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ABSTRACT  
 
 The present thesis refers to the dynamic models of analysis of the milling technological 
process. The main aspects related to the technological parameters of the milling process are 
presented, and its kinematic and dynamic approaches are described (cutting speed, feed, speed, 
cutting depth). 

For dynamic analysis, models with lumped masses, with one and two degrees of freedom, 
are described. Self-induced vibrations are analyzed and related to them the chatter phenomenon. 
The causes that lead to the appearance of the chatter phenomenon and how the cutting parameters 
can amplify the phenomenon are presented. 

To determine the level of cutting forces, a dynamometer has been designed that uses, 
instead of the classic foreign gauge model, dynamic force transducers. The dynamometer is analyzed 
both in terms of static and dynamic behavior. The static stiffness of the elastic elements (octahedral 
rings) as well as the overall stiffness of the dynamometer are determined. For this, load-discharge 
tests as well as finite element analyses were carried out. In the case of octahedral rings, the 
analytical relationships found in the literature were also analyzed. 

After determining the static behavior, a study of the dynamic behavior of the dynamometer 
was performed. Modal analyses were performed for the octahedral rings and for the dynamometer 
as a whole. Tests were carried out with the impact hammer and the dynamic exciter (shaker) using a 
random signal. Proper frequencies were determined and damping factor variation curves were drawn. 

The determined values for stiffness and damping were used for the dynamic analysis of the 
dynamometer considered as a system with three degrees of freedom. 
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Chapter 1 Introduction 
 
1.1. Overview 
 

The present thesis describes an investigation into the milling technological process being 
analysed aspects from the basics of the process to the experiments. Considering the complexity of 
the milling process, it is necessary to have an approach that starts from the basic elements of the 
cutting theory, continues with the dynamic modeling of the process, addresses issues related to the 
determination of the cutting parameters and practically verifies the new concepts enunciated. 

At present, the processed structures are made of material with high technical characteristics, 
the materials being much more efficiently used, and obtaining strong cutting regimes. These regimes 
are much more susceptible to the occurrence and development of mechanical vibrations. 

 

ESM 

CP 

DAS 

DSF 

XESM 

XSP 

XDAS 

XDSF 

 
Figure 1.1 Block diagram of the machine tool [30] 

Machine tools can be modeled as 
dynamic machining systems (DMS) [30]. They 
are composed of the following elements: the 
ESM - elastic system of machine tools, the CS 
cutting process, DAS - the dynamically acting 
system for machine tool kinematic chains and 
DSF - the dynamic system of the friction 
process. 

As a result, in order to ensure increased 
machining efficiency, it is necessary to choose a 
cutting regime that offers the most suitable 
cutting conditions - optimal cutting parameters, 
but also a robust tool-workpiece assembly 
structure.  

The most unfavorable vibrations are those generated by the chatter phenomenon, which act 
directly on the entire dynamic processing system, generating disturbances in its operation as well as 
its damage. 

During the cutting process, between the tool and the workpiece system, a force develops, 
defined as the "cutting force". Its size depends on the chosen cutting regime and the material of the 
workpiece. The main parameters, mentioned in all the specialized literature, on which the size of the 
cutting forces depend are: cut thickness, width of cut, mechanical properties of the material of 
manufactured pieces, , the geometry of the tool, etc. 

As a conclusion, it can be highlighted that during the operation of any machine tool, chatter 
can develop that have negative effects related to the safety in operation of the machine, the precision 
of processing and the productivity of technological processes. Eliminating them requires, on the one 
hand, the determination of their sources and causes and, on the other hand, the analysis of their 
dynamic effects. 
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1.2. Objectives of the thesis 
 

As a result of the above, the present thesis aimed as main objective to do an analysing of the 
milling process from a spectral point of view, considering all elements that contribute to the 
machining process. 

As secondary objectives, considering the main one, there were established the followings: 
 To do an analyse of the milling technological process and of its main parameters; 
 To do an evaluation of the causes of the chatter phenomenon; 
 To do a synthesis of the milling models developed for the evaluation of the dynamic 

behaviour during the milling process; 
 To design, calibrate and analyse of the dynamic behaviour of a dynamometer with force 

transducers used in force cutting measurements; 
 To model the cutting process with FEM; 
 

1.3. Thesis structure 
 

The thesis is structured in 7 chapters that contain the following: 
 Chapter 1 – Introduction, containing some remarks about machining, in particular about 

milling, and a short presentation of the concept of dynamic behaviour approach; 
 Chapter 2 - Machining process. Milling process, presents the characteristics of the 

machining and the main aspects regarding the milling technological process; 
 Chapter 3 - Models of milling, contains a review of the concepts of mechanical vibrations, 

state-space representation. There are presented models  of 1 DOF and 2DOF for milling 
machining; 

 Chapter 4 – Chatter and stability, refers to the two mentioned aspects. There are 
presented the causes of the chatter phenomenon development; 

 Chapter 5 - Milling dynamometer analysis and milling tests, presents the physical 
dynamometer proposed as a variant to the types of dynamometers used in laboratory 
activities. There are described the tests done for static and dynamic calibration. The 
analyses are done using analytical relation, physical tests and models with finite 
elements; 

 Chapter 6 – Tests and simulations with lumped masses models, refers to the milling data 
obtained from machining of two pieces of aluminium and alloy steel, the milling 
dynamometer behaviour simulation as 3 DOF model, stability analyse in Matlab using 
programs from literature based on data measured, milling process analysis in ANSYS. 

 Capter 7 – Conclusions, where are presented the main results achieved, based on the 
objectives defined in Chapter 1.  
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Chapter 2 – Kinematic and Dynamics of Milling 
 
2.1. General aspects about manufacturing and machining 
 

Manufacturing is a value addition process transforming raw materials to semi-finished or 
finished products where the real value of the raw materials can be fully realized. The process of 
manufacturing may be multifaceted and occurs in different phases depending on the desired 
outcome. For instance, iron ore is valueless if all the impurities are not removed to remain with the 
desired composition of ferrous metal. However, the value of the ferrous metal cannot be fully 
realized until it goes a further value addition process to produce tools that are useful to human 
civilization. 

Forming is a term representing a wide range of manufacturing processes where no material 
subtraction is used to obtain the desired geometry. Solid products with specific geometric 
parameters are formed from solid, liquid, or powder materials. The solid material is plastically 
deformed to shape by application of tensile or compressive force exceeding the yield strength of the 
material [30]. 

Regenerative manufacturing is the latest manufacturing technology due to its complexity. 
This new technology is it has not yet found its way in the manufacturing of big mechanical 
components. However, it is a manufacturing process that is compatible with CAD and CAM 
software’s for rapid prototyping and tooling. Regenerative manufacturing can be defined as a   
technique for layer by layer structural fabrication from raw materials such as liquid, powder, sheet, 
The removal manufacturing process is a term used for a wide range of subtractive manufacturing 
processes [31]. It is the process of using a tool to remove material from the workpiece using the 
appropriate machine shaping into an intended design. From the beginning of human civilization 
machining was done using handmade tools and stones, but due to advancements in technology 
power tools are now used for more accurate and intricate designs. Material removal processes can be 
categorized into traditional (conventional) and non-traditional removal process.  
 
2.2. Conventional machining process   
 
2.2.1.  Working principle 

 
The conventional machining processes still play an important role in the manufacturing 

process to this day. Actual trends in manufacturing technologies are shifting but the main driving 
factors in manufacturing are cost, reliability, and optimal product quality.  

Traditional machining due to its proven record is the method of choice for most 
manufacturers. Despite having a wide range of a traditional machining process the major building 
blocks of a conventional machining process remain the same figure 2.1 shows the requirements of a 
machining operation [12]. For material removal during a machining operation, there has to be relative 
motion between the tool and the workpiece. 
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Figure 2.1 Requirements of a machining operation [32] 

 
The relative motion will be facilitated by the kinematics of the machine components with 

minimum to no human intervention depending on the model of the machine. Figure 2.2 illustrates the 
process for generating flat surfaces in which the Generatrix (G) (denoted by a straight line on a flat 
plane) traverses the Directrix (D) perpendicularly. The generatrix is a surface, point, or curve that 
generates a new profile when moved along a given path. The directrix is the path followed by the toll 
to generate the desired shape. The combination of the generatrix and the directrix will constitute the 
cutting motion [32], [89]. 

 
Figure 2.2 Generation of flat surfaces by Generatrix and Directrix [32] 

 
The generatrix and the directrix can also be independents of the cutting motion as illustrated 

in Figure 2.3. The generatrix is the contact line between the cutter and the work surface it has taken 
the form of the cutter and this phenomenon is common in form milling. 

 
Figure 2.3: Tool-work motions in form milling [32] 
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2.2.2. Configuration 
 

All machine tools have different configurations equipped with components best suited for 
their functionality. The design configurations are mainly based on the kinematics of the machine 
required for it to be able to carry out its task in an economic, ergonomic, and user-friendly way whilst 
keeping the complexity of the machine and cost minimal [32], [89]. 

 
2.2.3. Specification and classification 
 

Group technology has managed to help the classification of the increasing number of machine 
tools. Group technology can be broadly classified into 9 major categories according to size, level of 
precision, number of spindles, the direction of the major axis, the purpose of use, degree of 
automation, size blank type, type of automation, and configuration [32], [89].   

Although group technology has achieved a broad classification of machines, each machine 
still retains unique features. These features and characteristics are used by manufacturers, traders, 
and users to identify a particular machine. Specifications such as the size of the main motor, range of 
feed, space occupied by the machine, machine configuration, and range of spindle speeds are 
universal and commonly used on most machining tools [32], [89].  
 
2.3. Mechanics of the machining 
 
2.3.1. Introduction  
 

Cutting tool geometry and material plays a vital role in achieving efficiency and overall 
machining economy. There are a number of cutting tools available making the proper choice of the 
tool an important process during machining. Cutting tools may be classified based on a number of 
major cutting points such as single point, double point, and multiple point cutting [8]. 

In Figure 2.4 there are presented the most important cutting angles of most cutting tools 
which are rake angle and clearance angle. The rake angle (  ) is the angle between the tool-tip 
measured on the side of chip flow and the reference plane. The positive rake angle provides chip flow 
minimizing friction between the tool and flowing chips whilst minimizing machining force, and power 
requirements. The negative rake angle increases tool life and increases edge strength, whilst a zero-
rake angle reduces complexity in tool design and manufacturing [42]. 

 
Figure 2.4 Three possible types of rake angles [E1] 
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Depending on the tool the clearance angle is usually 30O to 15O, and it's always positive.  It is 

the angle between the tool flank and the machines surface, its main purpose is to avoid rubbing 
between the tool and the machined face hence, improving tool life, minimize energy consumption and 
maintain a good surface finish [42], [117]. 

 
2.3.2. Systems of description of tool geometry 
 

There are various standardized systems to describe tool geometry, each system has its pros 
and cons. Standardized tool geometry assists in making the machining process efficient, cost-
effective, and improves overall product quality. For a single-point cutting tool the commonly used 
tool geometry classification systems are, tool in hand system, machine reference system (American 
Standards Association (ASA) system), Orthogonal Rake System (ORS), and Normal Rake System 
(NRS). The ASA, ORS and NRS system uses three planes of reference for measuring different angles 
of the cutting tool [42], [169]. 

The ASA system reference - The ASA system reference planes and the coordinate are chosen 
based on the machine tool orientation and axes. In Figure 2.5 there are presented the planes used for 
turning operations which are reference plane ( R ), machine longitudinal plane ( X ), and machine 
traversal plane ( Y ). Where ( R ) is the perpendicular plane to the velocity vector, ( X ) is the 
perpendicular plane to ( R ) along the presumed direction of longitudinal feed, and ( Y ) is 
perpendicular to ( R ) and ( X ).  

The x, y, and z-axis are in the direction of longitudinal feed, cross feed, and cutting velocity 
respectively [42], [169]  (Figure 2.3).  

In Figure 2.3 there are done the following notations: X is the side rake angle, Y is the back-
rake angle, X  is the side clearance angle, Y  is the back-clearance angle, S  represents the 
approach angle, e  is end cutting edge angle, and r  represents the nose radius.  

Orthogonal Rake System (ORS) - The ORS is also referred to as ISO-old. The reference plane 
( R ), Cutting plane ( C ), and orthogonal plane ( O ) are the reference planes used to determine tool 
angles. The planes are taken in respect of the tool configurations as shown in Figures 2.6 and 2.7 
[169]. 

In figures 2.6 and 2.7 there where made the following notations:   is the inclination angle, 
O  is the orthogonal rake angle, O  is the orthogonal clearance angle, O  is the auxiliary orthogonal 

clearance angle,   is the principal cutting edge angle, 1  is the auxiliary cutting edge angle. 
Normal Rake System (NRS) - The Planes in the NRS system are not mutually perpendicular 

that what differentiates from the ASA and the ORS. When the inclination angle (  ) of the tool 
becomes zero the ORS and the NRS become identical. The ASA system has limited advantages hence 
it is mainly used for inspection purposes.  
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Figure 2.5 ASA system turning tool angles 
representation [169] 

 
Figure 2.6 Representation of tool angles in 

ORS [A2]. 

 
Figure 2.7 Representation of auxiliary plane 

angles in ORS [169]. 
 
The ORS is mainly used for research and analysis in machining and tool performance 

however, it does not reveal the true geometry of the tool when 0 , and additional calculations 
from angles when the tool is reshaped. To overcome the disadvantages of the ASA system and ORS 
the NRS used. Figure 2.8 shows the NRS system where the rake and clearance angles are observed 
from the normal plane ( N ) plane rather than from ( O ) plane as shown in Figure 2.6. 

 
Figure 2.8 Turning tool angles in NRS [169] 

 
The orthogonal plane does not take into 

consideration the inclination angle (  ) whilst the 
normal plan axis is guided by (  )  [169]. In Figure 2.8 
there were done the following notations: N   is the 
normal rake angle, N  is the normal clearance angle, 
and N  is the auxiliary normal clearance angle. 

It is possible to do the conversion of ASA and 
ORS and by graphical method.  

The graphical method is simple and quick 
hence it is commonly used in converting tool angles 
from ASA to ORS and vice versa.  

Master lines are drawn for the rake and 
clearance surfaces. 
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Figures 2.9 and 2.10 show the concept of construction of master line for rake surface and 
clearance surface respectively [169]. 

 
Figure 2.9 Master line for rake surface (with all 

rake angles: positive) [42] 
 

Figure 2.10 Master line of principal flank [42] 
 
2.3.3. Conversion of the tool angles from one system to another 
 

Tool angles can be converted from one standardized system to another. This can be done to 
derive benefits of the various reference system, to improve understanding of the tool geometry, and 
to improve communication between two individuals using different reference systems. Mathematical 
methods of linear algebra, analytic geometry, vector analysis, and or graphical can be used for 
conversion depending on what method an individual is well versed in [169].   
 
 
2.3.4. Orthogonal and oblique cutting 
 

All material removal processes in metal performed with a single point cutting tool can be 
categorized as orthogonal and oblique cutting.in orthogonal cutting, the chip flows along the 
orthogonal plane O( ), whereas in oblique cutting the chip flow deviates from the orthogonal plane 
as illustrated in Figure 2.11. Factors such as tool nose radius, the existence of the angle of inclination 
( ), and restricted cutting effect can alter the direction of chip flow from the orthogonal plane [8] 
[65] and [83]. 
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Figure 2.11 Geometries of orthogonal (A) and oblique cutting processes with straight cutting edge(B) 

[65] and [83] 
 
2.4. Restricted cutting effect (RCE) 
 
2.4.1. Introduction 
 

During a machining operation using a single-point cutting tool, the principal cutting does most 
of the cutting. The helical rib leaves a small volume of uncut material and depending on auxiliary 
cutting angle (𝜙1) and the feed ratec )( 0s , the auxiliary cutting edge might also be involved in the 
machining process as shown in Figure 2.12.  

The chip flow velocity ( Av ) will flow along the orthogonal plane if the effect of the auxiliary 
cutting edge is negligible. However, if the effect of the auxiliary cutting edge is not negligible the chip 
flow velocity ( Bv ) from the axillary cutting edge will alter the direction of chip flow  ( Av ) towards the 
resultant direction at an angle  . 

 
Figure 2.12 Chip flow deviation by Restricted Cutting Effect (RCE) [21]. 
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2.4.2.  Effect of tool nose radius 
 

The tool nose radius of a single point cutting tool is continuously changing from zero over the 
cutting edge of the tool as the tool wears. Such variation changes the cutting angle (𝜙), which will 
significantly change the chip flow direction [65], [83]. 

 
2.4.3. Effect of inclination angle 
 

The chip flow deviation angle is affected by   in the absence of RCE and tool nose radius as 
shown in Figure 2.12. However, if the RCE and nose radius have a significant influence on the chip 
deviation angle d  will be: 

 d .     (2.4) 
Generally, angle   is small hence  d where   may be positive or negative (Figure 2.13). 

 
Figure 2.13 Role of inclination angle on chip flow direction [108] 

 
Positive   moves the tool chips away from the finished surface however it reduces tool tip 

mechanical strength, generates high temperature at the top tip, and increases vibrations due to an 
increase in transverse force. Negative   may improve tool life by reducing cutting temperature and 
increasing mechanical strength but might dame the surface finish [65] [83] and [108]. 
 
2.5. Mechanism of chip formation 
 
2.5.1. General considerations 

 
There are three major types of chips formed during a machining process which are 

continuous, jointed, and discontinuous chips [37], [60]. During machining the cutting tool edge is 
subjected to compressive forces from all sides. The compressive leads to the development of shear 
stress within the cutting region, once the magnitude of the produced shear stress exceeds the shear 
strength of the material, this will result in shear deformation. Thus, this shear deformation is what is 
referred to as the cutting process, once the cutting press is completed the compressive forces in the 
cutting zone diminish due to lack of resistance as a new cutting zone is formed.  
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Figure 2.14 shows an illustration of the cutting process using a single-point cutting tool, the 
formed chip moves along the rake surface whereas the cutting tool moves in the feed direction, thus 
the shear force will no longer have any effect on the chips produced. Ductile materials usually 
produce curved, flat and continuous chips for non-intermittent matching processes [37], [89]. 

 
Figure 2.14 Compression of work material (layer) ahead of the tooltip [37]. 

 
When machining brittle material, the chips produced are mostly discontinuous and have 

irregular shapes and sizes. Figure 2.15 illustrates the development and propagation of cracks at the 
cutting-edge tooltip. The wedging action of the tooltip initiates the development of cracks. Once the 
crake is formed the cracks propagate due to stress following the path of least resistance on the chip 
for thus resulting in the production of discontinuous chips of irregular shapes and sizes. 

When machining brittle material, the chips produced are mostly discontinuous and have 
irregular shapes and sizes. Figure 2.15 illustrates the development and propagation of cracks at the 
cutting-edge tooltip. The wedging action of the tooltip initiates the development of cracks. Once the 
crake is formed the cracks propagate due to stress following the path of least resistance on the chip 
for thus resulting in the production of discontinuous chips of irregular shapes and sizes. 

 
Figure 2.15 Development and propagation of crack causing chip separation [37] 

 
2.5.2. Geometry and characteristics of chip forms 
 

Chip formation when machining ductile material always follows a distinct geometrical 
pattern. By assessing such geometrical patterns, a qualitative and quantitative analysis can be 
completed. The cutting forces and energy requirement for a specific machining process can be 
determined through quantitative analysis of the chip formation. Most materials mimic the behaviour 
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of ductile material at the cutting zone thus the quantitative analysis and models can be universally 
applied to most machining processes. Figure 2.16 illustrates the schematic diagram of geometric 
parameters for continuous chip formation at the cutting zone. Where a1 and a2 represent the uncut 
chip thickness and chip thickness respectively. Usually, the chip thickness is lager than the uncut chip 
thickness. This behaviour can be attributed to a multiplicity of factors such as chip flow frictional 
resistance, compression forces in the cutting zone and the shear plane. In Figure 2.16 there were 
done the following notations:  t - depth of cut (mm), 1b - width of chip before cut (mm), 2b  - width of 
chip after cut (mm), 1A - chip cross-section before cut ( 2mm ). The relations of chip thickening can be 
expressed as: 

1
2

1  a
a

      (2.5) 

where:    is the chip reduction coefficient.  

 
Figure 2.16 Geometrical features of continuous chips formation [21] 

 

The value of   is an indicator of the cutting process force and energy requirements. A larger 
value of   means more energy is required, thus it is of utmost importance to minimize the value of 

2a  or   for optimal productivity. The chip reduction coefficient   is dependent on tool rake angle 
)( , and chip-tool friction coefficient (  ). Thus, can be represented as: 
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During the machining process of ductile materials, it has been observed that the chip flow 

direction changes. This change occurs from the cutting velocity ( cv ) direction at a shear angle ( 0 ), to 
a direction along the tool rake surface along the shear plane, as shown in Figure 2.18. The value of o  
depends upon   and, thus is given by: 
















 

O

O





sin
cos

tan 1
0      (2.7) 



 

30 

 
Figure 2.18 Shear plane and angle during chip formation [36]. 

 
2.6. Analytical determination of the cutting forces 
 

Cutting forces models enable researchers, designers, and users to estimate the power 
consumption during cutting, analyze and optimize the design structure of machines, improve 
machining efficiency, monitor machining stability, and condition monitoring.  

Cutting tools can be classified into two categories, single-point cutting tools and multiple-
point cutting tools. Thus, analytical models for cutting forces have to take into consideration the tool 
type and tool geometry 

The determination of parameters during the machining process has to take into account 
several factors for accurate results.  Physical variables such as cutting forces and temperature are 
difficult to obtain directly during the process, thus their magnitude can only be observed through their 
effects. Figure 2.19 shows a schematic diagram for a general measurement method. 

Generally, three basic principles can be used to determine cutting forces. These principles are 
strain generated by the cutting forces, evaluating the elastic deflection on the workpiece, and 
measurement of pressure developed during the machining process. The measuring process follows a 
general flow as illustrated in Figure 2.19, however, there are differences in the specifics of each 
process depending on the type of transducers used and other data acquisition equipment available. 
Mechanical measurements of tool deflection can also be performed using strain gauges. Capacitive-
type transducers can also be used to determine the deflection. 
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Figure 2.19 General principle of measurement [151] 
 

Capacitive-type transducers are suitable for both static and dynamic measurements, the 
response of a capacitive-type transducer produces a voltage that is directly proportional to the force 
applied, and there is no calibration needed since in most cases they are calibrated by the 
manufacturer [28]. 
 
2.7. Cutting temperature 
 
2.7.1. General considerations 
 

Heat is generated during the machining process, the heat generated will lead to temperature 
rising and consequently can affect the cutting process by increasing tool wear. Figure 2.20 indicates 
the areas in which heat is generated, these sources are the primary shear zone (1), the secondary 
deformation zone (2), and the worn-out flanks (3). 

 
Figure 2.20 Zones of heat generation in machining [21] 

 
High cutting temperatures have a significant effect on the machining process. A larger 

amount of the generated heat is concentrated on the chip due to its size and position. This is a good 
thing for every machining operation since the chips will be discarded. Concentrated efforts have to be 
made so that the chip takes away the majority of the heat thereby minimizing the damage to the 
cutting tool and workpiece [36], [121]. 

High machining temperature can cause dimensional inaccuracy, surface damage on the 
workpiece, and subsurface micro-cracks due to residual stress. Moreover, high cutting temperatures 
can cause rapid tool wear and can damage the cutting tool edge due to fracture or plastic 
deformation.  

 
2.7.2. Cutting temperature and cutting control 
 

The impact of non-optimal cutting temperature on cutting tools and machine components 
has been extensively researched and widely recognized. To minimize these effects, it is important to 
control and optimize cutting temperatures while maintaining productivity and product quality. Cutting 
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temperature optimization can be achieved by the proper selection of machining parameters, good 
selection of cutting tools, and use of correct cutting fluid [23], [88]. 
    Cutting fluids act as both a coolant and a lubricant, thus proper selection of the cutting fluid 
is of utmost importance in machining operations. When cutting fluid is applied to the cutting zone it 
takes away the heat generated from the cutting processes thereby providing a cooling effect. 
Moreover, it provides lubrication at the chip-tool interface and helps in removing chips from the 
cutting zone. The properties of the cutting fluid selected should have a lubrication effect, a cooling 
effect as well and chemical stability so as not to damage the equipment [46], [88]. 
 
2.8. General purpose of milling machine 
 
2.8.1. Kinematic system and operations of milling machines  
 

Milling machines are one of the most common subtractive manufacturing tools used in this 
century for manufacturing purposes. The versatility of milling machines makes them ideal for the 
production of complex geometries such as surfaces of revolution, helical surfaces, and contoured 
surfaces. During the milling operation, the tool will be rotating whereas the workpieces will be fed at 
a predetermined feed rate.  

The rotational direction of the milling tool relative to the feed direction determines the nature 
of the milling operation. Up milling the workpiece is fed in the opposite direction to the cutting tool 
this operation generates an upward force thus a stronger job holder is needed to keep the workpiece 
in place.  

Down milling the feed direction is the same as the direction of the cutting tool hence the 
cutting tool tends to self-feed thus backlash-free screw-nut system is needed to maintain a steady 
feed rate. Classification of milling machines can be based on purposes of use, spindle orientation, 
level of automation, and machine kinematics [23]. 

 
 

2.8.2. Kinematic system of milling machine 
 

The kinematic system of the milling machine (Figure 2.21) is a complex engineering setup 
with several mechanisms that enable precise movements between parts to ensure smooth 
operations. The motion is transmitted from the electric motor through a series of gears, belts, and 
pullies to various components of the machine.  

Depending on the model and characteristics of the machine some milling machines also 
require human input to move some parts for smooth operation. However new milling machines have 
a more advanced and complex kinematic system as a single motor can drive all the necessary 
components including automatic feed and table tilt and rotation. The kinematic diagram of a 
horizontal milling machine is shown in Figure 2.21, the machine has three feed motions in the X, Y, 
and Z directions.  
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Figure 2.21 Kinematic diagram of a horizontal milling machine [21] 

 
The diagram also shows a separate small motor for fast traverse of the bed and table with an 

overrunning clutch. During the low rates of operation, the concept of rotation is transmitted from the 
worm to the inner shaft through three equally spaced rollers which, on revolving, wedge themselves 
into the tapering passage from the worm and the worm wheel. The shaft is directly driven by the 
motor during rapid travel for operations that do not require cutting, and it does not engage or brake 
the worm. It is possible to use a longer arbor by extending the over-arm. The base of the milling 
machine is positively grouted to the floor or foundation made of concrete [21]. 
 
2.9. Milling dynamics 
 

To generate a surface, a relative movement has to be created between tool and workpiece 
that is defined by a series of kinematic magnitudes such as cutting speed, feed rate, immersion ratio, 
etc. In the dynamics of machining operations, the quantities of variable parameters are considered as 
functions of time (t ). Consequently, the cutting process must be considered as a multivariable 
dynamic system. Therefore, the cutting process system will be completely understood when the 
transferee function of the input to out output is known. Due to the complexity of the machining 
process, it is a near impossible task to gaining the transfer function of the cutting process involving 
all variables. 

During milling operation, the cutting tool rotates relative to the workpiece, this results in the 
periodic variation of the instantaneous chip thickness. This gives a periodic forcing function which 
excites the structural dynamics of the tool-holder, spindle, machine, and workpiece [38]. The cutting 
force causes deflections of the tool and/or workpiece. The vibrations creates a wavy surface on the 
workpiece, thus the amplitude of vibration increases from tooth to tooth thereby creating a time 
delay between subsequent tooth. The feedback mechanism is established due to the fact that the 
chip thickness at any instant depends upon the process geometry and current vibration, as well as 
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the surface left by the previous tooth. It is this variable chip thickness that has a dominant effect on 
the cutting force, which in turn again affects the vibrations experienced by the tool [131]. 

To analyze the dynamic of milling operations the milling time domain should be simulated. 
The simulation is then used for a selected dynamic system to generate a stability map that separates 
stable and unstable spindle speed-axial depth of cut combinations by applying a periodic sampling-
based stability metric.  

Time-domain simulation is one such tool which aids in the solution of time-delay equations of 
motion for milling processes in small increments [S3]. This technique is quite proper for simulating 
milling dynamics, such as nonlinearities caused by tooth disengagement as a result of high vibrations 
and complex geometries of tools. The stability lobe diagrams usually plot the maximum axial depth of 
cut on the vertical axis versus spindle speed along the horizontal axis [8]. 
 
2.10. Conclusions 
 

The purpose of the work was to establish an understanding of the milling process, tool 
geometry, cutting tool materials, kinematic of the milling machines, and their types reviewed. The 
knowledge gained in understend the kinematics of the milling machine will assist in the static and 
dynamic modeling of the machine. Understanding tool geometries and the cutting tool will assist in 
the proper selection of cutting tools to use for specific operations. 

From the analysis of the above, it follows that the modeling of the technological milling 
processing involves the definition of several parameters related to: cutting speed, cutting depth, 
cutting feed, cutting force and power, etc. 

The complete definition of the cutting process is a complex one. It follows from what is 
presented in this chapter that the determination of cutting forces can be carried out in several ways. 
One of these is the use of special devices, called dynamometers, which work taking into account their 
elasticity and, implicitly, their deformability. Basically, it is a connection between their rigidity and the 
forces that arise. As a result, these devices are made with elastic, deformable systems, on which 
foreign gageus are mounted. The aim of the thesis will be to make such a dynamometer with 
dynamic force transducers. 

 

Chapter 3 – Dynamic models of milling 
 
3.1. Dynamic systems. Mathematical considerations 
 
3.1.1. General aspects 
 

The behaviour of any dynamic system can be described in many ways. One of these is the so 
called ”block diagram” representation where there are highlight the main components of the process, 
as: input and the output quantities of any dynamic process, disruptive factors, connections, etc. 
Generally, a ”block diagram” is described using the so called ”black-box” (Figure 3.1). 
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Dynamic system 

(DS) 
Machine tool 

Input Forces/Moments Output 
Displacements and/or 

rotations 
 

 
Figure 3.1 General block diagram representation 

In case of mechanical systems the input 
values are forces and/or moments that are time 
dependent, the output components generate the 
so called ”system response” and consist of 
deformations which are also time dependent 
(displacements and/or angels), and the disruptive 
factors are associated with different aspects of 
the working regimes. 

 
Between the input/output values and disruptive factors can be defined relations that 

highlight the time dependences, as: 
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which can be defined as ”input/output equations”. 
The input and output values from (3.1) can be describe in a vector form: 
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and the connection between them can be done with a matrix that has a shape according with the 
number of components from vectors describe by (3.2). 
 
3.1.2. State space approach 
 

Considering the set of equations (3.1) and the state vector (3.4) it can be demonstrate that 
the dynamic behaviour of the mechanical system can be described in terms of two matrices, denoted 
with A  and B , and associated to the state equations. The state equations represent a set of 
equations that relate any output variables of interest. These output variables are defined in terms of 
Q  and D  matrices: 
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,
,
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UBXAX

    (3.4)  

where U   is the vector of the inputs. 
 
3.1.3. Laplace transform and transfer function 
 

Laplace transforms offer a rapid and useful method for representing and analysing dynamic 
behaviour of mechanical system. Using Laplace transform practically the differential equation are 
transformed in linear algebraic equations. Finding the solution of algebraic equation one can obtain 
the differential equation solution using the invers Laplace transform. 
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The Laplace transform of a function of one variable )(ty , )(sY , is defined to be [30]: 
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sYdtetyty
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st£  




 ,   (3.5) 

where s  is the Laplace variable, a complex one, bjas  , with a  and b  real numbers.. 
Considering Laplace transform properties, an ordinary differential equation of second order, 

with zero initial condition can express as:  

  )()()()()( 2
2

2
sUsYcbsastycdt

tdyb
dt

tyda£ 








 , (3.6) 

where )(sU  is the Laplace transform of )(tU . 
Details about Laplace transform are given in many papers and books. Also, for the most used 

functions )(tU  there are presented the Laplace transforms )(sU . The ratio between the Laplace 
transform, from (3.6), of the output variable  )(sY  and input component )(sU [128]: 

cbsassU
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 2

1
)(
)()( ,    (3.7) 

ratio defined as transfer function. 
 
3.2. Dynamic behaviour of mechanical systems 
 

The mechanical systems are defined as: continuous-time, or linear time-invariant (LTI) 
systems, or input-output systems. The analysis of mechanical systems can be done considering 
three types of three types of models: 

a) model with lumped system; 
b) model as continuous systems; 
c) model generate by Finite Element Method. 

 
3.2.1. Systems with one degree of freedom (1 DOF systems) 
 

In this case the mechanical systems consists of an inertia element (mass or flywheel), a 
damper and a an elastic element. The simplest model is presented in Figure 3.1. 

 

F (t ) 

c k 
y(t) 

m 

 
a) 

 

F (t ) 

cy  my  ky  

m 

 
b) 

The damping component 
consists in a damper that has a viscous 
damping behavior and which is 
characterized by the damping constant 
c Ns m 
  , an elastic element that a 

linear one and has the constant o 
elasticity k N m 

  , and the inertial 
element defined the mass   kgm . 

Regardless of the used method, 
the motion equation is: 

Figure 3.2 System with 1 DOF : a)  the physical model;      
b) force diagram 
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       )(tFkyycym   .    (3.10) 
The study of one degree of freedom involves two different aspects: 

 a)  free regime – in this case the force is 0)( tF  and in this case equation (3.10) becomes: 
      0 kyycym  .    (3.11) 

b) forced regime – in this case the study of dynamic behaviour is done using motion equation 
(3.10) that can be rewritten, considering (3.12) and (3.13) as: 

       m
tFyyy nn

)(2 2       (3.17) 

 
3.2.2. Systems with two degrees of freedom (2 DOF systems) 
 

The aspects about the dynamic behaviour of the systems with two degree of freedom are 
presented considering the model from Figure 3.4.  

 

F1(t ) 
c1 k1 

c2 k2 F2(t ) y 1 (t ) 

y 2 (t ) 

 

m 1 

m 2 

 
a) 

 
 
 

 

F1(t ) 

1 1m y  2 1 2( )k y y  

1 1k y  1 1c y  

2 1 2( )c y y  

m 1 

 
 

b) 

 
 
 

 

F2(t ) 

2 2m y  

2 1 2( )k y y  
2 1 2( )c y y  

m 2 

2 1 2( )k y y  

 
 

c) 
Figure 3.4 System with 2DOF: a)  the physical model; b) force diagram for the mass 1m ; c) force 

diagram for the mass 2m [128] 
 

Motion equation can be written considering one of the methods presented in Mechanics, and 
for the considered model they are: 
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or      )()()()( tttt FYKYCYM       (3.32) 
A) Free regime 
In this case, as in case of 1DOF, there are considered two distinguish subcases: whitout and with 
damping. When the damping is neglected, the motion equations (3.31) become: 
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with the solutions:     
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B) Forced response 
B1) Undamped mechanical systems 

In this case, the motion equations (3.31) become: 
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and considering de input forces as:  
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and the response:    
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the motion equations has a new form:    ttf  sinsin 00 FYKM  ,  (3.48) 
B2) Damped mechanical systems 

In this case the motion equation has the form given by (3.32). Multiplying to the left with 
invers of mass matrix, 1M , the motion equation becomes: 

)()()()( 111 tttt FMYKMYCMY      (3.51) 
As state vector it is choose:   Tttt )()()( YYXX  ,   (3.52) 

and considering (3.51) one can obtain: FM
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and I  represents identity matrix, and 0  is the zero matrix. 
The total dynamic system response is found: 
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In (3.62) there are two components: 
 free response:     )0(XDY At

l e ;    (3.63) 

 forced response:     
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3.2.3. Calculation of the transition matrix te A  
 

There are known different methods of transition matrix ( te A ) calculation. One of these 
possibilities is to use the Cauchy relation meet in the theory of complex functions. In [30] it is 
presented the following demonstration. It is considered an analytical function of complex variable 
denoted with )(sf , in a simple connex domain  . If 0ss    is a point situated in curves  , contained 
in the considered domain, according with the Cauchy relation one can write the following relation: 
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where 1j   . 



 

39 

 
3.3. Models with one degree of freedom (1 DOF) 
 
3.3.1. Model 1 

 
The models with one degree of freedom are the simplest one. In [77] it is presented a 1DOF 

model where the workpiece is considered to be flexible, in the feed direction, and the tool is 
considered to be a rigid one (figure 3.6).  The motion equation written in terms of modal parameters 
as: 

   ( ) ( ) ( ) ( )xmx t cx t kx t F t ,   (3.74) 
where: m  is the mass, c  is the damping, k  is the stiffness, and )(tFx  represents the cutting force 
component in the ” ”x  direction. 

 
Figure 3.6 One degree freedom milling model [77] 

 
Considering that the tool has a number of ” z ” teeth, the components in radial  ” ”r  and 

tangential  ” ”t  directions of the cutting force, on each tooth, are defined as: 
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where the index ” i ” refers to the number of teeth ),1( zi  , rK  and tK   are the radial and tangential 
cutting force coefficients, pa  represents the axial depth of cut, )(thi  is the time dependent chip 
thickness cut by     i-th tooth, and  q  is the cutting-force exponent. The function ( )ig t  is equal with 1 
when i-th tooth cutting otherwise is equal with zero. 
 
3.3.2. Model 2 
 

Another approach is presented in [162]. The motion equation is described also in modal 
parameters as: 

   2( ) 2 ( ) ( ) ( )n nmx t m x t m x t F t   (3.80) 
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where ( )x t  represents the displacement in ” ”x  direction, m  is the mass, n  is the natural 
frequency,   represents the damping coefficient, and the cutting force )(tF  is defined as: 
        )()()()( txTtxthatF p  ,   (3.81) 
with axial cutting depth denoted with pa , regT  refers to the regenerative delay and is given by: 
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 ,     (3.82) 

where   is the rotational frequency and z  represents the number of teeth. 
The function ( )h t  from (3.81) is time dependent one that can be calculates with the relation: 
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In (3.83) there were done the following notations:  rK  and nK  cutting force coefficients,  ( )i t  
is the time dependent angular position of the i-th tooth and can be calculate with the relation: 
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Considering the state-space transformation, motion equation (3.80) can be rewritten as: 
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with tm  as modal mass. 
 
3.3.3. Model 3 
 

In [44] it is presented another simplified model with one degree of freedom.  In this proposed 
model the motion of the tool )(tx  is considered to be as a summation of feed motion and vibrations. 
The free-force diagram it is presented in Figure 3.9. 

 
a) 

 
b) 

Figure 3.9 Model with 1 DOF [44]: a) dynamic model; b) tools dynamics free-body diagram 
 
 The motion equation of the model is: 
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    0)()()()(  tFvttxkvtxctxm  .  (3.88) 
Considering the position of the the i-th teeth of the tool in the system tool-workpiece there 

are highlight two components of the cutting force: a normal one, denoted as  )(tFni , and a tangential 
one, denoted as )(tFti , respectively. In this model the axial force is neglected because the helix angle 
is considered to be equal with zero. 

The cutting force xF  is expressed: 
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where tK  is the tangential cutting coefficient, and nK represents the normal cutting coefficient and 
are strong influenced by the mechanical properties of the workpiece material and the shape of the 
tool, N refers to the number of tool teeth, w  represents the depth of cut, rK  is the ratio tn KK , af  
is the actual given by the difference.  
 
3.4. Models with two degrees of freedom (2 DOF) 
 
3.4.1. Model 1 
 

In [44] it is presented a 2DOF end-milling tool model (Figure 3.10), where are considered the 
stiffness and damping elements considered horizontal plane, denoted by coordinates x  and y . 
There are considered modal parameters: in x  direction – modal mass xm , modal damping xc , and 
modal stiffness xk , and in y  direction - modal mass ym , modal damping yc , and modal stiffness 

yk . 

 
a) 

 
b) 

Figure 3.10 System with 2 DOF [44]: a) dynamic model; b) tool dynamics free-body diagram  
 
 The motion equations of the dynamic model are: 
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 Considering some assumptions and calculation it is obtained the model for milling chatter: 
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where: 
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with w as the depth of cut, nx  and ny  are the natural frequencies corresponding to the two 
directions x and y ,   is the damping ratio corresponding to the two directions x and y , nK  is the 
normal cutting coefficients, tK  is the tangential cutting coefficients, i  is the instantaneous angular 
position of ithth tooth, ig  is the screen function, and N represents the number of teeth. 
 
3.4.2. Model 2 
 

In [166] it is considered a model with cross-coupling effect (Figure 3.11). In the paper it is 
investigate the structural mode coupling effect in the regenerative milling stability analysis. 

 
Figure 3.11 Mechanical model (down-milling) [166] 

 
 The motion equations that describe the dynamic behavior of the considered model are given 
by: 
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that can be represented in matrix form as: 































































)(
)(

)(
)(

)(
)(

)(
)(

tF
tF

ty
tx

kk
kk

ty
tx

cc
cc

ty
tx

mm
mm

y

x

yxy

yxx

yxy

yxx

yxy

yxx







 (3.99) 

where m , c , and k  are the modal mass, modal damping and modal stiffness, respectively. 
The time-dependent cutting forces generated during the tool rotation: 
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where ncK  and tcK represents are the normal and tangential coefficients of the cutting forces, 

neK and teK  are the normal and the tangential edge coefficients, ),( ztf i represents the 
instantaneous chip thickness of the i-th  tooth. 

Substituting Eq. (3.100) and Eq. (3.101) into Eq. (3.99), the equations of motion can be 
rewritten in matrix form as: 
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The solution of the equation (3.103) can written in an integration form as: 
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where )( 0tX  is the state value at an initial considered moment 0t , and T is the tooth passing period 
interval, )(60  NT . 
 
3.4.3. Model 3 
 
 A dynamic non-linear model of milling is presented in [159]. The presented mathematical 
model used contains differential equations with shifted argument, considering nonlinear elements 
(Figure 3.12).  
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Figure 3.12 A 2 DOF Non-linear tool-workpiece milling model [159] 
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where: 1m  is the substitute mass of the tool, 1c  is the damping coefficient of the tool, 1k  represents 
the linear stiffness of the tool and 11k  is the nonlinear stiffness of the tool, 2m  represents the 
substitute mass of the workpiece, 2c   is the damping coefficient of the workpiece, 2k  is the linear 
stiffness of the workpiece, and 21k  represents the nonlinear stiffness of the workpiece. 

Relations (3.105) can be divided by the masses 01 m , and 02 m , and considering 
notations (3.12) and (3.13) and it obtained a new form of the motion equations: 
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with the following notations:  1  is the damping coefficient of the tool, 1n  represents natural 

frequency of the tool, 1
1

11 m
k  is the tool nonlinear stiffness coefficient, 2 is the damping c 

workpiece coefficient of the, 2n  the natural frequency of the workpiece, 12
2

21 m
k  considered to be 

nonlinear stiffness coefficient of the workpiece. 
� The resultant cutting force caused by the i-th tooth in the x  direction is given by the 
approximate equation: 

 )(sincos)( tFFtgF iriitiii   ,   (3.107) 
where tiF is the tangential component and riF  is the radial component and have the following 
relatios: 
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with pia axial depth of cut, )(tw i  is the chip width, tK  and rK  specific cutting forces which depend 
on the cutting material properties, and the typical relationship between them, for classical materials, 
is tn KK 36.0 . 
 The chip width )(tw i  can be defined as a function of the tool feed f, , workpiece vibrations 

)(tx  and vibrations of the previous tooth )( tx : 
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 The step function )(tg i  has the same form as (3.92). 
 
3.4.4. Model 4 
 
 Another interesting model it is presented in [142]. In this case it is considered a dynamic 
miiling model which shall be taken into account the tool and workpiece stiffness (Figure 3.13). 
 Considering the reference system from the Figure 3.13 and assuming that the modes on the 
x  and y  directions are uncoupled, the dynamic behaviour is described by the following equations: 
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where, cm  model mass of the tool and wm  is the  mass of workpiece respectively, cc  is the damping 
coefficient of the tool, and wc  is the damping coefficient of workpiece, ck  is the stiffness coefficient 
of the tool, and wk  is the stiffness coefficient of workpiece, )(tFx  and )(tFy represents the resultant 
cutting forces in bth directions x  and y  at a moment t . 

 
Figure 3.13 The milling dynamic model considering both tool and workpiece stiffness [142] 
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 The cutting force, at the i-th tooth, has the same two components: the radial one riF and the 
tangential one tiF  that are proportional with cut depth pa  and thickness of the cut h : 
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 The summation of cutting forces can be expressed in the following matrix form: 
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where i is the instantaneous contact angle of i-th tooth, measured clockwise from the feed 
direction to the y -axis. 
 
3.5. Conclusions 
 
 As is presented in this chapter the model of milling can be modelled as systems with 1DOF or 
2DOF. The models take into consideration the modal parameters: mass, damping and stiffness and 
are considered for stability study [152]. 

The simulation is done using the state-space approach and the cutting forces are described 
as functions of time and cutting process parameters. 

In case of the 2DOF there are considered modal parameters in both directions x -direction, 
and y – direction and the systems are considered to be coupled or uncoupled [153]. 

Some models consider the workpiece to be flexible, in the feed direction, and the tool is 
considered to be a rigid one and in motion equation solving is used the regenerative delay, and the 
equation solving involve different mathematical methods [92], [93].  

 
 
 

Chapter 4 – Chatter and stability 
 
4.1. Chatter 
 
4.1.1. Introduction 
 

The metal cutting, regardless of the type of mechanical processing, is a very complex 
phenomenon caused by the complexity mechanism of chip formation. A deep understanding of the 
cutting process involves advanced investigations based on advanced set-ups with computers and 
sensors that are mainly focused on machining control. 

As is mentioned in many articles and books, the phenomenon of mechanical vibrations 
developed during machining is a limiting factor in all processes. 
In the vast majority of cases, vibrations occur as a result of two causes: 

a) small values of dynamic stiffness of the elements that compose the system machine 
tool-holder; 
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b) local interaction developed between the tool and the material of the workpiece.  
During milling, the developed vibrations generate two different types of working regimes: 
a) a transient regime generated by the cutting edge in the both moments associated with 

the enter  and exit from the workpiece; 
b) a steady state regime during the cutting process. 
The self-excited vibrations are, in general, the most undesirable vibrations and the least 

controllable. In some references [30], [45], [74], [146], [163] is mentioned that a first definition of 
chatter can be considered that one which is presented in [145] where the phenomenon was 
considered as the ‘‘most obscure and delicate of all problems facing the machinist’’. 

Chatter can be found in different metal removal processes as a result of the fact that the 
metal cutting operations implies overlapping cuts which are sources of vibrations with high 
amplitudes. In case of milling process chatter is developed when a combination of spindle speed and 
depth of cut appears. Taking into consideration all these result it is necessary to be developed 
mechanical cutting models and to be done simulations of dynamic behaviour for different 
combinations betwen the spindle speeds and depths of cut.  

Some of the main negative effects of the chatter are mentioned in [35], [146]: 
 high roughness of the surfaces; 
 high level of noise developed during machining process; 
 shortening tool lifetime due to wear increasing; 
 appearance of structural defects of machine tools; 
 low productivity due to a decrease in the amount of chipped material when the cutting 

tool passes; 
 increasing the costs in all terms connected with the machining process. 
 
 
Chatter is divided in in two large categories:  
a) primary chatter - that results from the cutting conditions and refers to different 

phenomenon developed in the cutting, as: the friction that appears at the level of contact 
tool- workpiece, the combined thermal and mechanical effects developed during chip 
development; 

b) secondary chatter – appears as a result of generation of waviness on the piece surface.  
As a conclusion, one can mention: 
 chatter reduce processing efficiency 
 chatter reduce machining precision; 
 chatter reduce the lifetime on of both the cutting tool and machine tool; 
 chatter generate smoothness of work piece surface; 
 chatter generate negative effect on dimensional accuracy; 
 chatter generate sound pollution. 

 
4.1.2. Chatter mechanism 
 



 

48 

In practice, considering the specific self-excitation vibration mechanism, there are highlight 
three types of chatter [45]:  

a) frictional chatter – are caused by the friction that are developed In the system tool- 
workpiece.; 

b) mode coupling chatter – is generated the phenomenon of mode vibration coupling. This 
type is cause by a small difference of the stiffness between elements that vibrate in two 
different directions; 

c) regenerative chatter – appears when there are differences in chip thickness that results 
from the differences of the phases between the vibration of the piece developed between 
a a prior cut and the displacement of the next cut. 

The chatter phenomenon can be modelled by four input parameters: the coefficients of the 
cutting force, cutting dynamic parameters, and tool geometry. 

As is mentioned in [118], the differences between the frictional chatter, mode coupling 
chatter and regenerative chatter are based on the vibration generated mechanism: 

 frictional chatter is developed when friction occurs on the free face and develops 
vibrations along the tangential force direction; 

 mode coupling chatter It occurs when vibrations developed in radial direction also 
generate vibrations in tangential direction. Thus, simultaneous vibrations occur in both 
directions, radial and transverse. The causes can be multiple, such as: variation in the 
thickness of the chip, change in the shear angle of the chip, inclined surfaces, etc. 

 
 
 
 
 
4.1.3. Chatter parameters 
 
4.1.3.1. The coefficients of cutting forces 
 

The values of cutting force coefficients can be obtained by extracting test data. This can be 
done by experiments for any cutting tools. These coefficients are mainly influenced by material yield 
strength, friction tool-workpiece, and tool geometry. There are different methods to find out the 
values of the coefficients. Two of them refer to: 

a) the method of average cutting force [49] - puts the measured average cutting force 
into a linear function for feed per tooth. Cutting force coefficients in different 
directions can then be obtained using fitting functions in Matlab software. 

b) the method of instantaneous cutting force [79] – consider as the minimum objective 
function to fit a simulated cutting force and an experimentally measured force, with 
the instantaneous cutting force coefficient being obtained by inversion. 

 
4.1.3.2. The influence of system dynamic parameters 
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 The milling system dynamic behaviour can be analysed in terms of transfer function of a 
MDOF system. The transfer functions can be obtained both theoretically and experimentally by 
identified using structural dynamic tests. The most common test used in modal analysis is the step 
signal excitation that involves the use of an impact hammer to introduce the excitation signal and to 
find out the response using either an accelerometer or a force transducer [35]. The FRFs are 
influenced on the total mass of transducers, especially in case of thin-walled machining. 

The experimental analysis is done to identify the damping information that is needed to 
create the damping component of the FE model. In case of FEM can be used both linear and nonlinear 
models. In [1] the dynamic parameters of a workpiece are analysed using Fourier transform  and the 
Finite Element Method (FEM). The FEM offer the advantage of obtaining a higher accuracy in case of 
using a small number of steps while a large number of steps involve longer processing time as a 
result of creating news models and reanalysis them. In case of using Fourier transform the analyse is 
done in frequency domain. 
 
4.1.3.3. Parameters influencing the chatter phenomenon 
 

As is mentioned in literature, the time delay is an important factor in chatter phenomenon 
determination. As it follows, it is necessary to study the feed speed effect on time delay and then to 
evaluate the stability. During the time there were done different studies on this correlation taking 
into consideration the feed per tooth (federate) and constant change during the machining processes 
of the cutter lead angle. 

In case of milling chatter and stability problems the tool runout and the feed per tooth have a 
large the influence. In [158] it is mentioned that a main influence on stability has the small feeds per 
tooth, but in the same time the effect is reduced when the feed per tooth is increasing. A very 
important problem refers to the limitation of depth in axial direction of cutting. The axial cutting depth 
influence the area of the contact tool-workpiece.  
 
4.1.3.4. The geometry of the tool 
 

Another important element in chatter development is the cutting tool geometry. The tool 
geometry and the parameters that define it have a direct influence on the coefficients of the cutting 
force, on the directional coefficients of the dynamic force and on the kinetics of the machining 
process, as well. Studies made about the geometry influence were done in different papers.  

In [5], [9], [7], and [21] it is presented a so called average directional factor which is 
independent of helix angle. This type of tools are used for doing large radial cutting depth. The 
conclusion of these above mentioned articles is that the helical angle has no influence on stability if 
the cutting depth is large. 
 
4.2. Stability 
 
4.2.1. Stability theory in case of machining 
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It is considered a mechanical system with one degree of freedom. The dynamic behaviour is 

decribed by the motion equation: 
)(tFkyycym   ,     (4.3) 

where the considered parameter )(ty  and may have positive or negative values. 
The solution )(ty  of the motion equation (4.3) consists of the sum of the homogeneous 

solution in and a particular solution. These two parts are usually referred to as the transient response 
and the steady state response respectively. Physically, the steady state response will follow the 
forcing function [30], [40], [75]. 

If the system described by equation (4.3) is in a stationary regime, than the input force can be 
considered to be )()( 1 tFtF  . If during the cutting is developed another force )()( 12 tFtF   the process 
can be equated/assimilated with an impulse signal applied to the system, for a short time, and it can 
be considered that is developed a short time free response )(ty f . Considering a short time of input 
modification (input force modification) the free response (transient regime) does not have to be for a 
long time, and the condition that has to be considered is: 

0lim 


ft
y       (4.4) 

otherwise,     


ft
ylim      (4.5) 

and the system has an uncontrolled behaviour. 
The condition (4.4) describes the stable state (stability), and condition (4.5) describes an 

unstable state of the system described by equation (4.3). 
The solution )(ty f  depends only on the parameters m , c , and k  and one can say that the 

stability or instability are intrinsic properties of the considered mechanical system, and do not depend 
on the input value (excitation force). 

Taking into consideration the fact that the time of changing has to be very small, relation (4.4) 
can be reconsidered as: 

minlim ty ft



.     (4.6) 

The state described by (4.6) is called pseudostability, or limited stability and the system 
described by (4.3) is limited stable or marginally stable. In the general case, the linear system 
described by the motion equation (2.201), with „ ”q  degrees of freedom is stable if the answer ”goes 
off” in time [30]. 
 
4.2.2. Stability criteria 
 
4.2.2.1. General considerations 
 

The stable behaviour can be studied using the steady state equations or the transfer function. 
In any technical application it is desired a steady-state or a final value of the system response )(ty . 
One of the main theorems of the Laplace transform is the final value theorem that states: 
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)(lim)(lim
0

ssYty
st 

 ,    (4.7) 

where a simple pole of )(sY  is permitted, but poles on the imaginary axis and in the right half-plane 
and repeated poles at the origin are excluded. Based on these considerations, in the case of a SDOF 
system (mass-damper-spring system) it can be concluded that: 

0)(lim)(lim
0




ssYty
st

.   (4.8) 

In the same time, the relationship (4.8) shows that the final position of the mass, part of the 
mass- damper-spring system, is the equilibrium position (when 0)( ty ).  

Considering the motion equation (4.3) the characteristic equation can be written as: 
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which is similar to equation (4.3) to which the Laplace transform is applied: 
  0)(2  sYkcsms .   (4.10) 

The solutions of the both equations (4.9) and/or (4.10) are: 
12

2,12,1   nn js ,   (4.11) 
where, 1j , and n  is the natural frequency and   is the damping ratio. 

Taking into consideration relation (2.7) and (2.115) the relation (4.11) represents the 
denominator of the transfer function. Considering the values of   the solutions given by (4.20) have 
the following values (Figure 4.3): 

a) 1 , the roots are complex and conjugates; 
b) 1 , the roots are repeated and real; 
c) 1 , both roots are real. 
These roots defined by (4.20) are called the poles of the system and determine the character 

of the time response of the system.  
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Figure 4.3 The s-plane plot of the solutions defined by relationship (4.10) [128] 

 
Considering the above remarks and some aspects presented in [128] one can concludes the 

following:  
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a) asymptotic stability is assured when all roots i  or is  ( qi 2,1 ) of the characteristic 
equation: 

0...)(det 212
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

qq
qq cccc  AI , (4.12) 

have negative real parts, being situated in the left complex half-plane; 
b) the system is asymptotic unstable if at least one of the following conditions is met:  

a. one or more of the roots i  or is  ( qi 2,1 ) have positive real parts; 
b. a multiple pair of solutions (double, triple, etc.) of solutions of the equation (4.12) 

has the real part zero, that is, it is located on the imaginary axis; 
c. two or more roots of the characteristic equation are null; 

c) the mechanical system is stable limited if its characteristic equation has a simple pair of 
roots with the real part zero or a simple null root, and the other roots are located in the 
left complex half-plane. 

As a general conclusion results that for asymptotic stability analysis of a mechanical system 
linear time invariant (LTI) it is necessary to be known the solutions of the characteristic equation (4.9).  

 
4.2.2.2. Routh-Hurwitz criteria 
 

This criteria is an applied when all coefficients of equation (4.9) are positive, otherwise some 
roots are situated in right complex half-plane, imaginary axe or in the origin. It is said that the 
mechanical system is unstable or pseudo-stable [30]. 

In case that all the coefficients are positive, ic  ( qi 2,1 ), according with the Routh-Hurwitz 
criteria the necessary and sufficient conditions for all the roots of the characteristic equation (4.12) to 
have the negative real parts, which ensures asymptotic stability, are: 
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In (4.13) i  ( qi 2,1 ) represents the minors corresponding to the main diagonal of the 
determinant: 
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4.2.2.3. Nyquist criteria 
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Any mechanical system can be represented by block diagram with loops and feed-back 
elements. This king of representation highlights the role of the state variable and is based on the 
relationship between the Input and the Output of a mechanical system. 

The Nyquist stability criterion is based on transfer function and frequency response function. 
This criterion makes it possible to assess the stability of an closed mechanical system on the basis of 
the location of the transfer of the open system. 
 
4.2.2.4. Lyapunov concept of stability 
 

The most known norm of a vector is the so called ”Euclidean norm”, which can be calculate 
using one of the following relations [30]: 






q

i
ix

2

1

2X ,    (4.15) 

or      )(max
21

i
qix

x


X ,    (4.16) 

where ”q ” represents the number of degrees of freedom. 
In this case, the equilibrium state of the mechanical system is stable, in Lyapunov meneaning, 

if for any 0  one can found any value  0  so from condition: 
)( 0tX ,     (4.17) 

results:      )(tX , 0t t  .    (4.18) 
If there is no )(   the state given by the relations (4.8) is not stable. 
The state X 0  given by (4.10) is stable asymptotic if is stable in Lyapunov sense and if: 

0lim 


X
t

.     (4.19) 

Taking into consideration (4.11) or (4.12) and (4.4) one can say that in case of initial finite 
conditions, the condition (4.4) corresponds to the asymptotic stability. 
 
4.2.3. Stability of machine tools system 
 

The dynamic machining system with a degree of freedom, consisting of the ESM - elastic 
system of machine tools (see Figure 1.1) and the CS cutting process (see Figure 1.1) described by 
means of the static stiffness k , of the cutting force F  can be expressed by the equation [30]: 

Fkyycym       (4.37) 
where the force F  is the instantaneous cutting force and is given by the relation: 

FFF o  ,     (4.38) 
with        yeKF apT

a
 1 ,    (4.39) 

where were done the following notations: F - the dynamic variation of the reported to a stationary 
force 0F  supposed to be constant in time or slowly variable, aK  -  the static stiffness of a tooth, dT  - 
delay time,  - is a coefficient of delay, usually equal with 1.  
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Equation (4.3) can be rewritten as:    o
apT

a FyeKkycym  1 .  (4.40) 
If 0  and considering KKk a  , then (4.40) with 00 F  becomes a free motion equation: 

0 Kyycym      (4.41) 
that is stabile if the its free response tends to be stable if: 

0lim 


lt
y ,     (4.42) 

and unstable if:     


lt
ylim      (4.43) 

The stability analysis is limited to investigating its trivial answer, also changing the complex 
Laplace variable s  with the value j , obtaining the characteristic equation : 

    01   jHjG ,     (4.44) 
where  jG  is the frequency response function and )( jH  is the dynamic stiffness matrix. 
 

4.3. Conclusions 
 

 The problem of chatter and stability are important problems in machining, in general, and in 
case of milling, in particular.  There are many causes of generating chatter that are described in 
literature and there are presented in the present chapter. The stability of the systems can be 
studied according with different criteria, all of them taking into consideration the transfer function 
concept. 
 
 
 
 

Chapter 5 – Milling dynamometer analysis and milling tests 
 
5.1. General considerations. Proposed dynamometer 
 

For tests made in the present thesis it was considered a dynamometer shown in Figure 5.1, 
with the mai geometrical data of the compoents presented Figure 5.2. 
 

 
(a) 

 
b) 

Figure 5.1 Dynamometer : (a) front view; (b) side view 
 

The novelty of the dynamometer used is that transducers are used to measure forces that 
indicate both the level of dynamic forces and the frequencies range in which these forces occur. 
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Another advantage of using force transducers, which measure in the dynamic range, is that they are 
easy to be replaced and they are calibrated by the manufacturing company.  

The basis of the dynamometer is the classic system with octagonal rings to which the force 
transducers are added (Figure 5.3). As force transducers there were used force transducers four force 
transducers Brüel & Kjær, type 8230-003, that were mounted on the rings (Figure 5.3,a).  

 

 
a) 

 
b) 

Figure 5.3. Force transducers mounting: a) in rings; b) detailed mounting 
 
5.2. Static analysis of the dynamometer 
 

An important step in dynamometer analysis is the static behaviour tests. Considering the real 
mounting of the dynamometer there were considered two static tests: 

a) Rings static tests; 
b) Dynamometer static tests. 

5.2.1. Analytic stiffness calculation of the ring 
 

The values of stiffness for octagonal rings can be calculated according with different relations 
presented in technical papers. Considering the thin ring theory, in case of a four-dimensional 
dynamometer for milling studies using four octagonal rings as measuring elements, in some papers  
[4], [87], [102], [130] there are presented the following relations for transversal and axial stiffness 
calculation: 

a) For axial direction:   r
Ebtkax 40

      (5.1) 

b) For transversal direction:  3

3

6.3 r
Ebtktr       (5.2) 

where E  is the Young’s modulus, in  2mmN , b  represents the width of the ring measured in 
 mm , r  is the radius expressed in  mm , and t  represents the thickness of the ring measured in 
 mm  (Figure 5.4). 
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Figure 5.4 Geometrical data of the octagonal rings  

Figure 5.5 The geometry of rings 

5.2.2. FEM stiffness calculation 
 
To find out the stiffness of rings due numerical calculation it was considered a Finite Element 

Model (FEM). The geometric 3D model of the octahedral rings was done in ANSYS Mechanical APDL, 
using the facilities offered by the module of modeling from the pre-processor step (Figure 5.6).       
The rings were meshed with a 3-D element defined as 8-Node Structural Solid element SOLID185 
(Figure 5.8).  

 
Figure 5.6 Ring geometry 

 
Figure 5.8 FE model of the ring 

 
5.2.2.1. Axial stiffness of the ring  
 

In case of ring axial direction there were done simulations for six values of loads (Table 5.2). 
The same values of load forces were used in experimental set-up. The deformations and stiffness 
values obtained by FEM, for each force, there are presented in Table 5.2.  
 
Table 5.2 Stiffness and displacement values obtained by FEM 
Force  N  98.1 196.2 293.32 390.44 487.56 585.66 

 mmaxFEM _  0.0033888 0.0067776 0.010133 0.013487 0.016842 0.020208 
 mNk axFEM _  610948.28   610948.28   61028.947   61028.949   61028.949   61028.981  
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Figure 5.9 Axial load 

 
Figure 5.10 Axial deformation 

 
5.2.2.2. Transversal stiffness of the ring 

 
In case of ring transversal direction there were done the same simulations as in case of axial 

stiffness. The obtained values of deformations are presented in Table 5.3. 
 
Table 5.3 Stiffness and displacement values obtained by FEM 
Force  N  98.1 196.2 293.32 390.44 487.56 585.66 

 mmtrFEM _  0.0033787 0.0067573 0.010102 0.013447 0.016792 0.020148 
 mNk trFEM _  610034.29   610035.29   610035.29   610035.29   610035.29   610068.29   
 
Based on data presented in Table 5.3 the average stiffness value is 

 mNk trFEM
6

_ 1029.040  .  In Figure 5.11 it is presented the case of load and boundary conditions 
considered and in Figure 5.12 there are presented the deformed and undeformed shapes for the 
maximum transversal load of 585.66 N. 

 
Figure 5.11 Transversal load 

 
Figure 5.12 Transversal deformation  

 
5.2.3. Ring static stiffness experimental determination 
 

For experimental stiffness determination there were considered the same two directions of 
loads as in case of FEM simulations (Figure 5.13): 
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a) 

 
b) 

a) the axial direction along axis Oz , normal 
to the hole surface; 

b) the transversal direction, along Ox  axis, 
perpendicular to the Oz , and normal to 
the hole. 
There were considered six cast iron plates 

with the mass of 10 kg (three of them) and 9.9 
kg (the other three).  

The tests were done using a simple set up 
consisting of a pan, a steel cable, and a pulley 
(Figure 5.13). The load was generated by 
adding different discs of known weight.  

Figure 5.13 Stiffness determination set-up: a) on 
axial direction of the ring; b) on transversal direction 

of the ring 
 
5.2.3.1 Axial stiffness measurement 
 

For axial stiffness experimental determination it was considered the load scheme from Figure 
5.13,a. The measured values are presented in Table 5.4, and the graphs Load vs. Force are presented 
in Figure 5.14. 
 

Table 5.4 Average stiffness and displacement values obtained by experiment – axial load direction  
Force  N  98.1 196.2 293.32 390.44 487.56 585.66 

 mmaxm _  0.0032 0.0065 0.0097 0.0128 0.0159 0.0194 
 mNk axm _  61030.656   61030.184   61030.239   61030.503   61030.664   61030.188   

 

 
Figure 5.14 Graphics of load tests – axial 

load of ring 

The average value of measured stiffness 
in axial direction, based on Table 5.5, is 

 mNk axm
6

_ 10405.30  . 
 

 
5.2.3.2. Transversal stiffness 

 
For transversal stiffness experimental determination it was considered the load scheme from          

Figure 5.13,b. The measured values are presented in Table 5.7 and Figure 5.15. 
 

Table 5.7 Average stiffness and displacement values obtained by experiment (transversal load) 
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Force  N  0 98.1 196.2 293.32 390.44 487.56 585.66 
 mmtrm _  0 0.0032 0.0066 0.0099 0.0134 0.0166 0.0199 
 mNk trm_  0 610656.30   610727.29   610628.29   610137.29   610371.29   610430.29   

 

 
Figure 5.15 Graphics of load tests – transversal 

load of ring 

In Table 5.8 there are presented the 
values obtained in all three methods: analytic 
relations (5.1) and (5.2), by Finite Element 
Method, and by measurements. The average 
value of measured stiffness in axial direction, 
based on Table 5.7, is  mNk trm

6
_ 10658.29  . 

 

 
Table 5.8 Synthesis of stiffness values 

Direction of stiffness Analytic  FEM Measured 
Axial  mN610227.28    (5.1)  mN610953.28    mN610405.30   
Transversal  mN610983.27    (5.2)  mN61029.040    mN610658.29   
 
5.3. Modal analysis of dynamometer 
 

5.3.1. Analitycal modal analysis 
 

The modal analysis provides information on the dynamic characteristics of structural 
elements at resonances, and thus aids in understanding of the detailed dynamic behaviour of these. 
The modal analysis is based on the linearity assumption of the mechanical systems and as a result 
the responses of the linear time-invariant dynamic systems can be expressed as linear combinations 
that include simple harmonic motions that are called natural modes of vibration. 
 

5.3.2. Experimental modal analysis 
 

Experimental modal analysis consists in excitation the structure with an input signal and 
measuring, in different point, the structure response. In such way one can obtain the experimental 
FRF. Practically there are two possibilities of structure excitation: impact hammer and shaker 
excitation. 
 

5.3.3 Ring modal analysis 
 

As in the case of static analysis there were considered both methods: numerical one, by using 
FEM and an experimental one, modal tests. 
 
5.3.3.1. FEM modal analysis 
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For FEM analysis of the modal behaviour it was considered the same geometrical model 
defined in case of static analysis. The values of ratio of effective mass to total mass for the case of 
free-free case are presented in Table 5.11. 

 

Table 5.11 Values of ratio of effective mass to total mass for the case of free-free case 
Mode 

number 
Freq. 
 Hzf  

Direction of vibration 
Ox [%] Oy [%] Oz [%] Rot. Ox [%] Rot. Oy [%] Rot. Oz [%] 

1 77.7958 0.0002 0.0163 87.4974 47.6671 65.5851 0.0082 
2 128.220 93.1194 0.0206 0.0000 0.0058 20.3265 28.3558 
3 184.474 0.0001 0.0556 0.0000 0.0149 0.0001 5.8937 
4 267.388 0.0153 90.7459 0.0025 38.1784 0.0003 53.7590 
5 281.245 0.0015 5.5431 0.0007 3.5396 0.0002 3.3335 
6 359.927 0.0000 0.0243 0.0005 0.0074 0.0006 3.2945 
7 390.077 0.0034 0.0053 0.0004 0.0023 0.0021 0.0027 
8 433.034 0.0000 0.0000 0.0047 0.0010 0.0037 0.0011 
9 539.081 0.0001 0.0157 7.9250 3.9820 5.9502 0.0087 

10 711.187 0.0034 3.2754 0.0026 1.0070 0.0051 2.0666 
11 760.033 2.5978 0.0073 0.0000 0.0069 0.5702 0.6602 
12 886.508 0.0002 0.0078 0.0061 2.4412 0.0062 0.0115 
13 989.019 0.0150 0.0000 0.0255 0.0013 0.0383 0.0272 
14 1037.05 0.0898 0.0044 3.0241 1.4767 2.7083 0.1849 
15 1067.16 1.1352 0.0057 0.2809 0.0901 0.0019 1.8259 
16 1089.76 2.0515 0.0000 0.0002 0.0007 0.4582 0.0047 

 

5.3.3.2. Experimental modal analysis of the ring 
 

For modal testing the ring was suspended with two elastic elements and there was used the 
method of roving impact hammer (Figure 5.20). There was used a simple setup with an 
accelerometer Brüel & Kjær type 4507 B and the impact hammer type 8206-003 with aluminium tip, 
produced by the same company (Figure 5.21). The FRF measurements were done using a specialised 
soft produced by the Brüel & Kjær company. There were done the following settings: maximum 
frequency measured – 3.200 Hz, number of lines – 800, the trigger time – 5 ms, to avoid the double 
strike, and exponential averaging. Total number of heats was 10 and and the double hit effect was 
chosen by very small value of the time selected by trigger. 
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Figure 5.20 Ring fastening system 

 
Figure 5.21 Set up for ring testing 
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Figure 5.24 FRF representation - accelerance 
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Figure 5.25 FRF representation - mobility 
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Figure 5.26 FRF representation  - receptance 

Considering the experimental obtained 
data, in MATLAB it was applied the fit curve 
procedure and it was obtained a function 
frequency vs. damping ratio (Figure 5.27). The 
shape of the obtained function is: 

 0.05969 -  130.4)(   -0.848ff  (5.20) 
with 9584.02 R . 

 

 
Figure 5.27 Damping ratio variations vs. frequency 
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5.3.4. Dynamometer assembly modal analysis 
 
5.3.4.1. FEM Modal analysis of the dynamometer 

 
The geometry of each component was done written text files with the main commands for 

geometry generation. The assembly was done combining all components due to the function VADD 
(Figure 5.29,a, b, and c). The used elements for the entire dynamometer was SOLID 187 and the 
model consists of 37,667 nodes and 21,767 elements (Figure 5.29,d).  
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.29 Dynamometer: a) isometric view; b) front view; c) side view; d) finite elements model 
 

As boundary conditions it was considered that the bottom plate is fixed on the milling 
machine and for all the nodes situated of the surface that is put on machine tool table the degrees of 
freedom were considered zero (displacements and rotations). There were considered the natural 
frequencies in the range 0 ÷ 1600 Hz and the results are presented in Table 5.13. As it can be seen 
the first 7 have a strong influence in modal behaviour of the dynamometer.  
 
Table 5.13 Natural frequencies of dynamometer 

Mode 
number 

Freq. 
 Hzf  

Direction of vibration 
Ox [%] Oy [%] Oz [%] Rot. Ox [%] Rot. Oy [%] Rot. Oz [%] 

1 425.80 0.0055 0.0000 47.3631 32.7691 28.1334 0.0033 
2 447.74 48.3014 0.0000 0.0047 0.0064 7.8637 13.4342 
3 465.14 0.0011 0.0192 0.0000 0.0103 12.4858 0.0096 
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4 856.96 0.0001 48.2354 0.0002 26.1388 0.0155 33.2313 
5 878.66 1.8608 0.0024 0.0007 0.0048 0.2870 7.1611 
6 935.27 0.0000 0.0035 2.8442 3.1382 1.6740 0.0353 
7 1018.49 0.0000 1.4733 0.0000 0.7805 0.0341 0.9896 
8 1240.17 0.0000 0.0597 0.0000 0.0314 0.0130 0.0435 

 
5.3.4.2. Experimental modal analysis of dynamometer using Impact hammer 

 
The excitation of the structure, in both cases, was made in the longitudinal direction of the 

dynamometer (Ox - axis) and in its transverse direction (Oy - axis) (Figure 5.31). The dynamometer 
was fixed on the machine-tool table and on all five considered directions there were mounted, a 
number of 5 accelerometers were mounted (Figure 5.31) in the two plane (positions 1, 2, 3, and 4 ) 
and vertical directions (position 5), type 4507 Bx (Brüel & Kjær).  
 

 
Figure 5.31 Installation of the four accelerometers 

 

a) Ox hit direction 
The measured FRFs are presented in Figure 5.32, and the recorded values are presented in 

Annex 1. There are presented the following quantities: 
 the values of natural frequencies found at the level of accelerometers 2 și 4; 
 the damping ratio  % ; 
 real and imaginary part of the frequency response function, given in units of receptance 

 Nm . 
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a) 

Frequency Response H1(NONE.1 scalar, NONE.1 scalar) (Magnitude)

0 200 400 600 800 1k 1.2k 1.4k 1.6k

-160

-140

-120

-100

-80

-60

-40

[Hz]

[dB/1.00 (m/s)/N]

OVERLOAD

Frequency Response H1(NONE.1 scalar, NONE.1 scalar) (Magnitude)

0 200 400 600 800 1k 1.2k 1.4k 1.6k

-160

-140

-120

-100

-80

-60

-40

[Hz]

[dB/1.00 (m/s)/N]

 
b) 
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c) 

Figure 5.32 FRFs for all points of measurement: a) accelerance; b) mobility; c) receptance 

x 

y 

O 
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Based on measured data presented there were found different functions for damping 

variation as function of frequency, using curve fitting command from MATLAB (Figures 5.33): 
 Power function of first degree: 9474.09.367)(  ff ,  9106.02 R ;  (5.21) 
 Power function of second degree: 1247.03.424)( 9883.0  ff , 0.91102 R ; (5.22) 
 Exponential of first order:  fef  009179.077.14)( , 0.81432 R ; (5.23) 
 Exponential of second order:  

ff eef   0030454.006501.0 297.587.83)( , 0.91812 R  (5.24) 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.33 Curve fitting: a) power function of first degree; b) power function of second degree; 
c) exponential of first order; d) exponential of second order (accelerometers  and ) 

 
The next analysis was done for the measured data in case of accelerometers  and , 

situated on Oy direction (Figure 5.34). The obtained functions are presented in Figures 5.34: 
 Power function of first degree: 7408.02.104)(  ff ,  0.91582 R ;  (5.25) 
 Power function of second degree: 3266.031.72)( 636..0  ff , 0.91282 R ; (5.26) 
 Exponential of first order:  fef  004778.0627.6)( , 0.84252 R ;  (5.27) 
 Exponential of second order:  

ff eef   0007568.001099..0 322.1681.7)( ,  0.93892 R  (5.28) 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.34 Curve fitting: a) power function of first degree; b) power function of second degree;  
c) exponential of first order; d) exponential of second order (accelerometers  and ) 

 
b) Oy hit direction 
 

The recorded signals are presented in the Figure 5.35 for all accelerometers and for all FRFs. 
The values of interest data are presented in the Annex 3 - values measured at the level of 



 

65 

accelerometers  and  (Figure 5.31), and Annex 4 - values measured at the level of accelerometers 
 and  (Figure 5.31).  
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c) 

Figure 5.35 FRFs for all points of measurements: a) accelerance; b) mobility; c) receptance 
 

It was considered the case of receptance FRF to extract the natural frequencies and damping 
ratio on both directions.  

Considering the data from Annex 3 there were considered, as in the previous case, four types 
of functions: power of first and second degree and exponential of first and second order (Figure 5.36): 

 Power function of first degree: 7599.09.136)(  ff ,  0.94252 R ;  (5.29) 
 Power function of second degree: 2229.08.180)( 8375.0  ff , 0.94372 R ; (5.30) 
 Exponential of first order:  fef  05234.0321.8)( , 0.82042 R ;  (5.31) 
 Exponential of second order:  

ff eef   001551.004732.0 339.332.41)( ,  0.94252 R   (5.32) 
 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.36 Curve fitting: a) power function of first degree; b) power function of second degree;  
c) exponential of first order; d) exponential of second order (accelerometers  and ) 

 
For the measurements in Oy direction there were obtained there were defined the following 

functions for damping ratio vs. frequency that are presented in Figures 5.37: 
 Power function of first degree: 5993.009.53)(  ff ,  0.93792 R ;  (5.33) 
 Power function of second degree: 6965.02.41)( 491.0  ff , 0.94512 R ; (5.34) 
 Exponential of first order:  fef  007727.0619.9)( , 0.82632 R ;  (5.35) 
 Exponential of second order:  

ff eef   001144.00187.0 318.204.10)( , 0.94422 R   (5.36) 
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a) 

 
b) 

 
c) 

 
d) 

Figure 5.37 Curve fitting: a) power function of first degree; b) power function of second degree; 
c) exponential of first order; d) exponential of second order (accelerometers  and ) 

 
5.3.4.3. Experimental modal analysis of dynamometer using shaker 
 

The input random signal was generate using the same shaker connected to a amplifier. The 
signal was introduced by an elastic rod. Between the rod and dynamometer it was mounted a force 
transducer type 8230-003, produced by Brüel & Kjaær company. The signal was generated using the 
facilities of the PULSE 12 platform and the adequate soft. For test it was used a random signal, in the 
band 0 ÷ 1600 Hz.. 

 

a) Random input signal in Ox direction 
 
The first test was done considering excitation on the X-direction (Figure 5.31). The setup is 

presented in Figure 5.38, and the obtained FRF’s are presented in Figure 5.39. It was considered the 
case of receptance FRF to extract the natural frequencies and damping ratio on both directions. 
 
 

 
Figure 5.38 Modal test of dynamometer using shaker input signal in longitudinal direction  

(Ox – direction) 
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c) 

Figure 5.39 FRFs for all points of measurements: a) accelerance; b) mobility; c) receptance 
 
Considering the measured data there were considered, as in the previous case, four types of 

functions: power of first and second degree and exponential of first and second order (Figure 5.40): 
 Power function of first degree: 082.19.452)(  ff ,  0.96122 R ;  (5.37) 
 Power function of second degree: 1194.02.693)( 19.1  ff , 0.96402 R ; (5.38) 
 Exponential of first order:  fef  008954.0152.9)( , 0.84962 R ;  (5.39) 
 Exponential of second order:  

ff eef   00144.002071.0 339.108.15)( ,  0.96992 R  (5.40) 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.40 Curve fitting: a) power function of first degree; b) power function of second degree;                
c) exponential of first order; d) exponential of second order (accelerometers  and ) 

 

Considering the measured data, four types of functions were defined: power of first and 
second degree and exponential of first and second order (Figure 5.41): 

 Power function of first degree: 8734.08.140)(  ff ,  0.93072 R ;  (5.41) 
 Power function of second degree: 08336.03.115)( 8198.0  ff , 0.93172 R ;(5.42) 
 Exponential of first order:  fef  005558.031.5)( , 0.82892 R ;  (5.43) 
 Exponential of second order:  

ff eef   009029.001177.0 8584.0763.6)( , 0.95122 R  (5.44) 
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a) b) c) d) 
Figure 5.41 Curve fitting: a) power function of first degree; b) power function of second degree;  

c) exponential of first order; d) exponential of second order (accelerometers  and ) 
 
b) Random input signal in Oy direction 
 

First test was done considering excitation on the Oy -direction (Figure 5.42), and the obtained 
FRF’s are presented in Figure 5.43.  
 

 
Figure 5.42 Modal test of dynamometer using shaker input signal in transversal direction (Oy – 

direction) 
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c) 

Figure 5.43 FRF’s for all points of measurements: a) accelerance; b) mobility; c) receptance 
 
Considering the measured data, four types of functions were defined: power of first and 

second degree and exponential of first and second order (Figure 5.44): 
 Power function of first degree: 8319.01.114)(  ff ,  0.91012 R ;  (5.46) 
 Power function of second degree: 4615.003.52)( 6132.0  ff , 0.92762 R ; (5.47) 
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 Exponential of first order:  fef  004071.040.4)( , 0.86942 R ;  (5.48) 
 Exponential of second order:  

ff eef   001245.0009699.0 051.1175.5)( , 0.93542 R   (5.49) 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.44 Curve fitting: a) power function of first degree; b) power function of second degree;  
c) exponential of first order; d) exponential of second order (accelerometers  and ) 
 
 Considering the measured data, there were defined four types of functions: power of first 

and second degree and exponential of first and second order (Figure 5.45): 
 Power function of first degree: 9818.04.287)(  ff ,  0.91012 R ;  (5.50) 
 Power function of second degree: 1127.03.389)( 061.1  ff , 0.94372 R ; (5.51) 
 Exponential of first order:  fef  00701.0427.7)( , 0.78542 R ;  (5.52) 
 Exponential of second order:  

ff eef   002214.003717.0 527.218.26)( , 0.94142 R   (5.53) 
 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.45 Curve fitting: a) power function of first degree; b) power function of second degree;   
c) exponential of first order; d) exponential of second order (accelerometers  and ) 

 
5.4. Dynamometer transmissibility 
 
 The next step in dynamometer analysis was to find out the transmissibility coefficient on 
both directions: longitudinal and transversal. To find out the coefficient there were mounted four 
force transducers type 8230-003, connected with the octagonal-rings, as is presented in Figure 5.3, 
and and the fifth one on the string connected between shaker and dynamometer (Figure 5.38 and 
Figure 5.42). 
 There were done tests in both directions: longitudinal and transversal, and was used a 
random excitation signal. The recorded response was done in a frequency range of 0 ÷ 1600 Hz. The 
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transmissmisibility coefficient DT  it was defined considering as input force that generated by 
dynamometer, in frequency domain ( )(_ indF ), and as response force (output force) the measured 
force by transducers, in frequency domain ( )(_ outdF ): 

)(_

_

ind

outd
D F

FT  .     (5.54) 

 Based on this relation the cutting force, considered as input force, is: 

D

outd
ind T

FF _
_ )(      (5.55) 

 
5.4.1. Longitudinal input random signal 
 

First test was done introducing a random signal in longitudinal direction (Figure 5.38). 
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Figure 5.47 FRFs of transmissibility coefficient for 

all four force transducers 

The transmissibility coefficient was 
obtained considering the FRF given by the ratio 
of transducer force measured in frequency 
domain and input force measured in frequency 
domain (Figure 5.47). 

Based on MATLAB soft it was done a 
script to highlight the values of transmissibility 
and the evalution according with the frequency 
(Figure 5.48).  

 

There were used the average values for frequency and transmissibility coefficient DT       
(Figure 5.48). 

 
a) 

 
b) 

Figure 5.48 Transmisibility representation in case of axial shaker input random signal: a) average value 
for transducers 1 and 3; b) average value for transducers 2 and 4; 

 
5.4.2. Transversal input random signal 
 

 The next test was done to obtain the transmissibility in transversal direction. It was 
introduced a random signal in transversal direction (Figure 5.31-Oy direction).  
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Figure 5.49  FRFs of transmissibility coefficient 

for all four force transducers 

The transmissibility coefficient was 
obtained considering the FRF given by the ratio 
of transducer force measured in frequency 
domain and input force measured in frequency 
domain (Figure 5.49).  

. Based on MATLAB soft it was done a 
script to highlight the values of transmissibility 
and the evaluation according with the frequency 
(Figure 5.49). There were used the average 
values for frequency and transmissibility 
coefficient  DT . 

 

 
a) 

 
b) 

Figure 5.50 Transmisibility representation in case of transversal shaker input random signal: a) 
average value for transducers 1 and 3; b) average value for transducers 2 and 4 

 
5.5. Experimental modal analysis of the cutting tool using impact hammer 
 
5.5.1. Set-up description 
 
 For the modal analysis of the tool it was used a miniature triaxial DeltaTron accelerometer 
Type 4504A produced by Brüel & Kjær. The accelerometer was mounted on the plate surface of the 
tool (Figure 5.53). There were done two different tests using a hammer type 8206 with aluminium 
tip:   

 one hit in Ox direction and were measured the mobility FRFs in both directions Ox and Oy; 
 one hit in Oy direction and were measured the mobility FRFs in both directions Ox and Oy. 
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a) 

 
b) 

Figure 5.53 Modal test of the milling tool: a) the accelerometer mounted on the milling tool; b) 
hammer modal test 

 
The main objectives of this tests was to obtain the values of modal stiffness, modal damping 

and the modal mass needed to simulate the modal behaviour of the milling process considering the 
spindle spee of the machine tool used. 
 
5.5.2. Tests on feed direction (Ox direction) 
 
 For the beginning there were applyd hits in the longitudinal direction of the milling tool. In          
Figure 5.54 there are presented the overlapped mobility FRFs obtained using the hammer method.  
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Figure 5.54 FRFs measured duing a hit in Ox direction  

 
 There were defined four functions damping ratio vs. frequency, and the best approximation 
for direction Ox as hit in the same direction was given by: 

ff
xx eef 002501.005351.0 457.191.20)(     (5.57) 

 There were found the values of damping ration on Oy direction as hit in Ox direction and the 
best approximation was given by the function: 

ff
yx eef 01106.007848.0 065.532.17)(     (5.60) 
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5.5.3. Tests on perpendicular direction on feed (Oy direction) 
 
 The next tests refer to hit in Oy direction and measurement the FRFs in directions Ox and Oy. 
The obtained FRFs are presented in Figure 5.59.  
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Figure 5.59 FRFs measured duing a hit in Oy direction 

  
There found similar function for variation of damping ratio vs. frequency as a result of hit in 

Ox direction: 
 for Ox direction: ff

xy eef 008556.009025.0 202.448.18)(   ;   (5.63) 
 for Oy direction: ff

yy eef 001036.003806.0 9074.048.19)(   .   (5.66) 
 
 

5.6. Modal analysis of the the milling drill by FEM 
 
5.6.1. FE model 

 
The FEM discretization (mesh) was done using HyperMesh. For this discretization it was used 

Hexahedron elements formulation due to there stability in stress/strain calculation and also due to 
fast solution output. The mesh type and mesh criterion it is presented in Figure 5.65 and were done a 
number of 66,338 elements and 263,284 nodes. 
 

 
Figure 5.65 Mesh type and mesh criterion 
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 The next step in order to replicate better real-life testing conditions it was selected/defined 
the regions of impact hammer strike and the region where the triaxial accelerometer was mounted. 
The region of the impact hammer strike can be observed in Figure 5.67 colored in blue and the 
location for the triaxial accelerometer mounting has been selected/highlighted in green. 
 

 
Figure 5.67. Location for impact hammer strike and accelerometer mounting 

 
In Table 5.17 there are presented an overall view of the first 10 eigenfrequency of the milling 

drill. 
 

 
Figure 5.68  The first 6 eigenfrequencies and eigenmodes of the milling drill 

 
Table 5.17 The first 6 natural frequency calculeted with FEM for milling drill 

Mode 1 2 3 4 5 6 
Frequency [Hz] 1036 1045 5159.6 5193.9 5469.8 9988.3 

 
5.6.2. FRF analysis of the milling drill 
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In order to extract the relevant eigenfrequencies the have furthermore deployed and FRF 
analysis to show the amount acceleration of each eigenfrequency in this way one can judge the 
relevance of each eigenfrequency of the studied system. 

In Figures 5.69, 5.70 and 5.71 there 
are presented the acceleration corresponding 
to each axis response given by the milling drill 
after excitation with one unit on each axis X, Y 
and Z. 

 
Figure 5.69 FRF caused by 1 unit excitation on X axis 

 

 
Figure 5.70 FRF caused by 1 unit excitation on Y 

axis 

 
Figure 5.71 FRF caused by 1 unit excitation on Z 

axis 
 
5.7. Cutting forces measurements 
 

The dynamometer was mounted on the mass of the milling machine tool having attached all 
five force transducers (Figure 5.64). 

 
Figure 5.72 The dynamometer mounted 
on the table of milling machine-tool type 

PROMA FHV-50PD/2 

There were done measurements for the 
following regimes: 
Test 1 – Cutting in feed direction 
Material: Aluminium 
Spindel speed: min360 rotn   
Feed min24 mmap   
Depth: mmt 2  
Based on transmissibility coefficient found the values of 
the cutting forces are: 
Transducer 1 – longitudinal direction  NF x 52.1391  ; 
Transducer 2 – transversal direction  NF y 73.6402  ; 
Transducer 3 – longitudinal direction  NF x 18.5113  ; 
Transducer 4 – transversal direction  NF y 55.2734  ; 
Transducer 5 – vertical direction  NF z 13.1825  ; 
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Test 2 – Cutting against feed direction 
Material: Aluminium 
Spindel speed: min360 rotn  ; Feed min24 mmap  ; Depth: mmt 2  
Considering the transmissibility coefficient, there are obtained the following values of cutting forces: 
Transducer 1 – longitudinal direction  NF x 09.381  ; 
Transducer 2 – transversal direction  NF y 93.762  ; 
Transducer 3 – longitudinal direction  NF x 65.1693  ; 
Transducer 4 – transversal direction  NF y 27.1274  ; 
Transducer 5 – vertical direction  NF z 16.1045  ; 
Test 3 – Cutting in feed direction 
Material: Aluminium 
Spindel speed: min580 rotn  ; Feed min24 mmap  ; Depth: mmt 2  
Considering the transmissibility coefficient there are obtained the following values of cutting forces: 
Transducer 1 – longitudinal direction  NF x 79.501  ; 
Transducer 2 – transversal direction  NF y 95.972  ; 
Transducer 3 – longitudinal direction  NF x 55.1693  ; 
Transducer 4 – transversal direction  NF y 75.814  ; 
Transducer 5 – vertical direction  NF z 07.545  ; 
 
Test 4 – Cutting against feed direction 
Material: Aluminium 
Spindel speed: min580 rotn  ; Feed min24 mmap  ; Depth: mmt 2  
Considering the transmissibility coefficient there are obtained the following values of cutting forces: 
Transducer 1 – longitudinal direction  NF x 95.441  ; 
Transducer 2 – transversal direction  NF y 71.1282  ; 
Transducer 3 – longitudinal direction  NF x 61.1383  ; 
Transducer 4 – transversal direction  NF y 50.684  ; 
Transducer 5 – vertical direction  NF z 92.655  ; 
Test 5 – Cutting in feed direction 
Material: Alloy steel 
Spindel speed: min360 rotn  ; Feed min24 mmap  ; Depth: mmt 1  
Considering the transmissibility coefficient there are obtained the following values of cutting forces: 
Transducer 1 – longitudinal direction  NF x 48.361  ; 
Transducer 2 – transversal direction  NF y 75.912  ; 
Transducer 3 – longitudinal direction  NF x 12.1333  ; 
Transducer 4 – transversal direction  NF y 67.994  ; 
Transducer 5 – vertical direction  NF z 62.545  ; 
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Test 6 – Cutting against feed direction 
Material: Alloy steel 
Spindel speed: min360 rotn  ; Feed min24 mmap  ; Depth: mmt 1  
Considering the transmissibility coefficient there are obtained the following values of cutting forces: 
Transducer 1 – longitudinal direction  NF x 48.361  ; 
Transducer 2 – transversal direction  NF y 06.362  ; 
Transducer 3 – longitudinal direction  NF x 96.1293  ; 
Transducer 4 – transversal direction  NF y 21.744  ; 
Transducer 5 – vertical direction  NF z 97.645  ; 
Test 7 – Cutting in feed direction 
Material:Alloy steel 
Spindel speed: min580 rotn  ; Feed ; min24 mmap  ;Depth: mmt 1  
Considering the transmissibility coefficient there are obtained the following values of cutting forces: 
Transducer 1 – longitudinal direction  NF x 98.341  ; 
Transducer 2 – transversal direction  NF y 83.1392  ; 
Transducer 3 – longitudinal direction  NF x 03.2473  ; 
Transducer 4 – transversal direction  NF y 80.814  ; 
Transducer 5 – vertical direction  NF z 93.1615  ; 
 
Test 8 – Cutting against feed direction 
Material: Alloy steel 
Spindel speed: min580 rotn  ; Feed min24 mmap  ; Depth: mmt 1  
Considering the transmissibility coefficient there are obtained the following values of cutting forces: 
Transducer 1 – longitudinal direction  NF x 52.471  ; 
Transducer 2 – transversal direction  NF y 12.1482  ; 
Transducer 3 – longitudinal direction  NF x 33.3333  ; 
Transducer 4 – transversal direction  NF y 64.994  ; 
Transducer 5 – vertical direction  NF z 79.1275  ; 
 
5.8. Conclusions 
 

For the dynamic analysis of the milling technology process, it is necessary to determine the 
cutting forces. In order to determine them, a laboratory dynamometer was designed that has 
dynamic force transducers as measuring elements. These were mounted on the four elastic elements 
of the dynamometer. Octohedral rings were used as elastic elements. 

The main difference between classic and used laboratory dynamometers is that foreign 
gauges have been replaced by dynamic force transducers. They determine the level of forces and the 
corresponding frequency spectrum. For a correct analysis of the dynamics of the milling process, 
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taking into account the models presented in Chapter 3, it is necessary to perform a modal analysis of 
the dynamometer and the cutting tool. 

Modal analysis was performed by both numerical (FEM) and experimental methods. From an 
experimental point of view, both known methods were used for the dynamometer: the impact 
hammer method or the structure with the help of a shaker. 

The Frequency Response Functions of mobility (FRFs) were obtained, for both methods the 
variation functions of the damping factor as a function of frequency were determined. Modal analysis 
was also applied to the tool using only the impact hammer method. The same FRF has been 
determined for the tool, the values to be used for the milling patterns described in Chapter 3. 

After calibrating the dynamometer, the transmissibility coefficients were determined on the 
two axes, introducing random signals in the frequency range 0 - 1600 Hz. The transmissibility 
coefficients were determined for a correct calculation of the cutting forces based on the values 
determinate at the level of the dynamic force transducers. 

Finally, the forces for three cutting regimes and two materials were determined by 
experiment, milling in the feed direction against feed milling direction. 
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Chapter 6 – Simulation of dynamometer behaviour 
 
6.1. Introduction 
 
 In the previous chapters there were presented some aspects about the main problems that 
have to be developed in milling process. There were detailed some models about the milling process 
considering the modal analysis of machining considered as 1 DOF and/or 2 DOF.  
 In the present chapter there are presented two different approaches about the milling 
process: 

a) The modal analysis of the dynamometer as system with three degrees of freedom, topic 
presented in paper [113]; 

b) The milling process as dynamic analysis considering FEM.  
The results presented in present chapter come to complete the reeds presented in the 

previous chapters. 
 
6.2. Analysis of dynamometer as lumped model with 3 DOF [113] 
 
6.2.1. The lumped masses model 
 

As is shown in Figure 5.1 the dynamometer consists of two plates and four orthogonal rings 
as elastic elements. Considering the real conditions of work, in the analyse the buttom plate of the 
dynamometer was considered to be fixed on the machine table (Figure 6.1,a). As a result the elastic 
rings were represented by springs connected with the plate in the symmetrically four points      
(Figure 6.1,b). 
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b) 

Figure 6.1 Model of upper plate: a) the connection points and dimensions; b) the mass-spring model 
of the upper plate and the rings 

For the description of the dynamic behavior of the dynamometer it was needed to be written 
the motion equations. For this there were considered four points with the following positions 
according with the orthogonal system xOy, with the origin O in the mass center (Figure 6.1,b): 

 Point : ),(),( 1111 baPyxP  ;   
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 Point : ),(),( 2222 baPyxP  ;  
 Point : ),(),( 3333 baPyxP  ; 
 Point : ),(),( 4444 baPyxP  . 
According with the coordinates of the points and taking into consideration the motion of 

dynamometer there were written the motion equation. 
 
6.2.2. The analysis of the upper plate motion 

 
Considering the milling process dynamics it was considered a combined motion of the upper 

plate in both directions, longitudinal and transversal, denoted with ” x ” and ”y ” with a rotation with 
a small angle ” 6.2). The motion equations were wrote considering the small deformation 
hypothesis. 

 
Figure 6.2 Scheme of plate motion: in longitudinal direction ”Ox”, in transversal direction ”Oy” 

 

Considering the points positions before and after deformation Figure 6.2, one can write the 
following new coordinates of the four points, in the new orthogonal reference system 000 yOx : 
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(6.1) 

Based on the hypothesis of small deformations, there can be done the apăproximations 
0sin   and 1cos  sand the equations (6.1) become: 
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    (6.2) 

Considering the coordinates of points one can write the new coordinates: 
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Taking into consideration the initial position and the relations from (6.3), the displacements of 
each point becomes: 
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  (6.4) 

The relations (6.4) will be used in defining the motion equations, presented in the next 
subchapter. 
 
6.2.3. Motion equations 
 

Since forces and moments can be clearly emphasized, for writing motion equations it was 
used the principle of d’Alembert. The motions were considered done in the positive directions of the 
axes ”Ox ” and ”Oy ”, and rotation is considered to be counter clockwise (Figure 6.3). As a result of 
these considerations of movements there were developed elastic and damping forces (Figure 6.2). 
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Figure 6.3 Force diagram lumped mass dynamometer (upper plate) 

 

 Considering the force diagram from Figure 6.3, using the d’Alembert principle there are 
obtained the following motion equations: 
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 Equations (6.8) can be rewritten in a matrix form, as: 


































































































































0
0
0

))((00
00
00

))((00
00
00

00
00
00

22
21

21

21

22
21

21

21

C

C

C

C

C

C

C

C

C

p

p

p

y
x

bakk
kk

kk

y
x

bacc
cc

cc
y
x

J
m

m



 











 (6.9) 



 

82 

where were done the following notations: pm is the upper plate mass [kg], pJ  is the inertia moment 
of the plate measured in [kg.m2], )4,1( ic i  are the damping constants, and )4,1( ik i  are the 
stiffness constants. 
 Equation (6.10) can be expressed in the classic form: 

0KCM     .   (6.10) 
 

6.2.4. Modal analysis of the dynamometer as lumped masses model 
 

For calculating the natural frequencies of the considered model, in MATLAB® soft it was wrote 
a script where were defined the five matrixes from A  and were found the eiganvalues of the matrix.  

For the matrixes there were considered data: 
 the total mass (upper plate + rings + workpiece) ][12 kgmp  ; 
 the stiffness 1k  is considered to be the longitudinal stiffness of ring plus the stiffness 

of the transducer,      mNmNmNk /10029195.2/102/10195.29 996
1   

 the stiffness 2k  is considered to be the transversal stiffness of ring plus the stiffness 
of the transducer,      mNmNmNk /10028894.2/102/10 28.894 996

2  ; 
 damping coefficients were considered that obtained in [112] [Ns/m] 2546.491c , and 

[Ns/m] 1469.132 c ; 
 geometrical dimensions [m] 0.087 = a , and [m] 0.042= b ; 
 the mechanical moment of inertia [kg.m2] 0.0636 = J . 

Based on the script written in MATLAB® there were obtained the following values of 
rotational frequencies: [rad/s]101.8521 4

21  nn  and [rad/s]102.4581 4
3 n .  

Corresponding to these circular frequencies there are the following natural frequencies: 
[Hz]7.947221  nn ff  and [Hz]2.91233 nf . 

 

6.2.5. Frequency response function of the system 
 

Frequency response functions (denoted as FRF) define the structural response to different 
applied forces as a function of frequency. FFRs can be expressed in terms of main quantities that 
describe vibrations: displacement, velocity, or acceleration, and are defined as ratio of these 
quantities over input signal (force/moment) for different frequencies. Generally, the FRF describes 
the motion of ta considered point due applying exciting force using an impact hammer or a shaker 
[104], [148], [150], [171]. 

As is known, the modal decoupling enables the transformation of a system with ”q-th” 
degrees of freedom, coupled by motion equations equations, in ”q-th” decoupled single-degree-of-
freedom (SDOF) equations. Each equation define a vibration mode, and practically the system is 
decomposed in ”q-th” SDOF, each DOF being defined by a motion equation of the form: 

  )()(2 22  FXjm qqqq     (6.19) 
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where the index ”q-th” refers to the ”q-th” mode of vibration, and , q , and q , are the the modal 
mass, the circular frequency, and the damping ratio, respectively of the ”q-th” mode, and j  is the 
complex number: 1j . 

From equation (6.19) it is obtained the Frequency Response Function: 

)(
)()(




 F

XH       (6.20) 

where are the following quatities: )(X  Fourier transforms of the response and )(F  Fourier 
transforms of the excitation. 

Combining the relations (6.19) and (6.20), the relation (6.20) becomes: 
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As is known, the FRF given by relation (6.21) be written as a combination of real and 
imaginary components: 

)Im()Re()(  jH 
    (6.22) 

with )Re(  as real component and )Im(  as imaginary component. 
 The real and imaginary components have the well known expresions [Rosca]: 
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    (6.23) 

Considering the data of the dynamic model of dynamometer (mass, damping and stiffness) 
and considering superposition principle, it was plotted the FRF for the considered dynamometer 
(Figure 6.4).  

 
Figure 6.4 The FRF representation 
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Chapter 7 Conclusions 
 
7.1. General conclusions 
 

Based on the literature, it can be said that the analysis of the technological process of milling 
has known multiple approaches over the years since the beginning of the twentieth century. From 
the very beginning of the development of technological machining processes, the appearance of 
unwanted vibrations developed between the tool and the workpieces has been observed. 

These vibrations have been found to be, in fact, self-excitations, which lead to the 
development of the chatter phenomenon with consequences on the quality of the processed 
surfaces (corrugated surfaces appear), on tool wear, machine tool failure, etc. In the case of any 
machining process, the determination of the cutting forces is of particular importance. 

The determination of cutting forces provides the possibility to calculate the required cutting 
power, production costs, workpiece design, level of tool stresses (satic and dynamic), stability of the 
cutting process, sequence of technological operations, etc. As a result, the dynamic modeling of shear 
forces, through measurements and/or through the development of analytical relationships, is of 
particular importance. 

 
7.2. Personal contributions 

 
Through its theme, the thesis aimed to model the milling process from the point of view of 

modal analysis and in the frequency domain and the design and calibration of an original 
dynamometer that uses dynamic force transducers. The thesis contains theoretical and/or analytical, 
numerical and experimental calculation elements that converge towards achieving the main 
objective: analysing of the milling process from a spectral/modal point of view, considering all 
elements that contribute to the machining process: machining mechanism, tool, measurement 
devices and milling process 

Taking into account what is presented in the chapters of the paper, the proposed objectives 
were approached and presented as follows: 

 it was done an analyse of the milling technological process and of its main parameters in 
the frame of Chapter 2; 

 an analysis of the theory of mechanical vibrations and their analysis was carried out using 
the approach of the phenomenon in the space of states. There was presented the issue of 
1 DOF and 2 DOF – Chapter 3; 

 models with 1 DOF and 2 DOF of the modal milling process with coupled and decoupled 
equations of state space were presented – Chapter 3; 

 the issue of the chatter phenomenon and the stability of the milling process was 
addressed – Chapter 4; 

 It was designed a dynamometer that use as measurement element dynamic force 
transducers instead of strain gauges – Chapter 5; 
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 It was done a static calibration of the dynamometer being calculated the following 
(Chapter 5 -  § 5.2 ): 

o The stiffness of the octagonal rings by three methods: analytically - § 5.2.1, by 
FEM -      § 5.2.2, and experimental - § 5.2.3, on both directions longitudinal and 
transversal; 

 It was done a dynamic calibration using modal analysis of the dynamometer - (Chapter 5 
- § 5.3) being done the followings: 

o Ring modal analysis - § 5.3.3 and it was calculated a function for damping ratio 
variation vs. frequency (5.20); 

o FEM Modal analysis of the dynamometer - § 5.3.4.1; 
o Experimental modal analysis of dynamometer using Impact hammer - § 5.3.4.2, 

with hits on both directions: longitudinal and transversal; 
o Experimental modal analysis of dynamometer using shaker - § 5.3.3.3, with 

randon signal on both directions: longitudinal and transversal; 
 the force transmissibility coefficient at the five dynamic force transducers was 

determined using random signal in both directions: longitudinal and transversal - § 5.4; 
 it was done an experimental modal analysis of the cutting tool using impact hammer - § 

5.5; 
 there were measured cutting forces using the developed dynamometer - § 5.6. 
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