INTERDISCIPLINARY DOCTORAL SCHOOL
Faculty of Mathematics and Computer

Delia Elena CUZA (married SPRIDON)

GPU Methods for Increasing Computational
Performance in Graph Theory and Map
Building

SUMMARY

Scientific supervisor
Prof. dr. Marius Sabin TABIRCA

BRASOV, 2024

Universitatea
Transilvania
din Bragov

Contents
INTROD U CTION....ooouuuueeeeessssseeeesssssseesesssssssssessesssnns 3
Chapter 1. High-Performance Computing 0n GPU ... 7
T1o GENEIAITIES oot 7
1.2. Parallel Programming on GPU. AppliCatioNS.cimsssssssssssssssssenns 8
1.3. Technologies for Programming on GPU— CUDA ... 9
Chapter 2. Generation of RANAOM NEEWOIKS ... sssssssssssssssssssens 11
2.1, Graphs - General INfOMMATION. ... ssssssssess 11
2.2, CUDA N Graph ThEOMYcoresirsssissessess 12
2.3. Algorithms for Generating RaNdom Graphs ... 12
2.4, ReSUItS aNd DISCUSSIONS.....c.cuurriirisisssessses 17
Chapter 3: Finding the Minimum Loss Path in a Big Network........nne. 18
3.1, SCENTFIC CONTEXE. iiiiriiiiireiiieeessseeeessesess s ssss s ssss bbb s 18
3.2, The Minimum Loss Path Problem ... 19
3.3. Algorithms for Determining the Shortest Path in @ Network.........cccceereeeerensnneennens 21
3.4, RESUILS ANA DISCUSSIONS......couuuerierereeisseeessssesssssssssssssesssssssssssssssssssssssssssssesssssssssssssssssssssssessess 23
Chapter 4. Determining the Minimum Loss Flow in a Generalized Network ..., 25
41. The Traditional Maximum FIOW Problem.......csssssssnns 25
4.2. The Generalized Maximum FIOW Problemssssssssssssessssessssnns 26
4.3, RESUITS ANA DISCUSSIONS.......civeireiesiesssnns 27
Chapter5. Fast GPU Interpolation for Map GENEratioN......ceesessesessssssssssssssssssens 28
5.1. Two-Dimensional Interpolation Methods........se s 28
5.2. Accelerating Interpolation Methods Using CUDA.........emmmrrsmmmsessssssssessens 29
5.3. Study of Air Pollution Maps for Brasov During the Pandemic ... 30
5.4. Study of Geomagnetic Maps 0f ROMANIA.........ermmmeesmiressssssssssssssssssssssssssessens 32
5.5. CUDA Methods for Generating Geomagnetic Maps.........c.ueermmememmsmnessssssnsssessees 32
Chapter 6. Conclusionsand FUture PErspeClives.....issssessssssssssssssssss 34
Published Works in the Field of the TRESIS......ssssssssssssssssssssssss 36
Selective DIDIIOBIAPNY ..o s 37

I
—
n Universitatea
Transilvania

[]| din Brasov

INTRODUCTION

In this thesis, | used CUDA (Compute Unified Device Architecture) technology to optimize and
enhance specificalgorithmsin various fields. | have structured the main contributions and resultsinto
several majordirections, each bringing significantimprovements inits application area by using parallel
computing capabilities offered by NVIDIA GPUs (Graphics Processing Units). This work is based on six
papers publishedin prestigious scientificjournals or presented atinternational conferences, allindexed
in recognized international databases, and one paperaccepted for presentationand publicationin the
proceedings of a conference indexed by CORE.

The first major contribution was the developmentand implementation of new algorithms for
generating random networks, which are essential for modeling and simulating various natural and
social phenomena. Random networks are used in numerous applications, from analyzing social
structures to simulating diffusion processes in physics and chemistry. Using CUDA technology allowed
for asignificantaccelerationin the process of generating these networks. Compared to traditional CPU
(Central Processing Unit)-based methods, the proposed solution reduced execution time by
parallelizing the generation operations, resulting in a significantincrease in performanceand the ability
to handle large-scale networks.

The second contribution was the proposal andimplementation of algorithms for determining
minimum loss pathsin generalized networks. These algorithms are critical in various flow optimization
applications, such aslogistics, transportation, and telecommunications networks. Implementing them
on the CUDA platform enabled parallel processing of nodes and edges in the network, significantly
reducing computation time. Instead of processing each path sequentially, GPUs allowed simultaneous
calculations, leading to much faster optimal solutions. This increased efficiency was demonstrated
through tests on complex networks, where CUDA algorithms reduced the time required to determine
optimal paths compared to traditional CPU solutions.

As a practical application of the minimum loss path determination algorithms, we proposed a
solution for minimizing flow loss in networks. This problem is particularly relevant in the context of
distribution networks for energy, water, or other types of networks where losses can occuralong the
arcs. GPU optimization using CUDA enabled intensive calculations to be performed much faster than
classical approaches. The developed algorithms were tested on large-scale networks and
demonstrated high efficiencyin identifying and minimizing losses. The results showed that the use of
GPUs not only accelerates the computation process but also improves overall performance.

Finally, we applied interpolation methods, such as Inverse Distance Weighting (IDW) and
kriging, using CUDA to generate preciseand detailed pollution and geomagnetismmapsina short time.
Interpolationisa crucial method for mapping spatial data, used in geography, meteorology, and other
Earth sciences. Implementing these methods on GPUs allowed for the parallelization of distance and
weight calculations, significantly speeding up the interpolation process. This acceleration was
particularlyuseful forlarge and complex datasets where traditional calculations would be too slow.

In conclusion, by using CUDA technology, we optimized and enhanced essential algorithms for
various applications, demonstrating that GPUs can bring significantimprovements in performance and
scalability of these algorithms. This paper highlights the enormous potential of parallel computing on

3

n Universitatea
Transilvania
[]| din Brasov

GPUs in solving complex problems and opens new directions for future researchin the field. Thus, the
research presented here is notonly based on a solid foundation of studies and experiments published
and validated internationally but also demonstrates extensive practical applicability in multiple

scientific and technological domains.

In summary, this thesis is based on the results obtained and published in journals or
proceedings of internationally recognized conferences. Thus, in the domain of the thesis, | have

published:

- 1ISlarticleinan A-list journal

- 2articlesina Scopus-indexed journal

- 3articles presented and published in the proceedings of CORE C-classified conferences

- 1 paperaccepted for presentation at a CORE C-classified conference

Table 1 presents the classification of these works according to the standards for evaluating
PhD theses in the field of Computer Science, valid at the time of the thesis defense. Furthermore, in
terms of the impact of the results, | highlight that the papers published in the thesis domain have 11
citations (excluding self-citations), of which:

- L4citations are in ISI-rated journals

- 1citationin a Scopus-indexed journal

- 2citations in the proceedings of CORE C-classified conferences

- 3citations of category D.

Table 1 Published Works and Corresponding Scores, According to PhD Thesis Evaluation
Stanadards 2018.10.07-Present’, Citations (excluding self-citations)

No.| No. of Article Title Journal / Proceeding | International | Score * | Citations
authors Database
1. 2 Adaptation of Mathematics ISI - A 8p 3
Random Binomial
Graphs for Testing
Network.
2. 1 Advances in CUDA Bulletin of the Scopus 2p 1

for computational

physics

Transilvania
University of Brasov.
Series Il
Mathematics and
Computer Science

' Standarde de evaluare a tezelor de doctorat: https://www.cs.ubbcluj.ro/invatamant/programe-
academice/doctorat/standarde-evaluare-teze-de-doctorat/

4

Universitatea
Transilvania
din Bragov

3. 3 IDW map builder Bulletin of the Scopus 2p 3
and statistics of air Transilvania
pollutionin Brasov | University of Brasov.
Series Il
Mathematics and
Computer Science
4, 3 Fast CUDA ICCSA - Lecture Notes COREC 2p -
Geomagnetic Map in Computer Science
Builder
5 3 Finding minimum ISPDC - IEEE Xplore COREC 2p 4
loss pathin big
networks
6. 4 New approach for IASID — AC COREC 1p -
the generalized
maximum flow
problem
Total 17p 11

In Table 2, we have presented the fulfillment of the current national minimum standards for
awarding the title of Doctor in the field of Computer Science. Thus, in the thesis domain, | have
published:

e 1 paperinan|Sl-rated journal
e 2 papersina Scopus-indexed journal
e /4 paperspresentedatinternational conferences, of which 3arein ISI, CORE C, Scopus,

DBLP, IEEE/Springer, etc.

Table 2 Fulfillment of National Minimum Standards for Awarding the Title of Doctor —
Computer Science Committee?

No. of papers
No. Criteria Type of paper | published by the
author
Publication or acceptance for publication
(with proof of acceptance) of at least one 51 !
1. article in ISI-indexed journals from the
UEFISCDI list or in SCOPUS-indexed Scopus 2
journals.
5. Participation in and presentation of at least 4
two scientific papers atinternational

InII Universitatea

Transilvania

] din Brasov
conferences, as proven by the conference (of which 31Sl,
program. COREC, Scopus,
Recognized conferences are those indexed IEEED/ELP'I
in the following databases: SCOPUS, IEEE, tpr)lnger
etc.

3. ACM, SPRINGER, DBLP, CiteSeerX,
Zentralblatt, MathSciNet, COPERNICUS,
EBSCO, and ProQuest.

I nII Universitatea

Transilvania
[]] din Brasov

Chapter 1. High-Performance Computing on GPU

In this chapter, a literature review published in my work (Spridon, Advances in CUDA for
Computational Physics 2023) is presented. It provides a summary of the most important research
results from recentyears regarding GPU programming. Additionally, the most well -known methods of
GPU programming are compared, highlighting the advantages and limitations of GPU programming
using CUDA technology.

1.1. Overviews

High-Performance Computing (HPC) is a field of computer science that focuses on using
systems and technologies to perform complex or computationally intensive calculations at superior
speeds and efficiency. This field often deals with solving difficult problems and handling massive
amounts of datain the shortest possible time.One of the most accessible methods to achieve this is
by using Graphics Processing Units (GPUs).

Table 1.1 provides a comparative overview of CPUs and GPUs. In short, GPU programming
offers many benefits, including parallel processing, energy efficiency, cost-effectiveness, and flexibility.
However, it also requires specialized knowledge and experience, has additional overhead for data
transfer, and does not apply to all types of applications. Additionally, the performance gains of GPU
programming arelimited by hardware constraints, and large-scaleapplicationsmay require specialized
hardware or multiple GPUs to achieve optimal performance.

The efficiency of a GPU can be directly proportional to the number of GPU cores. Due to this,
GPUs can fully benefit from Moore's Law or the constant increase in integration density. GPU
performance continues toimprove at a rate of 1.5 times per year.In 2017, the performance gain over
CPUs was 10-100 times, depending on the application. By 2025, this is estimated to be nearly 1,000
times. Thus, while Moore's Law has slowed down for CPUs, and some even say it has ended, the
growth in GPU computing power continues to keep pace (Huang 2023).

Table 1.1. CPU 7/ GPU comparison

CPU GPU

Up to several dozen very powerful cores Up to several thousand cores optimized for
parallelism
Higher frequencies for fast instruction Relatively lower frequencies but efficient
execution parallel operations

I

— . .
n Universitatea
II Transilvania

din Bragov

Larger and more efficient cache memory
for general processing tasks

Smaller cache memory optimized for large
datasets specific to graphics, in general

Ideal for single-thread or lightly multi-
threaded compute tasks

Optimized for graphics, parallel processing,
and massively parallel algorithms

Lower power consumption, ideal for
portable systems

Higher power consumption

Usually more expensive per core, but the
price can vary based on performance

More affordable per core, but the total cost
can be higher depending on configuration and

graphics performance

Executes instructions for general Executes paralleloperations for graphicsand

processing intensive computation

It is important to emphasize that CPUs and GPUs are designed for different uses, and the
choice between them depends on the type of tasks that need to be performed.

1.2. Parallel Programming on GPU. Applications.

Due to their high parallel processing power, GPU programminghas found applications in a wide
range of fields. Some of the areas where GPU programming is used in recentresearchinclude artificial
intelligence (Al) and machine learning (ML), big data analysis, scientific simulations, graphics and 3D
rendering, medicine and bioinformatics, or cryptography and security (Figure 1.1).

Automotive Design
Fluid Dynamics

Medical Imaging

Drug Design Computed Tomography

Molecular Dynamics

Astrophysics
n-body

Options Pricing
Monte Carlo

Weather Forecasting
Atmospheric Physics

Figure 1.1 Recent Applications of GPU Programming (Baji 2018)

GPUs enable the rapid transformation and analysis of large datasets (big data) (Chen et al.
2018). This processincludes real-time data analysis, data processing and filtering, and the application
of machine learning algorithms to large datasets. Consequently, there is research exploring how GPUs
can be used to accelerate big data processing. For example, various parallelization and optimization
techniques are analyzed to achieve high performance in big data analysis (Wu, Sun et al. 2021) (Kumar
and Mohbey 2022). Algorithms and optimization techniques are also proposed to reduce execution
time and efficiently manage memory in big data analysis operations (Jiang et al. 2015).

8

| 71| BT

GPU programming is used in computational sciences to accelerate intensive numerical
computations (Prabhuetal. 2011). This includes simulations in physics, chemistry, biology, and other
fields where complex and iterative calculations are performed. In com putational physics, forinstance,
process acceleration is of great importance for obtaining the desired results in real time. GPU
programming is a suitable approach for achieving excellent execution times when massive
parallelizationis possible (Spridon, Advances in CUDA for Computational Physics 2023). Thus, although
many known algorithms used in computational physics have already been parallelized and some of
them are included in the CUDA library (NVIDIA 2019), new methods of optimization and speed
enhancementare stillbeing sought. Execution time is crucialin many computational physics problems,
and therefore anyimprovementin this direction is still necessary. Hybrid parallelalgorithms (CPU-GPU)
are continuously developed to achieve high-performance computing results with minimal costs
(Spridon, Advances in CUDA for Computational Physics 2023).

1.3. Technologies for Programming on GPU- CUDA

There are several technologies and platforms available for GPU programming. Among these,
the most important are CUDA (Compute Unified Device Architecture), OpenCL (Open Computing
Language), SYCL (Single-source Heterogeneous Programming in C++), and Vulkan.

In the literature, there are several studies comparing GPU programming technologies. For
example, Karimi et al. perform performance tests and compare data transfer times to and from the
GPU, kernel execution times, and end-to-end application execution times for both CUDA and OpenCL
on the same graphics card (Karimi, Dickson, and Hamze 2010). Their results are shown in Figure 1.2.
As observed from these tests, CUDA performed better in data transfer to and from the GPU. No
significantchangewas noted in the relative performance of data transfer for OpenCL when transferring
larger amounts of data. CUDA kernel execution was also faster than OpenCL, even though the two
implementations were very similar.

==@=—CUDA - kernel
140 OpenCL - kernel
120 CUDA - end-to-end

100 OpenCL - end-to-end

Timp de executie kernel (s}
00
(=]

Qubits

Figure 1.2 Comparison of CUDA vs. OpenCL Execution Times

Thus, it isdemonstrated thatthe CUDAarchitectureis a better choice for applicationsrequiring
high performance. Otherwise, the choice between CUDA and other GPU programmingtechnologies can
be made by considering factors such as previous familiarity with any of the systems, available
development tools for the target GPU hardware, or the portability of the resulting application. In this
work, | chose CUDA architecture forits superior performance previously demonstratedin the literature.

| 71| BT

A schematic of a CUDA workflow protocolis presented in Figure 1.3. Applications begin running
on the CPU, and the host code manages both hostand device code. Data to be processedis loaded into
host memory, necessary memory is allocated on the device, and data is loaded into device memory
using CUDA API calls such as cudaMalloc() or cudaMemcpy().

Kernel functions are called from the CPU and executed on the GPU, leveraging the GPU's
capability to handle intensive tasks that can be executed in parallel. To launch a kernel function, the
number of threads and blocks to be used must be specified. This is done using the <<<>>> syntaxin
CUDA.Once the kernelislaunched, itexecutes on the GPU. Each thread will executethe same codebut
with differentdata. Data foreach thread is accessed using the thread index, which s provided by CUDA.
To ensure thatall threads have completed their work before moving to the next step, threads need to
be synchronized using the _ _syncthreads() function. After the kernel has finished executing, data must
be transferred back from the GPU to the CPU. Finally, memory allocated on the device must be freed
using cudaFree().

Memoria
ALY

Copierea

datelor@*

Memoria
GPU

Copierea
rezultatelor de
pe GPU

AN

GPU

Figure 1.3 CUDA Program Workflow Steps

Memory management plays a crucial role in achieving the best results with CUDA
programming. Itis also necessary to understand the GPU memory hierarchy so that it can be utilized
as efficientlyas possible. The GPU memory levels(global memory, constant memory, shared memory,
local memory, and registers) are illustrated in Figure 1.4.

Block (0, 0) Block (1, 0)

Registri Registri Registri Registri

Figure 1.4 GPUMemory Hierarchy

In the field of parallel computing and applications requiring high computing power, CUDA has
become a popular technology. With CUDA, programmers can leverage the massive processing power

10

I
I
I nII Universitatea
Transilvania
[]| din Brasov
of GPUs to accelerate the solving of complex problems and achieve superior performance across
various domains.

Chapter 2. Generation of Random Networks

This chapter presents two methods for generating random networks, which are necessary for
studying the efficiency of algorithms in graph theory. The proposed generation methods are
parallelized, and the results regarding execution times and acceleration using CUDA programming are
discussed. This chapterbuilds onthe work by Deaconuand Spridon (2021), to which | am a co-author.

2.1. Graphs - Fundamentals

Graphs constitute a significant branch of both mathematics and computer science,
concentrating onthe analysis of structures thatillustraterelationships between objects. Theyareused
to model and analyze interconnections between various entities or elements. A graph consists of a
collection of nodes or vertices, represented by points, and edges or arcs that connect these nodes.
Graph theory studies the properties, characteristics, and algorithms associated with graphs. Graphs
are widely used in different fields, including computer science, networks, optimization, artificial
intelligence, and bioinformatics. Graph algorithms are used to solve problems related to search,
traversal, connectivity, scheduling, and many others. By studying and applying graph theory, we can
understand and analyze complex structures of relationships between objects, find efficient solutions
to various problems, and develop optimized algorithms for different scenarios.

Graph theory is a field that investigates the characteristics and behavior of various types of
graphs, as well as the development of specialized algorithms to solve problems associated with
graphs, being a branch of discrete mathematics.

Definition 2.1 Agraphisanordered pair, G = (V,E), consisting of a setV of elements called
nodes or vertices and a set E of edges (or arcs) that connect these nodes. The formal definition of a
graph can vary depending on the contextin which it is used, but the following presents some basic
elements of graph theory.

Ina graph G = (V,E) the numberof elementsin E or the cardinality of the set V is called the
orderof G, and the numberof elementsin E, or the cardinality of the set E, is called the size of G. The
orderof a graphis usuallydenoted by n, and the size of G is denoted by m. EachelementinV is called
node (orvertex),and eachelementin E is called edge. Foranarca = (u,v),the node u and node v are
adjacentnodes;the arc a and node u (or v) are incident to each other. Foreacharc a = (u, v), the nodes
u and v are called terminal nodes. A loop is an arc a = (u, v) whose terminal nodes are identical, i.e,
u = v. Multiple edges are a set of edges that have the same pair of terminal nodes.

Definition 2.2 A random graph is a graph where the number of nodes, the number of edges,
and the connections between them are generated randomly through various methods.

11

| 71| BT

sErd6s and Rényi introduced binomial random graphs in their 1959 paper (Erd6s and Rényi
1959). These random graphs are generated based on the values of two parameters: n (the number of
nodes) and p € [0,1] - the probability of introducing any edge into the graph. In a network generated
in this way, there is a possibility that the source might poorly communicate with the storage node or
even not communicate at all. An algorithm for generating simple random graphs with a given degree
sequence was developedina paper by Bayatietal. (Bayati, Kim,and Saberi 2010). Using this algorithm,
arandom uniform graph with a given degree sequence is generated very quickly (inalmostlinear time).
In 2002, Albertand Barabasiintroduced their model (BA), consisting of an algorithm based on the
preferential attachment mechanism for generating scale-free random networks (Albertand Barabasi
2002). Networks generated in this way have real -world applications on the Internet, citation networks,
the World Wide Web, and some social networks. The algorithm starts with a network having mq given
nodes. Sequentially, nodes are introduced into the network. Each of these newly added nodes is
connectedtom < m existing nodes using a given probability, whichis proportional to the number of
connections thatthe previously added nodes already had. The probability p; of connecting a new node
tonodeiis:

=g 2.1)

Given that existing resultsin the literature about networks deal with specific graphs that are
notgeneral enough orinadequate for network flow problems, in the work (Deaconu andSpridon 2021),
we proposed a new idea for generating random networks that has the advantages of being fast and
based on the natural property of flow, which canbe decomposed into elementary directed paths and
cycles. Consequently, networks generated in this way are suitable for testing the correctness and
efficiency of algorithmsfor network flow problems, such as minimum cost flow, maximum flow, mult-

commodity flow problem, etc.

2.2. CUDA in Graph Theory

GPU programming has shown promising results in accelerating graph theory algorithms in
recent years. Some of the most recent research in GPU programming for graph theory is in the
following directions: Graph Neural Networks (GNN) (Zonghan Wu, 2021) (Tianfeng Liu, 2023), graph
partitioning (Santosh Nage, 2015), triangle counting in a graph (Liu Hu, 2021), algorithms for finding
the shortest path between two nodes in a graph (Carl Yang, 2022).

In general, recentresearchin GPU programming for graph theory demonstrates the potental
of GPUs toaccelerate graph theoryalgorithmsand handleverylargegraphs. This canlead toimproved
performance and scalability fora wide range of applications, from machine learning to social network
analysis or routing problems.

2.3. Algorithms for Generating Random Graphs

Let G = (V,E,s,t,c,w)be an s —t network, where V is a set containing n > 0 vertices
(nodes),and Eisasetof m > 0so-calledarches(directed edges).Eacharcha = (u,v) € Econnects
two nodesu and v from V, and s is a special node called the sourceand t is a node called the sink. In
G, we define the capacity function c: E — R and the cost function w: E = R . The value c(a) is the

12

T Universitatea
| 1| e
maximum flow thatcan be transportedfrom node u tonode vonedge a = (u,v) € E,andw(a) is the
unit cost of transporting flow on edge a.
Ahuja and co-authors present the following theorem (Ahuja, Magnanti, and Orlin 1993):

Theorem 2.1 Any admissible flow can be decomposed into paths and circuits such that:
(@) Any path with positive flow connects the source s to the sink node t.
(b) Atmostn + m pathsand cycles have non-zero flow. Of these,at most m cycles have
non-zero flow.

The proof of Theorem 2.1 can be found in (Ahuja, Magnanti, and Orlin 1993).

Comparisons of the correctness and efficiency of algorithms for flow problems are important
when developing new methods to solve them. To achieve this, a fast and reliable tool is needed to
generate random networks, starting from simple ones and extending to large-scale networks. We
developedamethodbased onthe Erdds—Rényimodel using the idea from Theorem 2.1 to create such
a tool. Since a flow can be decomposed into elementary flows, a natural approachis to generate
random s — t pathsand elementary cycles. Inthe work by Deaconuand Spridon (2021), algorithmsare
presented forgenerating s — t pathsand elementary cyclesina network. Thus, a primary algorithm to
generate a random s — t path in a network with n nodes is Algorithm 2.1.

Deaconu and Spridon propose algorithms for generating paths and elementary circuits in a
network (Deaconu and Spridon 2021). Thus, a primary algorithm for generating a random s —t
elementary path in a network with n nodes is Algorithm 2.1.

Algorithm 2.1. Algorithm Random s-t Directed Elementary Path v1 (ARDEP1)

/*source is considered having the first index, and sink is considered having the last one */

s =0;
t=n-1;
/*only source is initially part of the path */
for eachnode j otherthansdo
pathnode([j] = false;
end for;
pathnode([s] = true;
/* build the random path */
u=s
forj = 1ton—1do
/* choose a random index k of the next node to be added to the path */
k = random(0,n —j —1);
=0
/*find node v as the k-th node out of the nodes not before chosen */
for eachnode vdo
if pathnode[v]then
continue;
end if;
if | = kthen
break;
end if;
l=1+1
end for;
/*add arc (u,v) to the network >/
malu][v] = 1;

13

I
—
I n II Universitatea
Transilvania
[]| din Brasov

/*mark nodev as being part of path */
pathnode[v] = true;
/*ifthe last node v added to the path is sink, then path is completed */
if v = tthen
break;
end if;
/* nodeu becomesv to prepare the adding of another node to the path */
u =
end for;

In ARDEP1, without restricting the generality of the algorithm, we consider the source’s index
equal to 0, and n — 1 as the index of the sink node t. The algorithm builds a path starting from s. At
eachiteration,a newnode that was not previously added to the pathis randomly selectedand pushed
atthe endof the path. Eachtime a newnode v is pushed back to the path, the arc (u, v) is added to the
network, i.e., the value of the adjacency matrix ma is setto 1 on the position (u, v), where u is the node
previously added to the path. The algorithm ends when the sink node is added to the path.

For generating a random circuit (Algorithm 2.2), the algorithm is presented below.

Algorithm 2.2. Algorithm Random Directed Elementary Cycle v1 (ARDEC1)

/*choose a random node u0 */

u0 = random(0,n —1);
/*only nodeu0 is initially part of the cycle */
for eachnode j otherthanu0do
cyclenode[j] = false;
end for;
/* build the random cycle */
u = ul;
forj = 0ton—1do
/* choose a random index k of the next node to be added to the cycle */
k = random(0,n —j —1);
=0
/*find node v as the k-th node out of the nodes not before chosen */
for eachnode vdo
if cyclenode[v]then
continue;
end if;
if | = kthen
break;
end if;
l=1+4+1
end for;
/*ifv isu then regenerate v. This can only happen whenu = u0 */
if u = vthen

J=j-1
else
/*add arc (u,v) to the network */
malul[v] = 1;
/*marknodev as being part of cycle */
cyclenode[v] = true;
end if;
/*ifv is the first chosen node uQ, then cycle is completed */
if v = udthen

break;

14

I
—
I n II Universitatea
Transilvania
[]| din Brasov

end if;
/*nodeu becomesv to prepare the adding of another node to the cycle */
u =

end for;

In ARDEC1, a cycle is built starting with a randomly chosen node u0. At each iteration, a new
node thatis not already partof the cycleisrandomly selected and addedto the cycle.Eachtime a new
node v is introduced into the cycle, the arc (u,v) is also added to the network, where u is the node
previously added to the cycle. The algorithm ends when the node u0 is added again to the cycle.

Thealgorithms ARDEP1and ARDEC1 can naturally build directed elementary s — t paths and
cycles. Theirtime complexity is obviously 0(n?). These two algorithms could be used together to build
random networks. However, we shall present a faster approach below.

Richard Durstenfeld proposes analgorithm to randomly generatea permutation (Durstenfeld
1964). In Algorithm 2.3, we propose a similar but simpler approach to generate a shuffled vector of
nodes having the indexes between istart and iend (Deaconu and Spridon 2021).

Algorithm 2.3. Algorithm Shuffled Vector of Nodes (ASVN)

Input: istart, iend;

/* the vector “nodes” initially contains the indexes fromistart toiend */
for j = istartto iend do
nodes[j] = j;
end for;
/* shuffle the vector “‘nodes”*/
for k = istartto iend do
u = random(istart,iend);
v = random(istart,iend);
if u = vthen
swap = nodes[u];
nodes [u] = nodes[v];
nodes[v] = swap,
end if;
end for;

Next, | present two novel methods for randomly generating directed elementary s — t paths
and cycles using ASVN.

Algorithm 2.4. Algorithm Random s — t Directed Elementary Path v2 (ARDEPZ2)

/* efficiently generate a shuffled vector of nodes without s and t */

ASVN(1,n —2);
s =0;
t=n-1;

/*randomly generate the length of the path */
lpath = random(2,n);
/*add the arcs given by the first lpath nodes of the shuffled vector to the network */
ma(s][nodes[1]] = 1;
for k = 1to lpath - 3do
ma[nodes [k]][nodes[k + 1]] = 1;
end for;

15

I
—
n Universitatea
Transilvania

[]| din Brasov

ma[nodes[lpath — 2]][t] = 1;

In Algorithm 2.4, first, ARDEP2 randomly generates the length of the path. I[path — 2 nodes are
then taken from the shuffled vector of nodes, and together with source and sink, generate the path.

Algorithm 2.5 Algorithm Random Directed Elementary Cycle v2 (ARDECZ)

/* efficiently generate a shuffled vector of nodes */
ASVN(0,n —1);
/* randomly generate the length of the cycle */

lcycle = random(2,n);
/*add the arcs given by the first Icycle nodes of the shuffled vector to the network */
for k = 0to lcycle- 2do
mal[nodes [k]]|[nodes[k + 1]] = 1;
end for;
ma[nodes[lcycle — 1]][nodes[0]] = 1;

In Algorithm 2.5, ARDEC2 takes Icycle nodes from the shuffled vector of nodes and generates
acycle.
Below, | introduce Algorithm 2.6 for generating a random flow network.

Algorithm 2.6. Algorithm Generating Random s — t Flow Network (AGRFN)

/* generate npath random paths */
fork = 1tonpathdo
ARDEP2;

end for;
/* generate ncycle random cycles */
fork = 1toncycle do
ARDEC2;
end for;
/* generate the adjacency lists la using the adjacency matrix ma */
fori = Otondo
la[i] = null;
end for;
/* randomly attach capacities and costs to the arcs when they are added to la */
fori = Otondo
forj = Otondo
/* generate arcs according to Erdos—Rényi model */
if ma[i][j/] = 0and random(0,1000) < p* 1000then
mal[i][j] = 1;
end if;
if ma[i][j] = 1then
Push back (j, random(minu, maxu), random(minc,maxc)) to la[i];
end if;
end for;
end for;

Theorem 2.3. The time complexity of AGRFNis O (n - max{npatn.Ncycien} / 9)-

Usually, itis enough to considerthe numberof pathsand the number of cyclesless than the
number of nodes. So, in practice, the time complexity is likely to be 0 (n?).

The time complexity from Theorem 2.3 can be improved if the generation of the paths, cycles,
andadjacency lists are parallelized. Thecomputations from the algorithm areelementary and they only

16

I nII Universitatea

Transilvania
[]] din Brasov

involve integervalues.So, AGRFN canbe naturally parallelized on GPUs. Since the speed of generating
of large-scale random networks is essential, time complexity improvement by parallelization can act
animportantrole. Considering a total of g GPU cores, the generation of the paths and cycles can be
divided into max{1, (npatn + Neyce) / g} groups. The generation of the adjacency lists can also be
divided into max{1,n/g} groups. So, the time complexity of the parallel implementation on GPUs of
AGRFNis O(n - max{nyatn Neycie 1} / 9)-

2.4. Results and Discussions

In Figure 2.1, three networks having 6, 20, and 100 nodes, respectively, were generated and
displayed. For the first network, 3 paths and 2 cycles were generated. For the second network, 10
pathsand 2 cycles were generated, and for the last network, 20 pathsand 10 cycles were generated.

Different tests were performed to illustrate the generating time of increasing the scale of
random networks having the number of nodes between 10 and 10,000. As expected,andasshownin
Table 1, the number of nodes together with the number of considered paths and cycles directly
influence the speed of the network generation. An Asus ROG Strix G17 G712LV, Intel Core i7-10750H
up to 5.10 GHz processor, 16GB RAM, NVIDIA GeForce RTX 2060 6GB GDDR6 with 1920 CUDA cores
was used.

(a) (b)

©
Figure2.1. Networks generated using AGRFN. (a) Network with n = 6, npath = 3, ncycle=2; (b) network with n = 20, npath = 10, ncycle = 2;
(c) network with n = 100, npath = 20, ncycle = 10.

The parallelization was implemented using CUDA programming on GPU. Each path and cycle
were created on a different thread. Additionally, the creation of adjacency lists from the adjacency
matrix was parallelized, the list for each node being obtained on a different thread. For small networks
(less than 50 nodes) it is better to use the implementation of the algorithm on CPU, but when the
number of the nodes of the networks is more than 50, the CUDA implementationis preferred resulting
ina clearspeed-up,upto 19 times fasterthan the CPU implementation. The speed-up was calculated
asthe ratio between CUDA and CPU execution times. The best speed -up was obtained for large-scale
networks having thousands of nodes.

In Figure 2.2, the speed-up evolution for generating networks of different dimensions is
presented. As can be observed, for small-sized networks, running on the GPU leads to a decrease in

17

n Universitatea
| 1| e
executionspeed, mostlikelydue to communicationtimes between the CPU and GPU. As the network
size increases, the acceleration factor due to massive parallelization on the GPU also increases,
reaching an execution time 19 times shorter for a network with 10,000 nodes when running using

CUDA.

20

15

10

Speed-up

10 50 100 500 1,000 5,000 10,000
Number of nodes
Figure 0.2 CPU/ CUDA speed-up (Deaconu and Spridon 2021)

The analysis of speed-up evolution for generating random networks of different sizes when
using CUDA shows how the system's performancevaries depending on the problemsize. As expected,
the larger the problem size, the more evident the advantages of parallelization with CUDA become.
Thisis due to the GPU's ability to process a largeamount of datain parallel, which can leadto significant
improvements in execution time compared to sequential implementations on the CPU.

Chapter 3: Finding the Minimum Loss Path in a Big Network

In this chapter, | introduce and solve a practical problem known as the minimum loss path
problem or the maximumdelivery rate path. This probleminvolves finding the path froma source node,
s, to another given node, ¢, called the sink, in a generalized network, which has a gain/loss factor
attached to each arc, so that the loss is minimal amongall s — t paths. This is based on the work by
(Deaconu, Spridon and Ciupala 2023), to which | am a co-author.

3.1. Scientific Context

The classic maximum flow problem involves finding the maximum flow that can be
transported from a source node to a so-called sink node in a network where each arc has a capacity
c(i,), (i,)) € E. For example, a natural gas supply company may want to maximize the amount of
natural gas sent between two cities through its pipeline network. Each pipeline in the network
obviously has a limited capacity.

In the generalized problem, each arc, inaddition to the corresponding capacity, may also have
a lossor gainfactorthat mustbe considered when calculating the maximum flow. In other words, the
generalized problem for determining the maximum flow is an extension of the classic maximum flow
problemin a network where, to determine the maximum amountof flow, other factors suchas costs
or variable capacities of the arcs must also be taken into account.

18

Universitatea
[1| s

The Inverse Generalized Maximum Flow (IGMF) problem was introduced and studied by
(Tayyebiand Deaconu 2019). In this problem, the goal is to modify the capacities of the arcs so thata
certain admissible flow becomes the maximum flow in the modified network, and the distance
between the initial capacity vector and the modified capacity vector is minimized.

To the best of my knowledge, these two problems are the only optimization problems that
have been analyzed in networks with gains or losses on the arcs.

3.2. The Minimum Loss Path Problem

Let G = (V,E) be adirected graph, where V is afinite set of elements called verticesor nodes,
and E is a setof ordered pairs of vertices, called arcs ordirected edges (E € V' X V).We will consider
thatgraph G is a mathematical representation of a real-life transportation network (for water, sewage,
gas, electricity, etc.), where the arcs represent the transportation lines, and the nodes represent the
intersections of these lines. In real-life transportation networks, there are usually losses on the arcs
due to various reasons such as evaporation, leaks, energy dissipation, theft, etc. To mathematically
model this, we considerforeacharc (u,v) € E aloss coefficient, or delivery rate, denoted by a(u, v) €
(0,1]. Thus, if x units enter from node u on arc (u,v) then x - a(u, v) < x units will reach node v.

In the following, | will present a method for calculating the minimum loss path (MLP) or
maximum delivery rate path (MDP) from a source node, s, to a sink node, t. We denote this problem as
the Minimum Loss Path Problem (MLPP). To solve the MLPP, we need to identify a pathin GGG from s
to t such that the delivery rate from s to t is the maximum amongall paths in 1, that is, we need to
find the solution to the following optimization problem:

{max{a(vo,vl) “a(vy,vp) e a(Vg-1,V%)} (3.1)

P=(vy=sv..,0) EIl

To solve the above problem, we proceed by transforming problem (3.2) into a minimization
problem as follows:

{min{—log (@(o,v1) - a(vy,v2) " ot @(Wr—1,v%))}

P=(vy=sv..,0) €Nl
where the base of the logarithm is greater than 1, for example, the base can be e or 10.
The previous problem can be rewritten in the form:

{min{ﬁ(vo,vl) + By, vp) + -+ L(Vk—1, i)}
P=(vy=s,v..,0) EIl

(3.2)

(3.3)

where:

B(vi,visr) = —log(a(vyvisr)) = 0,i=0,1,... . k— 1.

Giventhatthe g valuesattached to the arcs are positive, itis now easy to observe that problem
(3.2) has been reduced to a classic optimization problem for finding the shortest path in the network
G = (V,E,pB). This problem can be efficiently solved using Dijkstra's algorithm with a time complexity
of 0(n?) or O(m - log (n)), depending on the implementation (Schrijver 2012) (Fredman and Tarjan
1984), where n denotes the number of nodes (n = |VI), and m represents the number of arcs (m =
|E]). Consequently, Algorithm 3.1 presented below calculates the MLP in GGG.

Algorithm 3.1. MLP computation in lossy networks

19

Universitatea
Transilvania
din Bragov

Input:
eadirected graph G = (V,E)
ea(uv) e (01],(w,v) EE
Output:
o MLP of G
/* Calculate B(u,v) */
For k=0,m — 1do
Blay) = —loglalay)), ax € E
end for
If node tis notreachable from sthen
MLPP has no solution
else
Apply shortest Path Algorithm starting fromsin G = (V,E, B)
LetP = (s= vy, vy, ..., v, = t) be the shortest path from sto ¢, then PisMLP of G = (V,E)fromstot
End if.

We will now investigate the more general case where some arcs may have gains instead of
losses. These gains can be obtained, forexample, throughinjectioninto the network on certainarcs (a
new gas source,a prosumerin the electrical network, etc.). Thus, instead of setting a (u, v) € (0,1], we
could consider a(u, v) as having positive values, with a(u, v) > 1 onan arc (u,v) if and onlyif thereis
a gain on thatarc.

This optimization problem has the same mathematical model(3.1) and can also be transformed
into the minimization problem (3.3). However, it is observed that the values of B(ay) = —log (a(ay))
can be negative (on arcs where a(u, v) > 1). Moreover, if there is a negative cycle in the resulting
network, it corresponds to a circuit with infinite gain (the product of the a\alphaa values on such a
cycleis greaterthan 1). Onan s — t path containing sucha circuit, a maximum delivery rate cannot be
found because the flow can be infinitely increased by passing infinitely many times through that circuit

Algorithm 3.2 solves the MLPP in the generalized case (in networks where there can be both
gains and losses on arcs).

Algorithm 3.2 The Minimum Loss Path Determination Algorithm in a Generalized Network

Input:
e adirected graph G = (V,E)
ea(u,v) € (0,1],(w,v) EE
Output:
o MLP of G
/* Calculate B(u,v) =/
For k=0,m — 1do
Bla,) = —log(oc(ak)), ax €E
end for
If node tis notreachable from sthen
MLPP has no solution

else
Apply Bellman-Ford's algorithm starting fromsinG = (V,E,)
If G has negative cycle then
MLPP has not solution.
else
LetP = (s = vy, vy, ..., v, =t) be the shortest path from s to ¢, then Pis MLP of G = (V,E) fromstot
End if
End if

20

InII Universitatea

Transilvania
[]| din Brasov

As with the previous algorithm, in Algorithm 3.2, the f functionis initially calculated foreach
arc of the network. Subsequently, the feasibility test for MLPP is performed. If the sink node t is
accessible from the source node s, the Bellman-Ford algorithm is applied to determine the shortest
path in the newly formed network G = (V, E, B). If a negative cycleis identified in the network, then
the problem of finding the minimum loss path has no solution; otherwise, the found path is also the
minimum loss path in the initial network.

3.3. Algorithms for Determining the Shortest Path in a Network

Algorithms for determining the minimum path are methods used in graph theory and
operational computing to find the shortest path between two points (nodes) in a graph. These
algorithms are essential in various fields such as communication networks, transportation, logistics,
and artificial intelligence.

Djjkstra’s algorithmis designed to find the shortest pathina graph with only positive arc costs
(Dijkstra, 1959). It is widely used in computer science and engineering to find optimal paths in
transportation networks, internet routing, and many otherapplications. However, Dijkstra's algorithm
cannot be applied to networks with negative arc values.

The Bellman-Ford algorithm can determine the shortest path in a graph containing arcs with
negative costvalues (Bellman, 1958). Additionally, thisalgorithm can alsodecide whether the network
contains negative cycles (with infinite gains). If such cycles are present, the problem is infeasible.

Considering the size of networks in real-life applications, the execution time of the proposed
algorithmsis very important. Therefore,a method of parallelization using GPU programming through
CUDA (Compute Unified Device Architecture) was used for the proposed algorithms. The Dijkstra and
Bellman-Ford algorithms have previously been implemented on CUDA architecture (Harish and
Narayanan, 2007; Ortega-Arranz et al., 2013; Surve and Shah, 2017). Various parallelization
techniques have been used, resulting in significant speed improvements compared to CPU
implementations. We have adapted these approaches for calculating MLPs.

In Dijkstra's algorithm, in eachiteration i, the minimum distance between the source and the
nodes belonging to the set of unset nodes (nodes for which the minimum distance has not yet been
determined), Ui, is calculated. One of the nodes for which the distance is equal to this minimum value
is setand becomes the node to be analyzed. The outgoing arcs of the analyzed node are traversed to
relax the distances corresponding to adjacent nodes.

To parallelize Dijkstra's algorithm, it is necessary to identify which nodes can be used as
analyzed nodessimultaneously. There are several studies in which the set of analyzed nodes has been
determined in various ways. For example, in the study by Martin, Torres, and Gavilanes (2009), it is
proposed to insert all nodes that have a distance equal to the minimum distance into the set of
analyzed nodes. Ortega-Arranz et al. propose an improvement by adding nodes that have a distance
greater than the determined minimum distance to the set of analyzed nodes (Ortega-Arranz et al,
2013).

The algorithm calculates, in each iteration i, for each node in the set of unset nodes u € Ui,
the sum of the distance calculated up to that point and the costs of its outgoing arcs. Subsequently,
the minimum of these calculatedvalues is determined. Finally, those nodes whose distanceis less than

21

InII Universitatea

Transilvania
[]| din Brasov

or equal to this minimum value determined in the previous step are setand inserted into the set of
analyzed nodes. Aiis defined as the minimum value calculated ineachiteration i, which supports that
anyunsetnode u witha distance § (u) < 4i canbe set. The larger the value of 4i, the more parallelism
is exploited. However, depending on the graph being processed, using a very optimistic 4i canleadto
computations that negate any performance gains over sequential execution.

Algorithm 3.3 represents the pseudocode of the parallelized Bellman-Ford algorithm for GPU
implementation. The first stage is the initialization, which takes place on the GPU. This is followed by
the relaxation stage, in which it is checked whetherthereis a shorter path from the source nodeto a
given node. For this stage, the kernel function - Algorithm 3.4 - is called.

By leveraging the parallel processing capabilities of GPUs, both Dijkstra's and Bellman -Ford
algorithms can be significantly accelerated, making them suitable for large-scale network applications.

Algorithm 3. GPU implementation of Bellman - Ford algorithm

Input:an oriented graph G = (V,E)
Output: MLPIn G

<<<initialiation>>>(dist)
steps=0

Repeat

distg,, = dist, a, €E

<<< Bellman — Ford kernel >>> (G, dist, dist_aux)
steps = steps + 1
until dist_aux = dist or steps = n—1

Eachkernel (Algorithm 3.4) executesone GPU threadforeachnode vwithindex id, calculating
the minimum distance. For this, the previously calculated shortest paths for the predecessors of the
nodesare used. If anew, shorter path is found for v, the distance is updated for node v. Thus, in each
iteration, a new distance vectoris calculated, whichreplaces the old distance vectorat the end of the

iteration. The algorithm stops when the two distance vectors are the same or if a negative costcycle
is found.

Algorithm 4. Bellman-Ford kernel

Input:
e directedgraph G=(V,A),
. dist - distances vector

e dist_aux —auxiliar distances vector
id = threadld
//find the shortest distance from source to id node
min = INF
For all predecessors i of tid do
If wli, tid] + dist_aux[i] < minthen
min = wli tid] + dist_aux[i]
End if
End for
If min < dist_aux[id] then
dist[id] = min
End if

22

Universitatea
Transilvania
din Bragov

3.4. Results and Discussions

To test the MLPP algorithms, random networks were generated using the method described
in (Deaconuand Spridon, 2021). The tests were conducted onan Intel(R) Core(TM)i7-10750H CPU @
2.60GHz 2.59 system, equipped withan NVIDIA GeForce RTX2060 GPU and running Windows 10. The
random networks analyzed had between 2,000 and 50,000 nodes and a varying number of arcs,
generated using Algorithm 2.6. Execution times for small networks are very short, and GPU
programming is notnecessary. As the numberof nodesincreases, the execution speedincreases up to
390 times for networks with 40,000 nodes and up to 326M arcs, as shown in Figure 3.1.

2
B 200
a
a 150
100
R

2000 5000 10000 15000 20000 25000 30000 35000 40000

No of nodes

Figura0.1 Speed-up onGPU for Algorithm 3.7 on dense networks with varying numbersof nodes
(Deaconu, Spridon and Ciupala 2023)

In the case of implementing Algorithm 3.2, based on the Bellman-Ford algorithm, the
execution time increases with the number of nodes and the density of the network arcs. The highest
speed-up on the GPU is 5.8, achieved for a network with 10,000 nodes and 24M arcs (Figure 3.2).

Speed-up

7
6
5
4
3
2
1
0

2000 5000 10000 15000 20000 25000 30000 35000 40000

No of nodes

Figure 3.2 Speed-up on GPU for Algorithm 3.2 on dense networks with varying numbers
of nodes (Deaconu, Spridon and Ciupala 2023)

Overall, the execution time on the GPU is significantly lower than on the CPU for all network
sizes. This highlights the benefits of CUDA parallelization. Although the GPU execution time increases
with the network size, it does so at a slower rate than the CPU execution time (Figure 3.3).

23

I nII Universitatea

Transilvania
[]] din Brasov

2
W Algorithm 3.2- secvential m Algorithm 3.2- CUDA

10

8

6

0 — — i I- [| I I I I
Q
QQ

Number of nodes

Execution time (s)
IS

N

Figure 3.3 Execution time for Algorithm 3.2 on dense networks

Additionally, as network density increases, so does the execution time for the sequental
implementation, whereasfor the parallelimplementation, the increase in execution time with network
density is slower (Figure 3.4).

12
W Algorithm 3.2- secvential m Algorithm 3.2- CUDA

» 10
g 8
=]
c 6
el
2 4
9]

, Hm B

93M 177M 255M 326M

Number of arcs
Figure 3.4 Execution time evolution for Algorithm 3.2 as a function of network density

The speed-up values aresignificant, indicating the benefits of CUDA parallelization as networks
become larger. The general interpretation of the results shows that CUDA parallelization brings
substantial performance improvements for the Bellman-Ford algorithm, especially for large networks.

In conclusion, the results demonstrate increased execution speed when using GPU
programming for Algorithm 3.1 on large and dense networks. Although not as significant, an
improvementin executiontimewas also achieved for Algorithm 3.2, using the Bellman-Fordalgorithm
in the GPU-based implementation.

Comparing the results of the two algorithms, we can observe differences and similarities in
their performance. Both algorithms exhibit significant speed-up with CUDA parallelization. Both
algorithms benefit from shorter execution times on the GPU compared to the CPU for networks of
varying sizes.However, differences are noticeable inhow execution time varies with network size for
each algorithm. For example, the execution time for Algorithm 3.1 on the GPU may increase more

rapidly with network size, while the Bellman-Ford algorithm seems to have a slowerincrease (Figure

24

T Uniue_rsita_tea

{11 | e

3.3).Forbothalgorithms, the benefits of GPU parallelization become more evidentas the problem size
grows. The relative performance of the two algorithms may vary depending on network characteristics
and other application-specificconsiderations. The Dijkstra algorithm is known for its lower complexity

compared to Bellman-Ford, which may influence relative performance based on specific network

features.

Chapter 4. Determining the Minimum Loss Flow in a Generalized
Network

In this chapter, | presenta possible application of algorithms for finding the minimum loss path
to determine the maximum flowina generalized network (with losses/gains on the edges). The Ford-
Fulkersonalgorithmhas been adapted to sequentially find s-t paths with minimum loss. | describe two
possible implementations of the algorithm: sequential and using GPU parallelization. Multiple tests
were conducted for both implementations, comparing execution times. These results were accepted
for presentation at the 21st International Conference on Applied Computing (AC 2024) (Spridon,
Deaconu, and Popa, et al. 2024).

4.1. The Traditional Maximum Flow Problem

In the maximum flow problem, the objective is to send as much flowas possible between two
nodes, respecting the capacity limits of the edges. An instance of the maximum flow problem is an
antisymmetric network G = (V,E,s,t,c),where s € V is the source node, t € V is the sink node,
and ¢ s a capacity function.

Theorem 4.1 A flow is maximum if and only if there are no augmenting paths in the residual
network.

The proof of Theorem 4.1 can be found in the work of Ford and Fulkerson (1956)

Aresidual networkis anetwork Gy = (V, E, cs),where ¢s: E - R cr(u,v) = c(w,v) — f(u,v),
is the residual capacity function. For example, if c(u,v) = 40, c(v,u) = 0, and f(u,v) =
—f(v,u) = 29, then the arc (u,v) has 40 — 29 = 11 units of residual capacity, and the arc
(v,u)has 0 — (—29) = 29 units of residual capacity.

In short, the maximum flow problem is a classic optimization problem in graph theory,
involving finding the maximum amount of flow that can be sent through a network of pipes, channels,
or other pathways, subject to capacity constraints. The problemcan modela wide range of real -world
situations, such as transportation systems, communication networks, or resource allocation.

A common approach for solving the maximum flow problem is the Ford-Fulkerson algorithm
(Ford and Fulkerson 1956), which is based on the concept of augmenting paths. This algorithm has as
input parameters a network, G = (V, E, ¢, s, t), with source node, s, and sink node, t, and as output
parameteris f, the maximum flow that can be admitted through the network G.

25

Universitatea
Transilvania
din Bragov

4.2, The Generalized Maximum Flow Problem

The generalized maximum flow problem extends the traditional maximum flow problem by
allowing the flowto change while being transmitted through the network. As before, each edge (u, v)
has a capacity c(u, v) that limits the amount of flow sent through that edge. In addition, each edge
(u,v) is associated with a positive coefficient a(u, v) > 0, called the gain/loss factor. The gain/loss
factoris a function a: E = R~ . For each unit of flow entering edge (u, v) from node u, only a(u, v)
units reach node v. An edge with lossesisone where a < 1, and anedge where thereisa gainhas a >
1. Without loss of generality, we assume that the gain/loss function is symmetric, i.e., a(u,v) =
1/a(v,u). If this assumption is not satisfied, we can add the symmetric edge and assign it a zero
capacity (Wayne 1999).

To solve the generalized maximum flow problem for determining the minimum loss flow, we
propose an adaptation of the Ford-Fulkerson algorithm (Algorithm 4.1) so that, at each iteration, the
minimum loss path algorithm (Algorithm 3.2) is appliedto find a new pathin the residual network. The
choice of Algorithm 3.2 is explained by the factthat, both in the case of networks with only losseson
edges and in the case of networks with losses or gains on edges, the resulting residual network
contains both types of edges due to the way the loss factoris calculated in that network. In other
words, if in the initial networkan edge (u, v) hasagain/loss factor a(u, v), thenthe gain/loss factorin
the residual network is as(u,v) = a(u,v) on the direct edge, and on the reverse edge, we have

1
as (vu) = v

Algorithm 4.1 Adaptation of the Ford-Fulkerson Algorithm for Determining Maximum Flow in a
Generalized Network

Input:

. Network G = (V,E,s,t,c, @)
Output:

. f — minimul loss flowin G

Initialize a feasible flowf =0
Initialize the residual network Gf =G

Foreach (w,v) € Edo
a;(u,v) = aly,v)

(Xf('l], ‘LL) = a(u,v)

End foreach

While there exists an augmenting path fromsto tin Gf do
Find an augmenting path P in Gf using Algorithm 3.2
Update the residual network Gf using Algorithm 4.2

End while

To update the residual network, Gf, along the path, P, found, Algorithm 3.2 is used. This
algorithm involves determining the maximum feasible flow on the augmenting path andthen updating
the residual capacities and gain/loss factors in the residual network to reflect this flow. Thus, the
residual network is prepared for subsequent iterations of the flow algorithm.

The proposed algorithm has two stages:

1. Determination of feasible flow on the augmenting path P:

26

I
—
n Universitatea
Transilvania

[]| din Brasov

« Initialize flow f with the residual capacity of the firstarc (s, u)in P.
o Foreacharc (u,v)in path P while node u is not the destination t:
= Update flow f with the minimum of the current flow f - a; (u,v)and the
residual capacity, ¢y (u,v) - ar (u,v).
* (Gotothenextnodeu = vonpathP.
2. Update residual network, Gf :
o Startfrom the sinknode, v = t.
o Foreacharc (u,v) on path P while node v is the source s:
* Adjustflow f according to the gain/loss factor a; (u, v).
= Onarc (u,v),update theresidual capacity ¢y (w,v) = ¢ (w,v) — f/ar (u,v),
and forthe reverse arc,add the flowtoitsresidual capacitycy (v,u) = ¢f (v,u) + f.
= Advance on path P towards the source, to the previous node v = wu.

Algorithm 4.2. Updating the Residual Network after Finding a New Augmenting Path in Gf

Input:
. Residual network G = (V,E, s, t, ¢, af)
. Augmenting path from sto tfound, P in G,
Output:
. Updated residual network, G,

. Feasible flow, f

// Determine the flow value at node t on path P
Consider a flow, f = ¢;(s,u), where (s,u) € Pisthe firstarcin P
u=s
while u # tdo
Consider the arc (v, v) € P
f = min{f - a;(uw,v), ¢s (W) - ar(u,v)}
u =v
End while
// Update G
v=t
while v #sdo
Consider the arc (v, v) € P
cr(uv) = s (wv) — f /ay(uv)
cww=cw+f

f = fla(uv)
v=u
End while

4.3. Results and Discussions

When implementing the proposed algorithm, the acceleration results when using GPU
programming aresimilar to those obtainedfor Algorithm 3.2, as the efficiency can beachieved by using
the parallel Bellman-Ford algorithm for each determination of a minimum loss path. Thus, as can be
seen in Algorithm 4.1, its complexity is given by the complexity of Algorithm 3.2 multiplied by the
number of iterations in which a path augmentation is determined.

GPU efficiency initially increases with the complexity of the problem but starts to decrease
aftera certain point, possibly due to GPU resource saturation. The speed-up varies between 1.04 and
5.72, with maximum values for medium-sized problems. GPU performance is significantly superior to
CPU for most tested configurations, especially for medium and large graph sizes.

27

I nII Universitatea

Transilvania
[]| din Brasov

2000
mCPU mGPU

1500

1000

500 I
N _ -]

2000 5000 10000 15000 20000 25000

Timp de executie (s)

Numarul de noduri

Figure 4.4 Execution Times for Algorithm 4.1 in Dense Networks

As shownin Figure 4.1, the execution time on the GPU is significantly shorter than on the CPU
for all analyzed dense networks, regardless of the number of nodes. GPU efficiency is particularly
evident for large, dense networks. Thus, the execution time on the GPU increases more slowly
compared to the CPU as the numberof nodes grows. The speed-up ratio decreases as the number of
nodes increases. For smaller networks (2000-10000 nodes), the GPU offers considerable speed-up
(2.7-5.7 times). For larger networks (15000-25000 nodes), this ratio slightly decreases but remains
significant (2.98-4.45 times).

Chapter 5.Fast GPU Interpolation for Map Generation

This chapterbuilds uponthe works (Spridon, Deaconu, and Ciupala, ICCSA 2023) and (Ciupala,
Deaconu, and Spridon 2021), to which | am a co-author. In this chapter, | present GPU methods for
generating pollution and geomagnetic maps using interpolation techniques, starting from
measurements takenatvarious points within a specific geographical area.| have conducted accuracy
analyses of the generated maps and the efficiency of the used GPU methods, with the results
presented below.

5.1. Two-Dimensional Interpolation Methods

The general formulation of the spatial interpolation problem can be defined as follows:

Givenn values of a studied phenomenon V (j) ,with j = 1,n, measured atdiscrete coordinate
positions 1; = (x;,;), in a two-dimensional space, the goal is to find a function F(r) c that satisfies
the conditions:

F()=V,vj=Tn (5.1)

Since there are infinitely many functions that satisfy this requirement, additional conditions must
be imposed, which define the nature of different interpolation techniques. Typical examples include
conditions based on geostatistical concepts (kriging), | ocalization (nearest neighbor and finite element
methods), smoothness, and splines or ad-hoc functional forms (polynomials, multi-quadrics). The
choice of additional condition depends on the nature of the modeled phenomenon and the type of
application.

28

I
—
n Universitatea
Transilvania

[]| din Brasov

Several interpolation methods areused to generatemaps in fields suchas cartography, geography,
and spatial data analysis. Below, | will describe two of the mostrecent methods used for this purpose.
e The /DW(Inverse Distance Weighting) method assumes that the estimated value is a function
of the distance between the estimation point and the sample locations, such that measured
values closer to the point of estimation have a greater influence on the estimated value than

those further away.

e Kriging involves estimating the unknown value z(u) at a specific location u based on a
weighted average of observed values V (r;) atnearbysample points r; . The weights are chosen
to minimize the estimation errorand are determined based on the spatial correlation structure
of the data. Kriging weights are obtained by solving a system of linear equations that express

the spatial autocovariance function of the data.

5.2. Accelerating Interpolation Methods Using CUDA

The implemented algorithms were tested on a system with an Intel(R) Core(TM) i7-10750H
@ 2.60GHz processor, 16.0 GB RAM, NVIDIA GeForce RTX2060 GPU, and Windows 10 Pro operating
system. These interpolation methods have been accelerated using CUDA programming to generate
high-resolution maps in real-time. This tool could be used, for example, for monitoring geomagnetic
changes over large areas to identify changes that may occur in Earth's structure or for identifying
regions with specific magnetic properties orreal-time monitoring of pollution maps in various areas.

The pseudocode for the IDW algorithm is presented below (Ciupala, Deaconu, and Spridon).

Algorithm 5.1 IDW algorithm

InPUt: P Xmin» Xmax» Ymin» Ymax » b,

max ~Xmin

/* Determine resolution in the x and y directions */ dx = =
dy - Ymax — Ymin

m
/* Compute the estimated values at each point of the grid */
Y = Ymin
Fori=1,ndo
X = Xmin
Pentru j =1,mexecuta
gy =v(x,y)
x =x+dx
End for
y=y+dy
End for

where g;; are the estimated valuesona 2D m X n grid, m,n € N* forarectangular region defined
by the coordinates X min Xmaxr Ymine Ymax € R (Xmin < Xmax Ymin < Ymax)- Thus, Algorithm 5.1
creates a 2D grid over a surface bounded by the coordinates xmin X max Ymin : Ymax - dx and dy are
calculated to determine the distance between grid points along the x and y axes, respectively.
ubsequently, all grid points are processed to compute the value g;; at each coordinate (x, y) using a
weighted average V (x, y). The distance between two grid pointsis calculated using the formulafor the
distance on Earth between two points with given GPS coordinates.

29

Universitatea
| 1| e

To use CUDA for IDW, we first need to parallelize the algorithm.In IDW, we must calculate the
distance between the estimation points and each of the sample points. This distance calculation can
be parallelized by assigning each GPU thread to a single grid point and calculating distances to all
sample points.

After calculating the distances, we compute the weights for each sample point based on the
distance to the estimation point. This weight calculation canalso be parallelized by assigning each GPU
thread to a single sample point and computing its weight for all points where the valueis to be
estimated.

Finally, we can use the calculated weights to interpolate values at the grid points. This
interpolation step can also be parallelized by assigning each GPU thread to a single estimation point
and calculating its value based on the weighted average of the sample points' values.

The kriging interpolation algorithm was implemented following 4 steps (Algorithm 5.2).

Algorithm 5.2 Kriging algorithm

InpUt:xminl Xmax) Ymin» Ymax » W, M, V;

Calculation of Semivariance Points

Calculation of Semivariance Coefficients Using the Least Squares Method
Calculation of Interpolation Weights

Calculation of Interpolated Values

For parallelizing the kriging algorithm using CUDA, several steps are required: calculate the
variogram, compute the kriging matrix, and calculate kriging weights.

The calculation of the variogram involves determining the semivariance between all pairs of
sample points. This step can be parallelized by assigning each GPU thread to a single pair of sample
points and calculating their semivariance.

The calculation of the kriging matrix involves inverting a matrix that depends on the
semivariances between sample points.

Finally, the calculation of kriging weights involves determining the weights for each sample
point based on its distance and spatial correlation with the estimation point. This step can be
parallelized by assigning each GPU thread to a single estimation point and calculating its weights for
all sample points.

5.3. Study of Air Pollution Maps for Brasov During the Pandemic

We used the IDW method to create pollution maps (grids) for the urban area of Brasov and to
draw conclusions about pollution for the year 2020. We also comparedair quality during the lockdown
period (when most economic and social activities were halted) due to the Covid-19pandemic and the
period when the economy wasrestarted. For this study, concentrations of carbonmonoxide (CO), sulfur
dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (PM10) were considered. Datafor the four
stations reporting hourly pollutionin Brasov were downloadedfrom the National Air Quality Monitoring
Network 2021 for the first half of 2020 for CO, PM10, SO2, and NO2.

Using the IDW algorithm, we generated maps of hourly pollutant concentrations, 24-hour
average maps for each pollutant, monthly average concentration maps, and average concentration

30

Transilvania
din Brasov

I

—

I I ul I Universitatea
n

maps for each day of the weekto see how pollution differs on weekdays compared to weekends. We
also compared weekly statistics graphically and tracked monthly pollution trends. This was done
separately for each of the four stations and averaged for all stations.

For each pollutant, we created two maps to compare the average concentration in January
(before the lockdown) and May (the last month of lockdown) (see Figure 5.1). Comparing the two
images, itis evidentthat air qualityimproved significantly for each pollutant due to reduced industrial
activity and the lower number of vehicles operating during that period.

medium

low

Li

(a) Co —AJanuary -. (b) CO - May

high

(d) NO; - May

high

medium

I = TS W . .
low medium i

low

(e) SOz - January

31

n Universitatea
Transilvania

din Brasov

medium

(g) PM10 - January (h) PM10 - May
Figure 5.1 Comparison of the average concentrations of major pollutants for January 2020(a, c, e, g) and May 2020 (b, a, f, h)

low

The experimental results presented in Table 5.1 showed that CUDA-based implementations
running on GPUs led to increased execution speed depending on the image resolution. IDW
interpolation was used to obtain images ranging in size from 150 x 100 to 4800 x 3200. The
experiments demonstrated thatforsmallimages (150 x 100 and 300 x 200), the CPU time was better.
For large images, GPU acceleration was consistent, up to 19 times faster.

Table 5.1 GPU Execution Time Study

Image size CPU Execution Time (s) GPU Execution Time (s) Speed-up
100x 150 0.017 0.031 0.55
300x 200 0.065 0.071 0.92
600 x 400 0.268 0.101 2.65

1200 x 800 1.090 0.167 6.52

2400x 1600 4.415 0.322 13.71

4800 x 3200 17,913 0.942 19.02

5.4. Study of Geomagnetic Maps of Romania

Geomagnetic dataand maps are essential tools for understanding the Earth's magnetic field
andits various applications. Geomagnetic dataprovide insights into the structure and dynamics of the
Earth's interior, while geomagnetic maps are used for navigation, geological mapping, and scientific
research. These maps and data have practical applications in industry and commercial enterprises,
particularly in mineral exploration, energy development, and navigation.

5.5. CUDA Methods for Generating Geomagnetic Maps

Geomagnetic data for generating the geomagnetic map of Romania, using IDW and kriging
interpolation methods, were obtained from Romanian geomagnetic stations and through the Physics
Toolbox Sensor Suite application at over 1300 GPS positions spread across the country. The data were
collected through the Citizen Science initiative of the European Researchers' Night 2018-2019Handle
with Science project, funded by H2020, AG no. 818795/2018.

The studied region lies between 21° E and 29° E longitude and between 41° N and 49° N
latitude. The grids obtained have resolutions of 400 x 400, 800 x 800, 1200 x 1200, and 1600 x 1600,
so each grid point is approximately 2km, 1 km, 0.75 km, and 0.5 km, respectively. Figures 5.2 and 5.3
show geomagnetic maps with 1 km resolution for the Romania region obtained using IDW and kriging
interpolation, respectively.

32

Transilvania

II Universitatea
din Brasov

T

vl

Figure 5.2 Geomagnetic map obtained using IDW Figure5.3 Geomagnetic map obtained using kriging interpolation

The results show better accuracy for the kriging interpolation method across all studied
resolutions. For example, while the median error value for IDW ranges between 4.476 and 4.895 pT
depending on resolution, for kriging, this value ranges between 2.871 uT and 3.687 uT. Furthermore,
Figure 5.4 shows lower average error values for the geomagnetic field with the kriging method.

Mean error (UT)

3
25
2
15
1
0.5
0

400 x 400 800 x 800 1200 x 1200 1600 x 1600

W IDW mkriging
Figure 5.4 Comparison of average error for the geomagnetic field obtained via IDW and Kriging

In other words, comparing the results, we can see that the kriging interpolation method has
lower error values for all analyzed errors compared to IDW, indicating better performance for this
methodin geomagnetic datainterpolation. Additionally, in general, as the grid resolutionincreases, the
error values decrease, indicating improved interpolation accuracy with higher resolution.

The complex calculationsinvolvedin the kriging method lead to increased execution time for
all resolutions compared to IDW, as shown in Figure 5.5. The speed achieved for the IDW
implementationis very highand increases with the grid resolution, up to 104 times for the 1600x1600
grid. Although kriging speed is not as high as IDW (Figure 5.6), for the highest resolution studied, GPU
execution time decreased by 10 times compared to CPU. Thus, it is observed that execution time for
both IDW and kriging methods is significantly lower for GPU implementations.

33

Universitatea
Transilvania
din Bragov

Execution times (s) GPU speed-up
800 120
700
100
600
500 80
400 60
300
40
200
CR—] :
0 0
400 x 400 800 x 800 1200 x 1200 1600 x 1600 400 x 400 800 x 800 1200 x 1200 1600 x 1600
mIDW CPU IDW GPU Kriging CPU Kriging GPU HIDW mkriging
Figure5.5 Execution times for IDW and Kriging on CPU and GPU Figure 5.6 Speed-up for IDW and Kriging

Execution time on the GPU is significantly lower than on the CPU for both interpolation
methodsandall grid sizes. This indicates that parallelizing interpolation algorithms using CUDA leads
to significant acceleration of the interpolation process. Specifically, speed-up increases with the grid
size, showing that the benefits of parallelization are more pronounced for larger datasets. Thus,
implementinginterpolation algorithmson the GPU using CUDA can be an efficient choice forimproving
performance and execution time. Comparing the speed-up for the two methods, it is observed that,
generally, the speed-up forKriging is lower than for IDW for any grid size analyzed. This suggests that
parallelizing the Kriging interpolation algorithm on the GPU using CUDA brings smaller benefits
compared to IDW. However, both methods can clearly benefit from GPU acceleration, and the
difference in speed-upis influenced by the specific nature of the algorithms and their parallelization.
Nevertheless, considering both execution performance and result accuracy, it can be concluded that
although IDW provides a higher speed-up and shorter execution time, Kriging is a better option when
aiming for high-precision results despite a longer execution time.

Chapter 6. Conclusions and Future Perspectives

In this work, Chapter 1 presents several advantages and disadvantages of GPU programming
and reviewed some of the mostimportant applications of GPU programming. This information was
published in the paper (Spridon, Advances in CUDA for computational physics, 2023).

The following chapters presentsomeof my personal results published in scientific journals or
presented at international conferences. Chapter 2 introduces a fast and reliable algorithm called
AGRFA for generating random networks. The resulting networks can be used to test the correctness
and efficiency of algorithms developed for network flow problems, such as minimum cost flow,
maximum flow, or multi-commodity flow problems. The CUDA-parallelized version of AGRFA has
proven to be up to 19 times faster for generating large networks. With subsequent developments,
other specific network problems where AGRFA can be adapted could be identified. These results were
published as a co-author in the paper (Deaconu and Spridon 2021).

Chapter 3introduces and solves a practical problem calledthe minimum loss path problem or
maximum delivery rate path. This problem involves finding a path from a source node to a given sink
nodein a generalized network, where each arc hasanassociated gain/loss factor, such thatthe lossis
minimized among all s-t paths. The results show high speed when using GPU programming for

34

I
—
Iln II Universitatea
Transilvania
[]| din Brasov

Algorithm 3.1 on large and dense networks. Execution time improvement was also achieved for
Algorithm 3.2 using the Bellman-Ford algorithminthe GPU-based implementation. The results were
presented in the paper (Deaconu, Spridon, and Ciupala 2023).

Chapter 4 presents an application for determining the minimum loss path. Thus, the MLPP
algorithmisusedinageneralizednetwork to determine the minimum flow. An adaptation of the Ford-
Fulkerson algorithm is proposed, where in each iteration the path with minimum loss is sought. This
results in the minimum loss flow in the network.

In Chapter 5, the generation of georeferenced maps using two-dimensional interpolation
methods based on measured values atdiscrete pointsin a given geographicalareais described. Thus,
pollution maps of Brasov during the COVID-19 lockdown were studied. The maps were obtained using
the IDW interpolation method, and for high resolutions, CUDA was used, resulting in significant speed-
up in execution time. Additionally, geomagnetic maps of Romania were studied using IDW and kriging
interpolation methods, investigating both the accuracy of the obtained maps and their generation
speed.The estimation errorsin the geomagnetic maps are lower for the kriging interpolation method,
and execution speed was shown to be improved using GPU programming with CUDA. The works
underpinning this chapter are (Ciupala, Deaconu, and Spridon 2021) and (Spridon, Deaconu, and
Ciupala, ICCSA 2023).

As future research perspectives, in the field of two-dimensional interpolation, | aim to study
the GPU parallelization of other interpolation algorithms on irregular, non-uniformly distributed
datasets and obtaining high-resolution maps. Additionally, | want to develop hybrid models that
combine the processing power of GPUs with CPU parallelization methods to increase the execution
speed of algorithms when applied to large networks. This requires studying and evaluating the
performance of parallel algorithmsin the context of graph theory on GPUs, and identifying limitations
and optimizing code to fully leverage CUDA architecture. Moreover, | plan to use GPU methods to
accelerate the computation and solve complex problems in computational physics, particularly
focusing on accelerating simulations modeling energy transport, particles, and interactions within
plasmas, and developing GPU algorithms to analyze complex phenomena such as turbulent transport
in plasmas.

35

Universitatea
Transilvania
din Bragov

Published Works in the Field of the Thesis

1.

CORE:

Works Published in ISl Impact Factor Journals:
Deaconu, A.M, Spridon. D., ,Adaptation of Random Binomial Graphs for Testing Network.”

Mathematics 9 (2021): 1716.

Works Published in Scopus-Indexed Journals:
Spridon, D. 2023. "Advances in CUDA for computational physics", Bulletin of the Transilvania

University of Brasov. Series Ill: Mathematics and Computer Science, 65 (2): 227-236.
Ciupala, L., Deaconu, A, Spridon. D., 2021. "IDW map builder and statistics of air pollution in
Brasov.", Bulletin of the Transilvania University of Brasov. Series lll: Mathematics and
Computer Science, 63(1), 247-256.

Papers Presented and Published in Proceedings of International Conferences Indexed by

Spridon, D.,Deaconu, A. M., Ciupala, L. 2023. "Fast CUDA Geomagnetic Map Builder." Lecture
Notes in Computer Science, International Conference on Computational Science and Its
Applications, 126 -138, Athens: Springer.

Deaconu, A.M., Spridon, D.E., Ciupala, L. 2023. "Finding minimum loss path in big networks."
International Symposium on Parallel and Distributed Computing. Bucharest: IEEE. 39-44.
Spridon, D., Deaconu, A. M., Popa, |, Tayyebi, J., New approach for the generalized maximum
flow problem, accepted to 21st International Conference on Applied Computing, Zagreb,
Croatia, 2024

36

InII Universitatea

Transilvania
[]| din Brasov

Selective bibliography

Ahuja, RK., T.L. Magnanti, and J.B. Orlin. 1993. Network Flows: Theory, Algorithms, and
Applications;. NJ, USA: Prentice Hall: Englewood Cliffs.

Baji, T. 2018. ,Evolution of the GPU Device widely used in Al and Massive Parallel Processing.”
IEEE 2nd Electron Devices Technology and Manufacturing Conference. Kobe: IEEE. 7-9.

Bellman, R. 1958.,,0n a routing problem.” Quarterly of Applied Mathematics 87-90.

Ciupala, L., A. Deaconu, and D. Spridon. 2021.,IDW map builder and statistics of air pollution
in Brasov.” Bulletin of the Transilvania University of Brasov. Series Ill: Mathematics and Computer
Science, 247-256.

Deaconu, A. 2006. ,A Cardinality Inverse Maximum Flow Problem.” Scientific Annals of Cuza
University16:51-62.

Deaconu, A, and E. Ciurea. 2012. ,The inverse maximum flow problem under Lk norms."
Carpathian Journal of Mathematics 28: 59—66.

Deaconu, A, and L. Ciupala. 2020. ,Inverse Minimum Cut Problem with Lower and Upper
Bounds.” Mathematics 8: 1494.

Deaconu, A.M, and D. Spridon. 2021. ,Adaptation of Random Binomial Graphs for Testing
Network.” Mathematics9: 1716.

Deaconu, AM., D.E. Spridon, and L. Ciupala. 2023. ,Finding minimum loss path in big
networks.” /nternational Symposium on Parallel and Distributed Computing. Bucharest: [EEE. 39-44.

Dijkstra, EW. 1959. ,A note on two problems in connexion with graphs.” AMumerische
Mathematik 269-271.

Durstenfeld, R. 1964. ,Algorithm 235: Random permutation.” Communications. ACM 7: 420.

Ford, LR., and D.R. Fulkerson. 1956. ,Maximal flow through a network.” Canadian Journal of
Mathematics 399—-404.

Fredman, M.L, and R.E. Tarjan. 1984. ,Fibonacci heaps and their uses in improved network
optimization algorithms.” 25th Annual Symposium on Foundations of Computer Science. IEEE. 338—
346.

Harish, P.,and P.). Narayanan.2007. ,Accelerating Large Graph Algorithms on the GPU using
CUDA." Lecture Notes in Computer Science.

Huang, J. 2023. NVIDIA. October.
https://s201.q4cdn.com/141608511/files/doc _presentations/2023/0ct/01/ndr_presentation_oct_
2023_final.pdf.

Marinescu, C,, A.Deaconu, E. Ciurea, and D. Marinescu. 2010. ,From Microgrids to Smart Grids:
Modeling and Simulating using Graphs. Part |l Optimization of Reactive Power Flow.” 72th /nternational
Conference on Optimization of Electrical and Electronic Equipment. Brasov. 1251-1256.

—.2010. ,From microgrids to smart grids: Modeling and simulatingusing graphs.Part | active
power flow." 72th International Conference on Optimization of Electrical and Electronic Equjpment
Brasov. 1245-1250.

Martin, P., R Torres, and A. Gavilanes. 2009. ,CUDA solutions for the SSSP." Computational
Science — ICCS. Springer Berlin / Heidelberg. 904-913.

37

| 71| BT

Ortega-Arranz,H., Y. Torres, D.R.Llanos, and A. Gonzalez-Escribano. 2013.,,A new GPU-based
approach to the Shortest Path problem.” HP(S. Helsinki. 505-511.

Reteaua Nationala de Monitorizare a Calitatii Aerului. 2021. Attps://www.calitateaer.ro.
https://www.calitateaer.ro.

Schrijver, A. 2012. ,0n the history of the shortest path problem.” Documenta Mathematica,
Extra Volume ISMP155-167.

Spridon, D. 2023. ,Advances in CUDA for computational physics.” Bulletin of the Transilvania
University of Brasov . Series lll: Mathematics and Computer Science, 3(65) (2): 227-236.

Spridon, D, A. M. Deaconu, I. Popa, and J. Tayyebi. ,New approach for the generalized
maximum flow problem.” accepted to 21st International Conference on Applied Computing. Zagreb,
Croatia, 2024.

Spridon, D., A. M. Deaconu, and L. Ciupala. 2023. ,Fast CUDA Geomagnetic Map Builder.”
Lecture Notes in Computer Science. Athens: Springer.

Surve, G. G, and M. A. Shah. 2017. ,Parallel implementation of Bellman-Ford algorithm using
CUDA architecture.” /CECA. Coimbatore.

Sven, O.K. and C. Zeck. 2013. ,Generalized max flow in series-parallel graphs.” Discrete
Optimization10: 155-162.

Tayyebi, J, and A.M. Deaconu. 2019. ,Inverse Generalized Maximum Flow Problems.”
Mathematics 899.

Wayne, K.D. 1999. Atips.//www.cs.princeton.edu/~wayne/papers/thesis.pdf. January.
https://www.cs.princeton.edu/~wayne/papers/thesis.pdf.

38

