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1 Introduction
1.1 Thesis field

The original results which are part of this thesis are concerned with research in the math-
ematical domain approximation theory. This field is a topic of interest in mathematical
research since a lot of domains from mathematics are related to it. For example, in real
and complex analysis, the general theory of sequences and series, asymptotic expansion,
moduli of smoothness, K-functionals and convexity are fundamental in the study of ap-
proximation process, also in approximation theory some aspects from functional analysis
and operator theory are present (we mention the abstract theory of positive linear opera-
tors together with Korovkin’s theorem, C0-semigroups of operators, etc.). Approximation
theory is related with the theory of probabilities through Feller’s general theory and with
the theory of differential equations through special properties of some classes of opera-
tors. Apart from this, approximation theory deals with the possibility of reducing general
mathematical objects (such as functions) to simpler classes of objects (such as polyno-
mials). Throughout research in mathematics this approach is fundamental thus making
approximation theory a subject of interest with great applicability.

A significant moment in the development of approximation theory as a distinguished
research field in the framework of mathematical analysis has its beginning with the famous
theorems of Chebyshev’s best approximation and of K. Weierstrass who, in nineteenth
century proved the approximation of continuous functions on a compact set by polyno-
mials. The theorem proposed by Weierstrass was also proved by S. N. Bernstein who
introduced the famous operators which carry his name (these operators were later mod-
ified by L. V. Kantorovich and J. L. Durrmeyer to approximate integrable functions as
well). Later the basis of approximation theory as a research topic in mathematics was
further consolidated by results due to Popoviciu, Bohman and Korovkin through which
continuous functions on compact sets can be approximated by positive and linear opera-
tors, namely, they found that any positive linear operator which satisfies some conditions
can be used instead of Bernstein’s operator.

Nowadays, approximation theory is concerned with methods through which positive
linear operators are obtained, for which Korovkin’s theorem can be used to check whether
they approximate functions, estimations of the degree of approximation by the said op-
erators which can be obtained in the form of quantitative estimates (namely, results in
terms of moduli of smoothness whose purpose is to measure the smoothness of functions)
and Voronovskaya theorem (which will be later disscused). The fundamental results in
this directions are due to G. G. Lorenz, R. DeVore, F. Altomare, Z. Ditzian, V. Totik,
H. Gonska, P. L. Butzer, U. Abel and many others. For a comprehensive presentation of
these results the books of Lorentz and DeVore ([37]), DeVore ([36]), Altomare ([15]) and
Ditzian and Totik ([39]) can be consulted.
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1.2 Motivations for the choice of the theme

As we have mentioned before approximation theory is concerned with the approximation
of difficult processes by much simpler ones which can be easily studied where their prop-
erties are similar to the properties of the processes considered. Such a situation can be
seen in practice for example in computer science where a calculator has available only
the operations of addition and multiplication, therefore, estimations of irrational num-
bers can be obtained by the calculator only if it uses approximations which imply these
two operations, i. e. the calculator can do this by using approximations by polynomi-
als (e.g. Taylor’s polynomial, however here difficulties arise since not all functions are
smooth, many being continuous, but here positive and linear operators such as Bernstein
operators and others which will be studied further in the thesis can be used).

Other than this, approximation theory can be useful in the theory of differential
equation as one can determine the solutions of a Cauchy problem if one has theorems
which give conditions under which the C0-semigroup associated with the Cauchy problem
can be generated. However, here a drawback exists since these theorems do not give
an explicit form of the C0-semigroup. Approximation theory solves this problem by
providing theorems which generate the C0-semigroup and also give an approximation of
it by iterates of positive linear operators who generate the semigroup, hence allowing the
properties of the C0-semigroup to be studied by analyzing the properties of the operator
which approximates it.

Other motivations for choosing this field of research are represented by the connection
between approximation theory and functional analysis (in the sense that many concepts
from functional analysis can be used in approximation theory such as: Banach spaces,
uniform boundedness principle, etc.) and more recently there is a connection between the
development of Artificial Intelligence and approximation theory as neural networks can
be seen as approximation operators.

1.3 Structure of the thesis

This thesis is divided in seven chapters. In the second chapter, with the title Preliminaries,
we present the notations used throughout the thesis and results from literature, obtained
by other researchers in this field, which were the most relevant to developing the original
results contained in this thesis, such as operators used in approximation theory and the-
orems regarding them, moduli of smoothness, Voronovskaya theorems, C0-smemigroups
and a short summary of the results on geometric series of positive and linear operators.
These preliminary results are all part of the References and they are cited whenever they
are mentioned throughout the thesis.

The third chapter, Generalized Voronovskaya theorem and the convergence of power
series of positive linear operators, is dedicated to obtaining new approximation operators
which are constructed as more general power series of positive linear operators (so it
comes as a generalization of the existing results regarding geometric series of positive
linear operators from [1, 4, 80] and others mentioned throughout the thesis). Also here
we obtained a generalization of Voronvsakya theorem by giving an explicit form of the
limit used in such theorems. This results are part of the original article Generalized
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Voronovskaya theorem and the convergence of power series of positive linear operators, J.
Math. Anal. Appl., 531 (2024), Issue 2, Part 2.

In the fourth chapter, The representation of the limit of power series of positive linear
operators by using operators semigroup generated by their iterates, we obtained a charac-
terization of a general power series of positive linear operators by using the C0-semigroup
generated by the iterates of positive linear operators belonging to a certain class. This
result can be found in the original article: The representation of the limit of power series
of positive linear operators by using the semigroup of operators generated by their iterates,
Dolomites Research Notes on Approximation (2023), 16(3), 39-47.

In the fifth chapter, A Voronovskaya type theorem associated to geometric series of
Bernstein - Durrmeyer operators, we obtained a Voronovskaya theorem for the opera-
tors obtained by U. Abel in [1] which are the geometric series associated to Bernstein-
Durrmeyer operator. Here the main difficulties arose from the space of functions on which
this operator was studied which is unusual in approximation thoery. These results are
part of the original article: A Voronovskaya type theorem associated to geometric series
of Bernstein-Durrmeyer operators, Carpathian Journal of Mathematics(2025), 41(2).

In the sixth and seventh chapter we obtained exponential variants of Kantorovich
Stancu operators and of Bernstein-Durrmeyer operators following the construction given
in [18]. Regarding these operators we obtained approximation results via Korovkin the-
orems and by studying the norm on a weighted version of Lp spaces of these operators,
then classical asymptotic results and quantitative estimations are obtained. Also quan-
titative results using the relation between K-functionals and the moduli of smoothness
(given in [62]) are obtained. These chapters are part of the original articles: Exponential
Bernstein-Durrmeyer operators, General Mathematics(2024), Volume 32, no. 2, 84-97
and Exponential Kantorovich-Stancu operators, Bull. Univ. Transilvania Brasov, Ser. 3,
Math. Comput. Sci., 5(67), 2025, no. 2, 127-144.

1.4 Originals results contained in the thesis

During my doctoral studies the research I did is comprised in the following original articles:

1. Generalized Voronovskaya theorem and the convergence of power series of positive
linear operators

Here our aim was first to obtain a generalized version of Voronovskaya’s theorem
in the form of the limit of ns(Ln − I)sf , s ∈ N, when Ln are certain positive
linear operators. Equivalently, this is an explicit form of Voronovskaya theorem for
Micchelli combinations of operators. Then, we apply this result in order to obtain
the limit of certain power series of positive linear operators.

2. The representation of the limit of power series of positive linear operators by using
the semigroup of operators generated by their iterates

In this paper our aim was to give a characterization of the limit of power series of
the from βn

∑∞
k=0(Ln)

k, n ∈ N, where βn ∈ R by using the C0-semigroup generated
by the iterates of the positive and linear operators (Ln)n, n ∈ N which belong to
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a certain class. This result was obtained by using the eigenstructure of both the
operators and the C0-semigroup.

3. A Voronovskaya type theorem associated to geometric series of Bernstein - Dur-
rmeyer operators

In this article we obtained an asymptotic result regarding the convergence of oper-
ators Pn = 1

n

∑∞
n=0Mn, n ∈ N, where Mn are the well known Bernstein-Durrmeyer

operators and Pn are the geometric series associated to this operators. This result
was rather difficult to obtain since the space we worked, a subspace of L∞, gener-
ated a lot of existence conditions with a lot of computations. We mention that this
space is rarely encountered in approximation theory.

4. Exponential Kantorovich-Stancu operators

Here we introduced an exponential variant of Bernstein-Kantorovich operators mod-
ified in Stancu sense. Concerning these operators we prove they verify Korovkin’s
theorem conditions and also that they approximate functions from a weighted Lp

space. Moreover, we will obtain a Voronovskaya type theorem and some quanti-
tative estimates of the approximation using the first order modulus of continuity.
Also, we will prove some estimates concerning the approximation of functions from
a weighted Lp space using Peetre’s K-functional. Finally, we will obtain an estimate
which involves the first order modulus of continuity and the second order modu-
lus of smoothness by using the equivalence relation between these moduli and the
corresponding K-functionals.

5. Exponential Bernstein-Durrmeyer operators

In this article we introduced an exponential variant of Bernstein-Durrmeyer op-
erators. Regarding these new operators we obtain some convergence results, a
Voronovskaya type theorem and some quantitative estimates using the first order
modulus of continuity and the second order modulus of smoothness and then the
relation between them and K-functionals. Also we study their simultaneous ap-
proximation properties.

1.5 Dissemination of the results

The results enumerated in the previous section were published in various mathematical
journals and some of them were presented in the framework of international conferences
on approximation theory.

1. During the 2022 edition of ”Functional Analysis, Approximation Theory and Nu-
merical Analysis”, held in Matera, Italy, 5-8 July, 2022 the talk: On the convergence
of series of powers of positive linear operators was held.

Also, in the proceedings of this conference we published the second article:

S, . Garoiu, R. Paltanea, The representation of the limit of power series of posi-
tive linear operators by using the semigroup of operators generated by their iterate,
Dolomites Research Notes on Approximation (2023), 16(3), 39-47.
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This article was co-authored with my doctoral advisor Prof. Dr. Radu Păltănea.

2. During the fourteenth edition of ”International Conference on Approximation The-
ory and Applications”, held in Sibiu, Romania, 12-14 September 2022, I delivered
the talk: Voronovskaya type results for geometric series of Durrmeyer operators,
related to third article from the previous section.

3. During the fourth edition of the International Conference on Mathematics and Com-
puter Science, held in Bras,ov, Romania, 15-17 September, 2022, I delivered the talk:
On the convergence of power series of positive linear operators

Also, I published the following article:

Ş. Garoiu, R. Păltănea, Generalized Voronovskaya theorem and the convergence
of power series of positive linear operators, J. Math. Anal. Appl., 531 (2024), Issue
2, Part 2.

4. During the fifth edition of the International Conference on Mathematics and Com-
puter Science, held in Bras,ov, Romania, 13-15 June, 2024, I delivered the talk: A
Voronovskaya type theorem associated to geometric series of Bernstein - Durrmeyer
operator

Also, I published the article:

S, . Garoiu, A Voronovskaya type theorem associated to geometric series of Bernstein-
Durrmeyer operators, Carpathian Journal of Mathematics(2025), 41(2),

5. Also, I published the following papers:

S, . Garoiu, Exponential Bernstein-Durrmeyer operators, General Mathematics(2024),
Volume 32, no. 2, 84-97,

S, . Garoiu, Exponential Kantorovich-Stancu operators, Bull. Univ. Transilvania
Brasov, Ser. 3, Math. Comput. Sci., 5(67), 2025, no. 2, 127-144.
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2 Preliminaries
2.1 Some notations and basic results

First, we will proceed with specifying some of the notations which are common through
the entire thesis.

We denote N = {1, 2, . . . } and N0 = N ∪ {0}.
By C([a, b]) we mean the Banach space of real continuous functions f : [a, b] → R,

endowed with the usual sup-norm ∥f∥ = maxx∈[a,b] |f(x)|. Also, by Ck([a, b]), k ∈ N, we
mean the space of real continuous functions which admit a continuous kth derivative and
by B([a, b]) we denote the space of bounded functions on [a, b].

Next, by Lp([0, 1]), 1 ≤ p ≤ ∞ we mean the space of p-integrable functions, endowed

with the norm ∥f∥p =
{∫ 1

0
|f(x)dx|p

} 1
p

. We say that f ∈ Lp([0, 1]) if ∥f∥p <∞.

Let Π be the space of polynomials and for j ∈ N0, let Πj be the space of polynomials
of degree at most j. The monomial functions are given by ej(x) = xj , j ∈ N0, x ∈ [0, 1].
From these sets of polynomials we will need throughout the thesis the function:

ψ(x) = x(1− x), x ∈ [0, 1]. (2.1)

Next, we will present some of the main results from current literature in Approximation
Theory which are in the same topic as the thesis.

Definition 2.1.1. Let X be a space of functions. By positive and linear operators we
mean operators L : X → X which satisfy:

1. Lf > 0 for f ∈ X and f > 0,

2. L(αf + βg) = α(Lf) + β(Lg), for all f, g ∈ X and α, β ∈ R.

If L is a positive and linear operator we will denote by Lk = L ◦ · · · ◦ L︸ ︷︷ ︸
k-times

, k ∈ N0 ,with

L0 = I where I is the identity operator, the k-times iterates of L.
Next, we will make the following notation for the moments and for the absolute mo-

ments of operators L:

mj
n(x) = (L(e1 − xe0)

j)(x), (2.2)

M j
n(x) = (L|e1 − xe0|j)(x). (2.3)

Also we denote by DjL, j = 0, 1, 2 . . . , the jth, order derivative of the operator L.
It is well known that positive and linear operators play an important role in Ap-

proximation Theory since S. N. Bernstein proved that continuous functions on compact
intervals can be approximated by polynomials (Weierstrass Theorem) using such oper-
ators. Another reason for which positive linear operators are intensively studied is the
famous Korovkin Theorem (see [66], [67]).
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Theorem 2.1.2 (Korovkin). Let Y be a linear subspace of X and let Ln : Y → X be
a sequence of positive linear operators. If functions φ0, φ1, φ2 ∈ Y ∩ C([0, 1]) form a
Chebyshev system on [0, 1] and if

lim
n→∞

Lnφi = φi, uniformly for i = 0, 1, 2, (2.4)

then
lim
n→∞

Lnf = f, uniformly for any f ∈ Y ∩ C([0, 1]). (2.5)

Here, by a Chebyshev system of order l + 1 we mean a set of functions φ0, . . . , φl ∈
C([0, 1]) for which their linear combination φ =

∑p
j=0 ajφj , where p ≤ l and a0, . . . , ap ∈

R, has at most l roots on [0, 1]. For more results on Korovkin approximation we refer the
reader to the following papers: [13], [14], [23] and [83].

In literature, there exist a lot of particular positive linear operators which verify
Korovkin’s Theorem. We will mention only those who will appear in this thesis. A first
example is the operator obtained by Bernstein (see [28]) when he proved Weierstrass’s
Theorem ([93]) regarding approximation on compact sets, namely the operators Bn which
are named after him:

(Bnf) (x) =

n∑
k=0

pn,k (x) f

(
k

n

)
, n ∈ N, x ∈ [0, 1] , f ∈ C([0, 1]), (2.6)

where

pn,k (x) =

(
n

k

)
xk (1− x)

n−k
, for 0 ≤ k ≤ n, (2.7)

and pn,k (x) = 0 for k > n. These operators were intensively studied, see: [30], [68], [38],
etc. Also, there are present a lot of generalizations of these operators. We mention Stancu
operators (see [89]) Bα,βn , obtained for functions f ∈ C([0, 1])

(
Bα,βn f

)
(x) =

n∑
k=0

pn,k(x)f

(
k + α

n+ β

)
, n ∈ N, x ∈ [0, 1], f ∈ C([0, 1]), (2.8)

where 0 < α < β. Further, operators Bn can be modified to approximate functions
f ∈ L1([0, 1]), thus obtaining Kantorovich operators ([64]):

(Knf)(x) = (n+ 1)

n∑
k=0

pn,k

∫ k+1
n+1

k
n+1

f(t)dt, x ∈ [0, 1], f ∈ L1([0, 1]). (2.9)

Here, since they are relevant to our thesis we will mention the exponential variant of
operators Kn introduced by Angeloni and Costarelli in [18]:

(Knf)(x) =

n∑
k=0

eµxpn,k(an+1(x))(n+ 1)

∫ k+1
n+1

k
n+1

f(t)e−µtdt, (2.10)

where µ > 0, f ∈ C([0, 1]) x ∈ [0, 1], n ∈ N, and an(x) := e
µx
n −1

e
µ
n−1

are increasing,

continuous and convex functions on [0, 1] such that an(0) = 0 and an(1) = 1.
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2.2 Moduli of continuity and smoothness

2.3 Voronovskaya theorems

2.4 C0-semigroups of operators and approximation of
C0-semigroups

This section is dedicated to the study of C0-semigroups and how they can be approximated
by iterates of approximation processes. Here, we recall some of the works done in [15]
and others.

2.4.1 C0-semigroups

Let K be the field of real numbers R or the field of complex numbers C. We denote by
(E, ∥ · ∥) be a Banach space and by L(E) the space of bounded linear operators defined
on E. If one endows L(E) with the supremum norm:

∥B∥ := sup
f∈E
∥f∥≤1

∥B(f)∥, B ∈ L(E),

then (L(E), ∥ · ∥) is a Banach space as well.

Definition 2.4.1. Let (T (t))t≥0 ∈ L(E). The family (T (t))t≥0 is a semigroup of bounded
operators in E if:

1. T (0) = I, where I is the identity operator on E,

2. T (t+ s) = T (t)T (s) for every s, t ≥ 0, and T (t)T (s) = T (t) ◦ T (s).

A semigroup (T (t))t≥0 is a C0-semigroup (strongly continuous semigroup) if, for every
t0 ≥ 0 and for a function f from E, the following limit holds on (E, ∥ · ∥):

lim
t→t+0

T (t)(f) = T (t0)(f).

Let (T (t))t≥0 be a C0-semigroup on the Banach space (E, ∥ · ∥) and let (A,D(A)) be
a linear operator on E, where:

A(f) := lim
t→0+

T (t)(f)− f

t
, for every f ∈ E. (2.11)

and D(A) is the domain of the operator A and is given by

D(A) :=

{
f ∈ E | ∃ lim

t→0+

T (t)(f)− f

t
∈ E

}
. (2.12)

Then (A,D(A)) is called the generator of the C0-semigroup (T (t))t≥0.
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2.4.2 Approximation of C0-semigroups

In the book by Altomare and his co-authors ([15]) there is an extensive review regarding
some theorems which give necessary and sufficient conditions under which a linear oper-
ator (A,D(A)) on a Banach space (E, ∥ · ∥) is the generator of a C0-semigroup (T (t))t≥0.
The disadvantage of these generation theorems is the fact that they don’t give an explicit
form of the C0-semigroup, hence not giving any information about the semigroup. There-
fore, in approximation theory there are results which not only give conditions under which
a suitable operator is the generator of a C0-semigroup, but also, they provide means to
approximate the semigroup by using the iterates of linear operators, hence allowing one to
study the properties of the semigroups by studying the properties of the operator which
approximates them.

To this purpose, a first result is given by Trotter (see [91])

Theorem 2.4.2 (Trotter). On the Banach space (E, ∥ · ∥) let (Ln)n≥1 be a sequence of
bounded linear operator and let (ρ(n))n≥1 be a sequence of positive real numbers such that
limn→∞ ρ(n) = 0. Assume there is M ≥ 1 and ω ∈ R such that

∥Lkn∥ ≤Meωρ(n)k, ∀ k, n ≥ 1, (2.13)

where Lkn is the kth iterate of Ln. Let (A,D(A)) be a linear operator on the Banach space
(E, ∥ · ∥) given by:

A(f) := lim
n→∞

Lnf − f

ρ(n)
, f ∈ D(A), (2.14)

with domain:

D(A) :=

{
g ∈ E | ∃ lim

n→∞

Lng − g

ρ(n)

}
. (2.15)

If the following assumptions hold:

(i) D(A) is a dense subset of E;

(ii) (λI −A)(D(A)) is a dense subset of E for some λ > ω;

then the closure of (A,D(A)) is the generator of a C0-semigroup (T (t))t≥0, with the
property, that for each t ≥ 0 and for each sequence of positive integers (k(n))n≥1 with
limn→∞ k(n)ρ(n) = t the following limit holds:

lim
n→∞

Lk(n)n f = T (t)(f), f ∈ E. (2.16)

Moreover, for every t ≥ 0, ∥T (t)∥ ≤Meωt.

2.5 Geometric series of positive linear operators

Since one of the main concerns of this thesis is the study of general power series of positive
linear operators we will recall some of the existent literature in this direction, namely we
will give a brief presentation of the results from [3], [4], [78] and [80] which are relevant
to the main content of the thesis.
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One of the first studies considering the geometric series of some positive and linear
operators is due to Păltănea, see [78]. Namely, he studied the properties of geometric
series associated to Bernstein operators Bn.

There the author introduced the operators

An =
1

n

∞∑
k=0

(Bn)
k
, (2.17)

where Bkn are the k-times iterates of Bn. Concerning the iterates Bkn (studied in [2, 5, 31,
32, 55, 65, 74, 75, 85]) they can always be defined, however, there are cases when operators
An aren’t well defined, for example if one considers the eigenvalues of Bn (given in [33]).
Therefore a careful selection of the space which can be the domain of definition of these
operators is needed. In this sense, in paper [78] the author proved that operators An from
(2.17) are well defined from the space:

ψC([0, 1]) := {f |∃g ∈ C([0, 1]), f = ψg}, (2.18)

onto itself, where ψ(x) = x(1− x), x ∈ [0, 1]. Moreover, space ψC([0, 1]) can be endowed
with the norm:

∥f∥ψ = ∥g∥, f ∈ ψC([0, 1]), (2.19)

and (ψC([0, 1]), ∥ · ∥)ψ is a Banach space (note that convergence with respect to norm
∥ · ∥ψ implies convergence with respect the usual sup-norm ∥ · ∥).

For any f ∈ B([0, 1]) ∩ C((0, 1)) and x ∈ [0, 1], in [4], the following operator was
defined:

F (f)(x) := (1− x)

x∫
0

tf (t) dt+ x

x∫
0

(1− t) f(t)dt, (2.20)

and it was proven that F (f) ∈ ψC([0, 1]) ∩ C2(0, 1) and:

(F (f)(x))
′′
= −f (x) , f ∈ B([0, 1]) ∩ C((0, 1)), x ∈ [0, 1]. (2.21)

In paper [78], R. Păltănea proved that the following limit holds:

lim
n→∞

||An(ψf)− 2F (f)||ψ = 0, f ∈ ψC([0, 1]), (2.22)

however, here a slightly modified version of F (f) was considered in the sense that f ∈
C([0, 1]) instead of f ∈ B([0, 1])∩C((0, 1)). Later, in [3] the convergence of operators An
was studied on a more general subspace of C([0, 1]), namely, on the space

C0([0, 1]) := {f ∈ C([0, 1])| f(0) = 0, f(1) = 0}. (2.23)

and a similar result to the one in (2.22) was obtained using the eigenvalues of Bn.
A generalization of the operators An was introduced by Abel et al. ([4]), namely, in

formula (6.1) operators Bn were replaced by positive linear operators Ln belonging to a
general class of operators. If we denote by GLn the geometric series attached to these
operators Ln, then the following result was proved: lim

n→∞
||GLn(f)− 2G(f/ψ)||ψ = 0,
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which holds for functions f belonging to the space Cψ [0, 1] = {f : C([0, 1]) → C([0, 1]) :
∃ g ∈ B[0, 1] ∩ C (0, 1) , f = ψg} which together with the norm ||·||ψ is a Banach space.
The operators An were also studied on the space C0[0, 1] = {f ∈ C([0, 1]) : f(0) =
f(1) = 0} endowed with the usual sup-norm, in paper [80]. There a Voronovskaya theorem
was obtained. Further studies on approximation operators defined as geometric series of
positive and linear operators were done in [4]. There the authors considered the operator

GL =

∞∑
k=0

Lk, (2.24)

which is the geometric series associated to a positive linear operator L : X → X, where
X is a linear subspace of C([0, 1]) and Lk are the k-times iterates of L, for k ≥ 1 and with
L0 = I, I being the identity operator. As before the iterates of L can always be defined
(for more studies regarding the iterates of positive linear operators see [48, 49, 51, 63, 94]),
however for operator GL to be well defined a suitable choice of the domain of definition
must be made. The domain, considered by authors in [4] for this purpose, was the space:

Cψ([0, 1]) := {f : [0, 1] → R|∃g ∈ B([0, 1]) ∩ C((0, 1)) : f = ψg}, (2.25)

endowed with the norm:

∥f∥ψ := sup
x∈(0,1)

|f(x)|
ψ(x)

, f ∈ Cψ([0, 1]). (2.26)

Note that one can also write

Cψ([0, 1]) = {f ∈ C([0, 1])| ∃M > 0 : |f(x)| ≤Mψ(x), x ∈ [0, 1]}. (2.27)

Note that (Cψ([0, 1]), ∥ · ∥ψ) is a Banach space and convergence with respect to norm
∥ · ∥ψ implies convergence with respect to the usual sup-norm ∥ · ∥. Also Cψ([0, 1]) is an
extension of the space ψC([0, 1]).

Next, Abel et al. proved in [4] that if L : C([0, 1]) → C([0, 1]) are operators belonging
to a certain class Λ, of linear and positive operators (see below the definition of this class
of operators), then operator GL is well defined from Cψ([0, 1]) onto itself.

One has L ∈ Λ if L are positive and linear operators which satisfy the following
conditions (see Definition 1 from [4]):

1. L preserve linear functions;

2. ∥L∥ψ < 1;

3. L ̸= B1, where B1 is the Bernstein operator for n = 1.

Next, it was proved that if (Ln)n∈N is a sequence of positive and linear operators such
that Ln ∈ Λ, n ∈ N then for any f ∈ B([0, 1]) ∩ C((0, 1)) the following limit holds under
some conditions (see Theorem 2, [4]):

lim
n→∞

∥αnGn(ψf)− 2F (f)∥ψ = 0, (2.28)
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where Gn = GLn , αn is a normalization factor (given in relation (11) from [4]) and F (f)
is expressed as in (2.20), F (f) ∈ ψC([0, 1]) ∩ C2((0, 1)).

Later, in [80], it was proved that operator GL is well defined on the space C0([0, 1]),
given in (2.23). Moreover, on this space a convergence result (but with regard to the norm
on the space C0([0, 1])) similar to the one in (2.28) holds and a Voronovskaya theorem
was obtained.

Remark that between the three spaces considered as the domain of definition of oper-
ators GL the following relation is true with respect to the sup-norm ∥ · ∥:

ψC([0, 1]) = Cψ([0, 1]) = C0([0, 1]), (2.29)

where by A is meant the closure of a set A.



16

3 Generalized Voronovskaya
theorem and the convergence of
power series of positive linear op-
erators
In this chapter we will obtain more general power series of positive linear operators than
those introduced by Abel, Ivan and Păltănea in paper [4], which as we mentioned in
the previous chapter is a geometric series of positive linear operators. In this sense we
obtained a generalized Voronovskaya theorem and some convergence results regarding the
power series operator mentioned above. These results were all published in paper [46]: Ş.
Garoiu, R. Păltănea, Generalized Voronovskaya theorem and the convergence of power
series of positive linear operators, J. Math. Anal. Appl., 531 (2024), Issue 2, Part 2.

Let Bn : C([0, 1]) → C([0, 1]) be the Bernstein operators:

(Bnf)(x) =

n∑
k=0

pn,k(x)f

(
k

n

)
, n ∈ N, x ∈ [0, 1], f ∈ C([0, 1]),

with polynomials pn,k defined as:

pn,k(x) =

(
n

k

)
xk(1− x)n−k, 0 ≤ k ≤ n, x ∈ [0, 1].

The Voronovskaya theorem in supremum norm version says that

lim
n→∞

∥∥∥∥n(Bnf − f)− 1

2
ψf ′′

∥∥∥∥ = 0, for f ∈ C2([0, 1]). (3.1)

There exists a vast literature regarding Voronovskaya type results for various operators,
from which we mention only paper [52], in which the limit is given in a stronger form,
using a weighted norm.

One of the objectives of this chapter is to give a generalization of Voronovskaya theo-
rem by giving an explicit form of the limit limn→∞ ns(Ln − I)s, s ∈ N, where operators
Ln belong to a general class of positive linear operators. This result is equivalent with
the explicit Voronovskaya theorem for Micchelli combinations of operators Ln, given by
I − (I − Ln)

s, defined in [71]. In the case of Bernstein operators a partial representation
of the limit was given by Agrawal [6].

On the other hand, this result will play an essential role in the study of the limit of
power series of operators. A particular case of the power series is given by the geometric
series, which was the only one considered until now. The geometric series of a sequence
of operators Ln, n = 0, 1 . . . is given by

∑∞
k=0(Ln)

k. As seen in Section 2.5 this geometric
series is not defined for all functions of C([0, 1]), as for instance, for the eigenfunctions
of Ln. Therefore it is convenient to select some adequate subspaces of C([0, 1]). From
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Section 2.5 a first space that can be taken in consideration is the subspace ψC([0, 1])
defined in (2.18), endowed with the norm ∥ · ∥ψ given in (2.19).

Recall that in paper [78], it was proved that, operator An = (1/n)
∑∞
k=0(Bn)

k, is well
defined from the space ψC([0, 1]) into itself and

lim
n→∞

∥An(f)− 2F (f/ψ)∥ψ = 0, f ∈ ψC([0, 1]), (3.2)

where F (f) is given in (2.20).
A different proof of relation (3.2) based on the eigenstructure of operators Bn was

given in [3].
In [4] an analogous result was obtained for operators An, constructed starting from

more general operators than Bn and for the space Cψ([0, 1]). Other versions and gen-
eralizations of the geometric series of operators were given in [1], [4], [56], [84], [10] and
[80].

We mention that in [4] an inverse Voronovakaya theorem was obtained. A previous
inverse Voronovakaya theorem was obtained by other method in [16].

Another objective of this chapter is to consider certain more general power series of
operators having the form

∞∑
k=0

βn,k(Ln)
k, βn,k ∈ R, (3.3)

where operators Ln are defined on the space Cψ([0, 1]) and then to study the convergence
of these power series.

3.1 Generalized Voronovskaya theorem

For j ∈ N0, we denote

σj =

[
j + 1

2

]
, (3.4)

where [a] is the greatest integer less than or equal to the real number a. Next C∞([0, 1])
denotes the space of functions f : [0, 1] → R which admits derivatives of any order on
[0, 1].

Let (Ln)n∈N be a sequence of positive linear operators. For n ∈ N, j ∈ N0, x ∈ [0, 1],
we consider

mj
n(x) = (Ln(e1 − xe0)

j)(x),

M j
n(x) = (Ln|e1 − xe0|j)(x).

In the sequel (Ln)n∈N will be a sequence of positive linear operators Ln : C([0, 1]) →
C([0, 1]) which satisfy the following conditions, for n ∈ N:

L1) Ln(ej) = ej , j = 0, 1;

L2) mj
n(x) = ψ(x)n−σjQn,j(x), j ≥ 2, n ∈ N, x ∈ [0, 1], where Qn,j ∈ C∞([0, 1]) are

such that for each j, p ∈ N0, there exists a constant Cj,p > 0 with the property that

Q
(p)
n,j(x) ≤ Cj,p for all x ∈ [0, 1] and n ∈ N.
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L3) m2
n(x) = αnψ(x), with αn ∈ (0, 1), for n ≥ n0, n0 ∈ N and there is α > 0 such that

limn→∞ nαn = α.

Lemma 3.1.1. (see Lemma 1 from [46]) For any integer j ≥ 0:

M j
n(x) = O

(
ψ(x)

nj/2

)
, uniformly for n ∈ N, and x ∈ [0, 1]. (3.5)

Further, the first order modulus of continuity of a bounded function g : [0, 1] → R, is

ω1(g, h) = sup{|g(u)− g(v)|, u, v ∈ [0, 1], |u− v| ≤ h}, h > 0.

Lemma 3.1.2. (see Lemma 2 from [46]) Let k ≥ 1 and let (gn)n∈N, gn ∈ Ck([0, 1]),
(n ∈ N), be a sequence of functions such that

lim
h→0

ω1(g
(k)
n , h) = 0, uniformly for n ∈ N. (3.6)

Then,

(Lngn)(x) =

k∑
j=0

1

j!
mj
n(x)(D

jgn)(x) + o

(
ψ(x)

nk/2

)
, uniformly for x ∈ [0, 1]. (3.7)

For j ∈ N0 and n ∈ N we consider the operator P jn : Cj([0, 1]) → C([0, 1]) given by

(P jnf)(x) =
1

j!
mj
n(x)(D

jf)(x), f ∈ Cj([0, 1]), x ∈ [0, 1]. (3.8)

Also, for any n ∈ N, p ∈ N0 and any integers j1, . . . , jp ≥ 0, denote

P jp,...,j1n = P jpn ◦ · · · ◦ P j1n ; if p ≥ 1 and Pn = I, if p = 0. (3.9)

Lemma 3.1.3. (see Lemma 3 from [46]) Let j1, . . . jp ≥ 0 and p ∈ N be integers such that
at least one of them is greater or equal to 2. Then, for any integer 0 ≤ k ≤ j1 + . . .+ jp,

there are certain functions τ
j1,...,jp
n,k ∈ C∞([0, 1]), n ∈ N, with the following properties

i) for any integer s ≥ 0 there is a constant C depending only on j1, . . . , jp, k and s,

for which |(τ j1,...,jpn,k )(s)(x)| ≤ Cnj1+...+jp−2, for n ∈ N and x ∈ [0, 1];

ii) for any f ∈ Cj1+...+jp([0, 1]) there holds:

(P jp,...,j1n f)(x) =
ψ(x)

nσj1+...+σjp

j1+...+jp∑
k=0

f (k)(x)τ
j1,...,jp
n,k (x), x ∈ [0, 1]. (3.10)

Lemma 3.1.4. (see Lemma 4 from [46]) Let s ≥ 2 be an integer and f ∈ C2s([0, 1]) be a
function. Let j1, j2, . . . , jp ≥ 0 be integers, p ∈ N and r = j1 + . . .+ jp such that r < 2s.

For n ∈ N, we denote gn = nqP
jp,...,j1
n f , where q = σj1+. . .+σjp . Then gn ∈ C2s−r([0, 1])

and
lim
h→0

ω1(g
(2s−r)
n , h) = 0, uniformly with regard to n ∈ N. (3.11)
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For integers s ≥ 2 and 0 ≤ p ≤ s, we define

Λsp = {(j1, . . . , jp) : j1, . . . , jp ∈ N0, j1 + · · ·+ jp ≤ 2s} , if p ≥ 1

Λs0 = ∅.
(3.12)

Lemma 3.1.5. (see Lemma 5 from [46]) Let s and p be integers such that s ≥ 2 and
0 ≤ p ≤ s. For any f ∈ C2s([0, 1]), n ∈ N and x ∈ [0, 1] there holds

((Ln)
pf)(x) =

∑
(j1,...,jp)∈Λsp

(P jp,...,j1n f)(x) + o

(
ψ(x)

ns

)
, x ∈ [0, 1], (3.13)

where o
(
ψ(x)
ns

)
(n→ ∞) is uniform with regard to x ∈ [0, 1].

We present now the following result which is a slight improvement of Theorem 6 from
[46].

Theorem 3.1.6. For any integer s ≥ 1 and for every function f ∈ C2s([0, 1]) we have

((Ln − I)sf)(x) =
1

ns

(α
2
ψD2

)s
f(x) + o

(
ψ(x)

ns

)
, uniformly for x ∈ [0, 1]. (3.14)

Consequently there holds:

lim
n→∞

∥∥∥∥ns((Ln − I)sf)−
(
1

2
ψD2

)s
f

∥∥∥∥
ψ

= 0 (3.15)

Remark 3.1.7. (see Remark 7 from [46]) In the case s = 1 the Voronovskaya result
given in (3.14) was obtained as a particular case, but with other conditions on operators
Ln, in [52].

The next Corollary is an improvement of Corollary 8 from [46].

Corollary 3.1.8. For any integer s ≥ 1 and for every function f ∈ C2s([0, 1]) we have

lim
n→∞

∥∥∥ns((Ln − I)sf)−
(α
2
ψD2

)s
f
∥∥∥ = 0. (3.16)

The following Remark is a slight improvement of Remark 9 from [46].

Remark 3.1.9. Let Zsn be the Micchelli type combinations of operators (Ln)n, given by

Zsn = I − (I − Ln)
s, n, s ∈ N. (3.17)

Relation (3.14) can be written equivalently as

lim
n→∞

∥∥∥ns(Zsnf − f) +
(
−α
2
ψD2

)s
f
∥∥∥
ψ
= 0, f ∈ C2s([0, 1]). (3.18)

This follows from equality Zsn − I = (−1)s+1(Ln − I)s.
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3.2 Generalized power series of positive linear opera-
tors

In this section we consider positive linear operators (Ln)n∈N which satisfy conditions L1),
L2) and L3) from the previous section.

Remark 3.2.1. (see Remark 10 from [46]) From conditions L1)-L3) one can deduce that
Lnψ = (1 − αn)ψ, since (Lnψ)(x) = (Lne1)(x) −m2(x) − 2x(Lne1)(x) + x2(Lne0)(x) =
ψ(x)−m2

n(x).

For a bounded linear operator T : Cψ([0, 1]) → Cψ([0, 1]), for simplicity, we will write
∥T∥ψ instead of ∥T∥L(Cψ([0,1]),Cψ([0,1])). Since Ln satisfies condition L3) one obtains that
Ln is a bounded linear operator on Cψ([0, 1]) and that ∥Ln∥ψ = 1 − αn. Indeed, if
f ∈ Cψ([0, 1]) then, using Remark 3.2.1 we have, for x ∈ (0, 1):

|(Lnf)(x)| ≤ (Ln|f |)(x) =
(
Ln

|f |
ψ
ψ

)
(x) ≤ ∥f∥ψ(Lnψ)(x) = ∥f∥ψ(1− αn)ψ(x).

Then

∥Ln∥ψ = sup
∥f∥ψ≤1

sup
x∈(0,1)

|(Lnf)(x)|
ψ(x)

≤ sup
∥f∥ψ≤1

sup
x∈(0,1)

(Ln∥f∥ψψ)(x)
ψ(x)

= 1− αn.

Let s ≥ 0 be an integer. We define Asn : Cψ([0, 1]) → Cψ([0, 1]) by

Asn =
αs+1
n

s!

∞∑
k=s

(k)s(Ln)
k−s (3.19)

where (k)s = k(k − 1) . . . (k − s+ 1) and the convergence of the series is considered with
respect to the norm ∥ · ∥ψ.

The following lemma proves the existence of our operator.

Lemma 3.2.2. (see Lemma 11 from [46]) Operator Asn : Cψ([0, 1]) → Cψ([0, 1]) is well
defined and ∥Asn∥ψ = 1.

Lemma 3.2.3. (see Lemma 12 from [46]) In the space Cψ([0, 1]) the following equalities
hold

i) (I − Ln)
s+1

∑∞
k=s(k)s(Ln)

k−s = s!I,

ii)
∑∞
k=s(k)s(Ln)

k−s(I − Ln)
s+1 = s!I,

where by I we denoted the identity operator.

Let us define the following operators: F̃ : Cψ([0, 1]) → Cψ([0, 1]), F̃ (f) = F (f/ψ),

Hs : Cψ([0, 1]) → Cψ([0, 1]), Hs =
(
2
α

)s+1
F̃ s+1 and D̃ : C2([0, 1]) → ψC([0, 1]), D̃f =

−α
2ψD

2f , where s ∈ N0 and operator F is given in (2.20) and since we have (2.27) then

F (f) ∈ Cψ([0, 1]) therefore F̃ is well defined from Cψ([0, 1]) into itself.
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Lemma 3.2.4. (see Lemma 13 from [46]) For f ∈ Cψ([0, 1]), s ∈ N0 and x ∈ (0, 1) we
have that:

(D̃s+1Hsf)(x) = f(x). (3.20)

Finally, we can prove our main result of this section

Theorem 3.2.5. (see Theorem 14 from [46]) For f ∈ Cψ([0, 1]) and s ∈ N there holds

lim
n→∞

∥Asnf − αs+1Hsf∥ψ = 0. (3.21)

3.3 Applications

For these applications we refer the reader to Section 4 from [46].
1. Bernstein operators
A first example of operators which verify conditions L1), L2) and L3) are Bernstein

operators Bn given in (2.6) and (2.7). Their moments mj
n(x) = Bn(e1 − xe0)

j(x), j ∈ N0

satisfy the following relations [68], [37]:

m0
n(x) = 1, m1

n(x) = 0, m2
n(x) =

x(1− x)

n
, n ∈ N, x ∈ [0, 1] (3.22)

and

mj+1
n (x) =

x(1− x)

n
((mj

n)
′(x) + jmj−1

n (x)), j ∈ N, n ∈ N, x ∈ [0, 1]. (3.23)

From (3.22) one deduces immediately that operators Bn satisfy conditions L1) and L3)
with αn = 1

n and α = 1. From (3.23) one can deduce by induction that, for j ≥ 2 we
have

mj
n(x) = ψ(x)n−σj ·Qn,j(x), (3.24)

where Qn,j is a polynomial of degree j − 2 with bounded coefficients with regard to n.
This implies that condition L2) is also satisfied. Consequently we can apply Theorem
3.1.6 and Theorem 3.2.5 to Bernstein operators.

2. Modified Durrmeyer operators
For a parameter ρ ≥ 1, consider operators Uρn : C([0, 1]) → C([0, 1]), see [79], [53],

given by

(Uρnf)(x) =

n∑
k=0

F ρn,k(f)pn,k(x), n ∈ N, x ∈ [0, 1], f ∈ C([0, 1]),

where Fn,0(f) = f(0), Fn,n(f) = f(1) and

Fn,k(f) =

∫ 1

0

f(t)
tkρ−1(1− t)(n−k)ρ−1

B(kρ, (n− k)ρ)
dt, 1 ≤ k ≤ n− 1,
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B denoting the beta function. These operators become the genuine Durrmeyer operators,
for ρ = 1 and limρ→∞ Uρnf = Bnf , for any n ∈ N and f ∈ C([0, 1]), [53]. It is known
that Uρnej = ej , j = 0, 1 and hence condition L1) holds. With the notation mj

n(x) =
(Uρn(e1 − xe0)

j)(x), for n ∈ N, j ∈ N0, x ∈ [0, 1] we have, for j ≥ 1:

mj+1
n (x) =

1

nρ+ j

(
ρψ(x)(mj

n)
′(x) + j(1− 2x)mj

n(x) + j(ρ+ 1)ψ(x)mj−1
n (x)

)
. (3.25)

From this, one obtains that m2
n(x) = ρ+1

nρ+1ψ(x). This means that condition L3) holds

with αn = ρ+1
nρ+1 , for n ≥ 2 and α = ρ+1

ρ . Also, from relation (3.25) condition L2) follows
by induction. Therefore Theorem 3.1.6 and Theorem 3.2.5 can be applied to operators
Uρn.
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4 The representation of the
limit of power series of positive
linear operators by using the op-
erators semigroup generated by
their iterates
In this Chapter we obtain a characterization of the limit of power series of positive linear
operators using the C0-semigroup generated by the iterates of these operators. The results
introduced here were published in paper [47]: S, . Garoiu, R. Paltanea, The representation
of the limit of power series of positive linear operators by using the semigroup of operators
generated by their iterate, Dolomites Research Notes on Approximation (2023), 16(3), 39-
47.

Let L be a positive linear operator and Lk its k-times iterates, if k ≥ 1 with L0 = I,
where I is the identity operator.

If (Ln)n, Ln : C([0, 1]) → C([0, 1]) is a sequence of positive linear operators, the
geometric series of Ln is of the form

βn

∞∑
k=0

(Ln)
k, n ∈ N (4.1)

where βn ∈ R is a normalization factor. As stated in Chapter 2, Section 5 the geometric
series of linear and positive operators is not defined for every function in C([0, 1]). For
instance, with the hypothesis that Ln preserve constant functions, then the operators
in (4.1) are not defined for such functions. In order to define this geometric series of
operators it is necessary to restrict the domain of definition of operators. A space that
can be taken in consideration is the space ψC([0, 1]), defined in (2.18), which can be
endowed with the norm ∥ · ∥ψ defined in (2.19).

Let us recall that a first study of the convergence of geometric series attached to a
sequence of operators (Ln)n was made in the paper [78], namely the case when Ln = Bn,
where Bn are Bernstein operators (given in (2.6) and (2.7)), was considered. There it is
shown that one can define operators An : ψC([0, 1]) → ψC([0, 1]),

An =
1

n

∞∑
k=0

(Bn)
k, n ∈ N

and this sequence has a limit when n→ ∞ in the space (ψC([0, 1]), ∥ · ∥ψ), which can be
explicitly described.

In this direction several papers extended this study for diverse classes of positive linear
operators and for other spaces of functions, see [1], [3], [4], [56], [78], [80], [84].
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Recently, in the paper by Acar, Aral and Raşa ([10]) it was given a new way to describe
the uniform limit of geometric series of form (4.1) using the C0-semigroup of operators
generated by the iterates of Ln. For more details see Chapter 2, Section 5 which contains
some of the results obtained by the authors of the mentioned paper.

Our aim is to study the convergence of more general power series of the form:

∞∑
k=0

βn,k(Ln)
k (4.2)

using the C0-semigroup generated by the iterates of operators Ln. The framework of our
approach differs from the study made in [10] in the sense that we consider another type
of operators, another space of functions and a stronger type of convergence.

To do this beside the space ψC([0, 1]) we consider the space Cψ([0, 1]) defined in (2.25)
with its respective norm ∥ · ∥ψ given in (2.26). We recall that this space is an extension
of space ψC([0, 1]) and one can also write (see [4]):

Cψ([0, 1]) = {f ∈ C([0, 1]), ∥f∥ψ <∞}.

Also Cψ([0, 1]) endowed with the norm ∥ · ∥ψ is a Banach space, but it is not a Banach
space with regard the sup-norm ∥ · ∥, since

ψC([0, 1]) = Cψ([0, 1]) = C0([0, 1]),

where C0([0, 1]) = {f ∈ C([0, 1])|f(0) = 0, f(1) = 0}.
Note that if f, fn ∈ Cψ([0, 1]), n ∈ N and ∥f−fn∥ψ → 0, (n→ ∞) then ∥f−fn∥ → 0,

(n→ ∞). For this reason, we can name ∥ · ∥ψ the strong norm on the space Cψ([0, 1]).
If L : Cψ([0, 1]) → Cψ([0, 1]) is a linear bounded operator we will use the notation

∥L∥ψ = sup
∥f∥ψ≤1

∥Lf∥ψ. (4.3)

4.1 Auxiliary results

Throughout this chapter we will consider a sequence (Ln)n of positive linear operators
Ln : C([0, 1]) → C([0, 1]), Ln ̸= I, satisfying the following conditions.

A1) There exist α ∈ (0, 1) and αn ∈ (0, 1), n ∈ N such that Ln(ψ) = (1− αn)ψ,
n ∈ N and limn→∞ nαn = α.

A2) The operators Ln admit the eigenvalues an,j associated to eigenpolynomials pn,j ,
0 ≤ j ≤ n, with deg pn,j = j, where, for a polynomial p we denote by deg p, the degree
of p.

A3) There exist the polynomials pj , j ≥ 0, such that limn→∞ pn,j = pj , j = 0, 1, . . . .
A4) For any j ≥ 0 there exists lj ∈ (0, 1], such that

lim
n→∞

(an,j)
n = lj

and moreover if lj = 1, then an,j = 1, for all n ∈ N.
A5) We have Ln(ψΠ) ⊂ ψΠ.
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A6) There exists a C0 - semigroup of operators (T (t))t>0, such that

T (t)f = lim
n→∞

(Ln)
knf, uniformly for f ∈ C([0, 1]), t ≥ 0, (4.4)

if kn ∈ N, limn→∞
kn
n = t.

From conditions A1)-A6) one can deduce the following consequences.

Remark 4.1.1. (see Remark 1, [47]) Because Ln is a positive linear operator and Ln ̸= I,
from condition A4) there are at most two values of j ≥ 0, for which lj = 1.

Remark 4.1.2. (see Remark 2, [47]) Condition A4) implies that

lim
n→∞

an,j = 1, and lim
n→∞

n(1− an,j) = − ln lj , j = 0, 1, . . . . (4.5)

Remark 4.1.3. (see Remark 3, [47]) Conditions A3), A4) and A6) imply

T (t)pj = ltjpj , j ∈ N0, t ≥ 0. (4.6)

Note that condition A6) is assured in certain hypothesis by Trotter’s theorem 2.4.2 ([91]).

Remark 4.1.4. (see Remark 4, [47]) For r ≥ 0, because the polynomials pn,j , 0 ≤ j ≤ r
have the property deg pn,j = j, they form a basis of Πr and consequently Ln(Πr) ⊂ Πr.
Then, by induction, Lkn(Πr) ⊂ Πr, k ∈ N, for any n, k ∈ N. From condition A6) it results
that T (t)(Πr) ⊂ Πr, r ∈ N0.

Remark 4.1.5. (see Remark 5, [47]) We mention that the first part of condition A1) is a
consequence of the following conditions: Ln(ej) = ej , j = 0, 1 and Ln(Π2) ⊂ Π2. Indeed,
it is proved in [4] that if L : C([0, 1]) → C([0, 1]) is a positive linear operator such that
Ln(ej) = ej , j = 0, 1 and Ln(Π2) ⊂ Π2, then there exists β ∈ [0, 1) such that Lψ = βψ.

Also, condition A5) is a consequence of the following conditions: Ln(C([0, 1])) ⊂ Π and
Ln(ej) = ej , j = 0, 1. Indeed, in this case we have Lnf(0) = f(0) and Lnf(1) = f(1), for
any f ∈ C([0, 1]). Consequently, for f ∈ ψC([0, 1]) it follows that Lnf(0) = Lnf(1) = 0
and hence Ln(ψC([0, 1])) ⊂ ψΠ.

Finally we need the following lemmas.

Lemma 4.1.6. (see Lemma 2.1 from [47]) For any t ≥ 0 one has T (t)(Cψ([0, 1])) ⊂
Cψ([0, 1]) and

∥T (t)∥ψ = e−αt. (4.7)

Lemma 4.1.7. (see Lemma 2.2 from [47]) Let r ∈ N. If a sequence of polynomials
(σn)n, σn ∈ ψΠr is uniformly convergent to a polynomial σ⋆ ∈ ψΠr, then sequence (σn)n
converges to σ⋆ in the norm ∥ · ∥ψ as well.

4.2 Main results

A main tool for our purpose is the following lemma.
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Lemma 4.2.1. (see Lemma 3.1 from [47]) For p ∈ Π, s ∈ N0, t ≥ 0 and a sequence of
positive integers (kn)n such that kn/n→ t, (n→ ∞) there exists the limit:

lim
n→∞

1

ks+1
n

kn∑
i=0

(i)s(Ln)
ip =

1

ts+1

∫ t

0

usT (u)pdu. (4.8)

uniformly on [0, 1], where (i)s = i(i− 1) . . . (i− s+ 1).

Corollary 4.2.2. (see Corollary 3.2 from [47]) For any p ∈ ψΠ, s ∈ N0, t > 0 and a
sequence of positive integers (kn)n such that kn/n→ t, (n→ ∞) there holds

lim
n→∞

∥∥∥∥∥ 1

ks+1
n

kn∑
i=0

(i)s(Ln)
ip− 1

ts+1

∫ t

0

usT (u)pdu

∥∥∥∥∥
ψ

= 0. (4.9)

Now we need the following theorem which, with modified notations, follows from a
result proved in the book of Nachbin [73], see Lemma 2, pg. 95.

Theorem A Let b > 0. For any function f ∈ C([0,∞)), such that f(x)e−bx → 0,
(x→ ∞), and any ε > 0 there exist a polynomial p such that

sup
x∈[0,∞)

e−bx|f(x)− p(x)| < ε.

In the terminology from [73], the function e−bx, x ≥ 0 is a fundamental weight.

Define the space:

C̃α([0,∞)) = {g ∈ C([0,∞))| ∃b ∈ (0, α), lim
x→∞

f(x)e−bx = 0}. (4.10)

Our main result is the following:

Theorem 4.2.3. (see Theorem 3.3 from [47]) If g ∈ C̃α([0,∞)) and f ∈ ψC([0, 1]) then

lim
n→∞

∥∥∥∥∥ 1n
∞∑
i=0

g

(
i

n

)
(Ln)

if −
∫ ∞

0

g(t)T (t)fdt

∥∥∥∥∥
ψ

= 0. (4.11)

4.3 Applications

For this section we refer the reader to the Section 4 of [46].
1. Bernstein operators
Let Bn : C([0, 1]) → C([0, 1]) be the Bernstein operators defined as:

(Bnf)(x) =

n∑
k=0

pn,k(x)f

(
k

n

)
,

where

pn,k(x) =

(
n

k

)
xk(1− x)n−k, 0 ≤ k ≤ n, x ∈ [0, 1].
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Operators Bn satisfy conditions A1)-A6), see [30], [33] and [68]. More exactly, we have
Bnψ = n−1

n ψ and hence αn = 1/n and α = 1. Bn admits the eigenvalues an,j corre-
sponding to the eigenpolynomials pn,j , 0 ≤ j ≤ n, with deg pn,j = j and

lj := lim
n→∞

ann,j = e−j(j−1)/2, j ∈ N0.

For j = 0, 1, we have pn,j(t) = ej and Bn(ej) = ej . The existence of the polynomials
pj = limn→∞ pn,j is proved in [33]. Finally the existence of the semigroup of operators
generated by the iterates of Bn is given, for instance in [15].

2. Operators Uρn
For ρ > 0 and n ∈ N, n ≥ 2, operators Uρn are defined, (see [53], [79]), as follows:

(Uρnf)(x) =

n∑
k=0

pn,k(x)F
ρ
n,k(f), f ∈ C([0, 1]), x ∈ [0, 1],

where

Fn,0(f) = f(0), Fn,n(f) = f(1);

Fn,k(f) =

∫ 1

0

f(t)
tkρ−1(1− t)(n−k)ρ−1

B(kρ, (n− k)ρ)
dt, 1 ≤ k ≤ n− 1.

The eigenstructure of these operators was investigated in [57].
These operators also satisfy the conditions A1)-A6). More precisely we have the

following: Uρnψ = n−1
nρ+1ψ, thus we can take αn = ρ+1

nρ+1 and α = 1. Then, Uρn admits

eigenpolynomials pn,j , 0 ≤ j ≤ n, with deg pn,j = j. Moreover pn,j = ej and U
ρ
n(ej) = ej ,

for j = 0, 1. The eigenvalues are, see [57]:

an,j = ρj
n(n− 1) . . . (n− j + 1)

(nρ)(nρ+ 1) . . . (nρ+ j − 1)
, 0 ≤ j ≤ n.

Therefore we have
lj := lim

n→∞
ann,j = e−

j(j−1)
2 · ρ+1

ρ , j ≥ 0.

The existence of limit polynomials pj = limn→∞ pn,j is also shown in [57]. For proving
the existence of the semigroup of operators generated by the iterates of operators Uρn one
can apply Corollary 2.2.11 from [15].
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5 AVoronovskaya type theorem
associated to geometric series of
Bernstein - Durrmeyer operators
In this chapter we aim to give a Voronovskaya type theorem for the geometric series
operators associated to Bernstein-Durrmeyer operators, introduced by Abel.

This result was published in paper [43]: S, . Garoiu, A Voronovskaya type theorem
associated to geometric series of Bernstein-Durrmeyer operators, Carpathian Journal of
Mathematics(2025), 41(2).

5.1 Geometric series of Bernstein-Durrmeyer opera-
tors

U. Abel, in paper [1], introduced the geometric series associated to Bernstein-Durrmeyer
operators (which first appeared in paper [41] and independently in [70]; their properties
were later studied in [34], [37], [77] etc.)

(Mnf)(x) = (n+ 1)

n∑
k=0

pn,k (x)

1∫
0

pn,k (t) f (t) dt, f ∈ L∞([0, 1]). (5.1)

Namely, the operators he studied are defined as follows:

Pn =
1

n

∞∑
k=0

(Mn)
k
.

These operators are well defined on the space V, which is

V = {f ∈ L∞ ([0, 1]) : ||f ||∗ <∞} , (5.2)

where ∥ · ∥∗ is the norm:

||f ||∗ = sup
y∈(0,1)

∣∣∣∣∣∣(ψ (y))−1

y∫
0

f (x) dx

∣∣∣∣∣∣ .
Also, V endowed with the norm ||·||∗ is a Banach space.

For f ∈ V , define the function F on (0, 1) by

F (y) = (ψ (y))−1

y∫
0

f (x) dx, y ∈ (0, 1) . (5.3)
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Then, f = (ψF )
′
a. e. on [0, 1] and ||f ||∗ = ||F ||∞ .

Further, the operator P : V → V, was defined as

P (f)(x) =

1∫
0

t∫
x

F (u) dudt, x ∈ [0, 1], f ∈ V, (5.4)

Integrating by parts in (5.4) it can be seen that

P (f)(x) = −
x∫

0

tF (t) dt+

1∫
x

(1− t)F (t)dt, x ∈ [0, 1], f ∈ V, (5.5)

and here, by differentiation one finds

P ′(f)(x) = −F (x) . (5.6)

In his paper, Abel proved that operators Pn satisfy the following convergence result

Theorem 5.1.1. If f ∈ V , then, in (V, ||·||∗) , the convergence

lim
n→∞

||Pn (f)− P (f)||∗ = 0, (5.7)

holds.

Also, Abel obtained the following two results concerning the norm of operators Mn

and Pn on the space V .

Proposition 5.1.2. For each n ∈ N, operatorsMn map V to V, that is, Mn (V ) ⊂ V, and

||Mn||L(V,V ) =
n

n+ 2
. (5.8)

Proposition 5.1.3. For each n ∈ N operators Pn map V to V, that is, Pn (V ) ⊂ V, and

||Pn||L(V,V ) =
1

2
+

1

n
. (5.9)

More recent results concerning the power series of approximation operators can be
seen in [10], [46], [47], [56] and [84]. Also a small summary of the main results on this
topic can be seen in Chapter 2 Section 5 as well.

5.2 A Voronovskaya type result

In this section we will provide our main result, namely we will prove our Voronovskaya

type theorem associated to operators Pn. First, we will denote by GMn
=

∞∑
k=0

(Mn)
k
the

geometric series associated to Bernstein - Durrmeyer operatorsMn, where the convergence
holds on V. Next, we will prove that the following identities hold.



30

Lemma 5.2.1. (see Lemma 2.1 from [43]) Operator GMn ∈ V and it verifies the identi-
ties:

(I −Mn) ◦GMn
= I, (5.10)

and
GMn

◦ (I −Mn) = I, (5.11)

where I denotes the identity operator.

In the following we will work on space V1 = V ∩C([0, 1]). Note that condition f ∈ V1
is equivalent with conditions f ∈ C([0, 1]) and the relation below holds∫ 1

0

f(t)dt = 0. (5.12)

On this space, we define the operator U : V1 → C([0, 1]) through

U(f) (y) =


(ψ (y))−1

y∫
0

f (x) dx, y ∈ (0, 1)

f(0), y = 0
−f(1), y = 1

f ∈ V1, (5.13)

and norm ∥ · ∥∗ as:
∥f∥∗ = sup

y∈[0,1]

|U(f)(y)|. (5.14)

Here, we have U(f)(1) = limy→1

∫ y
0
f(t)dt

ψ(y) and U(f)(0) = limy→0

∫ y
0
f(t)dt

ψ(y) , so, since ψ(0) =

ψ(1) = 0, using l’ Hospital’s rule we will have that U(f)(1) = −f(1) and U(f)(0) = f(0).
Next, we will define the operator

Θ(h)(x) = −
∫ x

0

th(t)dt+

∫ 1

x

(1− t)h(t)dt, (5.15)

where h ∈ C([0, 1]) and x ∈ [0, 1]. This operator has the following property.

Proposition 5.2.2. (see Proposition 2.3 from [43]) The operator Θ maps C([0, 1]) to V1,
i. e.

Θ(C([0, 1])) ⊂ V1.

From above and from (5.15), we have that

P (f) := Θ(U(f)), f ∈ V1. (5.16)

Next, on the space V1, the following result concerning the norm ∥ · ∥∗ holds.

Lemma 5.2.3. (see Lemma 2.2 from [43]) For any function f ∈ V1 we have that:

∥f∥∗ ≤ 2∥f∥∞. (5.17)

Now, we can prove our main result.
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Theorem 5.2.4. (see Theorem 2.2 from [43]) Let f ∈ V1 be a ten times differentiable

function on [0, 1] and which satisfies the following conditions
∫ 1

0
f(y) logψ(y)dy = 0,

f(0) + f(1) = 0, f ′(0)− f ′(1) = 0, f ′′(0) + f ′′(1) = 0 and f ′′′(0)− f ′′′(1) = 0. Then:

lim
n→∞

n(Pn (f)− P (f)) = 2P (f)−Θ(T ′ψ′)− 1

2
Θ(T ′′ψ), (5.18)

with regard to the norm ∥ · ∥∗.
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6 Exponential Kantorovich
Stancu operators
In this chapter we introduce a new class of operators of exponential type, obtained as
a modification in Stancu sense (similar to the one for operators Bn, see operators Bα,βn

([89]), with their expression as in (2.8)), of Bernstein-Kantorovich exponential operators
([18]), Kn given in (2.10). Then we will prove that these operators satisfy Korovkin’s the-
orem, we will obtain a convergence result in a weighted version of the norm on Lp spaces,
a Voronovskaya asymptotic result and some evaluations of the order of approximation
using K-functionals and moduli of smoothness.

These results were published in [45]:
S, . Garoiu, Exponential Kantorovich-Stancu operators, Bull. Univ. Transilvania

Brasov, Ser. 3, Math. Comput. Sci., 5(67), 2025, no. 2, 127-144.

6.1 Definition and convergence results

Let us introduce the following operators:

Kα,β,µ
n f(x) = (n+ β + 1)eµx

n∑
k=0

pn,k(an+1(x))

∫ k+α+1
n+β+1

k+α
n+β+1

e−µtf(t)dt, f ∈ C([0, 1]), (6.1)

where x ∈ [0, 1] and 0 ≤ α ≤ β, µ > 0, an(x) = e
µx
n+β −1

e
µ

n+β −1
, n ∈ N. These operators are

a Stancu modification of the exponential Bernstein-Kantorovich operators, Kn given in
(2.10), obtained by Angeloni and Costarelli in [18].

In order to show that these operatos verify Korovkin’s theorem we will check their
convergence for test functions e0(x) = 1, expµ(x) = eµx and exp2µ(x) = e2µx, for x ∈ [0, 1],
which form a Chebyshev set. First, it is obvious that

Kα,β,µ
n expµ(x) = expµ(x), x ∈ [0, 1]. (6.2)

In order to obtain our approximation results we will need the following Lemma.

Lemma 6.1.1. (see Lemma 1 from [45]) For x ∈ [0, 1] we have that:

Kα,β,µ
n e0(x) =

n+ β + 1

µ
eµx(1− e−

µ
n+β+1 )e−

µ(α+n)
n+β+1 (1− e

µx
n+β+1 + e

µ
n+β+1 )n, (6.3)

Kα,β,µ
n exp2µ(x) =

n+ β + 1

µ
eµxe

µα
n+β+1 (e

µ
n+β+1 − 1)e

µnx
n+β+1 , (6.4)

Kα,β,µ
n exp3µ(x) =

n+ β + 1

2µ
eµxe

2µα
n+β+1 (e

2µ
n+β+1 − 1) (6.5)

×
(
e
µ(x+1)
n+β+1 + e

µx
n+β+1 − e

µ
n+β+1

)n
,
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Kα,β,µ
n exp4µ(x) =

n+ β + 1

3µ
eµxe

3µα
n+β+1 (e

3µ
n+β+1 − 1) (6.6)

×
(
e
µ(x+2)
n+β+1 + e

µ(x+1)
n+β+1 + e

µx
n+β+1 − e

2µ
n+β+1 − e

µ
n+β+1

)n
.

Having in mind Lemma 6.1.1 and the fact that e0, expµ and exp2µ form a Chebyshev

set we can prove that operators Kα,β,µ
n f uniformly converge to functions f ∈ C([0, 1]).

Theorem 6.1.2. (see Theorem 1 from [45]) For f ∈ C([0, 1]) we have that Kα,β,µ
n f

converges uniformly to f on [0, 1].

Now, we will provide an approximation result for functions belonging to a weighted
version of Lp spaces.

In the following, by the space Lpµ([0, 1]) we mean the space of all functions f that
satisfy:

∥f∥p,µ =

{∫ 1

0

|e−µxf(x)dx|p
} 1
p

<∞.

Also, it can be seen that if f ∈ Lpµ([0, 1]), then f ∈ Lp([0, 1]) and reciprocally.

Theorem 6.1.3. (see Theorem 2 from [45]) For f ∈ Lpµ([0, 1]) and n ∈ N, we have that:

∥Kα,β,µ
n f∥p,µ ≤

((
1 +

β

n+ 1

)
e

µ
n+β+1 − 1

µ
n+β+1

) 1
p

∥f∥p,µ, (6.7)

and consequently,
∥Kα,β,µ

n f∥p,µ ≤ Θµ,β∥f∥p,µ, (6.8)

where Θµ,β =
((

1 + β
2

)
eµ−1
µ

) 1
p

. Moreover,

∥Kα,β,µ
n f − f∥p,µ → 0, as n→ ∞. (6.9)

Remark 6.1.4. (see Remark 1 from [45]) The inequalities in Theorem 6.1.3 can be
rewritten using norm ∥ · ∥p, and also we have that:

∥Kα,β,µ
n ∥p ≤ eµΘµ,β . (6.10)

6.2 Voronovskaya Theorem

In this section we will prove a Voronovskaya type theorem in order to get the rate of
approximation by our operators. In what follows, because the Chebyshev set considered
is {e0, expµ, exp2µ}, we will write our function f ∈ C2([0, 1]) as f(x) = (f ◦lnµ)(expµ), x ∈
[0, 1] where lnµ(x) = logeµ(x) is the inverse of expµ(x).

For such functions, the following Voronovskaya formula holds.
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Theorem 6.2.1. (see Theorem 3 from [45]) Let f ∈ C2([0, 1]). The following limit

lim
n→∞

n(Kα,β,µ
n f − f)(x) =

[
−1

2
− α+ (1 + β + µ)x− µx2

]
(µf(x)− f ′(x)) (6.11)

+
x(1− x)

2
(f ′′(x) + µf(x)),

holds uniformly for x ∈ [0, 1].

6.3 Quantitative estimates

In what follows we will provide some characterizations of the rate of convergence of
our operators to functions from C([0, 1]). The results are obtained in terms of certain
K-functionals, which will be defined along the way, first order modulus of continuity
and second order modulus of smoothness. Some of these results are obtained using the
equivalence between K-functionals and the moduli presented.

To obtain the estimates mentioned in the beginning of this section we will need the
following auxiliary result.

Lemma 6.3.1. (see Lemma 2 from [45]) For y ∈ [0, 1] we have that

n∑
k=0

pn,k(y)

∣∣∣∣ k + α

n+ β + 1
− y

∣∣∣∣ ≤ Ωn,β , (6.12)

where Ωn,β =

√
(β+1)2+n/4

n+β+1 .

Now, we can state our first quantitative result which involves the first order modulus
of continuity defined as:

ω1(f, δ) = sup{|f(t)− f(x)|, t, x ∈ [0, 1], |t− x| < δ}, f ∈ C([0, 1]), δ > 0.

To this purpose, the following theorem holds.

Theorem 6.3.2. (see Theorem 4 from [45]) Let f ∈ C([0, 1]). Then, for n ∈ N we have
that:

|Kα,β,µ
n f(x)− f(x)| ≤ |f(x)|

C1
α,β,µ

n
+ eµω1(exp

−1
µ f, τn) (6.13)

+eµω1

(
exp−1

µ f,
1√

n+ β + 1

){
1 +

1

2
√
n+ β + 1

+ Ωn,β

}
,

where
τn = max

x∈[0,1]
|an+1(x)− x|, (6.14)

and C1
α,β,µ is a constant depending on α, β, µ.



35

Further, we will provide an estimate for the approximation of functions f ∈ Lp([0, 1]),
1 ≤ p <∞ using Peetre’s K-functional:

K1(f, δ)p = inf
g∈C1[0,1]

{∥f − g∥p + δ∥g′∥∞}, δ > 0, 1 ≤ p <∞. (6.15)

Theorem 6.3.3. (see Theorem 5 from [45]) Let f ∈ Lp([0, 1]), 1 ≤ p < ∞ and n ∈ N.
Then:

∥Kα,β,µ
n f − f∥p ≤

C1
α,β,µ

n
∥f∥∞ + eµ(Θβ,µ + 1)K1

(
f,

δα,βn

Θβ,µ + 1

)
p

, (6.16)

where δα,βn = 1
2(n+β+1) +Ωn,β + τn and C1

α,β,µ is a constant depending on α, β and µ.

Now, to proceed with our last result we will need the following definitions of K-
functionals and of the second order smoothness modulus ω2:

Kj(f, δ) = inf
g∈Cj([0,1])

{∥f − g∥∞ + δj∥g(j)∥∞}, f ∈ C([0, 1]), δ > 0, j = 1, 2,

and
ω2(f, δ) = sup

h∈[0,δ]

sup
x∈[0,1−h

2 ]

∣∣∆2
h(f, x)

∣∣ ,
where ∆2

h(f, x) = f(x)− 2f(x+ h) + f(x+ 2h).
It is well-known that between theseK-functionals and ω1 and ω2 the following relations

exist (see [62]): Kj(f, δ) ≤ Cjωj(f, δ), f ∈ C([0, 1]), δ > 0, j = 1, 2, where Cj are
constants depending only on j.

Theorem 6.3.4. (see Theorem 6 from [45]) Let f ∈ C([0, 1]). Then:

∥Kα,β,µ
n f − f∥∞ ≤ 2

C1
α,β,µ

n
∥f∥∞ + C∗

1ω1

(
f,

1

n

)
+ C∗

2ω2

(
f,

1√
n

)
, (6.17)

for every n ∈ N, where C∗
1 and C∗

2 are constants depending on α, β, µ.
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7 Exponential Bernstein
Durrmeyer operators
In this chapter, our aim is to give an exponential variant of Bernstein-Durrmeyer operators
Mn from (5.1) similar to the variant proposed by Angeloni and Costarelli for Bernstein-
Kantorovich exponential operators ([18]), Kn from (2.10). Then we will prove that these
operators satisfy Korovkin’s theorem, we will obtain a convergence result in a weighted
version of the norm on Lp spaces, a Voronovskaya asymptotic result, some evaluations of
the order of approximation using K-functionals and moduli of smoothness and finally a
simultaneous approximation result is proved.

These results were published in [44]:
S, . Garoiu, Exponential Bernstein-Durrmeyer operators, General Mathematics(2024),

Volume 32, no. 2, 84-97.

7.1 Definition and some remarks

Let us recall the well known Bernstein-Durrmeyer operators:

Mnf(x) = (n+ 1)

n∑
k=0

pn,k (x)

1∫
0

pn,k (t) f (t) dt, n ∈ N, f ∈ L∞([0, 1]).

As we mentioned in the beginning, we will introduce an exponential variant of operators
Mn as follows:

M∗
nf(x) = (n+ 1)eµx

n∑
k=0

pn,k(x)

∫ 1

0

pn,k(t)f(t)e
−µtdt, f ∈ C([0, 1]), x ∈ [0, 1], n ∈ N,

(7.1)
where µ > 0 is a real parameter.

First, we have the following simple remark, which states that our operators preserve
exponential function expµ(x) = eµx, x ∈ [0, 1].

Remark 7.1.1. (see Remark 1 from [44]) For x ∈ [0, 1] and n ∈ N we have that:

M∗
nexpµ(x) = (n+ 1)eµx

n∑
k=0

pn,k(x)

∫ 1

0

pn,k(t)dt = eµx
n∑
k=0

pn,k(x) = eµx.

Next, the following identity holds.

Remark 7.1.2. (see Remark 2 from [44]) For f ∈ C([0, 1]), n ∈ N, x ∈ [0, 1] we have

M⋆
nf(x) = expµ(x)Mn(f exp−µ)(x). (7.2)
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Note that our operators are constructed in a similar fashion as the operators obtained
by Angeloni and Costarelli ([18]) from (2.10), however here we won’t need the modification
of the argument of the Bernstein basis polynomials pn,k.

Let us recall the definition of the first order modulus of continuity

ω1(f, δ) = sup{|f(t)− f(x)|, |t− x| < δ x, t ∈ [0, 1], δ > 0}.

For f ∈ C1([0, 1]) we recall the definition of the second order modulus of smoothness

ω2(f, δ) = sup
h∈[0,δ]

sup
x∈[0,1−h

2 ]

∣∣∆2
h(f, x)

∣∣ ,
where ∆2

h(f, x) = f(x)− 2f(x+ h) + f(x+ 2h) is the second order finite difference of f,
with step h.

Using the above moduli we will provide some quantitative estimates regarding the
degree of approximation by our operators. Another such estimation will be given using
the well-known Peetre’s K- functionals

Kj(f, δ) = inf
g∈Cj([0,1])

{∥f − g∥∞ + δj∥g(j)∥∞}, f ∈ C([0, 1]), δ > 0, j = 1, 2. (7.3)

and the following relation between Kj and ωj :

Kj(f, δ) ≤ Cjωj(f, δ), j = 1, 2

where Cj is a constant depending only on j (for more details see [62]). Here by Cj([0, 1])
we mean the space of functions having continuous jth derivative on [0, 1] for j = 1, 2.

7.2 Convergence results

Let γi(x) = xi expµ(x), i = 0, 1, 2, x ∈ [0, 1]. Then in view of the following Lemma
we can consider functions γi, i = 0, 1, 2, as the test functions which will be used when
verifying the conditions of Korovkin theorem for operators M∗

n.

Lemma 7.2.1. (see Lemma 1 from [44]) The set {γi(x)| i = 0, 1, 2, . . . , x ∈ [0, 1]} is
a Chebyshev system.

For test functions γ0, γ1, γ2 the following result holds.

Lemma 7.2.2. (see Lemma 2 from [44]) The following identities are true:

M∗
nγ0(x) = γ0(x) = expµ(x), (7.4)

M∗
nγ1(x) =

n

n+ 2
γ1(x) +

1

n+ 2
γ0(x) (7.5)

M∗
nγ2(x) =

n(n− 1)

(n+ 2)(n+ 3)
γ2(x) +

n

(n+ 2)(n+ 3)
γ1(x) +

2

(n+ 2)(n+ 3)
γ0(x) (7.6)

Now, we can prove our convergence result.
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Theorem 7.2.3. (see Theorem 1 from [44]) Let f ∈ C([0, 1]). Then M∗
nf converges

uniformly to f on [0, 1].

Further, we will prove that our operators approximate functions belonging to Lp

spaces. However, since our operators are defined as in (7.1) it will be in hand to work
with a weighted version of Lp spaces, namely we will prove the convergence of operators
M∗
n in Lpµ([0, 1]). Having this in mind, we say that a function f : [0, 1] → R belongs to

Lpµ([0, 1]) if f ∈ Lp([0, 1]) and

∥f∥p,µ =

{∫ 1

0

∣∣e−µtf(t)∣∣p dt} 1
p

<∞. (7.7)

Even though, if f ∈ Lpµ([0, 1]) then f ∈ Lp([0, 1]) (and conversely), our choice of the space
is motivated by the definition of operators M∗

n.

Theorem 7.2.4. (see Theorem 2 from [44]) Let f ∈ Lpµ([0, 1]). Then:

∥M∗
nf∥p,µ ≤ ∥f∥p,µ. (7.8)

Moreover,
lim
n→∞

∥M∗
nf − f∥p,µ = 0. (7.9)

7.3 Voronovskaya theorem

In this section we will give a Voronovskaya result regarding our operators M∗
n. In what

follows by C2([0, 1]) we mean the space of continuous functions on [0, 1] which admit a
second derivative at x ∈ (0, 1).

Theorem 7.3.1. (see Theorem 3 from [44]) If f ∈ C2([0, 1]) then, for x ∈ [0, 1]:

lim
n→∞

n(M∗
nf − f)(x) = [µ2x(1− x)− µ(1− 2x)]f(x) (7.10)

+[1− 2x− 2µx(1− x)]f ′(x) + x(1− x)f ′′(x).

7.4 Quantitative estimates

In this section we will provide some quantitative estimates of the approximation by op-
erators M∗

n. Namely, we have the following result.

Theorem 7.4.1. (see Theorem 4 from [44]) For f ∈ C([0, 1]), n ∈ N, x ∈ [0, 1] and
δ > 0, we have

|f(x)−M⋆
nf(x)| ≤ eµx

[
1 +

(2n− 6)x(1− x) + 2

δ2(n+ 2)(n+ 3)

]
ω1 (f · exp−µ, δ) , (7.11)
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and

|f(x)−M⋆
nf(x)| ≤ eµx

[
|1− 2x|
δ(n+ 2)

ω1 (f · exp−µ, δ)

+

(
1 +

(2n− 6)x(1− x) + 2

2δ2(n+ 2)(n+ 3)

)
ω2 (f · exp−µ, δ)

]
, (7.12)

Consequently, we have

∥f −M⋆
nf∥ ≤ 3

2
eµ · ω1

(
f · exp−µ,

1√
n

)
, (7.13)

and

∥f −M⋆
nf∥ ≤ eµ ·

[
1√
n
· ω1

(
f · exp−µ,

1√
n

)
+

5

4
ω2

(
f · exp−µ,

1√
n

)]
. (7.14)

Further, another estimate using ω1 can be given in the following theorem.

Theorem 7.4.2. (see Theorem 5 from [44]) Let f ∈ C([0, 1]). For x ∈ [0, 1] and n ∈ N,
we have that:

|f(x)−M∗
nf(x)| ≤

(
e2µx +

1

2
eµx
)
ω1

(
f · e−µ·, 1√

n

)
. (7.15)

In what follows, we will proceed with giving an estimate of the degree of approxima-
tion, of functions belonging to C([0, 1]), in terms of the moduli ω1 and ω2 using Peetre’s
K-functionals from (7.3) and the relation between them and these moduli.

Theorem 7.4.3. (see Theorem 6 from [44]) If f ∈ C([0, 1]) and n ∈ N we have that:

∥M∗
nf − f∥∞ ≤ µ2eµ + 4µ

4n
∥f∥∞ +K1

n,µω1

(
f,

eµ(2µ+ 1) + 4

eµ(8n+ µ2) + 4µ

)
(7.16)

+K2
n,µω2

(
f,

√
eµ(2µ+ 1) + 4

eµ(8n+ µ2) + 4µ

)
,

where K1
n,µ = C1

[eµ(8n+µ2)+4µ](µeµ+2)

2n[eµ(2µ+1)+4] and K2
n,µ = C2

e2µ(8n+µ2)+4µeµ

4n[eµ(2µ+1)+4] , with C1 and C2

constants.

7.5 Simultaneous approximation

In what follows we will provide a simultaneous approximation result concerning our op-
erators. In order to do this we will need the rth order derivative of M∗

n. First let us recall
a result which is due to Derriennic (see [34]):

Lemma 7.5.1. Let f ∈ Cr([0, 1]). Then, for x ∈ [0, 1], n ∈ N:

dr

dxr
Mnf(x) =

(n+ 1)!n!

(n− r)!(n+ r)!

n−r∑
k=0

pn−r,k(x)

∫ 1

0

pn+r,k+r(t)f
(r)(t)dt. (7.17)
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Next, we will make the following notation

Qn,jf(x) =
(n+ 1)!n!

(n− j)!(n+ j)!

n−j∑
k=0

pn−j,k(x)

∫ 1

0

pn+j,k+j(t)f(t)dt. (7.18)

Remark 7.5.2. We have that:

dj

dxj
(Mnf)(x) = Qn,jf

(j)(x). (7.19)

From (7.18) we can see that operators Qn,j are linear and positive and the following
Lemma, due to Derriennic (see [34]), holds.

Lemma 7.5.3. Let f ∈ C([0, 1]) be a function. Then Qn,jf converges uniformly to f.

Now, we can proceed with the main result of this section.

Theorem 7.5.4. (see Theorem 7 from [44]) Let f ∈ Cr([0, 1]) and s = 0, 1, . . . , r. Then
we have that:

lim
n→∞

ds

dxs
(M∗

nf) = f (s), (7.20)

uniformly on [0, 1].
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8 Conclusions
A great part of this thesis deals with the study of problems in approximation theory
by using power series of operators. In this sense, we obtained convergence theorems
of the power series of positive linear operators sequences in two different contexts, one
based on Voronovskaya theorems and the other one using C0-semigroups of operators.
In the first context we also obtained a result concerning the iterates of positive linear
operators which proved to be an explicit representation of the Voronovskaya Theorem
for Micchelli combinations of positive linear operators. So far, to our knowledge, there is
no such result except a partial representation of the limit in the Voronovskaya Theorem
mentioned above, given only for Bernstein operators. Apart from this, we also studied
Voronovskaya theorems concerning a class of operators obtained through geometric series
of Bernstein-Durrmeyer operators.

Another research direction approached is the study of some operators obtained as
modifications of the exponential kind of Kantorovich and Durrmeyer type operators. This
direction is connected to recent advances in this sense from the current literature on the
subject.

The subjects addressed in this thesis can be continued by more studies of the power
series constructed with positive linear operators and the thesis opens further research
concerning the connection between C0-semigroups and approximation problems and also
further generalizations of some classes of operators obtained using different modifications.
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[24] D. Bărbosu, Kantorovich-Stancu type operators, Journal of Inequalities in Pure and
Applied Mathematics, 5, (2004), 1-6.

[25] E. Berdysheva, Uniform convergence of Bernstein–Durrmeyer operators with respect
to arbitrary measure, J. Math. Anal. Appl., 394(1), (2012), 324-336.
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