angiographies.”

2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS). IEEE, 2023. https://
doi.org/10.1109/CBMS58004.2023.00337

Some sections were quoted verbatim from the above reference, which represents previously publishedwork of the author,
under the PhD research program.
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3.1.2 Background and Related Work

As mentioned earlier, no previous studies have attempted to detect CCC from ICA. Nevertheless,
some studies focused on the assessment of CTO (chronic total occlusion) collaterals from ICA, detect-
ing the onset of coronary artery disease, and on the evaluation of collaterals in patientswith ischemic
stroke using CT brain scans.

L. Liu et al. [66] proposed a deep learning based method for collateral physiology assessment
under total occlusion conditions. Their model automatically extracts the length or time curves of the
coronary filling to perform the assessment. H. Kuang et al. [67] proposed a vessel segmentation
method for automating collateral scoring on brain CT angiography using a hybrid CNN transformer
network. L. Wolff et al. [68] assessed a commercial algorithm for automated collateral scoring on
brain CT angiography. Unfortunately, technical descriptions of the algorithm are not provided. Nev-
ertheless, when tested against experts, the agreement between the algorithm and the experts is not
significant.

M. Aktar et al. [69] proposed a deep learning method for collateral evaluation in patients with
ischemic stroke using CT angiography. Their model processes 2D slices from CTA and uses a vot-
ing scheme to determine the outcomes. An additional difficulty of CCC detection is that, due to the
myocardial contraction, the coronary vessels display a significant motion during a cardiac cycle.

Moreover, processing ICAs or CTAs with deep learning methods has a long background, for tasks
such as coronary arteries segmentation [70], calcium scoring [71] or cardiovascular hemodynamic
prediction on bypass surgeries [72].

Since the available data set for our task is small, a relevant related field is that of few-shot learn-
ing, with applications to deep learning. FSL is a learning method in which predictions are performed
based on a limited number of samples [166]. Few shot learning (FSL) methods are classified into
four categories: multitask learning, embedding learning, learning with external memory, and gener-
ativemodeling. Hereinwe use prototypical networks [167], a subcategory of the embedding learning
models, considered the state-of-the-art for classification tasks.

3.2 Data and CCC Detection

3.2.1 Dataset

For the CCC detection we operate in a low data regime, using a data set that consists of 239
patients (with 501 ICAs) for which CCC was annotated, and 285 patients (with 503 ICAs) without
CCC. Some patients have multiple ICAs but for each patient we have at least one ICA. For the ICAs
with CCC, only one frame was annotated, marking the location of the CCC.

To annotate the data, we developed a custom, Python-based, annotation tool that allows clinical
experts to perform the annotation of ICAswith CCC. The tool enables experts to annotate the location
of the collateral artery, the donor artery and the receiving artery, Rentrop grading [168], pathways
[169], collateral flow grade [170], blush grade [171], the donor segment, the receiving segment, and
the collateral artery size. We use these annotations for the subgroup analysis and for a future CCC
quantificationmodel. To reduce annotation time, the experts were asked to annotate only one frame
for each angiography with CCC

The annotators were trained and supervised by expert interventional cardiologists with at least
10 years of experience in the catheter lab, and annotations were checked reciprocally and, in case of
disagreement, discussed by at least two independent experts.

3.2.2 CCC Detection

To perform CCC detection while also balancing hardware resources, we extract from each an-
giography 11 consecutive frames. For the sequences annotated with CCC, we use five frames be-
fore the annotated frame, the annotated frame, and five frames after the annotated frame. While
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more frames may be used, the computational costs increase significantly, and the information gains
decrease since the contrast flushes out over time. For the sequences without CCC, we employ a
model that is described in section III.C to compute the vesselness score and select 11 frames cen-
tered around the frame with the highest vesselness score. All data is normalized using z-score nor-
malization [172] across the spatial pixel intensities.

To extract spatial features from the selected frames we use a spatial CNN (backbone) with six
layers meant to capture a large field of view. The extracted spatial features are later concatenated
andprocessed by2D convolutionwith a kernel size of one, that extracts spatial and temporal features
from the sequence. Based on the extracted characteristics, a FC layer outputs a binary decision for
each frame (whether CCC is present or not). For this reason, a sigmoid function [173] has beenapplied
at the output of the network. If the predicted value is greater than 0.5, the CCC is present, and if the
predicted value is less than 0.5 the CCC is not present. The goal of this layer is to extract both spatial
and temporal features from all frames. An illustration of our approach is depicted in Figure 3.1.

Figure 3.1: The proposed method for the CCC detection.

The spatial CNN is used in three configurations: no pretraining, pretrained without freezing the
weights of the backbone, and pretrained with freezing the weights (and training just the last convo-
lutional and fully connected layers). The pretrained backbone uses an auxiliary task of segmenting
the vessels.

The models are trained using a vanilla method and a method based on prototypical networks.
Due to the low data regime we operate in, we trained the models using k-fold cross validation [174]
with k = 4, for 100 epochs. The k-fold cross validation datasets are split at patient level, meaning
that all ICAs from one patient belong to the same fold. The classification accuracy is computed for
each epoch, and the epoch leading to the highest accuracy on the entire dataset (all folds) is chosen
for reporting the statistics. All models are trained using Adam optimizer [175] and a fixed learning
rate of 0.0001.

To analyse the features that the model is focusing on, the saliency maps were computed [176]
for the models obtained on the views leading to the highest accuracy. To obtain the saliency map for
those models, the derivative of the output with respect to the input for each individual model was
computed.
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3.2.3 Backbone Pretraining

To boost the performance of the vanilla model, we also pretrained the backbone on a proxy task
and performed transfer learning on the CCC task. For pretraining, we used a supervised learning
vessel segmentation task, for which annotations were already available. An illustration of the task is
provided in Figure 3.2.

Figure 3.2: The predicted vesselness segmentation for a dicom from our dataset.

To generate ground truth masks, we had access to annotated artery centerlines and diameter
information. From these, we generated segmentation masks using a Gaussian function (with mean
centered on the centerline points and a standard deviation of 0.75). The Gaussian ensured smooth
vessel edges. To preserve smoothness, we formulated the training process as a regression problem,
and usedMSE as loss (instead of thresholding the segmentationmasks and employing classification
loss functions). In total, we had access to 3350 ICAs for pretraining, from which we used 70% for
training, 10% for validation and 20% for testing. Training ran for 100 epochs and we used early stop-
ping based on the minimum loss on the validation data set. The evaluation on the test set revealed
a Dice score of 0.92 (with sensitivity 0.95 and specificity 0.94).

3.3 Experimental Results

3.3.1 CCC Detection

To evaluate the CCC detection performance, we determined the accuracy (Acc.), sensitivity (Sens.)
and specificity (Spe.) [177]. The results obtained on the entire dataset following cross-validation,
using all models described in previous section, are illustrated in Table [fig:tablecols1]. The table
indicates that thebest results areobtainedusingaFSLmodelwithpretrainingandwithweight freeze.
All models perform better if the backbone is pretrained. Fig. 5 displays four sample cases from the
dataset: one true positive (TP), one true negative (TN), one false positive (FP), and one false negative
(FN). We observe that both the FP and the FN samples are difficult, as the FP image has artifacts
which can easily be confused with CCC and the FN sample’s field of view looks incomplete.
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Table 3.1: Results obtained for the CCC detection.

Model Pretrain Freeze
Acc.

[%]
Sens. [%] Spec. [%]

Classic
7 7 55.2 55.6 54.8
3 7 76.9 78.4 75.3
3 3 77.2 82.2 72.3

FSL
7 7 57.8 58.2 57.4
3 7 79.1 80.2 78.1
3 3 80.0 79.0 81.1

To further analyseour best-performingmodel for CCCdetection,weexplored themodel’s decision-
making process using saliencymaps, a technique that visually representswhich features significantly
influence the model’s predictions. By calculating the gradient of the model’s output relative to its in-
put, we generated these maps to pinpoint the critical areas within angiographic images the model
deems important. Figure 3.3, showcasing the saliency map, reveals that the model predominantly
bases its predictions on the detection of vessels. This finding is significant as it aligns the model’s
focus with the critical elements of CCC detection, emphasizing the importance of vascular structures
in the diagnostic process. The saliency map not only confirms that the model is learning relevant
patterns but also offers insights into improving model accuracy and interpretability by highlighting
the specific features it examines.

Additionally, this approach enhances the model’s transparency, a vital factor in medical diagnos-
tics, by illustrating its reliance on clinically relevant features. The use of saliency maps, therefore,
not only validates the model’s effectiveness but also supports its potential integration into clinical
settings by demonstrating its focus on meaningful diagnostic indicators.

Figure 3.3: The saliency map of an image for the best performing model.

3.4 Discussions and Conclusions
Overall, the models introduced show promising results for CCC detection, albeit the performance

can be further improved. One of themain challengeswas the small dataset size. We approached this
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problem from two angles: (i) by pretraining the models, and (ii) by employing few shot deep learning
techniques. However, the lack of data and population diversity induces small inconsistencies in the
results, which we discuss in this section.

As shown in Table 3.1, pretraining provided significant improvements for both classical and few
shot learning. This motivates further research into better pretraining methods, using more data. For
our task, we had annotated data and formulated pretraining and a supervision task. However, ifmore
data without annotations are available, self-supervised methods deserve exploration [178].

The use of few shot learning techniques further provided marginal improvements. However, as
shown in Table3.1, these improvements were not entirely consistent. For example, when using the
pretrained backbonewithout freezing theweights, classical training exceeded few shot learning. This
result is likely because optimizing the prototypes and fine-tuning the backboneweightswas not pos-
sible given limited training data set. When freezing the weights, however, the prototypes could be
better defined and the few shot method exceeded classical training. This balance between choosing
which parameters to specialize in limited data regimes deserves future exploration.

3.4.1 Conclusions

In this study, we introduced a pioneering deep learning-based methodology for detecting CCC
ICAs images, navigating the challenges posed by low data regimes. Leveraging a CNN-based archi-
tecture, our method adeptly integrates both spatial and temporal features, harnessing the power of
pretraining on coronary segmentation and employing few-shot learning techniques to overcome the
limitations of sparse data availability.

Our comprehensive approach, underscored by multiple subgroup analyses, not only elucidates
the nuanced outcomes of CCC detection but also sets a precedent formethodological rigor in the field.
The integration of expert annotations played a pivotal role, facilitating a robust evaluation framework
that compared our machine learning model’s performance against a consensus among experts.

This comparison revealed that, despite the ensemblemodel’s slightly lower accuracy, its superior
sensitivity makes it an invaluable asset in clinical settings, particularly where the cost of missing a
condition is significant. The ensemble model’s distinct sensitivity profile, coupled with the insights
garnered from expert comparisons, underscores the potential of machine learning to augment tra-
ditional diagnostic processes, especially in the realm of CCC detection. This synergy between com-
putational models and human expertise paves the way for enhanced diagnostic accuracy, promising
to redefine the standards of patient care in cardiovascular diagnostics.

For future research, our focuswill shift towards amassing amore diversified dataset and extend-
ing the model’s capabilities through self-supervision and landmark-based CCC detection. By doing
so, we aim not only to refine the core task of CCC detection but also to explore CCC quantification,
thereby broadening the horizons of our research and its applicability in clinical practice.

In conclusion, our study marks a significant step forward in the application of deep learning for
cardiovascular diagnostics. By innovatively combining spatial and temporal data analysis with the
strategic use of limited datasets, we have laid the groundwork for future advancements in the field.
As we continue to evolve our model and expand our dataset, we remain committed to improving
CCC detection, with the ultimate goal of enhancing patient outcomes through the power of artificial
intelligence and machine learning.
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4. Deep Learning Based Aortic Valve Detection and
Aortic Stenosis Detection on Echocardiographies1

Introduction
Materials and methods
Experimental Results
Conclussions

4.1 Introduction

Aortic stenosis (AS) is themost commonheart valve injury encountered in clinical practice, and af-
fects 2% to 5% of older adults. These estimates, together with an expanding elderly population, have
significant implications for both resource allocation and public health. Echocardiography is the main
non-invasive imagingmethod for assessing the aortic valve (AV), aortic stenosis and decision-making
[75]. The etiology of aortic stenosis is largely explained by degenerative processes [76]. There is no
medical therapy available to delay or correct these processes, and standard treatment is based on AV
replacement. The current recommendations for AV replacement in patients with AS are based solely
on the presence of: (i) severe AS based on a scoring system that includes specific valve criteria, and (ii)
the presence or absence of symptoms related to AS. The prognostic significance of a comprehensive
classification of staging of cardiac lesions in patients with AS has recently been demonstrated [77].
In the case of certain subclasses, e.g. low flow, patientswith lowgradient AS, asymptomatic patients,
the recommendations are inaccurate and there are no recommendations on the importance of the
various anatomical and functional cardiac consequences of AS. Patients with low gradient AS rep-
resent 35-40% of patients with moderate or severe aortic stenosis [78]. Misinterpretation of these
patients can lead to either an inappropriate delay in AV replacement and increasedmortality, or to an
unnecessary valve procedure. Incorporating echocardiographic and clinical data into an AI (artificial
intelligence)model to determine the severity of ASwould potentially help in distinguishing these sub-
groups of patients, optimize the treatment decision, and improve long-term outcome. The thorough
assessment of AS is based on a large number of measurements extracted from echocardiographic
images in B and Doppler mode, leading to lengthy echocardiographic examinations [79]. Multiple
studies have demonstrated the ability to successfully perform automatic echocardiographic recog-
nition and interpretation of common 2D and 3D structures and parameters and disease states using
artificial intelligence (AI) and, in particular, deep learning (DL) [80, 81, 82, 83]. A very recent study at-
tempted to identify severe AS from echocardiography using DL [84]. To date, there is no automated
or AI-based approach to conducting a comprehensive assessment of AS in echocardiography.

1The following section contains work published in:
• Hatfaludi, Cosmin-Andrei, et al. “Deep learning based aortic valve detection and state classification on echocar-

diographies.” 2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC). IEEE, 2022.
10.1109/PEMC51159.2022.9962953

Some sections were quoted verbatim from the above reference, which represents previously publishedwork of the author,
under the PhD research program.

29

10.1109/PEMC51159.2022.9962953


The overarching objective of this research activity is to advance the assessment of aortic stenosis
(AS) by developing an artificial intelligence (AI)-basedmodel that not only detects the aortic valve (AV)
and classifies its state (open or closed) using deep neural networks in parasternal long axis (PLAX)
echocardiographic images, but also extends to performing a detailed staging classification to char-
acterize the degree of cardiac impairment in AS patients. This activity sets out to enhance the cur-
rent methodologies for diagnosing and stratifying AS risk, aiming to improve upon the limitations of
existing clinical guidelines. The proposed model is designed to integrate and leverage advanced AI
techniques for a comprehensive anatomical and functional evaluation of the aortic valve and heart,
utilizing patient echocardiographic data. By combining the initial steps of detecting the AV and its
operational state with a nuanced AI-based staging classification, this study seeks to provide a holis-
tic approach to AS assessment, offering significant improvements in the accuracy and efficacy of
diagnosing and managing aortic stenosis.

Deep Learning (DL) represents a subset of Machine Learning (ML) characterized by its use of
multiple layers to progressively extract higher-level features from raw input data, offering a robust
framework for tackling complex pattern recognition tasks [179]. The transformative impact of Con-
volutional Neural Networks (CNNs) on the field was not fully realized until 2012, when a ground-
breaking systemdeveloped by Krizhevsky et al. clinched victory at the ImageNet competition, setting
a new benchmark for image classification accuracy [180]. This victory marked a watershedmoment,
heralding the widespread adoption and development of CNNs in various domains of artificial intelli-
gence. In the ensuing years, the literature has burgeoned with diverse CNN architectures, each de-
signed to address specific challenges or improve upon the efficiency and accuracy of neural network
training. Notable among these are theVGGnetwork,which introduced the concept of using very small
convolutional filters to deepen the network architecture [181]; ResNet, which implemented residual
connections to facilitate the training of substantially deeper networks by mitigating the vanishing
gradient problem [182]; and Darknet, known for its efficiency and utilization in real-time object de-
tection systems [183]. Each of these architectures embodies a unique approach to harnessing the
power of deep learning, contributing to the field’s rapid evolution and its expanding capacity to solve
increasingly complex computational problems. The continuous innovation in CNN architectures un-
derscores the dynamic nature of deep learning research. As these models become more sophis-
ticated, their applications extend beyond mere image recognition, impacting areas such as natural
language processing, medical diagnosis, autonomous vehicles, and more. This evolution reflects not
only the versatility of CNNs but also their potential to drive significant advancements across a broad
spectrum of technological and scientific fields.

The Faster R-CNN algorithm represents a significant advancement in the realm of object detec-
tion within images, distinguished primarily by its superior processing speed [184]. This algorithm
stands out among its predecessors, including R-CNN [185], Fast R-CNN, and SPP-Net, by dramati-
cally reducing the time required for image analysis. Specifically, the Faster R-CNN completes image
processing in approximately 0.2 seconds, a stark contrast to the 2.3 seconds required by Fast R-CNN,
the 4.3 seconds by SPP-Net, and the considerably longer 49 seconds by the original R-CNN. This
leap in efficiency can be attributed to Faster R-CNN’s innovative integration of a Region Proposal
Network (RPN), which directly generates region proposals within the network, effectively stream-
lining the detection workflow. By embedding this step into the deep learning model itself, Faster
R-CNN eliminates the need for the external region proposal algorithms that its predecessors relied
on, thus significantly accelerating the object detection process. The enhanced speed and efficiency
of the Faster R-CNN not only improve the practicality of deploying such models in real-time applica-
tions but also mark a pivotal development in the field of computer vision, paving the way for more
sophisticated and timely object detection solutions.

Few-shot learning (FSL) refers to a machine learning approach where predictions are made us-
ing a small dataset [128]. According to research conducted by Yang et al., models designed for FSL
can be categorized into four distinct groups: multitask learning, which involves training on multiple
related tasks simultaneously; embedding learning, which focuses on creating representations that
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encapsulate the essence of the data; learning that utilizes external memory, enabling the model to
reference past information; and generative modeling, which generates new data samples based on
the limited samples available.

4.2 Materials and Methods

4.2.1 Dataset

The dataset consists of 1886 PLAX echocardiographies. First, each echocardiography was re-
sampled to a constant rate of 20 frames per second, and the first 20 frames were extracted, thus
covering exactly one second of acquisition. Using predefined tags from within the Dicom header, a
rectangular RoI was constructed around the ultrasound cone, while every pixel outside this region
was set as background. Two scanlines were constructed starting from the reference pixel location of
the acquisition, i.e., the top point of the cone and cutting into the ultrasound cone region. Their cut-
ting angles were automatically tuned to obtain a tight fit around the cone sides. The initial cone RoI
was further shrunk by these scanlines to remove any text annotations residing besides the original
ultrasound cone. Next, two frames were selected and annotated, one where the valve is open and
one where the valve is closed. A target-bounding box was placed around the AV, and the state of the
valve was noted (open / closed).

On a subset of 699 echocardiographies, the medical experts annotated the presence of severe
AS. The annotations are binary, 660 dicoms are annotated with the absence of severe AS and 39 are
annotated with the presence of severe AS. We can observe that the dataset used for the detection
of aortic stenosis is highly imbalanced.

The aim of the methods described below is to detect the AV, to classify the AV state for all the
frames of an echocardiography and to detect the presence of severe AS.

4.2.2 Aortic Valve Detection

For the AV detection, we rely on the Faster R-CNN algorithm. The Faster R-CNN consists of a
region proposal network (RPN) added on top of the Fast R-CNN network. First, the image is fed into
the backbone. The output of the backbone is called features map. The RPN has the role of proposing
regions for every point in the output feature map. To accomplish that, a set of anchors are placed on
the input image for each location corresponding to a point in the features map. Next, the RPN has
to check whether the anchors contain an object, and to refine these anchor coordinates to provide
bounding boxes. The anchors that contain an object are called regions of interest (RoIs). All anchors
that contain an object are than pooled to the same dimension (256x7x7) using a region of interest
pooling layer (ROI pooling). This type of layer was proposed for the Fast R-CNN, and it has the role of
extracting equal-length feature vectors for all proposals, i.e., RoIs, from the features map.

Finally, the output of the RoI pooling layer is passed to a fully connected layer that has the role
to predict the class scores (softmax layer) and to predict the final bounding boxes (regression) of the
detected objects.

The block diagram for this approach is depicted in Figure 4.1.

Figure 4.1: The proposed approach for the AV detection.

A two-dimensional CNN is first used to extract the spatial features from the image frame. Based
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on the extracted spatial characteristics, the Faster R-CNN algorithm detects the AV, classifies its
state (closed / open), and extracts the characteristics of the AV. Although the focus at this stage lies
on the localization of the AV, we also perform the AV state classification to force the model to learn
features that are representative for the AV state, which is the target of the temporalmodel described
in the next section. For training, we used the Adam optimizer [186] and the multi-task loss function
described in [184]:

L(pi, ti) =
1

Ncls

∑
i

[
Lcls(pi, p

∗
i ) + λ

1

Nreg
p∗iR(ti − t∗i )

]
(4.1)

Where the classification loss Lcls is a log loss over the two AV state classes, R is the robust loss
function (smooth L1), pi is the predicted probability of an anchor noted with i being an object, p∗i is
the ground truth label, ti represent the four parameterized coordinates of the bounding box, and t∗i
represent the ground truth coordinates.

For the AV detection, we used the entire dataset (1886 echocardiographies, i.e., 3772 image
frames), which was randomly split it into three datasets as follows: 70%, 15%, 15% for training, val-
idation and testing, respectively. The data is normalized using z-score normalization [187] across
the spatial pixel intensities. We tested various architectures of VGG (VGG-16, VGG-19) and Resnet
(Resnest-18, Resnet-50) as backbone.

4.2.3 Aortic Stenosis Assesment

In this section, the proposed approach for detecting AS in cardiac echocardiography is described.
Utilizing the algorithms and applications discussed in previous subsections, a multi-task model in-
corporating attention mechanisms was proposed. The aortic stenosis detection application is based
on the same aortic valve features extracted by the spatial CNN and detected using the Faster R-CNN
algorithm. The method used to identify aortic stenosis is similar to the one applied for analyzing the
cardiac cycle. In addition to the temporal CNNused for cardiac cycle detection, another temporal CNN
was added to predict the presence or absence of severe aortic stenosis. The output of this model is
binary, if the predicted output is greater than 0.5 presence of severe AS is detected and if the output
is smaller than 0.5, no severe aortic stenosis was detected. To better understand the multi-task ap-
proach utilized in this subsection, Figure 4.2 includes the general concept of themulti-task approach.
The B-mode echocardiography is processed by the spatial CNN and the spatial features are extracted
for each frame. Based on the extracted features, the Faster-R CNN detects the aortic valve then ex-
tracts the aortic valve features that are passed to the cardiac cycle detection algorithm. This features
alongside the cardiac cycle detection are passed to the AS assessment block, which then detects the
presence of absence of the AS.

Figure 4.2: The multi-task approach used to detect the presence of severe AS.

For the AS assessment, we used only the annotated 699 echocardiographies. In this study, due to
the constraints of a limited dataset, k-fold cross-validation [188] was implementedwith k = 2 during
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a training span of 300 epochs. Dataset partitioning for the cross-validation was executed, ensuring
the initial distribution of the dataset class imbalance. For each training epoch, the weighted accuracy
metric was computed, and the epoch that demonstrated the highest weighted accuracy across the
entire dataset was selected for reporting the statistics. The models were consistently trained using
theAdamoptimizerwith a learning ratemaintainedat 0.0001. TheASassessmentmodelwas trained
using both classical approach and FSL.

Currently, the application of the Faster R-CNN algorithm has so far been limited to isolating fea-
tures of the aortic valve through the use of a spatial convolutional network. Moving forward, we plan
to extend the algorithm’s functionality by applying it to identify areas significantly exceeding the typ-
ical dimensions of the aortic valve zone. To achieve this, we expand the AV predicted bounding box by
a factor of 1, 1.5, 2, 2.5, and 3 in each direction. This adjustment is based on the hypothesis that an
increased region of interest (ROI) could potentially enhance the precision in detecting severe aortic
stenosis.

To ensure the robust validation of our Few-Shot Learning (FSL) model, we adopt a strategy that
involves selecting random samples from the validation dataset to create both a support set and a
query set. The support set serves as the basis for generating predictions for the query set. This
dynamic selection process, where the support and query sets are constantly varied, implies that the
volumeof validation steps can significantly influence the observed accuracy. To accurately assess the
model’s performance, we devised an experimental approach where the model undergoes repeated
validation phases until the accuracy levels off and stabilizes. This method is designed to mitigate
variability in the validation process and provide a more reliable measure of the model’s true predic-
tive power. By continuously adjusting the composition of the support and query sets and observing
the impact on accuracy over successive validation iterations, we can more precisely determine the
model’s efficacy in handling new, unseen data. This meticulous validation technique not only en-
hances our understanding of the model’s capabilities but also ensures that the model is thoroughly
tested across awide range of scenarios, thereby bolstering confidence in its generalizability and real-
world applicability.

4.3 Experimental Results

4.3.1 Aortic Valve Detection

The precision and recall metrics were used to evaluate the AV detection performance [189]:

Precision =
TP

TP + FP
, (4.2)

Recall = TP

TP + FN
. (4.3)

We use IoU (Intersection over Union) as a metric to determine whether the AV was localized cor-
rectly [190]. Any detectionwith an IoU>0.5 is considered a true positive detection (TP), any detection
with an IoU≤0.5 is considered a false positive detection (FP) and any image forwhich the network did
not predict at least one object is considered a false negative (FN) detection. In addition, MIoU (mean
IoU) was also calculated to assess how well the AV is detected on the entire data set. The results on
the test set are displayed in Table 4.1.

The best results on the test set were obtained using a Resnet-50 backbone for the Faster R-
CNN algorithm. The model achieves a precision of over 93% and a recall close to 100%. Although
each of these architectures has shown promise in various domains of image recognition and object
detection, the Resnet-50 backbone emerged as the most effective for our purposes, particularly in
terms of balancing computational efficiency with high precision and recall rates. The Resnet-50 ar-
chitecture’s success can be attributed to its deep residual learning framework, which alleviates the
vanishing gradient problem, thereby enabling the training of significantly deeper networks without
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Table 4.1: Results obtained for the AV detection.

Backbone Dataset Precision Recall MIoU
VGG-16 Validation 92.11 99.33 0.73
VGG-16 Test 89.42 98.87 0.73
VGG-19 Validation 90.57 99.33 0.72
VGG-19 Test 85.22 99.77 0.71
Resnet-18 Validation 93.27 100 0.72
Resnet-18 Test 89.42 99.77 0.71
Resnet-50 Validation 96.23 99.33 0.75
Resnet-50 Test 93.27 99.77 0.74

a corresponding degradation in performance. This characteristic is particularly advantageous for the
complex task of AV detection, where subtle features and variations need to be discerned accurately.

4.3.2 Aortic Stenosis Assesment

To evaluate the aortic stenosis assessment we computed the accuracy and the weighted accu-
racy. The results obtained for this approach are depicted in Table 4.2. We can observe that the best
results are obtained using the FSL approach. This is expected since the FSL algorithm is specialized
for small datasets with high imbalance of data. Using the FSL approach, our AS assessment model
obtained an accuracy of 95.7% and a weighted accuracy of 90.3%.

Table 4.2: The results obtained for the AS assessment model.

Method Dataset Accuracy Weighted accuracy Mean weighted accuracy
Classic Set 1 95.8 83.4 89.3Classic Set 2 95.7 95.2
FSL Set 1 94.2 87.8 90.3FSL Set 2 95.7 92.9

In Figure 4.3, we present two illustrative cases for the evaluation of AS, showcasing the model’s
capability to accurately assess AS presence. The depicted images feature two AV’s, one with AS
and one without, highlighting the model’s ability to differentiate based on anatomical discrepancies.
Notably, the valve afflictedwith aortic stenosis is visibly larger due to the pathological changes asso-
ciated with AS, while the other valve appears smaller and within normal size parameters. This visual
comparison underscores the model’s precision in identifying and assessing the severity of AS by an-
alyzing structural variations in the AV, further validating its effectiveness in the accurate diagnosis of
AS.
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Figure 4.3: Sample predictions for AS assesment.

4.4 Conclusions
Within this research activity, a non-invasive method for detecting aortic stenosis using artificial

intelligence has been proposed. Unlike current clinical guidelines, the proposed method eliminates
the need for lengthy echocardiographic exams (both B-mode and Doppler), significantly reducing
the time required to diagnose severe aortic stenosis in a patient. The algorithm offers a diagnosis
based on 20 frames from a B-mode echocardiography, thereby removing the necessity for Doppler
echocardiography. The proposed method achieves a detection accuracy of 96% for the aortic valve,
95% for the valve’s state, and 91% for severe aortic stenosis. Aortic valve detection utilized the Faster
R-CNN algorithm, enhanced with a post-processing module to correct misdetected dicom-level de-
tections. To determine the state of the aortic valve (open/closed), a temporal convolutional network
was employed, which makes a binary decision based on the features of the aortic valve. The outputs
of these two models then serve as inputs for the automatic detection algorithm for severe aortic
stenosis, deciding based on the aortic valve features and the cardiac cycle whether a patient has
severe aortic stenosis. The parameters of the networks used, their hyperparameters, and other op-
timizations were empirically determined within this research activity. Two training approaches were
utilized for themodel: traditional training and training using a prototypical network. Prototypical net-
works require less training data, which impacts the cost associated with processing, collecting, and
storing clinical patient data. Currently, no medical therapy for aortic stenosis can improve outcomes
compared to the natural progression of the pathology, and there is no comprehensive, integrated di-
agnostic method for AS, nor any treatment decisions aimed directly at reducing risk and improving
long-term outcomes. Severe aortic stenosis affects up to 5% of the global population, and with the
aging population, it has a significant impact on public health. Therefore, there’s a need for a more
efficient and quicker solution for detecting severe AS, as well as a treatment scheme aimed at re-
ducing long-term risk. This activity achieved the detection of severe aortic stenosis using cardiac
ultrasound and AI, impacting the number of clinical tests needed to decide whether a patient has se-
vere AS. Ultimately, requiring fewer clinical tests impacts the cost of diagnosing a patient with severe
AS. AI could also be used to extract other clinical measurements from cardiac ultrasound. To improve
the accuracy of the severe AS detection model, methods for extracting various relevant clinical mea-
surements for aortic stenosis detection (e.g., automatic measurement of the LVOT diameter) will be
investigated and later incorporated into the final severe AS detection algorithm.

Lai, Khin Wee, et al. [191] proposed a deep learning method based on image segmentation using
AlexNet to detect the AV. They achieved an accuracy of 95% on 120 echocardiographies. Bin Ahmad
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Nizar, Muhammad Hanif, et al. [192] proposed a deep learning method based on Faster R-CNN to
detect the AV in echocardiography. They achieved a precision of 94.2% and a recall of 95.7%. In their
study they only detected the AV with a bounding box but did not classify the AV state. They used
23 echocardiographies for training, five for validation and two for testing. J. M. Kwon et al. [193]
proposed a deep learning algorithm based on CNN to detect aortic stenosis in electrocardiography
that achieved an accuracy of 62%.

A precise detection of the AV and of its state are important prerequisites for the AS assessment.
Future activities will focus on extending the proposed methods and integrating them into an AS as-
sessment framework. The proposed DL based model can also be used as feature extractor or for
pre-training an AV stenosis assessment model.
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5. Automated Detection of Myocarditis from Car-
diac Magnetic Resonance Imaging using Deep
Learning1

Introduction
Materials and methods
Results
Discussions and conclussions
Limitations

5.1 Introduction
Myocarditis, characterized by inflammation of the cardiac muscle, has implications on both the

myocardial contractile function and the electrophysiological properties of the heart, potentially lead-
ing to heart failure and arrhythmias, respectively [86]. This condition’s etiology is multifaceted, en-
compassing infectious agents (for instance, viral pathogens like COVID-19 and parvovirus) [87], sys-
temic inflammatory and autoimmune disorders, as well as adverse drug reactions. Clinical manifes-
tations of myocarditis commonly include thoracic pain, lethargy, and dyspnea [88]. It is imperative
for individuals presenting with symptoms suggestive of myocarditis to obtain prompt cardiological
consultation to facilitate early detection and management. In cases of severe myocarditis, endomy-
ocardial biopsy, a diagnostic intervention, is advocated to substantiate the diagnosis and inform ther-
apeutic strategies [89]. Management of myocarditis includes a range of supportive measures, ther-
apeutic interventions for symptomatic heart failure, administration of antimicrobial agents against
identified infectious pathogens, and the use of immunosuppressive therapy in cases of severe in-
flammatory responses. Timely diagnosis and the immediate commencement of treatment are cru-
cial in significantly reducing the associated morbidity and mortality. Non-invasive cardiac imaging,
particularly cardiovascular magnetic resonance imaging (MRI) [194], plays a vital role in confirming
the diagnosis of myocarditis. In their study onmyocarditis, the authors [90]] underline the necessity
of utilizing the Lake Louise Criteria (LLC) in cardiac MRI, which involves analyzing cine, T2-weighted
black blood, and late gadolinium enhancement (LGE) images to accurately diagnose the condition.
However, the interpretation of MRI is heavily reliant on expert analysis, which is both labor-intensive
and susceptible to operator bias. To mitigate these challenges, the development of automated diag-
nostic systems utilizing advanced machine learning and data mining algorithms has been proposed.
These systems are designed to efficiently address medical image classification challenges, thereby
enhancing diagnostic accuracy and reducing subjectivity [91]. These technologies can be utilized

1The following section contains work published in:
• Hatfaludi, Cosmin-Andrei, et al. “Automated Myocarditis Detection Using Deep Learning and MRI.” The Interna-

tional Journal of Cardiovascular Imaging - Under Review
The textwere quoted verbatim from the above references, which represents previously publishedwork of the author, under
the PhD research program.
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within reporting workflows to automatically screen images, which helps in saving time for physi-
cians, minimizing the incidence of errors, and improving the accuracy of diagnoses.

Deep learning (DL) represents a category of machine learning algorithms characterized by the
utilization of multiple layers to extract more abstract and advanced features from the raw input data
[195]. Few-shot learning (FSL) is a learning approach in which predictions are generated using a
limited quantity of samples [92]. According to Yang et al., the FSL models can be divided into four
specific categories: learning with external memory, multitask learning, generative modelling, and
embedding learning.

In the field ofmyocardial disease (MCD) diagnosis from cardiovascularmagnetic resonance imag-
ing (CMRI), recent years have seen significant advancements through the use of deep learning (DL)
techniques, as evidenced by various studies [88, 93, 196]]. Sharifrazi et al. [88] introduced the
CNN-KCLmodel, specifically designed for MCD detection using CMRI images, with testing conducted
on the Z-Alizadeh dataset. This model incorporates a comprehensive approach by analyzing CINE-
segmented images in both long axis (LAX) and short axis (SAX) views, Pre-contrast T2-weighted
(TIRM) images in LAX and SAX views, T1-Weighted relative images pre-contrast and post-contrast
in axial views of the myocardium, and Late Gadolinium Enhancements (LGE high-resolution PSIR)
sequences in SAX and LAX views. The integration of these diverse views through a 2D-CNN with
k-means clustering results in an impressive accuracy of 97.41%. Another noteworthy contribution by
Shoeibi et al. [93] involved the application of the cycle-GAN method alongside various pre-trained
models for MCD diagnosis, also utilizing the Z-Alizadeh dataset. The key innovation here was the
use of cycle-GAN in preprocessing to generate synthetic CMRI images, which were then processed
through different pre-trained models. Among these, the EfficientNet V2 method stood out, achiev-
ing an accuracy of 99.33%. Moravvej et al. [196] explored a different avenue by introducing deep
reinforcement learning (RL) for MCD detection, presenting the RLMD-PAmethod for diagnosingmy-
ocarditis using CMRI images from the Z-Alizadeh dataset. Furthermore, the study examined various
optimization methods to improve both the accuracy and efficiency of MCD diagnosis.

In this study, we introduce a deep learning (DL) approach designed to automate the detection
of myocarditis from cardiovascular magnetic resonance imaging (CMRI). Our methodology evaluates
multiple CMR image sequences to ascertain which produces the best separation between normal
andmyocarditis cases. Through a comparative analysis of different imaging views of the heart (short
and long axis), we aim to identify themost effective imaging angle for myocarditis detection. This in-
vestigation is critical for refining diagnostic precision and could significantly impact clinical decision-
making by providing insights into the optimal CMRI view for diagnosingmyocarditis, thereby enhanc-
ing patient care and treatment outcomes.

5.2 Materials and Methods

5.2.1 Dataset

5.2.1.1 Study Design

This was a single-center, retrospective study that was carried out at the Center of Advanced Re-
search in Multimodality Cardiac Imaging, Cardio-Med Medical Center, Târgu-Mureș, Romania. The
study complied with the Declaration of Helsinki for investigation in human beings. The study proto-
col was approved by the local ethics committee and each patient signed an informed consent form
before the enrolment in the study.

5.2.1.2 Study Population

Patients at least 18 years old, with atypical angina, dyspnoea and fatigue are indicated for per-
forming a cardiac MRI. Further inclusion criteria were: history of cold/flu in the last 2-3 months,
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changes on the electrocardiogram (sinus tachycardia, where T negative diffuse), fever and chills. Pa-
tients were excluded if they were unable to provide informed consent, and if they presented with
myocardial ischemic injury (history of myocardial infarction STEMI and NON-STEMI), autoimmune
diseases and infiltrative diseases at the myocardial level (amyloidosis). A total of 269 patients were
included in the study, of whom 231 had myocarditis, while the remaining 38 were control subjects.

5.2.1.3 Procedure Protocol

Each patient included in the study was subjected to an MRI examination with consent. Based
on the obtained results, patients were divided into the two study groups. To perform the cardiac
scenarios, we used a doritonated MRI from Siemens, model Magnetom Aera, Forchheim, Germany.

A standard cardiac MR protocol was employed including cine balanced steady-state free preces-
sion (bSSFP) short and long axis views, T2-weighted acquisitions, and late gadolinium enhancement
(LGE) in LAX 2-chamber and 4-chamber views. For the LGE acquisition a bolus of gadolinium-based
contrast agent (Gadovist) was injected at a rate of 4 ml/s. Ten minutes after injection a phase sen-
sitive inversion-recovery (PSIR) sequence was acquired at the same LAX positions as the cine bSSFP
to detect LGE.

Following the suggestion of the clinical experts in the study, the following acquisitions were con-
sidered for the detection of myocarditis:

• PSIR LGE in 2-chamber and 4-chamber views (single frame)

• T2-weighted 2-chamber and 4-chamber views (single frame)

• Cine bSSFP in LAX 2-chamber, 3-chamber, and 4-chamber views (multi-frame)

• ASAX stack of cine bSSFP (x to y numbers) slices covering the left ventricle (multi-frame,multi-
slice).

Figure 5.1. displays examples of all views. For the multi-frame views, we display the middle
frame and for the multi-slice multi-frame view we depict the middle frame of the middle slice. We
adapted a DL approach for each of the single frame, multi-frame, and multi-slice type of data to
perform myocarditis vs. normal classification.

5.2.2 Data Preprocessing

All images were normalized using z-score normalization [197]. To potentially enhance the neural
network’s performance by focusing on the region of interest, the images were cropped. Given the
central location of myocardium in the images, the cropping procedure was implemented as follows:
we retained the central 50% of the image in each dimension plus a proportional segment (k) of the
image size: imagesize/2 + k ∗ imagesize. Parameter k was set at 0.5 (non-cropped images) and at
increments of 0.05 ranging from 0.4 to 0.2. A separate DNNwas then designed and trained for each
view. Details are included in the following subsections.

To evaluate the performance we computed the weighted accuracy [198]:

weighted accuracy = 0.5× TP

TP + FN
+ 0.5× TN

TN + FP
. (5.1)

For the models that showed the highest weighted accuracy, receiver operating characteristic
(ROC) analysis was performed as outlined in [199], and the area under the curve (AUC) score was
calculated [200]. The selection of the optimal threshold for each model was guided by the ROC
curves, identifying the point that most closely approached the ideal (0,1) coordinate, consistent with
the methodology recommended in [201]. The chosen threshold was then applied to obtain the re-
sults, which are reported using various performance metrics (weighted accuracy, sensitivity, speci-
ficity, PPV, NPV) [202].
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Figure 5.1: Views considered for the detection of myocarditis from cardiac MRI: (a) T2 weighted 2-
chamber view, (b) T2 weighted 4-chamber view, (c) LGE 2-chamber view, (d) LGE 4-chamber view,
(e) cine bSSFP 2-chamber view, (f) cine bSSFP 3-chamber view, (g) cine bSSFP 4-chamber view, (h)
cine bSSFP SAX stack. The middle frame is displayed for multi frame views, and for the multi-slice
multi-frame view, we used the middle slice and the middle frame.

The determination of the cut-off point closest to the coordinate (0,1) was achieved using the
equation [203]:

ER(c) =
√
(1− Se(c))2 + (1− Sp(c))2 (5.2)

Here, ER quantifies the shortest distance to the coordinate (0,1), c signifies the cut-off point, Se
is sensitivity, and Sp represents specificity.

All the models were implemented using Python, specifically Pytorch. All statistical analysis were
also performed in python.

5.2.3 Classification Based on Single Frame Images

The single-frame views were processed using a neural network architecture comprising six con-
volutional layers followed by a fully connected layer to generate the final output. The task was struc-
tured as a binary classification problem [204], and we adopted two distinct training strategies: a
classical approach and a FSL approach. In the classic training paradigm, a sigmoid activation function
[205] was utilized at the model’s output layer to obtain probabilistic predictions ranging from 0 to 1.
Conversely, for the FSL strategy, we omitted the terminal fully connected layer.

In this study, due to the constraints of a limited dataset, k-fold cross-validation [206] was imple-
mented with k = 2 during a training span of 50 epochs. For the cross-validation process, the dataset
was divided in such a way that all CMRIs from a single patient were grouped together into one-fold,
guaranteeing that a patient’s data would not be spread across multiple folds. Additionally, we en-
sured that a similar proportion of normal and myocarditis cases was present in the two splits. For
each training epoch, the weighted accuracymetric was computed, and the epoch that demonstrated
the highestweighted accuracy across the entire datasetwas selected for reporting the statistics. The
models were consistently trained using the Adam optimizer [207] with a learning rate maintained at
0.0001.
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5.2.4 Classification Based on Multi Frame Images

For processing themulti-frame views, our approach involved using a spatial CNN (backbone) with
six convolutional layers. The backbonewas applied to individual frames independently. The resulting
feature maps from each frame were then concatenated. Subsequently, a single 2D convolutional
layer was applied to this aggregated feature set. The goal of this layer is to extract both spatial and
temporal features from all frames. An illustration of our approach is depicted in Figure 5.2.

Figure 5.2: Illustration of themulti-frame processing approach using a spatial CNN backbonewith six
convolutional layers. This diagram depicts the process where the backbone is applied independently
to each frame, followed by the concatenation of resulting feature maps from all frames. A subse-
quent single 2D convolutional layer is then utilized to extract and integrate both spatial and temporal
features across the entire frame set.

Similar to the single-frame views, the task was defined as a binary classification problem. For
this, we employed two distinct methodologies, consistent with the ones previously described for
single-frame viewanalysis. Allmulti frame views have a fixed number of frames (25). For the stack of
cine bSSFP SAX slices, each slice was processed independently using the approach depicted in Figure
5.2. The training of the model on this particular viewwas conducted under three different scenarios:
first, by utilizing the complete set of slices for each patient; second, by employing a subset of three
contiguous slices centred around the middle slice, and third, by selecting a broader subset of five
slices centred around themiddle slice (see Figure 5.3). For each scenario, we calculated theweighted
accuracy to evaluate the model performance. Based on this outcome, the scenario with the highest
accuracy was adopted for all subsequent experiments pertaining to this view.

5.3 Results

5.3.1 Population Characteristics

Baseline patient characteristics are summarized in Table 5.1.
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Figure 5.3: The five middle slices for the multi slice multi frame view (cine bSSFP SAX stack): a) slice
5, b) slice 6, c) slice 7, d) slice 8, e) slice 9. The middle frame is depicted for all 5 slices.

Table 5.1: Baseline patient characteristics and risk factors.

Male 137 (51.89%)
Female 127 (48.1%)
Age (years) 54.46 ± 15.87 years
Race All Caucasian
Weight 75.01 ± 10.96 kg
Height 169.79 ± 7.13 cm
Diabetes 34 (12.84%)
HTA 193 (73.1%)
Hypercholesterolemia 156 (59.09%)
Smoking history 71 (26.89%)
Previous Angina 15 (5.68%)
FEVS 47.47 ± 4.58%

5.3.2 Cine bSSFP SAX Stack Results

The results obtained using the cine bSSFP SAX stack for classification are reported in Table 5.2.
The best results for this view are obtained using three slices. This is to be expected since the my-
ocardium is typically best visible in the middle slices. Hence, for all other experiments and results
presented herein for this view, we have used a fixed number of slices equal to three.

5.3.3 All

The weighted accuracy computed for all the previously described models are reported in Table
5.3. The best results were obtained for PSIR LGE images in 2-chamber and 4-chamber views. On
both views the model obtained an accuracy greater than 90%. On the single frame views the models
achiever higher overall performance then on the multi frame views.

5.4 Discussions and Conclusions
In our study, we present a novel deep learning methodology for the detection of myocarditis

from MRI scans. An optimal view for myocarditis detection was identified through rigorous evalu-
ation. Comparative analyses demonstrated that the FSL approach outperformed the classical train-

Table 5.2: Weighted accuracy obtained for the cine bSSFP SAX stack, for different number of slices
selected as input for the classification network.

View Classic FSL Classic FSL Classic FSL
Number of slices All 3 5
Weighted accuracy [%] 64.2 61.9 67.2 67.5 65.0 67.3
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Table 5.3: Weighted accuracy obtained for the single- andmulti-frame views considered in this study.
In the table we reported the metrics for both Classic (Cls.) and FSL methods.

View 0.5 (original) 0.2 0.25 0.3 0.35 0.4
Cls. FSL Cls. FSL Cls. FSL Cls. FSL Cls. FSL Cls. FSL

T2 weighted 2-chamber view 67.2 62.3 69.9 57.0 63.2 57.5 63.5 59.2 66.8 61.3 56.7 62.3
T2 weighted 4-chamber view 69.0 72.0 64.5 72.0 65.1 71.1 66.3 74.8 71.8 72.6 69.9 72.0
LGE 2-chamber view 93.0 96.9 86.6 87.2 84.4 88.1 85.7 87.0 91.4 90.7 89.2 95.6
LGE 4-chamber view 87.4 90.1 85.7 84.8 87.2 87.0 85.4 88.3 85.6 88.5 84.8 87.6
cine bSSFP 2-chamber view 66.3 67.3 75.0 75.8 67.9 76.8 70.7 73.5 66.1 75.2 68.2 72.9
cine bSSFP 3-chamber view 56.3 56.0 52.1 56.2 50.0 52.1 51.7 53.4 54.4 54.9 57.6 53.6
cine bSSFP 4-chamber view 56.3 63.0 56.7 61.7 63.0 63.1 59.2 62.6 64.4 60.2 62.6 64.3
cine bSSFP SAX stack (3 slices) 67.2 67.5 61.1 71.2 63.2 69.6 62.2 70.2 64.2 70.3 64.7 69.6

ing method across the majority of the views, underscoring its efficacy. Notably, the model exhibited
robust learning capabilities even when trained on a small and highly unbalanced dataset, consisting
of 231 cases with myocarditis against 39 without myocarditis. Feature analysis revealed that the
model’s predictions are predominantly based on characteristics derived from the myocardial region,
indicating a targeted approach in identifying pathognomonic patterns indicative of myocarditis.

While all CMR imagesequences considered for image-based classification: cinebSSFP, T2weighted
acquisitions, and LGE are clinically relevant and help guide the diagnosis according to [90], our DL
classification method obtained the best results on the LGE images acquired in 2 and 4-chamber
views. This suggests that the DL network can more reliably use features based on the presence
of myocardial scar for the classification.

In the control group, which includes 39 cases, the artificial intelligence algorithm identifies 1 case
as possibly positive for the diagnosis of myocarditis. The patient was in the 24-40 years range, and
his history has identified a recent viral disease. However, the patient was clinically asymptomatic,
and showed no changes in laboratory tests. MRI imaging of the patient showed a small punctate
change in the myocardium, indicating possible microvascular damage at this level without clinical
significance. This fact proves that the algorithm developed during this study has a high detection
rate of changes, even minor, occurring at the myocardial level.

Analyzing patients in the myocarditis group, we found that the artificial intelligence algorithm
identified from a total of 231 cases, 8 cases, as being false negative. These false-negative results
were likely caused by diffuse distribution of a small amount of fibrosis in the myocardium, with pa-
tients presenting with forms of self-limiting myocarditis. A possible cause of these false negative
results could also be the relatively small number of patients included in the group with myocardi-
tis. Recent studies have proven that a larger number of patients included in the artificial analysis
algorithm allows it to detect even those minor changes occurring in the myocardium.

In the area ofmyocardial disease diagnosis based on cardiovascularmagnetic resonance imaging
(CMRI), our study adopts an approach where each CMR image sequence is examined independently,
a strategy that differs from those seen in prior studies like those by Sharifrazi et al.[88], Shoeibi et al.
[93] andMoravvej et al. [196]. Our approach enabled a granular examination of how individual imag-
ing views—ranging from T2-weighted acquisitions to LGE sequences—contribute distinctly to the
accuracy and reliability of myocarditis detection. By evaluating the diagnostic performance of each
view, our research not only identified themost effective sequences formyocarditis detection but also
offered a rich, multi-faceted understanding of the disease’s radiological presentation. This contrasts
with the aggregated view analysis in other studies, which, while effective in harnessing composite
information, may overlook the unique diagnostic value embedded within each specific imaging an-
gle. The saliency analysis, in particular, offers valuable insights into what the algorithm considers
important whenmaking decisions, focusing more on how themodel prioritizes different areas of the
images for diagnosis. This saliency analysis, underscoring ourmodel’s reliance on featureswithin the
myocardial region, offers an interpretative depth not available in combined approaches, fostering a
greater understanding of the patterns indicative of myocarditis. Through this strategy, our study
contributes to the body of knowledge in cardiovascular magnetic resonance imaging.
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6. Conclusions

Conclusions
Original Contributions
Dissemination of research results
Future Work

6.1 Conclusions
The thesis aimed to create, implement, andassessdeep learning techniquesonextensivedatasets

of medical imaging for cardiovascular disease diagnosis, with a specific focus on the nuanced di-
agnosis of vascular, valvular, and inflammatory cardiac diseases. The deep learning models were
enhanced with tailored architectures, and the training processes were adapted to meet the unique
requirements of each task, considering the diversity in data types, the complexity of predictions, and
operational demands.

In the realm of medical imaging, integrating AI algorithmswithin imaging devices is becoming in-
creasingly prevalent, enhancing diagnostic capabilities and streamlining routine tasks for efficiency in
both time and resources. The effectiveness of these algorithms directly influences the practicality of
diagnostic workflows. An essential aspect, alongside raw predictive power, is the capability to gauge
prediction uncertainty. This not only elevates the transparency and reliability of automated medi-
cal evaluations but also enables the identification of cases with high uncertainty for expert review,
thereby guiding subsequent actions or adjustments. To explore the aspects of uncertainty, the study
focused on analyzing the uncertainty in FFR predictions and utilized saliency maps for the models
discussed in the thesis. Thesemaps revealed that AI holds significant potential in themedical sector,
showcasing its ability to highlight critical areas and factors influencing model decisions, thereby re-
inforcing the viability and applicability of AI technologies in enhancing medical diagnostics and treat-
ment planning. In addressing the challenge of limited annotation data, this study leveraged raw
imaging data to pre-train DNNs using self-supervised heuristic pretext tasks, notably within CCTA
imaging. This approach, although straightforward, required careful monitoring to avoid the influence
of data artifacts that might align too closely with these tasks. Our exploration into DNN behaviors,
particularly when introducing synthetic artifacts during training, highlighted a tendency of models to
focus on exploiting these tasks rather than learning genuinely relevant features. To overcome the
problem with the limited annotation data, the study also employed few-shot learning techniques,
which are designed for effective training with minimal data, ensuring the extraction of meaningful
insights from the available datasets.

In this thesis, deep learning (DL) models were utilized to diagnose vascular, valvular, and inflam-
matory cardiac diseases. For vascular diseases, DLmodels focused on CCC detection and FFR predic-
tion, aiding in treatment decisions for coronary artery disease by identifying lesions requiring revas-
cularization. Valvular disease diagnosis employed DL models for detecting aortic stenosis through
echocardiography. Additionally, for inflammatory cardiac conditions, a DL model was developed for
myocarditis detection, utilizing multiple views of CMRI.
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6.1.1 Diagnosis of Vascular Cardiac Diseases using Deep Learning

This study marks a significant advancement in the use of deep learning for the diagnosis of vas-
cular diseases, specifically through the applications of FFR prediction and CCC detection. By harness-
ing OCT and angiography, the research on FFR prediction demonstrated the ability of deep learning
models to enhance diagnostic accuracy significantly over traditional approaches. The integration of
these imaging modalities, each with its strengths and limitations, facilitated a more comprehensive
assessment of coronary artery disease, particularly for lesions not clearly defined by visual exami-
nation. The exploration into regularization and data augmentation techniques, although with mixed
outcomes, further emphasizes the potential formethodological enhancements to improve predictive
performance.

Parallelly, the investigation into CCC detection using deep learning confronted the obstacle of
small dataset sizes, employing strategies such as model pretraining and few-shot learning to mit-
igate this issue. Despite encountering inconsistencies, the effort to combine spatial and temporal
data features through CNN-based architectures showed promising directions for future research.
The necessity for a richer dataset and more refined methodologies was evident, with future work
aimed at broadening data collection, applying self-supervised learning for pretraining, and optimiz-
ing few-shot learning techniques.

Collectively, these studies illustrate the transformative potential of deep learning in vascular dis-
ease diagnostics, suggesting a futurewhere non-invasive, accurate, and efficient diagnosticmethods
are the norm. The success of these approaches could lead to a paradigm shift in how vascular dis-
eases are diagnosed, offering improved pathways for treatment and patient care. As the field moves
forward, the emphasis on expanding and diversifying datasets, alongside the refinement of deep
learning models, will be crucial in overcoming current limitations and unlocking the full diagnostic
capabilities of these technologies.

6.1.2 Diagnosis of Valvular Cardiac Diseases using Deep Learning

In this study, a complex deep learning framework was developed to precisely detect and classify
the state of the aortic valve (AV) from echocardiography images, propelling forward the diagnostic
capabilities for aortic stenosis (AS). By integrating the Faster R-CNN algorithm with an additional
temporal CNN layer, the model goes beyond static image analysis to incorporate temporal informa-
tion from sequential frames, ensuring a comprehensive assessment of the AV state over time. This
method signifies a notable improvement over traditional detection techniques, which analyze each
frame in isolation, by leveraging the temporal context to achieve a more accurate and dynamic un-
derstanding of the AV’s condition. The approach has demonstrated remarkable success, reflecting in
its superior precision and recall metrics when compared to existing methodologies. Such advance-
ments underscore the potential of deep learning in revolutionizing the diagnosis of valvular diseases,
offering a more efficient, non-invasive alternative that could significantly enhance patient outcomes
and streamline clinical workflows.

6.1.3 Diagnosis of Inflammatory Cardiac Diseases using Deep Learning

ADL frameworkwas introduced for diagnosingmyocarditis using CMRI scans, significantly lever-
aging FSL techniques for enhanced detection accuracy. This approach was rigorously tested across
various views to identify themost effective perspective for myocarditis identification, revealing FSL’s
superiority over conventional training methods in the vast majority of cases. The model demon-
strated exceptional learning efficiency on a notably small and skewed dataset, comprising 231 my-
ocarditis cases contrasted with 39 non-myocarditis cases. Through detailed feature analysis, it was
discovered that themodel primarily relies on specificmyocardial characteristics to ascertain the pres-
ence of myocarditis, indicating its precision in detecting disease-specific patterns. Furthermore,
the findings included the model’s capability to identify subtle myocardial changes, suggestive of
microvascular damage, even in clinically asymptomatic individuals. This high sensitivity to minor
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myocardial alterations underscores the potential of advanced AI algorithms in revolutionizing my-
ocarditis diagnostics, facilitating early detection and intervention. The occurrence of false negatives,
attributed to the diffuse distribution of fibrosis or the dataset’s limited size, points to the need for
larger, more diverse datasets to refine the model’s accuracy further. This research paves the way for
more sophisticated, AI-driven diagnostic tools in cardiology, promising significant advancements in
the early detection and treatment of myocarditis.

6.2 Original Contributions
The contributions made in this thesis are organized by the type of cardiac disease - vascular,

valvular, and inflammatory. Each developed solution contributes towards the overarching aim in
healthcare technology: to create reliable and credible systems for automating medical diagnostic
processes, thereby enhancing the standard of patient care and service quality.

6.2.1 Diagnosis of Vascular Cardiac Diseases using Deep Learning

The integration of Optical Coherence Tomography (OCT) and angiography data as a combined
input into Deep Neural Networks (DNNs) stands as a significant original contribution to the do-
main of FFR prediction. This novel strategy boosts the accuracy of FFRpredictions, tackling the com-
plexities of assessing functionally significant stenoses and harnessing the strengths of both imaging
modalities to enhance diagnostic precision in coronary artery disease. Furthermore, the use of an
ensemble approach in conjunction with DNNs markedly improves FFR prediction, representing a
significant advancement in non-invasive coronary artery disease diagnosis by integrating both
imaging technologies for more accurate evaluations.

A groundbreaking approach is introduced for the diagnosis of vascular cardiac diseases through
deep learning, specifically focusing on the detection of CCC using invasive coronary angiogra-
phy images. By creatively combining spatial CNNs for frame-based feature extraction with ad-
ditional layers for temporal feature processing, the approach confronts the critical challenges of
data scarcity through advanced pretraining and few-shot learning techniques. These contributions
mark a significant leap in the application of artificial intelligence in cardiac care, setting the stage for
more precise and efficient diagnostic tools in the management of vascular diseases.

6.2.2 Diagnosis of Valvular Cardiac Diseases using Deep Learning

The study introduces a sophisticated deep learning framework specifically designed for the
detection and classification of the aortic valve (AV) state from echocardiography images, advanc-
ing the diagnostic capabilities for aortic stenosis (AS). This development represents a significant
contribution by the authors, as it integrates the Faster R-CNN algorithm with an additional tempo-
ral CNN layer, enabling the model to incorporate temporal information from sequential frames for a
comprehensive AV state assessment. This innovative approach signifies a notable improvement over
traditional detection techniques by leveraging the temporal context to achieve a more accurate and
dynamic understanding of the AV’s condition, demonstrating superior precision and recall metrics
compared to existing methodologies.

Another contribution of this research involves leveraging the aortic valve detection model as
a foundational pretraining step for the aortic stenosis detection model. This technique, particu-
larly through freezing the pretrained model’s weights, enables effective learning on datasets where
previously the significant class imbalance hindered learning capabilities.

6.2.3 Diagnosis of Inflammatory Cardiac Diseases using Deep Learning

The thesis delineates several pivotal contributions to the field of diagnosing inflammatory car-
diac diseases using deep learning, with a focus on myocarditis detection using MRI scans. The in-
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troduction of a novel deep learning methodology, crafted for automated myocarditis detection,
incorporates both single-frame and multi-frame analyses, significantly advancing the accuracy of
diagnoses derived from CMRI data. This methodology, conceived and developed within the study,
achieved an impressive weighted accuracy of 96.9%, demonstrating the profound impact of deep
learning models on improving myocarditis detection and potentially enhancing patient care through
early diagnosis and treatment.

A notable contribution of this work is the effective application of Few-Shot Learning (FSL),
which was found to outperform traditional training methods across most imaging views. This
achievement addresses the prevalent challenge of analyzing small and highly unbalanced datasets
in medical imaging, showcasing the researcher’s adeptness at implementing cutting-edge solutions
in complex diagnostic scenarios.

However, the research also candidly addresses challenges encountered, particularly with false-
negative results attributed to thediffusedistributionof fibrosis in themyocardium. This transparency
in acknowledging the limitations of the current models not only reinforces the integrity of the re-
search but also paves the way for future improvements, marking a significant stride in the endeavor
to refine deep learning applications inmyocarditis detection and, more broadly, in cardiovascular dis-
ease diagnostics.

6.2.4 Summary of Contributions

Table 6.1: Summary of Contributions and Disseminations.

No. Order Contribution Subchapter Dissemination article
1 The use of the ensemble model

to enhance accuracy for FFR
prediction. We used the
prediction from 20 models
combined into an ensemble for
a better estimate of the FFR.
Another advantage of using
ensemble approach is that we
can estimate the uncertainty
for each prediction.

2.2.2 Hatfaludi, C. A., Tache, I. A.,
Ciușdel, C. F., Puiu, A., Stoian, D.,
Itu, L. M., ... & Scafa-Udriste, A.
(2022). Towards a
Deep-Learning Approach for
Prediction of Fractional Flow
Reserve from Optical
Coherence Tomography.
Applied Sciences, 12(14), 6964.
DOI: 10.3390/app12146964

2 Another original contribution
for the FFR prediction is using a
combined approach that takes
as input both the OCT signal
and Angiographic signal. The
mixed model accuracy
increases significantly.

2.3 Hatfaludi, C. A., Tache, I. A.,
Ciusdel, C. F., Puiu, A., Stoian, D.,
Calmac, L., ... & Itu, L. M. (2024).
Co-registered optical coherence
tomography and X-ray
angiography for the prediction
of fractional flow reserve. The
International Journal of
Cardiovascular Imaging. DOI:
10.1007/s10554-024-03069-
z
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3 The original contribution here is
based on a groundbreaking
approach introduced for the
diagnosis of vascular cardiac
diseases through deep learning,
specifically focusing on the
detection of CCC using invasive
coronary angiography images.
By creatively combining spatial
CNNs for frame-based feature
extraction with additional
layers for temporal feature
processing, the approach
confronts the critical challenges
of data scarcity through
advanced pretraining and
few-shot learning techniques.

2.4.2 Hatfaludi, C. A., Bunescu, D.,
Ciuşdel, C. F., Serban, A., Böse,
K., Oppel, M., ... & Itu, L. M.
(2023, June). Deep learning
based detection of collateral
circulation in coronary
angiographies. In 2023 IEEE
36th International Symposium
on Computer-Based Medical
Systems (CBMS) (pp.
886-891). IEEE. DOI:
10.1109/CBMS58004.2023.
00337

4 Another original contribution
lies in the use of Faster R-CNN
combined with a temporal layer
in order to extract the spatial
features of the aortic valve for a
multi-frame problem. The
resulted features are then used
to detect the state of the aortic
valve (open/closed) during an
echocardiography sequence.

2.5.2.2, 2.5.2.3 Hatfaludi, C. A., Ciusdel, C. F.,
Toma, A., & Itu, L. M. (2022,
September). Deep Learning
based Aortic Valve Detection
and State Classification on
Echocardiographies. In 2022
IEEE 20th International Power
Electronics and Motion Control
Conference (PEMC) (pp.
275-280). IEEE.

5 Another original contribution is
using a model that was
originally trained to predict the
aortic valve as pretraining for a
aortic stenosis detection
model. We showed that the
pretraining with freeze of
weights, allowed the model to
learn to detect aortic stenosis
in an highly imbalanced dataset
in which learning was not
possible before.

2.6.3.2, 2.6.2 The results are not published.

6 Another original contribution is
the use of multiple views as
input for the model that detects
the myocarditis. We analyzed
how each view impact accuracy
and we found the optimal view
for the myocarditis detection.

3.2.2, 3.3 Hatfaludi, C.-A., Roșca, A.,
Popescu, A. B., Chitiboi, T.,
Sharma, P., Benedek, T., Itu, L.
M. (2024). Automated
Myocarditis Detection Using
Deep Learning and MRI.
International Journal of
Cardiovascular Imaging -
Under Review
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7 Another original contribution
for this study is the use of
Few-Shot Learning in a
multi-frame approach, where
we combined a spatial CNN
with a temporal CNN to detect
the myocarditis for an highly
imbalanced dataset. Even in
this conditions, our model
achieved an accuracy of 96.9%.

3.22 Hatfaludi, C.-A., Roșca, A.,
Popescu, A. B., Chitiboi, T.,
Sharma, P., Benedek, T., Itu, L.
M. (2024). Automated
Myocarditis Detection Using
Deep Learning and MRI.
International Journal of
Cardiovascular Imaging -
Under Review

6.3 Dissemination of Research Results
During the PhD program, the conducted research led to eight publications as author or co-author.

Four journal articles were published as first author:

• Hatfaludi, C. A., Tache, I. A., Ciușdel, C. F., Puiu, A., Stoian, D., Itu, L. M., …& Scafa-Udriste, A. (2022).
Towards aDeep-Learning Approach for Prediction of Fractional FlowReserve fromOptical Coherence
Tomography. Applied Sciences, 12(14), 6964 (impact factor: 2.7, Q2).

• Hatfaludi, C. A., Tache, I. A., Ciusdel, C. F., Puiu, A., Stoian, D., Calmac, L., …& Itu, L. M. (2024). Co-
registered optical coherence tomography and X-ray angiography for the prediction of fractional flow
reserve. The International Journal of Cardiovascular Imaging, 1-11 (impact factor: 2.1, Q3).

• Hatfaludi, C. A., Danu, M. D., Leonte, H. A., Popescu, A. B., Condrea, F., Aldea, G. D., …& Itu, L. M.
(2023). Applications of Artificial Intelligence in Cardiovascular Emergencies–Status Quo and Outlook.
Journal of Cardiovascular Emergencies, 9(4), 83-102 (impact factor: 0.6, Q4).

• Hatfaludi, C.-A., Roșca, A., Popescu, A. B., Chitiboi, T., Sharma, P., Benedek, T., Itu, L. M. (2024). Au-
tomatedMyocarditis Detection Using Deep Learning andMRI. International Journal of Cardiovascular
Imaging - Under Review.

Two journal articles were published as co-author:

• Tache, I. A., Hatfaludi, C. A., Puiu, A., Itu, L. M., Popa-Fotea, N. M., Calmac, L., & Scafa-Udriste, A.
(2023). Assessment of the functional severity of coronary lesions from optical coherence tomogra-
phy based on ensembled learning. BioMedical Engineering OnLine, 22(1), 127 (impact factor: 3.8,
Q3).

• Popa-Fotea, N. M., Calmac, L., Micheu, M. M., Cosmin, M., Scarlatescu, A., Zamfir, D., …& Scafa-
Udriste, A. (2022). A cloud-based platform for clinical decision support in acute coronary syndrome
patients: Study methodology. Kardiologia Polska (Polish Heart Journal), 80(5), 604-607 (impact fac-
tor: 3.7, Q2).

Two articles were published as first author in the proceedings of international conferences:

• Hatfaludi, C. A., Ciusdel, C. F., Toma, A., & Itu, L. M. (2022, September). Deep Learning based Aor-
tic Valve Detection and State Classification on Echocardiographies. In 2022 IEEE 20th International
Power Electronics and Motion Control Conference (PEMC) (pp. 275-280). IEEE.

• Hatfaludi, C. A., Bunescu, D., Ciuşdel, C. F., Serban, A., Böse, K., Oppel, M., …& Itu, L. M. (2023, June).
Deep learning based detection of collateral circulation in coronary angiographies. In 2023 IEEE 36th
International Symposium on Computer-Based Medical Systems (CBMS) (pp. 886-891). IEEE.
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6.4 Future Work
Directions for future work are described in the following:

• Expand Training Datasets: Aim to increase the training set sizes to boost the diagnostic perfor-
mance of deep learningmodels, particularly for FFR prediction andmyocarditis detection, while
sourcing larger datasets to enhance model generalization across diverse patient populations.

• Enhance Input Data Complexity: Move towards using coronary lumen masks instead of the
effective radius to account for lumen non-circularities, improving prediction accuracy, and ex-
plore incorporating 3D data inputs for capturing detailed anatomical features beyond the con-
ventional 1D and 2D approaches.

• Develop Multi-Class Classification Models: Focus on creating models that can categorize le-
sions with greater precision, distinguishing between functionally significant, non-significant,
and intermediate cases, to support nuanced clinical decisions and potentially reduce the need
for invasive FFR measurements in ambiguous situations.

• Incorporate Additional Patient Information: Integrate comprehensive patient demographics
and clinical data to refinediagnostic accuracy, and consider developing cascadedor hybridmod-
els that utilize coronary and broader patient data for enhanced predictions.

• Adopt Advanced Deep Learning Techniques: Investigate the utility of graph neural networks
and 3D data analysis models, along with self-supervised learning methods for pre-training on
scarce annotated data, aiming to identify superior strategies for cardiac diagnosis.

• Automate Model Pre-training and Feature Extraction: Streamline the pre-training and feature
extraction processes tominimizemanual efforts, focusing on automating the detection of con-
ditions like myocarditis and aortic stenosis with sophisticated feature extraction methods.

• Extend Models to Other Cardiac Conditions: Expand the disease detection models to cover a
wider array of cardiac conditions and apply thesemodels across different imagingmodalities to
assess adaptability and performance, thereby broadening the spectrum of detectable cardiac
diseases.

• ValidateModels inMulticenter Studies: Pursueextensive validationof theproposeddeep learn-
ing models through multicenter studies, ensuring the inclusion of a diverse patient cohort to
affirm the models’ effectiveness and applicability in varied clinical environments.

• Explore Hemodynamic Quantities Prediction: Extend deep learning applications to predict crit-
ical hemodynamic quantities like CFR, rest Pd/Pa, iFR, and stenosis resistance under various
conditions, enriching the diagnostic insights available to clinicians.
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Abstract

In exploring the cutting-edge application of deep neural networks (DNNs) within cardiac health-
care, this thesis delves into the transformative potential these technologies hold for diagnosing a
range of heart diseases, with a particular focus on vascular, valvular, and inflammatory conditions
such as coronary artery disease, aortic stenosis, and myocarditis. Based on advanced medical imag-
ing techniques, the research aims to bridge the gap between traditional diagnostic methods and the
complex analysis capabilities afforded by DNNs, promising a significant leap in both the accuracy and
early detection of cardiac pathologies.

Structured into comprehensive sections, the thesis first lays the groundwork by highlighting the
global impact of cardiac diseases and the emerging role of DNNs in revolutionizing diagnostic pro-
cesses. It thennavigates through the intricacies of variousDNNarchitectures, including convolutional
and recurrent neural networks, underscoring their utility in dissecting and interpreting complexmed-
ical imagery.

Focusing on specific cardiac ailments, the research presents in-depth studies on the detection
and analysis of vascular diseases through the identification of coronary collateral circulation using
DNNs. It further investigates the applicability of these neural networks in diagnosing valvular heart
diseases, with an emphasis on aortic stenosis, and extends the exploration to inflammatory cardiac
conditions, showcasing myocarditis as a case study.

The thesis finally also synthesizes the insights gathered from these investigations, offering a
comprehensive summary of the findings. It highlights the significant strides made towards integrat-
ing DNN technology into cardiac diagnostics, emphasizing the potential for enhancing the precision
and timeliness of disease identification. Additionally, the conclusion points towards future research
directions, suggesting a roadmap for further advancements in leveraging deep learning for cardiac
health.

By connecting traditional diagnostic approaches with the sophisticated analytical capabilities of
DNNs, this study not only lays the groundwork for enhanced precision and earlier detection of dis-
eases but also unveils new horizons in tailored patient care, signaling the start of a new chapter in
how we diagnose heart diseases.
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