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1 Introduction
1.1 Considerations on constructive approxima-

tion theory

The topics studied in this doctoral thesis are part of the mathematical field of
approximation theory. Approximation theory can be seen as a link between pure
and applied mathematics. The primary concern of the topic is approximation of
real-valued continuous functions by some simpler, more manageable functions.
Another point of interest is the quantitative approximation as well as the error
of approximation.

The fundamentals of this field were established by the work of some math-
ematicians among which we can mention K. Weierstrass, S. N. Bernstein, D.
Jackson, P. P. Korovkin, G. G. Lorentz and many others.

Moreover, this research field has history in our country. This field was in-
tensively studied by great mathematicians such as T. Popoviciu, D. D. Stancu
and A. Lupaş.

One of the most important results, known in literature as the First Wier-
strass approximation theorem, stated by K. Weierstrass in [116] states that for
any continuous function f ∈ C([a, b]) and any ε > 0, there is a real coefficients
polynomial function p(x), such that |f(x) − p(x)| < ε, for any x ∈ [a, b]. The
most famous proof of Weierstrass’s approximation theorem was proposed by S.
N. Bernstein in [18], where the author provided a constructive method which led
to the well-known Bernstein operators. These operators are defined as follows:

Bn (f, x) =

n∑
k=0

pn,k (x) f

(
k

n

)
, x ∈ [0, 1] , f ∈ C([0, 1]),

where

pn,k (x) =

(
n

k

)
xk (1− x)

n−k
, for 0 ≤ k ≤ n,

and pn,k (x) = 0 for k > n.
After these operators were introduced, many researchers found a lot of prop-

erties concerning them. For example see the following [14, 19, 26, 30, 81, 82,
100, 115].

Also, for extending the family of functions to be approximated, one can
find a lot of other operators, such as Kantorovich’s, where the function to be
approximated should be integrable on [0, 1] (f ∈ L1([0, 1])),

Kn(f, x) = (n+ 1)

n∑
k=0

pn,k

∫ k+1
n+1

k
n+1

f(t)dt, x ∈ [0, 1], f ∈ L1([0, 1]),

where pn,k is defined above. Kantorovich operators were intensively studied and
some of their modification represent an ongoing research topic, for example see:
[59, 61, 94, 106, 107].

Another generalization, also for integrable functions on [0, 1], was given by
J. L. Durrmeyer in [43] and independently by A. Lupaş in [72]:

Dn(f, x) = (n+ 1)

n∑
k=0

pn,k(x)

∫ 1

0

pn,k(t)f(t)dt, f ∈ L1([0, 1]), x ∈ [0, 1],
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with pn,k defined above. For more results concerning Durrmeyer’s operators,
see [38, 72, 79, 85].

Other operators that are very important in literature and also relevant for
the results obtained in this thesis are mentioned in preliminaries chapter, where
we will recall some of their properties which helped in the proofs of our results.

Some comprehensive and useful expositions on the constructive approxima-
tion topic can be consulted in the following references [9, 12, 35, 37, 86, 93, 103].

1.2 Motivations for choosing the theme

Approximation theory, as a branch of mathematics, represent a bridge be-
tween pure and applied mathematics. One can mention various applications in
significant areas of research, such as:

� constructive approximation;

� interpolation;

� probability theory;

� functional analysis;

� operator theory;

� numerical analysis;

� computer aided geometrical design;

� machine learning.

1.3 Structure of the thesis

In this thesis, we present new contributions to approximation by linear pos-
itive or non-positive operators and constructive approximation theory. The
results are structured in five chapters. First chapter is dedicated to establishing
the notations and terminology as well as mentioning the mathematical objects
that are used in this thesis. In the second chapter we present some non-positive
Durrmeyer type operators. Here are discussed two classes of Durrmeyer type
operators which are linear but not positive operators on their entire domain
of definition. Third chapter contains new classes of Stancu-Kantorovich type
operators modified in King sense. These operators are presented in a different
chapter because they posses the positivity property. Here we discuss three new
methods of obtaining operators of Stancu-Kantorovich type. Fourth chapter is
dedicated to non-positive Kantorovich type operators attached to some linear
differential operators. In the first section of this chapter we discuss only the
generalization of Bernstein operators in Kantorovich’s sense and in the second
section we propose a method to obtain a generalization of Kantorovich opera-
tors that posses some properties such as simultaneous approximation. The fifth
chapter is dedicated to introducing a double weighted second order modulus of
continuity. In this chapter we propose a new second order modulus depend-
ing on two weight functions. An application of this modulus is presented for
Szász-Mirakjan operators.
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The first chapter, Preliminaries, contains the notations and terminology
as well as some key concepts that are essential for the results presented in this
thesis. Here we also present some particular operators that are later generalized
or used in examples.

Chapter two, Non-positive Durrmeyer type operators, is dedicated to
introducing some new Durrmeyer type operators that are not positive on the
entire interval [0, 1]. The main results in this chapter are part of the papers ”On
approximation properties of some non positive Bernstein-Durrmeyer
type operators”, An. S, t. Univ. Ovidius Constant,a, Vol. 21(1), 2023;
and ”On approximation properties of some non-positive Bernstein-
Durrmeyer type operators modified in the Bezier-King sense”, pub-
lished in Dolomites Research Notes on Approximation, 16(3), 104-117, 2023.
The results presented in this chapter, concerning the two classes of operators
mentioned above, are proved using some new methods that are not always
straightforward.

Chapter three, Kantorovich type operators modified in King sense
contains three new classes of positive linear operators of Stancu-Kantorovich
type. The results in this chapter are part of the paper ”On New Classes of
Stancu-Kantorovich-Type Operators”, Mathematics 2021, which is pub-
lished in collaboration with Ştefan Lucian Garoiu and Cristina Maria Păcurar.
Here, we propose some operators that preserve two of the test functions ei, i ∈
{0, 1, 2} and prove that they are approximation operators. We also study the
rate of convergence in each case using the first order modulus of continuity.

Chapter four, Non-positive Kantorovich type operators attached to
some linear differential operators, is structured in two sections. First sec-
tion is dedicated to some general Bernstein-Kantorovich operators, where we
propose a modification of Bernstein operators using a linear differential operator
with constant coefficients. For this class of operators we prove an approximation
result, a Voronovskaja type result and also a simultaneous approximation result.
We conclude the first section by providing a counterexample that proves the
non-positivity of these operator. The results presented in this section are part
of two papers ”Approximation Properties of Some Non-positive Kan-
torovich Type Operators”, 2022 Proceedings of International E-Conference
on Mathematical and Statistical Sciences: A Selçuk Meeting (2022), 188-194,
and Voronovskaja type theorem for some non-positive Kantorovich
type operators, Carpathian Journal of Mathematics Vol. 40, No. 1 (2024),
187-194. The second section of this chapter presents some generalized Kan-
torovich operators. Here, we propose a Kantorovich modification using a linear
differential operator with non constant coefficients. The results in this section
are presented for an arbitrary sequence of positive linear operators Ln possess-
ing the simultaneous approximation property. For these operators we provide
an approximation result and a Voronovskaja type result. In the case where the
coefficients of the differential operator are constant, we were also able to prove
a simultaneous approximation result. The section ends with generalizations of
some classical operators. The results can be found in the paper Generalized
Kantorovich operators, General Mathematics, Vol. 32, No.2 (2025), 67-83.

Chapter five, Double weighted second order modulus, is dedicated to
introducing a new second order modulus depending on two weight functions.
This new modulus is useful in order to obtain estimates of the degree of ap-
proximation of functions with fast growth to infinity, by general positive linear
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operators which preserve polynomials of degree one. The chapter concludes with
an example for Szász-Mirakjan operators. The results in this chapter can be
found in the paper ”Double weighted modulus”, submitted for publishing,
which was obtained in collaboration with professor Radu Păltănea.

In summary, this thesis presents a comprehensive study and research of ap-
proximation by positive linear operators, linear operators which are not positive
and of constructive approximation theory. This thesis proposes new methods
and frameworks and also covers fundamental concepts of the theory.

1.4 Original results contained in the thesis

The original results contained in this thesis are the following:

A On approximation properties of some non-positive Bernstein-Durrmeyer
type operators

The novelty brought with this paper is related to introducing a new class of
Bernstein-Durrmeyer operators that are not positive on the entire interval
[0, 1]. The lack of positivity led to proposing new methods of proving the
approximation result without using the classical Korovkin theorem on the
part of the interval on which the operators are not positive.

B On approximation properties of some non-positive Bernstein-Durrmeyer
type operators modified in the Bezier-King sense

Here, we introduce a new class of Bernstein-Durrmeyer operators modi-
fied in Bezier-King sense. These operators are not positive on the entire
interval [0, 1]. Here, in order to prove the approximation of continuous
functions on all [0, 1] we proceed in two different manners on the part of
the interval where the operators are positive and on the part where they
are not. In this paper we prove some results concerning the rate of ap-
proximation using the first and second order moduli of smoothness. Also,
we provide a Voronovskaja type result.

C On New Classes of Stancu-Kantorovich-Type Operators

We introduce three classes of approximation operators that preserve two
of the test functions e0, e1, e2 at a time. We prove that the approximation
holds on a interval I ⊂ [0, 1] in each case. The operators studied here are
positive linear operators.

D Approximation Properties of Some Non-positive Kantorovich Type Oper-
ators

We propose a new class of Bernstein-Kantorovich type operators con-
structed using a linear differential operator with constant coefficients. We
prove that the finite differences of order k of a function F on equidistant
knots uniformly approximate the k-th derivative of the function F . This
result helps us prove that these new operators of Bernstein-Kantorovich
type are approximation operators for all continuous functions on [0, 1].
We conclude by stating the non positivity of these operators.

E Voronovskaja type theorem for some non-positive Kantorovich type opera-
tors
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In this paper we prove a Voronovskaja type theorem and a simultaneous
approximation result for the operators introduced in the paper above.

F Generalized Kantorovich operators

We introduce a sequence of more general Kantorovich type operators de-
fined using a linear differential operator with non-constant coefficients.
The approximation result and the Voronovskaja type theorem proved here
are given for a general sequence of operators Ln ∈ C([0, 1]). We conclude
this paper by providing examples for some classical operators and a coun-
terexample for each, which proves that their Kantorovich variant is not
positive.

G Double weighted modulus

We introduce a new second order modulus depending on two weight func-
tions. This new modulus is useful in order to obtain estimates of the
degree of approximation of functions with fast growth to infinity, by gen-
eral positive linear operators which preserve polynomials of degree one.
The results conclude with an example for Szász-Mirakjan operators.

1.5 Dissemination of the results

The results mentioned in the previous section were disseminated in the math-
ematical community in form of published papers in international journals and
also as communications at conferences and workshops as follows:

A In the framework of ”44th summer symposium in real analysis” held be-
tween 20-24 Jun 2022 Paris and Orsay, France, I presented a talk entitled
”On Approximation Properties of some non-positive Bernstein-Durrmeyer
Type Operators”.

Also, at the conference ”Functional Analysis, Approximation Theory and
Numerical Analysis” held between 5-8 July 2022, Matera Italy, I held the
talk entitled ”On Approximation Properties of some non-positive Bernstein-
Durrmeyer Type Operators”.

I published the paper: B. I. Vasian, ”On Approximation Properties of
some non-positive Bernstein-Durrmeyer Type Operators”, An. Şt. Univ.
Ovidius Constanţa, Vol 31(1), 2023.

B In the framework of the 14th edition of ”International conference on ap-
proximation theory and its applications”, Alexandru Lupaş, Sibiu, Septem-
ber 12-14 2022, I presented a talk entitled ”Approximation properties of
some non-positive Kantorovich type operators”.

C In the framework of ”International E-Conference on Mathematical and
Statistical Sciences: A Selcuk Meeting” 2022 (ICOMSS’22), I presented a
talk entitled ”Approximation properties of some non-positive Kantorovich
type operators”.

I published the paper: B. I. Vasian, Approximation Properties of Some
Non-positive Kantorovich Type Operators, 2022 Proceedings of Interna-
tional E-Conference on Mathematical and Statistical Sciences: A Selçuk
Meeting (2022), 188-194.
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D In the framework of 4th Edition of MACOS 2022, ”International Confer-
ence on Mathematics and Computer Science” held between 15-17 Septem-
ber, 2022, Braşov, Romania, I presented the talk entitled ”On approxima-
tion properties of some non-positive linear operators”.

E In the framework of 5th Edition of MACOS 2024, ”International Confer-
ence on Mathematics and Computer Science” held between 13-15 June,
2024, Braşov, Romania, I presented the talk entitled ”Generalized Kan-
torovich operators”.

I published the paper B. I. Vasian, Generalized Kantorovich operators,
General Mathematics, Vol. 32, No. 2 (2025), 67-83.

F Other published papers:

B. I. Vasian, Voronovskaja type theorem for some non-positive Kan-
torovich type operators, Carpathian Journal of Mathematics Vol. 40, No.
1 (2024), 187-194.

B. I. Vasian, On approximation properties of some non-positive Bernstein-
Durrmeyer type operators modified in the Bezier-King sense, Dolomites
Research Notes on Approximation, 16(3) (2023), 104-117.

B. I. Vasian, Ş. L. Garoiu, C. M. Păcurar, On New Classes of Stancu-
Kantorovich-Type Operators, Mathematics (2021).

R. Păltănea, B. I. Vasian, Double weighted modulus, submitted for pub-
lishing.
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2 Preliminaries
2.1 Notations and terminology

Let I ⊂ R be an interval.
We denote by F (I) = {f : I → R} the set of all real functions defined on

I. With B(I) = {f : I → R : f bounded} we denote the set of all bounded
functions defined on I. By C (I) = {f : I → R : f continuous} we denote the
set of all continuous real functions defined on I.

For k ∈ {0, 1, . . . }, by Ck(I) we understand the set of all continuously dif-
ferentiable functions of order k. In particular, by C0(I) we mean C(I).

We denote by P(I) the set of all polynomials on I and with Πk the set of
polynomials of degree at most k.

By test function or monomial function we mean ej(t) = tj , j ∈ {0, 1, . . . }.
Let X be a Banach space. We will denote by ∥ · ∥X the norm on X.
If X = B(I), then by the norm of a function ∥f(·)∥, f ∈ B(I), on I we mean

the supremum norm:

∥f∥ = sup
x∈I

|f(x)|, f ∈ B(I). (2.1)

Further we will enlist some operators that are used in the thesis:

� The identity operator Id which satisfy Id(f) = f , f ∈ F(I);

� Big-O Landau symbol : O(f(x)) = {g(x) : ∃ c, x0 > 0 such that 0 ≤
f(x) ≤ cg(x), ∀ x ≥ x0};

� Little-o Landau symbol: o(f(x)) = {g(x) : ∀ c > 0, ∃ x0 > 0 such that 0 ≤
f(x) < cg(x), ∀ x ≥ x0}.

Another useful operator is the first finite difference operator with step k of a
function f :

∆kf (x) = f (x+ k)− f (x) . (2.2)

The l-th iterate of ∆k is denoted by ∆l
k and is defined as follows

∆l
kf (x) = ∆k

[
∆l−1

k f (x)
]
, (2.3)

and from the identity above, one can obtain the following formula:

∆l
kf (x) =

l∑
i=0

(−1)
l−i

(
l

i

)
f (x+ ik) . (2.4)

Proposition 2.1.1. [35] If f is a polynomial of degree l− 1 then ∆l
kf (x) = 0.

Let I be an interval and x0, x1, . . . , xn ∈ I, n + 1 distinct points of I. Let
f be a function defined on I. The divided differences of f on x0, x1, . . . , xn are
given by

f [xk] : = f (xk) , k = 0, n, (2.5)

f [xk, xk+1, . . . , xk+p] : =
f [xk+1, . . . , xk+p]− f [xk, xk+1, . . . , xk+p−1]

xk+p − xk
,
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for k = 0, n− p, j = 0, n.
For the divided differences we mention the following:

Proposition 2.1.2. [35] If f is a polynomial of degree < n, then

f [x0, x1, . . . , xn] = 0. (2.6)

Proposition 2.1.3. [35] (Mean value theorem for divided differences) If f is n
times differentiable, then

f [x0, x1, . . . , xn] =
f (n) (ξ)

n!
, (2.7)

for ξ ∈
(
mink∈{0,1,...n} xk,maxk∈{0,1,...n} xk

)
.

Proposition 2.1.4. [35] The following relation between finite differences and
divided differences holds:

f [x, x+ h, . . . , x+ lh] =
1

l!hl
∆l

hf (x) . (2.8)

In the theory of approximation by operators, moduli of continuity were
proved to be very useful. These mathematical objects can be used for mea-
suring the smoothness of a function in a more elegant way.

Definition 2.1.5. [35] Let I ⊂ R be an interval and f ∈ F(I). The modulus of
continuity of a function f is given by

ω1(f, h) = sup{|f(x)− f(y)| : |x− y| ≤ h; x, y ∈ I}, h ≥ 0. (2.9)

In the case of a continuous function f on an interval I ⊂ R satisfying
ω1(f, h) = o(h), one obtains that f is constant, therefore the modulus of con-
tinuity is not useful for measuring higher smoothness. In this case, the moduli
of smoothness are needed. These moduli are connected with higher order finite
differences.

Definition 2.1.6. [35] Let I ⊂ R and f ∈ C(I), for I compact. The l-th order
modulus of smoothness of f is defined as:

ωl(f, h) = sup
0<k≤h

∥∆l
k(f, x)∥, h ≥ 0. (2.10)

The moduli of smoothness presented above represent a very useful tool for
approximation problems. However, in the recent research, the classical moduli of
smoothness proved to be inefficient. To answer these shortcomings, the following
moduli were introduced, which will be called in this thesis weighted moduli of
smoothness for a function f .

Definition 2.1.7. [37] Let I ⊂ R and f ∈ F(I). The weighted modulus of
smoothness for f is given by:

ωφ
l (f, h) = sup

0<k≤h
∥∆l

kφ(·)(f, ·)∥, h ≥ 0, (2.11)

where the function φ(x) is chosen in relation to the problem which arises.
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Remark 2.1.8. The step kφ(x) in the definition above varies with x ∈ I.

Remark 2.1.9. If φ(x) ≡ 1, then (2.11) is the classical modulus of smoothness
defined in (2.10).

The function φ(x) from the definition of the weighted modulus of smooth-
ness, also called the weight function, is defined for x ∈ I ( where I = (a, b) with
a ∈ {−∞, 0} and b ∈ {1,∞}), should satisfy the following:

Proposition 2.1.10. [37]

A φ = 1 locally;

B there are two values γ(a) and γ(b) such that γ(0) ≥ 0, γ(1) ≥ 0 and
γ(±∞) ≤ 1 for which

φ(x) ≃


|x|γ(a), x → a+ for a ∈ {−∞, 0}
xγ(∞), x → ∞ for b = ∞
(1− x)γ(1), x → 1− for b = 1

; (2.12)

C φ(x) is a measurable function (with respect to a measure µ) and there
exists M0, k0 constants, such that for each 0 < k ≤ k0 and every finite
interval J ⊂ I, the following measure inequality holds:

µ ({x ∈ I : x± hφ(x) ∈ J}) ≤ M0µ(E). (2.13)

Next, we will recall the definitions of K-functionals, K-functionals of order
l and weighted K-functionals.

Definition 2.1.11. [35] Let X,Y be two Banach spaces such that Y ⊂ X
continuously embedded. The K-functional of f ∈ X is defined by

K(f, t) := K(f, t;X,Y ) := inf
g∈Y

{∥f − g∥X + t∥g∥Y }, t ≥ 0. (2.14)

Definition 2.1.12. The l-th order K-functional of a function f ∈ F(I) is given
by

Kl(f, t
l) = inf

g∈Cl(I)
{∥f − g∥+ tl∥g(l)∥}, t ≥ 0. (2.15)

Definition 2.1.13. The l-th order weighted K-functional of f ∈ F(I) is defined
as

Kφ
l (f, t

l) = inf
g∈Cl(I)

{∥f − g∥+ tl∥φlg(l)∥}, t ≥ 0. (2.16)

One of the most important results concerning K-functionals and moduli of
smoothness is the following equivalence theorem.

Theorem 2.1.14. [35] Suppose φ satisfies the conditions in Proposition 2.1.10,
l ∈ {0, 1, . . . } and f ∈ C(I), where I = (0, 1), I = (0,∞) or I = R, then

C1ω
φ
l (f, t) ≤ Kφ

l (f, t
l) ≤ C2ω

φ
l (f, t), 0 < t ≤ t0, (2.17)

where C1, C2, t0 > 0 are constants.
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3 Non-positive Durrmeyer
type operators

In this chapter, we study some Durrmeyer type operators. For these oper-
ators we have proved some approximation results along with error estimation
and Voronovskaja type theorems. The results in this chapter are based on the
work published in two papers: Vasian B. I., On approximation properties of
some non-positive Bernstein-Durrmeyer type operators, An. S, t. Univ. Ovidius
Constant,a, Vol. 21(1), 2023; and Vasian B. I., On approximation properties of
some non-positive Bernstein-Durrmeyer type operators modified in the Bezier-
King sense, Dolomites Research Notes on Approximation, 16(3), 104-117, 2023.

3.1 On approximation properties of some non-
positive Bernstein-Durrmeyer type opera-
tors

In this first section we shall present the results on a new type of Bernstein
Durrmeyer operators which are not positive on the entire interval [0, 1]. For
these operators we will prove a uniform convergence result on all continuous
functions on [0, 1] as well as a result given in terms of modulus of continuity ω1.
A Voronovskaja type theorem will be proved as well.

These results have been published in the paper B.I. Vasian,On approxima-
tion properties of some non-positive Bernstein-Durrmeyer type operators, An.
S, t. Univ. Ovidius Consstant,a, Vol. 21(1), 2023.

As we have seen, Durrmeyer operators presented in (1.1) posses some pow-
erful approximation properties.

Let us introduce the Durrmeyer type modification we will further study.

Definition 3.1.1. [108]
Let α ≥ 0. For every f ∈ C([0, 1]), we define:

Dα
n (f, x) = (n+ 1)

(
n+ α

n

) n∑
k=0

pαn,k (x)

∫ n
n+α

0

pαn,k (t) f (t) dt, x ∈ [0, 1] ,

(3.1)

where pαn,k (x) =
(
n+α
n

)n (n
k

)
xk
(

n
n+α − x

)n−k

, n, k ∈ N, k ≤ n.

Remark 3.1.2. [108] For α = 0 we obtain the classical Bernstein-Durrmeyer
operators, and for α = 1 we get the operators studied by Deo N. et al. in paper
[33].

Remark 3.1.3. [108] Dα
n (f, x) defined in (3.1) is a linear operator which is

positive for x ∈
[
0, n

n+α

]
and non-positive on

(
n

n+α , 1
]
.

In order to prove our results, we need the following.
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Lemma 3.1.4. [74] We have the following recurrence relation:

x

(
n

n+ α
− x

)(
pαn,k (x)

)′
= n

(
k

n+ α
− x

)
pαn,k (x) , x ∈ [0, 1] (3.2)

Further, we will need some results concerning the operator Dα
n .

Lemma 3.1.5. [108] We have the following:

∫ n
n+α

0

tk+s

(
n

n+ α
− t

)n−k

dt =

(
n

n+ α

)n+s+1

B (k + s+ 1, n− k + 1) ,

(3.3)
where B(·, ·) is Euler’s Beta function.

Proposition 3.1.6. [108] Operators Dα
n satisfy the following relations:

i) Dα
n (e0, x) = 1;

ii)Dα
n (e1, x) =

n
n+2x+ n

(n+α)(n+2) ;

iii)Dα
n (e2, x) =

n(n−1)
(n+2)(n+3)x

2 + 4n2

(n+2)(n+3)(n+α)x+ 2n2

(n+2)(n+3)(n+α)2
,

where x ∈ [0, 1] .

Now, we denote by Mn,m (x) the m-th order moments for operators Dα
n ,

which have the following expression:

Mn,m (x) = Dα
n ((t− x)

m
, x) (3.4)

= (n+ 1)

(
n+ α

n

) n∑
k=0

pαn,k (x)

∫ n
n+α

0

(t− x)
m · pαn,k (t) dt.

Theorem 3.1.7. (See Theorem 6 in [108]) The following recurrence relation
holds:

(m+ n+ 2)Mn,m+1 (x) = x

(
n

n+ α
− x

)[
2mMn,m−1 (x) +M ′

n,m (x)
]

(3.5)

+ (m+ 1)

(
n

n+ α
− 2x

)
Mn,m (x) .

With all of the above, we are able to state our first result concerning ap-
proximation properties of Dα

n .

Theorem 3.1.8. (See Theorem 8 in [108]) For all α ≥ 0, f ∈ C([0, 1]), and
for all ε ∈ (0, 1), the following holds:

lim
n→∞

Dα
n (f) = f, uniformly on [0, 1− ε]. (3.6)

As for the above result, we were able to prove the uniform convergence only
on the interval where operators Dα

n are positive. Our next aim is to prove that
the operators Dα

n can approximate all continuous functions on entire [0, 1], even
though they are not positive operators on the entire interval.

Proposition 3.1.9. (See Proposition 9 in [108]) For l ∈ {0, 1, . . . } we have:

Dα
n (el, x) = (n+ 1)

(n!)
2

(n+ l + 1)!

min{n,l}∑
i=0

(
l

i

)
l!

i!

1

(n− i)!

(
n

n+ α

)l−i

xi. (3.7)
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With the above result, we can state the following:

Proposition 3.1.10. (See Proposition 10 in [108]) For all l ∈ {0, 1, . . . }, we
have

Dα
n (el) → el uniformly on [0, 1]. (3.8)

Remark 3.1.11. [108] From Proposition 3.1.10 and the linearity of the oper-
ators Dα

n , we conclude that for all polynomials P ∈ P([0, 1]), the convergence
Dα

n (P, x) → P (x) holds uniformly for x ∈ [0, 1].

With all of the above results, we are closer to prove the uniform convergence
for all continuous functions on [0, 1]. We also need to prove that the norm of
the operators Dα

n is bounded. For this, we have the following result.

Proposition 3.1.12. (See Proposition 12 in [108]) We have:

∥Dα
n∥ ≤ e2α, (3.9)

for all n ∈ {1, 2, . . . }, and α ≥ 0.

Theorem 3.1.13. (See Theorem 13 in [108]) For all f ∈ C([0, 1]), we have:

lim
n→∞

Dα
n (f) = f uniformly on [0, 1]. (3.10)

The following results are dedicated to the estimation of the error of approx-
imation using the first modulus of continuity ω1(f, δ).

Theorem 3.1.14. (See Theorem 14 in [108]) For f ∈ C([0, 1]) and x ∈ [0, 1]
we have:

|Dα
n (f, x)− f (x)| ≤

{
1 +

1

δ

√
2

n+ 2

[
x

(
n

n+ α

)
+

1

n+ 3

]}
ω1 (f, δ) , (3.11)

for x ∈
[
0, n

n+α

]
, and

|Dα
n (f, x)− f (x)| ≤

{
e2α +

e2α

δ′

[
2α

n
+

n

(n+ α) (n+ 2)

]}
ω1 (f, δ

′) , (3.12)

for x ∈
(

n
n+α , 1

]
.

Remark 3.1.15. [108] If we take

δ = δ′ = max

{√
2

n+ 2

[
n

n+ α
+

1

n+ 3

]
,
2α

n
+

n

(n+ α)(n+ 2)

}
, (3.13)

then
∥ Dα

n(f)− f ∥≤ 2e2αω(f, δ). (3.14)



17

3.1.1 Voronovskaja type result

In this section, we will prove another result measuring the error of approxi-
mation.

Theorem 3.1.16. (See Theorem 16 in [108]) Let f ∈ C([0, 1)) be a bounded,
two times differentiable function at the point x ∈ (0, 1) . Then, the following
limit holds:

lim
n→∞

n [Dα
n (f, x)− f (x)] = (1− 2x) f ′ (x) + x (1− x) f ′′ (x) . (3.15)

3.1.2 Some graphs

For the first example we considered the function f(x) = x3− (11/6)x2+x−
1/6 for x ∈ [0, 1]. In this case we have obtained Figure 3.1.

Figure 3.1: α = 1 and n = 50

Secondly we took the function f(x) = |x − 0.5| for x ∈ [0, 1] and we got
Figure 3.2.

Figure 3.2: α = 1 and n = 50

As it can be seen from the figures and from the proved result, the operators
Dα

n have good properties of approximation even though they are not positive
operators on the entire [0, 1].
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3.2 On approximation properties of some non-
positive Bernstein-Durrmeyer type opera-
tors modified in the Bezier-King sense

This section is dedicated to some results concerning Bernstein-Durrmeyer
type operators which are defined using the methods proposed by King and
Bezier. The operators obtained here are also not positive on the entire [0, 1]
interval, but they are approximation operators. Some of the results are obtained
in a straightforward manner using the first modulus of continuity. For the results
concerning the second order modulus of smoothness, we use the appropriate K-
functional. In the later, we prove a Voronovskaja type result in order to see the
error of approximation.

These results were published in paper B. I. Vasian, On approximation
properties of some non-positive Bernstein-Durrmeyer type operators modified in
the Bezier-King sense, Dolomites Research Notes on Approximation, Vol. 16,
2023.

Let us consider τ : [0, 1] → [0, 1] such that τ is a differentiable and increasing
function satisfying τ (0) = 0 and τ (1) = 1.

For proving our results, we consider f to be a bounded function on [0, 1], and
we will need the first order modulus of continuity ω1, the second order modulus
of smoothness ω2 and the appropriate K-functionals.

Having in mind the operators introduced and studied in the previous section,
we will introduce the following:

Definition 3.2.1. [109] Let α ≥ 0. For every f ∈ C([0, 1]), we define:

Dα,θ
n,τ (f, x) = (3.16)

(n+ 1)

(
n+ α

n

) n∑
k=0

Qα,τ,θ
n,k (x)

∫ n
n+α

0

pαn,k (t)
(
f ◦ τ−1

)
(t) dt, x ∈ [0, 1] ,

where

Qα,τ,θ
n,k (x) =

[
Jα,τ
n,k (x)

]θ
−
[
Jα,τ
n,k+1 (x)

]θ
, (3.17)

with θ ≥ 1 an integer and Jα,τ
n,k (x) =

∑n
j=k p

α,τ
n,k (x) , where

pα,τn,k (x) =

(
n+ α

n

)n(
n

k

)
τk (x)

(
n

n+ α
− τ (x)

)n−k

. (3.18)

Remark 3.2.2. [109] We will mention the following remarks concerning nota-
tions:

A If index θ is missing, we assumed that θ = 1;

B If index τ is missing, then we considered τ(x) = x.

For the operators Dα,θ
n,τ defined in (3.16) we can mention the following:

Remark 3.2.3. [109] From the definition, it can be seen that the operators Dα,θ
n,τ

are linear operators on C([0, 1]).

Remark 3.2.4. [109] There is ξn ∈ (0, 1) having the property τ(ξn) = n
n+α ,

such that τ (x) > n
n+α for x ∈ (ξn, 1] and τ (x) ≤ n

n+α for x ∈ [0, ξn] , therefore

the operators Dα,θ
n,τ are not positive on the entire interval [0, 1] .
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3.2.1 Auxiliary results

In order to prove our results concerning these operators, we will need the
following results concerning operators Dα

n,τ , i.e. when θ = 1.
The following result provides a recurrence formula for pα,τn,k (x).

Lemma 3.2.5. (See Lemma 3.2 in [109]) For the functions pα,τn,k (x) in (3.18),
we have the following:

τ (x)

(
n

n+ α
− τ (x)

)(
pα,τn,k (x)

)′
= nτ ′(x)

(
k

n+ α
− τ (x)

)
pα,τn,k (x) , x ∈ [0, 1].

(3.19)

Lemma 3.2.6. (See Lemma 3.3 in [109]) The operators Dα
n,τ satisfy the fol-

lowing relations:

A Dα
n,τ (e0, x) = 1;

B Dα
n,τ (τ, x) =

1
n+2

(
nτ (x) + n

n+α

)
;

C Dα
n,τ

(
τ2, x

)
= 1

(n+2)(n+3)

(
n (n− 1) τ2 (x) + 4n2

n+ατ (x) +
2n2

(n+α)2

)
;

where τ is defined above, and x ∈ [0, 1] .

Denote by Mτ,α
n,m (x) the central moment of order m ∈ {0, 1, 2, . . . } of the

operators Dα
n,τ , which is defined as follows

Mτ,α
n,m (x) = Dα

n,τ ((τ (t)− τ (x))
m
, x) , x ∈ [0, 1] .

Lemma 3.2.7. (See Lemma 3.4 in [109]) The following recurrence relation
holds:

(m+ n+ 2) τ ′(x)Mτ,α
n,m+1 (x) (3.20)

= τ (x)

(
n

n+ α
− τ (x)

)[
2mτ ′ (x)Mτ,α

n,m−1 (x) +
(
Mτ,α

n,m

)′
(x)
]

+(m+ 1) τ ′ (x)

(
n

n+ α
− 2τ (x)

)
Mτ,α

n,m (x) .

Remark 3.2.8. [109] To simplify the notations, we denote

ϕτ (x) := τ (x)

(
n

n+ α
− τ (x)

)
.

Remark 3.2.9. [109] The function ϕτ (x) attains its maximum for τ(x) =

n
2(n+α) and its maximum value is maxϕτ = 1

4

(
n

n+α

)2
.

Proposition 3.2.10. (See Proposition 3.6 in [109]) The following norm in-
equality holds: ∥∥Dα

n,τf
∥∥ ≤ e2α ∥f∥ , (3.21)

for all f ∈ C([0, 1)].

The following inequalities are useful in our main results.
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Remark 3.2.11. [109] For a, b ∈ [−1, 1] and θ ≥ 1 integer, the inequality∣∣aθ − bθ
∣∣ ≤ θ |a− b| (3.22)

holds.

Remark 3.2.12. [109] We have the following inequality

|Qα,τ,θ
n,k (x) | =

∣∣∣∣[Jα,τ
n,k (x)

]θ
−
[
Jα,τ
n,k+1 (x)

]θ∣∣∣∣ (3.23)

≤ θ
∣∣∣Jα,τ

n,k (x)− Jα,τ
n,k+1 (x)

∣∣∣ = θ|pα,τn,k (x) |,

obtained as a consequence of Remark 3.2.11, where θ ≥ 1 is an integer.

Using the results stated above, we get the following results concerning the
operators Dα,θ

n,τ .

Proposition 3.2.13. (See Proposition 3.7 in [109]) We have the following:∥∥Dα,θ
n,τf

∥∥ ≤ θe2α ∥f∥ , (3.24)

for all f ∈ C([0, 1]).

Remark 3.2.14. [109] We have Dα,θ
n,τ (e0, x) = 1 for all x ∈ [0, 1] . Indeed,

computing Dα,θ
n,τ (e0, x), we get

Dα,θ
n,τ (e0, x) =

n∑
k=0

Qα,τ,θ
n,k (x) =

n∑
k=0

{[
Jα,τ
n,k (x)

]θ
−
[
Jα,τ
n,k+1 (x)

]θ}

=
[
Jα,τ
n,0 (x)

]θ
=

[
n∑

k=0

pα,τn,k (x)

]θ
= 1,

for all x ∈ [0, 1] .

3.2.2 Quantitative approximation

In the following we will establish some quantitative results using different
types of moduli of continuity: the classical modulus of continuity ω1 and a
combination of ω1 and the modulus of smoothness ω2.

Theorem 3.2.15. (See Theorem 4.1 in [109]) For f ∈ C([0, 1]) we have

∣∣Dα,θ
n,τ (f, x)− f (x)

∣∣ ≤ {1 + 1

δ

n

n+ α

√
θ (n+ 1)

2 (n+ 2) (n+ 3)

}
ω1

(
f ◦ τ−1, δ

)
,

(3.25)
for x ∈ [0, ξn] , δ > 0, and∣∣Dα,θ

n,τ (f, x)− f (x)
∣∣ ≤ θe2α

{
1 +

1

δ′

[
2α

n
+

n

(n+ 2) (n+ α)

]}
ω1

(
f ◦ τ−1, δ′

)
,

(3.26)
for x ∈ (ξn, 1] , δ

′ > 0.
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Corollary 3.2.16. (See Corollary 4.2 in [109]) Let f ∈ C([0, 1]). We have:

∣∣Dα,θ
n,τ (f, x)− f (x)

∣∣ ≤ 2ω1

(
f ◦ τ−1|[0,ξn],

n

n+ α

√
θ (n+ 1)

2 (n+ 2) (n+ 3)

)
, (3.27)

for x ∈ [0, ξn] , and∣∣Dα,θ
n,τ (f, x)− f (x)

∣∣ ≤ 2θe2αω1

(
f ◦ τ−1|[ξn,1],

2α

n
+

n

(n+ 2) (n+ α)

)
, (3.28)

for x ∈ (ξn, 1] .

Lemma 3.2.17. (See Lemma 4.3 in [109]) For x ∈ [0, 1], we have the following:

Dα,θ
n,τ

(
(τ (t)− τ (x))

2
, x
)
≤ θ

n+ 1

2 (n+ 2) (n+ 3)

(
n

n+ α

)2

, for x ∈ [0, ξn],

(3.29)
and∣∣∣Dα,θ

n,τ

(
(τ (t)− τ (x))

2
, x
)∣∣∣ ≤ θe2α

2n
[
n2 − n (2− α)− 3α

]
(n+ 2) (n+ 3) (n+ α)

2 , for x ∈ (ξn, 1].

(3.30)

The following result is expressed in terms of ω1 and ω2. In order to obtain
this result we have to impose some restrictions to function τ (x) as follows:

� τ (x) ∈ C2([0, 1]);

� infx∈[0,1] τ
′ (x) ≥ l, l ∈ R+.

� supx∈[0,1] |τ ′′ (x)| ≤ β, β ∈ R+.

Theorem 3.2.18. (See Theorem 4.4 in [109]) For f ∈ C([0, 1]), we have:∣∣Dα,θ
n,τ (f, x)− f (x)

∣∣ (3.31)

≤ θe2α + 1

2

C1ω1

f,
2ζ1

(
1 + β

2lζ1

)
θe2α + 1

+ C2ω2

f,

√
ζ21

θe2α + 1

 , x ∈ [0, ξn] ,

where ζ1 =
√
θ
l

n
n+α

√
n+1

2(n+2)(n+3) and C1, C2 are constants not depending on n,

and ∣∣Dα,θ
n,τ (f, x)− f (x)

∣∣ (3.32)

≤ θe2α + 1

2

C∗
1ω1

f,
2ζ2

(
1 + β

2lζ2

)
θe2α + 1

+ C∗
2ω2

f,

√
ζ22

θe2α + 1

 , x ∈ (ξn, 1] ,

where ζ2 = 1
l

√
θe2α 2n[n2−n(2−α)−3α]

(n+2)(n+3)(n+α)2
, and C∗

1 , C∗
2 are constants not depending

on n.
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3.2.3 Voronovskaja type result

In this section we will prove a Voronovskaja type result for the operators
Dα,θ

n,τ .

Lemma 3.2.19. (See Lemma 5.1 in [109]) Let f ∈ C2[0, 1].Then:∣∣n [Dα,θ
n,τ (f, x)− f (x)

]∣∣ (3.33)

≤ θ
2n

n+ 2

∣∣∣∣f ′(x)

τ ′(x)

∣∣∣∣ (τ (x) + n

n+ α

)
+θ

n

(n+ 2) (n+ 3)

∣∣∣∣∣ f ′′(x)

(τ ′(x))
2 − f ′(x)

τ ′′(x)

(τ ′(x))
3

∣∣∣∣∣
[
(n− 3)ϕτ (x) +

(
n

n+ α

)2
]

(3.34)

+Λn (x) ; x ∈ [0, ξn] ,

where Λn (x) → 0 as n → ∞.

Theorem 3.2.20. (See Theorem 5.2 in [109]) For f ∈ C2 [0, 1] and x ∈
[0, 1), we have:

lim sup
n→∞

(
n
[
Dα,θ

n,τ (f, x)− f (x)
])

(3.35)

= 2θ

∣∣∣∣f ′(x)

τ ′(x)

∣∣∣∣ (τ (x) + 1) + θ

∣∣∣∣∣ f ′′(x)

(τ ′(x))
2 − f ′(x)

τ ′′(x)

(τ ′(x))
3

∣∣∣∣∣ τ (x) (1− τ (x)) ; x ∈ [0, 1).
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4 Kantorovich type opera-
tors modified in King sense

In this chapter we will present some results concerning Kantorovich type
operators. Namely, we will treat some classes of Kantorovich type operators
modified using Stancu and King’s methods. The classes obtained this way are
consisting only of linear positive operators, and for these classes the uniform
approximation of all continuous functions on specific intervals is proven.

4.1 On New Classes of Stancu-Kantorovich-Type
Operators

This section is dedicated to presenting the results obtained in the paper
Vasian B. I., Garoiu Ş.L., Păcurar C.M., On New Classes of Stancu-Kantorovich-
Type Operators. Mathematics 2021.

Here, we introduced new classes of Stancu-Kantorovich type operators con-
structed with the method introduced by King in paper [66]. Each class is con-
structed such that the operators preserve two test functions at a time. Firstly,
we will study the operators which preserve e0 and e1. Secondly, e0 and e2, and
lastly e1 and e2. For each class we have studied the uniform approximation
of continuous functions on some intervals on which operators remain positive.
Also, some error estimation results are provided in each case.

Let us introduce the classes we announced.

Definition 4.1.1. (See Definition 4 in [110]) Let I ⊂ R be an interval and
cn, dn : I → R be some functions satisfying cn (x) ≥ 0, dn (x) ≥ 0 for all
x ∈ I, 0 ≤ α ≤ β and n ∈ {1, 2, . . . }. We define the following operators of
Stancu and Kantorovich type:

S(α,β)∗
n (f, x) = (n+ β + 1)

n∑
k=0

(
n

k

)
(cn (x))

k
(dn (x))

n−k

k+α+1
n+β+1∫
k+α

n+β+1

f (t) dt. (4.1)

for any x ∈ I, m ∈ {1, 2, . . . } and f ∈ L1([0, 1]).

For these operators, we can state the following lemma.

Lemma 4.1.2. (See Lemma 1 in [110]) The operators (4.1) satisfy the following

S(α,β)∗
n (e0, x) = (cn (x) + dn (x))

n
, (4.2)

S(α,β)∗
n (e1, x) =

n

n+ β + 1
cn (x) (cn (x) + dn (x))

n−1
(4.3)

+
2α+ 1

2 (n+ β + 1)
(cn (x) + dn (x))

n
,
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S(α,β)∗
n (e2, x) =

n (n− 1)

(n+ β + 1)
2 c

2
n (x) (cn (x) + dn (x))

n−2
(4.4)

+
n (2α+ 2)

(n+ β + 1)
2 cn (x) (cn (x) + dn (x))

n−1

+
3α (α+ 1) + 1

3 (n+ β + 1)
2 (cn (x) + dn (x))

n

for any x ∈ I, n ∈ {0, 1, . . . }, where ei (t) = ti, i ∈ {0, 1, 2}.

Definition 4.1.3. We denote by Mn,kLn(x), the k-th order moment of the
operators Ln, having the expression:

Mn,k (Ln(x)) = Ln

(
(e1 − x)

k
, x
)
. (4.5)

4.1.1 Stancu-Kantorovich type operators which preserve
functions e0 and e1

Now, we shall impose that Stancu-Kantorovich type operators introduced in
(4.1), preserve test functions e0 and e1. In other words, we shall construct some
operators that satisfy

•1 S(α,β)∗
n (e0, x) = 1;

•2 S(α,β)∗
n (e1, x) = x; (4.6)

•3 lim
n→∞

S(α,β)∗
n (e2, x) = x2 uniformly on some interval.

Now, from the conditions imposed in (4.6) and identities (4.2), (4.3), we obtain

cn (x) =
n+ β + 1

n
x− 2α+ 1

2n
, (4.7)

and

dn(x) =
− (n+ β + 1)x

n
+

2n+ 2α+ 1

2n
, (4.8)

for any n ∈ {1, 2, . . . } and x ∈ I.
If we need our operators to be positive, we shall assume that the functions

cn(x) and dn(x) are positive. This assumption yields to:

2α+ 1

2(n+ β + 1)
≤ x ≤ 2n+ 2α+ 1

2(n+ β + 1)
, for all x ∈ I, and n ∈ {1, 2, . . . }.

Lemma 4.1.4. (See Lemma 2 in [110]) For 0 ≤ α ≤ β and any integers n0 < n,
the following inclusion holds:[

2α+ 1

2(n0 + β + 1)
;
2n0 + 2α+ 1

2(n0 + β + 1)

]
⊂
[

2α+ 1

2(n+ β + 1)
;
2n+ 2α+ 1

2(n+ β + 1)

]
.

Remark 4.1.5. Further in this section we will consider that 0 ≤ α ≤ β.

Remark 4.1.6. Since on the interval
[

2α+1
2(n0+β+1) ;

2n0+2α+1
2(n0+β+1)

]
we have that cn(x), dn(x) ≥

0, for every n ∈ {1, 2, . . . }, we will consider the interval I =
[

2α+1
2(n0+β+1) ;

2n0+2α+1
2(n0+β+1)

]
,

where n0 is a positive integer which is arbitrarily fixed. Note that for any ε > 0,
if we take n0 sufficiently large, then [ε, 1− ε] ⊂ I.
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By taking into account the sequences cn(x) and dn(x) obtained in (4.7) and
(4.8), the operators of type (4.1) will have the following expressions:

S
(α,β)∗
1,n (f, x) = (n+ β + 1)

n∑
k=0

(
n

k

)(
n+ β + 1

n
x− 2α+ 1

2n

)k

(4.9)

×
(
− (n+ β + 1)

n
x+

2n+ 2α+ 1

2n

)n−k

k+α+1
n+β+1∫
k+α

n+β+1

f (t) dt,

for any x ∈ I.

Lemma 4.1.7. (See Lemma 3 in [110]) The operators S
(α,β)∗
1,n in (4.9) satisfy

S
(α,β)∗
1,n (e0, x) = 1;

S
(α,β)∗
1,n (e1, x) = x; (4.10)

S
(α,β)∗
1,n (e2, x) =

n− 1

n
x2 +

n+ 2α+ 1

n (n+ β + 1)
x− n(12α+ 5) + 3(2α+ 1)2

12n(n+ β + 1)2

for x ∈ I.

Regarding the moments of the operators, we have the following result.

Lemma 4.1.8. (See Lemma 4 in [110]) The following relations hold

Mn,0

(
S
(α,β)∗
1,n

)
(x) = 1, (4.11)

Mn,1

(
S
(α,β)∗
1,n

)
(x) = 0, (4.12)

Mn,2

(
S
(α,β)∗
1,n

)
(x) = −x2

n
+

n+ 2α+ 1

n(n+ β + 1)
x+O

(
1

n2

)
. (4.13)

Lemma 4.1.9. (See Lemma 5 in [110]) We have

lim
n→∞

nMn,2

(
S
(α,β)∗
1,n

)
(x) = x(1− x) (4.14)

uniformly for x ∈ I. Moreover, for any ε > 0 there exists an integer nε ≥ n0,
sufficiently large, such that

nMn,2

(
S
(α,β)∗
1,n

)
(x) ≤ 1 + ε

4
, (4.15)

for any x ∈ I and n ∈ {1, 2, . . . } such that n ≥ nε.

Theorem 4.1.10. (See Theorem 2 in [110]) Let f ∈ C([0, 1]). The following
limit holds

lim
m→∞

S
(α,β)∗
1,m (f) = f

uniformly on I. Moreover, for every ε > 0 there exists nε ∈ {1, 2, . . . } such that∣∣∣S(α,β)∗
1,n (f, x)− f (x)

∣∣∣ ≤ (1 + √
1 + ε

2

)
ω1

(
f,

1√
n

)
,

for any x ∈ I and n ∈ {1, 2, . . . }, n ≥ nε.
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Further, we will present a graphical example of approximation. Here, we
have considered the function f(x) = sin(20x), n = 25 iterations, α = 0.1 and
β = 0.2.

Figure 4.1: α = 0.1, β = 0.2, m = 25 iterations

In Figure 4.1 it can be seen that the sequence of operators (blue) can be an
approximation process for the function f (orange).

4.1.2 Stancu-Kantorovich type operators which preserve
functions e0 and e2

Further, we shall treat operators of Stancu-Kantorovich type as in (4.1) for
which we impose the preservation of test functions e0 and e2. In this sense, the
operators are constructed such that:

•1S(α,β)∗
n (e0, x) = 1

•2S(α,β)∗
n (e2, x) = x2 (4.16)

•3 lim
n→∞

S(α,β)∗
n (e1, x) = x uniformly on some interval.

Imposing the conditions above (4.16) and using the identities in (4.2) and (4.4)
we obtain the following conditions on cn(x) and dn(x):

cn(x) + dn(x) = 1, ∀x ∈ I, n ∈ {1, 2, . . . }, (4.17)

and the quadratic equation, in cn(x):

n(n− 1)c2n(x) + 2n(1 + α)cn(x) + α(α+ 1) +
1

3
= x2(n+ β + 1)2, (4.18)

x ∈ I, and n ∈ {1, 2, . . . }.
Note that for α ≥ 0, β ≥ 0, the discriminant

δn(x) = 4n

[
n

(
2

3
+ α

)
+ α2 + α+

1

3
+ x2(n− 1)(n+ β + 1)2

]
(4.19)

of the quadratic equation (4.18) is positive.
We make the following notation:

∆n(x) =
δn(x)

4
.
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By solving the equation (4.18) we get, for n ≥ 2:

cn(x) =
−n(1 + α) +

√
∆n(x)

n(n− 1)
(4.20)

and, from relation (4.17), we obtain:

dn(x) =
n(n+ α)−

√
∆n(x)

n(n− 1)
. (4.21)

In order to apply Korovkin’s Theorem, we need our operators to be positive.
For that, we shall impose that cn(x) and dn(x), from (4.20) and (4.21), are
positive. Thus, we obtain:√

α2 + α+ 1
3

n+ β + 1
≤ x ≤

√
n(n+ 2α+ 1) + α2 + α+ 1

3

n+ β + 1
.

Lemma 4.1.11. (See Lemma 6 in [110]) Let 0 < ε′ < 1
2 be fixed. Then, there

exists an integer n0 ∈ {1, 2, . . . }, such that

[ε′, 1− ε′] ⊂


√

α2 + α+ 1
3

n+ β + 1
;

√
n(n+ 2α+ 1) + α2 + α+ 1

3

n+ β + 1

 , (4.22)

for every n ∈ {1, 2, . . . } such that n ≥ nε and α, β satisfying α ≤ β.

Remark 4.1.12. Because the sequences cn(x) and dn(x) are positive on the
interval (4.22), from now on, we will consider I = [ε′, 1− ε′] , for all ε′ > 0 and
n ≥ n0.

Going back to (4.1) with the expressions of cn(x) and dn(x) in (4.20) and
(4.21), the operators become:

S
(α,β)∗
2,n (f, x) =

n+ β + 1

(n(n− 1))n

n∑
k=0

(
n

k

)(
−n(1 + α) +

√
∆n(x)

)k
(4.23)

×
(
n(n+ α)−

√
∆n(x)

)n−k

k+α+1
n+β+1∫
k+α

n+β+1

f (t) dt,

for any x ∈ I and n ≥ n0.

Lemma 4.1.13. (See Lemma 7 in [110]) The operators S
(α,β)∗
2,n from (4.23)

satisfy:

S
(α,β)∗
2,n (e0, x) = 1;

S
(α,β)∗
2,n (e1, x) =

−(n+ 2α+ 1) + 2
√
∆n(x)

2(n+ β + 1)(n− 1)
; (4.24)

S
(α,β)∗
2,n (e2, x) = x2.

for x ∈ I and n ≥ n0.
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Further, we will present the first three moments of the operator S
(α,β)∗
2,n .

Lemma 4.1.14. (See Lemma 8 in [110]) The following relations hold

Mn,0

(
S
(α,β)∗
2,n

)
(x) = 1, (4.25)

Mn,1

(
S
(α,β)∗
2,n

)
(x) = −x+

−(n+ 2α+ 1) + 2
√

∆n(x)

2(n+ β + 1)(n− 1)
, (4.26)

Mn,2

(
S
(α,β)∗
2,n

)
(x) = 2x

(
x−

−(n+ 2α+ 1) + 2
√

∆n(x)

2(n+ β + 1)(n− 1)

)
, (4.27)

for any x ∈ I and n ∈ {1, 2, . . . }.

Lemma 4.1.15. (See Lemma 9 in [110]) The following limits hold

lim
n→∞

nMn,1

(
S
(α,β)∗
2,n

)
(x) =

1

2
(x− 1) , (4.28)

lim
n→∞

nMn,2

(
S
(α,β)∗
2,n

)
(x) = x (1− x) , (4.29)

uniformly with respect to x ∈ I. Moreover, for any ε > 0 there exists nε > n0

such that

Mn,2

(
S
(α,β)∗
2,n

)
(x) ≤ 1

n

(
1

4
+ ε

)
, (4.30)

for any x ∈ I and n ∈ {1, 2, . . . } such that n ≥ nε.

Theorem 4.1.16. (See Theorem 3 in [110]) Let f ∈ C([0, 1]). Then, we have

lim
n→∞

S
(α,β)∗
2,n (f) = f

uniformly on I. Moreover, for every ε > 0 there exists nε ∈ {1, 2, . . . } such
that: ∣∣∣(S(α,β)∗

2,n f
)
(x)− f (x)

∣∣∣ ≤ (1 +√1

4
+ ε

)
ω1

(
f,

1√
n

)
,

for any x ∈ I and n ∈ {1, 2, . . . } such that n ≥ nε.

For this operators we have obtained the following graphics for the functions
f(x) = 2x3 − 20

7 x2 + 8
7x − 1

7 and f(x) =
∣∣x− 1

2

∣∣, with α = 0.1, β = 0.65 and
n = 50.

Figure 4.2: α = 0.1, β = 0.65, n = 50 iterations
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Figure 4.3: α = 0.1, β = 0.65, n = 50 iterations

4.1.3 Stancu-Kantorovich type operators which preserve
functions e1 and e2

In this section we will impose to the operators of Stancu-Kantorovich type
in (4.1) to preserve the test functions e1 and e2. In this sense, operators should
satisfy

•1 lim
n→∞

S
(α,β)∗
3,n (e0, x) = 1, uniformly on some interval,

•2S(α,β)∗
3,n (e1, x) = x, (4.31)

•3S(α,β)∗
3,n (e2, x) = x2.

In order to obtain the main results of this section, we will make the following
notation

S
(α,β)∗
3,n (e0, x) = 1 + wn (x) , (4.32)

where x ∈ I, n ∈ {1, 2, . . . } and wn : I → R.
With the previous notation we can state the following remark.

Remark 4.1.17. In order to obtain positive operators S
(α,β)∗
3,n , n ∈ {1, 2, . . . }, 0 ≤

α ≤ β , we shall impose that S
(α,β)∗
3,n (e0, x) ≥ 0, which implies

1 + wn (x) ≥ 0, ∀x ∈ I, n ∈ {1, 2, . . . } (4.33)

From the relation (4.32), we get

(cn (x) + dn (x))
n
= 1 + wn (x) ,∀x ∈ I, n ∈ {1, 2, . . . }, (4.34)

which implies

cn (x) + dn (x) = (1 + wn (x))
1
n ,∀x ∈ I, n ∈ {1, 2, . . . }. (4.35)

With the above considerations and imposing the conditions •2 and •3 from
(4.31), we can state the following lemma.

Lemma 4.1.18. (See Lemma 10 in [110]) In order to have S
(αε,β)∗
3,n (e1, x) = x,

cn(x) and dn(x) are the following:

cn (x) =
n+ β + 1

n

[
x− 2α+ 1

2 (n+ β + 1)
(1 + wn (x))

]
(1 + wn (x))

1−n
n (4.36)



30

and

dn (x) = (1 + wn (x))
1
n × (4.37)[

1− n+ β + 1

m
· 1

1 + wn (x)

(
x− 2α+ 1

2 (n+ β + 1)
(1 + wn (x))

)]
.

From condition •2 in (4.31), we get the following quadratic equation in
wn (x) :

w2
n (x) [−5n− 3− α (1 + n+ α)] +

wn (x) {−12n
[
(n+ 1)

2
+ β (β + 2n+ 2)

]
x2+

12
[
(n+ 1)

2
+ 2α(1 + n) + β (1 + n+ 2α)

]
x− 2 [5n+ 3 + 12α (1 + n+ α)]}+

+{−12
[
(n+ 1)

2
+ β (β + 2n+ 2)

]
x2+

+12
[
(n+ 1)

2
+ 2α (1 + n) + β (1 + n+ 2α)

]
x− [5n+ 3 + 12α (1 + n+ α)]} = 0,

with solutions denoted wn,1 and wn,2, wn,2 < wn,1.

Remark 4.1.19. It can be verified that the solutions of the quadratic equation
above satisfy lim

n→∞
wn,2 (x) = −∞ and lim

n→∞
wn,1 (x) = 0, uniformly for x ∈

(0, 1).
From now on, in this section we will consider wn(x) = wn,1(x).

In order to have a positive operator, the quantities cn(x) and dn(x) from
relations (4.36) and (4.37) shall be positive. With these conditions, we obtain

x− 2α+ 1

2 (n+ β + 1)
(1 + wn(x)) ≥ 0,

and

1− n+ β + 1

n
· 1

1 + wn (x)

(
x− 2α+ 1

2 (n+ β + 1)
(1 + wn (x))

)
≥ 0,

for all x ∈ I, n ∈ {1, 2, . . . } and 0 ≤ α ≤ β which leads to:

2 (n+ β + 1)

2n+ 2α+ 1
x− 1 ≤ wn (x) ≤

2 (n+ β + 1)

2α+ 1
x− 1, (4.38)

for all x ∈ I, n ∈ {1, 2, . . . } and 0 ≤ α ≤ β.

Lemma 4.1.20. (See Lemma 11 in [110]) Let 0 < ε′ < 1
2 . Then there exists

n0 ∈ {1, 2, . . . } such that relation (4.38) holds for any x ∈ [ε′, 1 − ε′] and
n ∈ {1, 2, . . . }, n ≥ n0.

From now on, we will consider I = [ε′, 1− ε′], with fixed 0 < ε′ < 1
2 .
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We can write the operators in (4.1) as

S
(α,β)∗
3,n (f, x) = (n+ β + 1)

n∑
k=0

(
n

k

)
(1 + wn (x))

1−k

×
(
n+ β + 1

n

(
x− 2α+ 1

2 (n+ β + 1)
(1 + wn (x))

))k

×
(
1− n+ β + 1

n (1 + wn (x))

(
x− 2α+ 1

2 (n+ β + 1)
(1 + wn (x))

))n−k

k+α+1
n+β+1∫
k+α

n+β+1

f (t) dt.

Lemma 4.1.21. (See Lemma 12 in [110]) For x ∈ I, I = [ε′, 1−ε′], 0 < ε′ < 1
2 ,

and n ∈ {1, 2, . . . }, we have

Mn,0

(
S
(α,β)∗
3,n

)
(x) = 1 + wn (x) ,

Mn,1

(
S
(α,β)∗
3,n

)
(x) = −xwn (x) ,

Mn,2

(
S
(α,β)∗
3,n

)
(x) = x2wn (x) .

Theorem 4.1.22. (See Theorem 4 in [110]) We have

lim
n→∞

S
(α,β)∗
3,n (f) = f

uniformly on [ε′, 1− ε′], 0 < ε′ < 1
2 , for every f ∈ C([0, 1]).

Remark 4.1.23. Having in mind the result in [48] which proves there is no
sequence of positive linear analytic operators L : C([0, 1]) → C([0, 1]) that pre-
serve the test functions e1 and e2, we can mention that the restriction of the
image to [ε′, 1−ε′], 0 < ε′ < 1

2 , is the maximum interval on which our operators
remain positive.

Further, we will provide some graphical example as a comparison between

our operators S
(α,β)∗
3,n denoted by PolKS(x), and the operators P (x) obtained by

Indrea et al. in [62], which are a particular case of our operators with α = β = 0.

Figure 4.4: f(x) = sin(20x), α = 10, β = 20, n = 50 iterations

Now, we consider the function f(x) = |x− 0.5| and we obtain the following
graphic:
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Figure 4.5: f(x) = |x− 0.5|, α = 10, β = 20, n = 50 iterations
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5 Non-positive Kantorovich
type operators attached to
some linear differential oper-
ators

In this chapter, we present some operators obtained as a generalization of
Kantorovich operators using different kinds of linear differential operators. The
results presented in this chapter were published in the following three papers:
Vasian, B. I., Approximation Properties of Some Non-positive Kantorovich
Type Operators, 2022 Proceedings of International E-Conference on Mathe-
matical and Statistical Sciences: A Selçuk Meeting (2022), 188-194; Vasian,
B. I., Voronovskaja type theorem for some non-positive Kantorovich type op-
erators, Carpathian Journal of Mathematics Vol. 40, No. 1 (2024), 187-194 and
Vasian, B. I., Generalized Kantorovich operators, General Mathematics, Vol.
32, No.2, (2025), 67-83.

The first section of this chapter is dedicated to some general Bernstein-
Kantorovich operators which are not positive on [0, 1], but can be used to uni-
form approximate all continuous functions on it.

In the second section, we will treat the most general Kantorovich type op-
erators. The method presented there is useful for providing countless approxi-
mation operators, which are not positive on [0, 1].

5.1 Some general Bernstein-Kantorovich opera-
tors

In this section, we will provide a generalization of Bernstein-Kantorovich
operators using a linear differential operator of order l with constant coeffi-
cients, Dl, and its corresponding anti-derivative operator I l, having the prop-
erty Dl◦I l = Id. We will prove that the convergence on all continuous functions
on [0, 1] holds even though the operators constructed this way are not positive.
The way of constructing our operators is actually Kantorovich’s method pre-
sented in Section 2.8.3, meaning our operators will be obtained as a composition
between the derivative operator Dl, Bernstein operator of order n + l and the
antiderivative operator I l.

Let l ∈ {1, 2, . . . } ,

Dlf =

l∑
i=0

aif
(i), (5.1)

a0, a1, a2, . . . , al ∈ R. The corresponding antiderivative operator I l is obtained
from condition Dl ◦ I l = Id. This leads to:(

Dl ◦ I l
)
(f) = f,
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that is equivalent with:

al
(
I lf
)(l)

+ al−1

(
I lf
)(l−1)

+ · · ·+ a1
(
I lf
)′
+ a0

(
I lf
)
= f, (5.2)

which is a linear differential equation of order l with constant coefficients for
which we know that I lf exists but it is not unique and it is of class Cl([0, 1]).
Since there is an infinity of such antiderivatives, a unique one can be obtained
by imposing some initial conditions for differential equations such as, in a cer-
tain point the antiderivative I lf and its derivatives up to order l − 1 should
have particular values (see [15]). However, the exact form of the antiderivative
operator does not play a role in our proofs, therefore, the initial conditions and
their form are neglected.

The Kantorovich type operators that will be presented in this section are of
the form

Kl = Dl ◦ L ◦ I l, (5.3)

where L is an operator.
Further we will consider L = Bn+l in (5.3) and we will prove that these linear

operators can approximate continuous functions on [0, 1] even though they are
not positive operators.

The l-th derivative of Bn+l can be expressed in terms of finite difference of
order l with the step k = 1

n+l :

B
(l)
n+l (f, x) =

(n+ l)!

n!

n∑
k=0

∆l
1

n+l
f

(
k

n+ l

)
pn,k(x), x ∈ [0, 1] , f ∈ C([0, 1]).

With all the considerations from above, let us define our Kantorovich type
operators:

Kl
n (f, x) =

(
Dl ◦Bn+l ◦ I l

)
(f, x) , x ∈ [0, 1] (5.4)

which can be written as

Kl
n (f, x) = Dl

(
Bn+lI

lf
)
(x) . (5.5)

For simplicity, let us denote I lf := F

Kl
n (f, x) =

l∑
i=0

ai [Bn+l (F, x)]
(i)

(5.6)

=

l∑
i=0

(n+ l)!

(n+ l − i)!
ai

n+l−i∑
j=0

∆i
1

n+l
F

(
j

n+ l

)
pn+l−i,j(x).

Remark 5.1.1. The operators (5.6) are linear operators.

Our aim is to prove that∥∥Kl
nf − f

∥∥→ 0, as n → ∞

for all continuous functions on [0, 1].
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5.1.1 Approximation result

In order to prove our main approximation the proof of the following lemma
is essential:

Lemma 5.1.2. (See Lemma 2.1 in [111]) Let I be a compact interval and
F ∈ Ck(I), then the following convergence holds:

lim
n→∞

(n+ l)
k
∆k

1
n+l

F = F (k), uniformly on I, as n → ∞. (5.7)

Now, we can state and prove the approximation result.

Theorem 5.1.3. (See Theorem 2.2 in [111]) Let f ∈ C([0, 1]). The following
convergence holds:

lim
n→∞

Kl
nf = f, uniformly on [0, 1]. (5.8)

Remark 5.1.4. [111] The operators Kl
nf (x) are not positive as the following

example shows:

Example 5.1.5. [111] Let n = 1 and the differential operator be D1f = f ′ − f
which has a fixed corresponding antiderivative I1f (x) = ex

∫ x

0
e−tf (t) dt, which

will be denoted by I1f (x) := F (x) and chosen such that F (0) = 0. We consider
the function

f (t) = e−5t, t ∈ [0, 1].

Then:

K1
1 (f, 1) =

1

3
e

1
2

(
e−3 − 1

)
− e

6

(
e−6 − 1

)
= −7.0288× 10−2,

which proves our remark.

5.1.2 Voronovskaja type result

In this section we will prove a Voronovskaja type theorem for the operators
Kl

n. Let us introduce the following differential operator in order to simplify the
notations:

Dl
yg(x) =

l∑
i=1

aiy
ig(i−1)(x). (5.9)

Theorem 5.1.6. (See Theorem 2.3 in [112]) Let f ∈ C2([0, 1]) and F ∈
Cl+2([0, 1]), then

lim
n→∞

n
[
Kl

n (f, x)− f (x)
]
=

1

2
Dl
{
x (1− x) [F (x)]

′′}
(5.10)

=
1

2
x (1− x) f ′′ (x) +

(
1

2
− x

)
∂Dl

yF
′′(x)

∂y

∣∣∣
y=1

− 1

2

∂2Dl
yF

′(x)

∂y2

∣∣∣
y=1

.

uniformly for x ∈ [0, 1].
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5.1.3 Simultaneous approximation

In this section we will prove a simultaneous approximation result concerning
operators Kl

n.

Theorem 5.1.7. (See Theorem 3.4 in [112]) Let f ∈ Cr([0, 1]) with r ∈ N∪{0}.
Then:

lim
n→∞

[Kl
n(f)]

(r) = f (r), (5.11)

holds uniformly on [0, 1] and F ∈ Cl+r([0, 1]).

5.1.4 Example

In this final section we will take a particular case of our operators and we
will present some computations and graphics.

Let D∗f = f ′′ − 3f ′ + 2f be a differential operator of order two and I∗,
a fixed corresponding antiderivative operator, in the sense D∗ ◦ I∗ = Id, with
initial conditions I∗f(0) = 0 and (I∗f)

′
(0) = 0.

I∗f(x) =

∫ x

0

ex−t
(
ex−t − 1

)
f(t)dt, x ∈ [0, 1]. (5.12)

We denote F (x) := I∗f(x).
Now, let us consider operators:

K∗
n(f, x) = (D∗ ◦Bn+2 ◦ I∗f) (x) = D∗ (Bn+2(F, x)) , x ∈ [0, 1]. (5.13)

Now, we will consider function f(x) = x3 − 1.3x2 + 0.47x− 0.035. For this
function, for n = 30 we have the following graphical process, using Wolfram
Mathematica software:

5.2 Generalized Kantorovich operators

In this section we will introduce a new class of operators modified in Kan-
torovich’s sense using some linear differential operators of order l with non con-
stant coefficients. The operators constructed here can be used to approximate
all continuous functions on [0, 1] even though they are not positive operators.
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This section contains the most general results on this topic, generalizing the
previous section by taking the differential operator Dl in a general way. The
results are proved for any operator L satisfying some properties, not just for
Bernstein operators.

To support our results, we will provide an approximation theorem and some
Voronovskaja type theorems for the Kantorovich generalization of the Bernstein
operators, Durrmeyer operators, Kantorovich operators, Stancu operators and
Uρ
n operators.
The results in this section can be found in paper B. I. Vasian, Generalized

Kantorovich operators, General Mathematics, Vol. 32, No. 2 (2025), 67-83.
This topic was studied in particular cases in some papers such as [50, 83, 23,

109].

5.2.1 Construction of the operators

We will prove a uniform approximation result and a Voronovskaja type the-
orem for some Kantorovich type operators constructed using a more general
differential operator: let l ∈ {1, 2, . . . } ,

Dlg (x) =

l∑
i=0

ai (x) g
(i) (x) , (5.14)

with ai (x) ∈ C (R) , i ∈ {0, 1, . . . , l} . By an antiderivative operator correspond-
ing to Dl we mean an operator I l which satisfies Dl ◦ I l = Id. This condition
leads to: (

Dl ◦ I l
)
(f) = f,

which is equivalent with:

al (x)
(
I lf
)(l)

+al−1 (x)
(
I lf
)(l−1)

+· · ·+a1 (x)
(
I lf
)′
+a0 (x)

(
I lf
)
= f. (5.15)

Equation (5.15) is a linear differential equation of order l with non-constant co-
efficients. For this kind of differential equation we recall the following existence
and unicity theorem:

Theorem 5.2.1. [15] Suppose that ai ∈ C (I) , i ∈ {0, 1, . . . , l} , where I ⊂ R
is an open interval with a ∈ I. Having b0, b1, . . . , bl ∈ R such that the initial
conditions y(i) (a) = bi hold, i ∈ {0, 1, . . . , l} , the equation

al (x) y
(l)+al−1 (x) y

(l−1)+ · · ·+a1 (x) y
′+a0 (x) y = f (x) , f ∈ C (I) , (5.16)

has an unique solution y ∈ Cl (I).

From the above theorem we have that for equation (5.15) there exists solu-
tions, and by imposing some initial conditions we will find a unique one. We
mention that for the construction of the operators studied in this paper, the
exact expression of antiderivative operators does not play an important role
since choosing a different antiderivative operator, our operator will be different,
but the approximation processes we study do not depend on the choice of the
antiderivative operator.
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Remark 5.2.2. (See Remark 2.2. in [113]) From Theorem 5.2.1 we have that
the solution of (5.15) exists on an open interval I. In order to prove our results,
let us take I such that [0, 1] ⊂ I.

Definition 5.2.3. [113] Let (Ln)n be a sequence of linear and positive operators
on C([0, 1]). We introduce the following Kantorovich type operators

Kn = Dl ◦ Ln ◦ I l, (5.17)

which have the expression

Kn (f, x) =
(
Dl ◦ Ln ◦ I l

)
(f, x) (5.18)

= Dl (Ln (F, x))

=

l∑
i=0

ai (x)L
(i)
n (F, x) , x ∈ [0, 1] , f ∈ C [0, 1] ,

where F (x) = I lf (x) .

In order to prove our results we will need the following.
Let I be a compact interval and

Mn,k (x) = Ln

(
(t− x)

k

k!
, x

)
, x ∈ I.

In paper [51] it was proved the following result.

Theorem 5.2.4. [51] Let (Ln)n be a sequence of positive and linear operators
on C(I), I compact, such that Ln is convex of order r−1, with r ≥ 0 an integer.
Suppose that Mn,4 (x) = o (Mn,2 (x)) uniformly for x ∈ I, and Mn,0 (x) = 1, and
that there exists two functions a, b : I → R such that limn→∞ nMn,1 (x) = a (x)
and limn→∞ nMn,2 (x) = b (x) . Then, for f ∈ Cr+2 (I) the following limit holds
uniformly:

lim
n→∞

n
[
L(r)
n (f, x)− f (r) (x)

]
= [a (x) f ′ (x) + b (x) f ′′ (x)]

(r)
, x ∈ I. (5.19)

5.2.2 Approximation properties

For the operators Kn introduced above we can state the following approxi-
mation results.

Theorem 5.2.5. (See Theorem 4.1 in [113]) Let (Ln)n be a sequence of linear
and positive operators on C([0, 1]) , which has the property of simultaneous

approximation
∥∥∥L(k)

n g − g(k)
∥∥∥ → 0 uniformly on [0, 1] , g ∈ Ck([0, 1]), k =

0, l, l ∈ {0, 1, 2 . . . }. Then the following convergence holds

∥Knf − f∥ → 0, uniformly on [0, 1] , (5.20)

with f ∈ C([0, 1]).

Using Theorem 5.2.4 we can prove the following Voronovskaja type theorem
for our operators Kn.
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Theorem 5.2.6. (See Theorem 4.2 in [113]) Let (Ln)n be a sequence of positive
and linear operators on C([0, 1]) such that Ln is convex of order r − 1, with
r ≥ 0 an integer. Suppose that Mn,4 (x) = o (Mn,2 (x)) uniformly for x ∈ [0, 1] ,
and Mn,0 (x) = 1, and that there exists two functions a, b : [0, 1] → R such that
limn→∞ nMn,1 (x) = a (x) and limn→∞ nMn,2 (x) = b (x) . Let Kn = Dl ◦Ln+l ◦
I l. Then, for f ∈ Cr+2([0, 1]) the following limit holds uniformly:

lim
n→∞

n [Kn (f, x)− f (x)] =

l∑
i=0

ai (x) [a (x)F
′ (x) + b (x)F ′′ (x)]

(i)
(5.21)

= Dl (a (x)F ′ (x) + b (x)F ′′ (x)) , x ∈ [0, 1] .

5.2.3 Simultaneous approximation result

In this case we consider ai (x) = ai ∈ R, i ∈ {0, 1, . . . , l}, l ≥ 0, real
constants and the differential operator

D∗lf (x) =
l∑

i=0

aif
(i) (x) , (5.22)

and I∗l a corresponding antiderivative operator with respect to D∗l ◦ I∗lg = g,
which leads to a linear differential equation of order l with constant coefficients
ai ∈ R. For this kind of equation it is well known that solutions exist but they
are not unique until we impose some initial conditions which are not needed for
the following result. Denote I∗lf := F ∗.

Let Ln be a sequence of operators and define K∗
n as:

K∗
n = D∗l ◦ Ln ◦ I∗l. (5.23)

For operators K∗
n we can state the following simultaneous approximation result:

Theorem 5.2.7. (See Theorem 5.1 in [113]) Let (Ln)n be a sequence of op-

erators having the property that (Lng)
(j) → g(j) uniformly for x ∈ [0, 1] and

g ∈ Cj([0, 1]), 0 ≤ j ≤ r + l, r ≥ 0. Then

lim
n→∞

(K∗
nf)

(r)
= f (r) uniformly on [0, 1], (5.24)

f ∈ Cr([0, 1]) and F ∗ ∈ Cr+l([0, 1]).

5.2.4 Particular cases

In this section we will study the generalized Kantorovich modification for
some well known operators.

In order to simplify the notations we introduce the following differential
operator

Dl
yg (x) =

l∑
i=1

yiai (x) g
(i−1) (x) . (5.25)
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Bernstein operators

Let Bn be Bernstein operators defined in (1.1):

Bn (f, x) =

n∑
k=0

pn,k (x) f

(
k

n

)
, x ∈ [0, 1] , f ∈ C([0, 1]),

where pn,k (x) =
(
n
k

)
xk (1− x)

n−k
, for 0 ≤ k ≤ n.

Let Ln = Bn+l. Therefore,

KB
n (f, x) =

(
Dl ◦Bn+l ◦ I l

)
(f, x) (5.26)

=

l∑
i=0

ai (x)B
(i)
n+l (F, x) , x ∈ [0, 1] , f ∈ C([0, 1]).

Theorem 5.2.8. (See Theorem 6.3 in [113]) The following convergence

lim
n→∞

KB
n (f) = f (5.27)

holds uniformly on [0, 1] and f ∈ C([0, 1]).

Theorem 5.2.9. (See Theorem 6.4 in [113]) Let ai ∈ C2([0, 1]) and F ∈
Cl+2([0, 1]). The following limit holds:

lim
n→∞

n
[
KB

n (f, x)− f (x)
]

(5.28)

=
x (1− x)

2
DlF ′′(x) +

1− 2x

2

∂Dl
yF

′′ (x)

∂y
|y=1 −

1

2

∂2Dl
yF

′ (x)

∂y2
|y=1,

f ∈ C2([0, 1]).

Durrmeyer operators

Let Dn be Durrmeyer operators defined in (1.1):

Dn (f, x) = (n+ 1)

n∑
k=0

pn,k (x)

∫ 1

0

pn,k (t) f (t) dt, x ∈ [0, 1] , f ∈ C([0, 1]),

with pn,k (x) =
(
n
k

)
xk (1− x)

n−k
, for 0 ≤ k ≤ n.

Durrmeyer operators are useful in approximation of functions f ∈ L1([0, 1]).
We now choose Ln = Dn+l in our construction, therefore

KD
n (f, x) =

(
Dl ◦Dn+l ◦ I l

)
(f, x) (5.29)

=

l∑
i=0

ai (x)D
(i)
n+l (F, x) , x ∈ [0, 1] , f ∈ C([0, 1]).

Theorem 5.2.10. (See Theorem 6.6 in [113]) The following convergence

lim
n→∞

KD
n (f) = f (5.30)

holds uniformly on [0, 1] and f ∈ C([0, 1]).
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Theorem 5.2.11. (See Theorem 6.7 in [113]) Let ai ∈ C2([0, 1]) and F ∈
Cl+2([0, 1]). The following limit holds

lim
n→∞

n
[
KD

n (f, x)− f (x)
]

(5.31)

= x(1− x)DlF ′′(x) + (1− 2x)DlF ′(x) + (1− 2x)
∂Dl

yF
′′(x)

∂y
|y=1

−2
∂Dl

yF
′(x)

∂y
|y=1 −

∂2Dl
yF

′(x)

∂y2
|y=1, f ∈ C2([0, 1]).

Kantrovich operators

Let K̃n be Kantorovich operators defined in (1.1):

K̃n (f, x) = (n+ 1)

n∑
k=0

pn,k (x)

∫ k+1
n+1

k
n+1

f (t) dt, x ∈ [0, 1] , f ∈ C([0, 1]),

with pn,k (x) =
(
n
k

)
xk (1− x)

n−k
, for 0 ≤ k ≤ n.

For these operators we have that the simultaneous approximation result
holds, see [50].

We choose Ln = K̃n+l in our construction, therefore

KK̃
n (f, x) =

(
Dl ◦ K̃n+l ◦ I l

)
(f, x) (5.32)

=

l∑
i=0

ai (x) K̃
(i)
n+l (F, x) , x ∈ [0, 1] , f ∈ C([0, 1]).

Now, because the simultaneous approximation result holds for KK̃
n , we can

apply Theorem 5.2.6 and we get the following uniform approximation result:

Theorem 5.2.12. (See Theorem 6.9 in [113]) The following convergence

lim
n→∞

KK̃
n (f) = f (5.33)

holds uniformly for x ∈ [0, 1] and f ∈ C([0, 1]).

Theorem 5.2.13. (See Theorem 6.10 in [113]) Let ai ∈ C2([0, 1]) and F ∈
Cl+2([0, 1]). The following limit holds

lim
n→∞

n
[
KK̃

n (f, x)− f (x)
]

(5.34)

=
x(1− x)

2
DlF ′′(x) + (1− 2x)DlF ′(x) +

1− 2x

2

∂Dl
yF

′′(x)

∂y
|y=1

−
∂Dl

yF
′(x)

∂y
|y=1 −

1

2

∂2Dl
yF

′(x)

∂y2
|y=1, f ∈ C2([0, 1]).
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Stancu operators

Let Sα,β
n be Bernstein-Stancu operators defined in (??):

Sα,β
n (f, x) =

n∑
k=0

pn,k (x) f

(
k + α

n+ β

)
, x ∈ [0, 1] , f ∈ C([0, 1]),

with pn,k (x) =
(
n
k

)
xk (1− x)

n−k
, for 0 ≤ k ≤ n, and k+α

n+β ∈ [0, 1] , 0 ≤ k ≤ n.

We choose Ln = Sα,β
n+l in our construction, therefore

KS
n (f, x) =

(
Dl ◦ Sα,β

n+l ◦ I
l
)
(f, x) (5.35)

=

l∑
i=0

ai (x)
(
Sα,β
n+l

)(i)
(F, x) , x ∈ [0, 1] , f ∈ C([0, 1]).

Because the simultaneous approximation result holds for KS
n , we can state

the following uniform approximation result using Theorem 5.2.5:

Theorem 5.2.14. (See Theorem 6.12 in [113]) The following convergence

lim
n→∞

KS
n (f) → f (5.36)

holds uniformly on [0, 1] and f ∈ C([0, 1]).

Theorem 5.2.15. Let Mn,m = 1
m!S

α,β
n ((e1 − xe0)

m, x). Then

(n+ β)(m+ 1)Mn,m+1(x) (5.37)

= x(1− x)
[
M ′

n,m(x) +mMn,m−1(x)
]
+ (α− βx)Mn,m(x), x ∈ [0, 1].

Theorem 5.2.16. (See Theorem 6.13 in [113]) Let ai ∈ C2([0, 1]) and F ∈
Cl+2 [0, 1] . The following limit holds

lim
n→∞

n
[
KS

n (f, x)− f (x)
]

(5.38)

=
x(1− x)

2
DlF ′′(x) + (α− βx)DlF ′(x) +

1− 2x

2

∂Dl
yF

′′ (x)

∂y
|y=1

−1

2

∂2Dl
yF

′ (x)

∂y2
|y=1 − β

∂Dl
yF

′ (x)

∂y
|y=1, x ∈ [0, 1] , f ∈ C2([0, 1]).

Uρ
n operators

Uρ
n operators are defined as:

Uρ
n (f, x) =

n∑
k=0

F ρ
n,k (f) pn,k (x) , f ∈ C([0, 1]), x ∈ [0, 1] ,

with

F ρ
n,k (f) =

∫ 1

0

f (t)µρ
n,k (t) dt and

µρ
n,k (t) dt =

tkρ−1 (1− t)
(n−k)ρ−1

B (kρ, (n− k) ρ)
,
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where B (·, ·) is Euler’s Beta function and ρ > 0.
Now, we take Ln = Uρ

n+l and we get

UKρ
n (f, x) =

(
Dl ◦ Uρ

n+l ◦ I
l
)
(f, x) , f ∈ C([0, 1]), x ∈ [0, 1] . (5.39)

Theorem 5.2.17. (See Theorem 6.16 in [113]) The following convergence

lim
n→∞

UKρ
n (f) → f (5.40)

holds uniformly on [0, 1], f ∈ C([0, 1]) and ρ ∈ (0,∞].

Theorem 5.2.18. (See Theorem 6.17 in [113]) Let ai ∈ C2([0, 1]) and F ∈
Cl+2([0, 1]). The following limit holds

lim
n→∞

n [UKρ
n (f, x)− f (x)] (5.41)

=
ρ+ 1

ρ

[
x (1− x)

2
DlF ′′(x) +

1− 2x

2

∂Dl
yF

′′ (x)

∂y
|y=1 −

1

2

∂2Dl
yF

′ (x)

∂y2
|y=1

]
.

(5.42)

where x ∈ [0, 1], f ∈ C2([0, 1]).

5.2.5 Nonpositivity of operators

Proposition 5.2.19. (See Proposition 7.1 in [113]) Operators KB
n , KD

n , KS
n , K

K̃
n

and UKρ
n are linear but not positive operators.
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6 Double weighted second
order modulus of continuity

In this chapter we introduce a second order modulus of smoothness with two
weight functions in order to obtain estimates of the degree of approximation
of functions with fast growth to infinity, by general positive linear operators
which preserve polynomials of degree one. We will also give an example for
Szász-Mirakjan operators. The results in this chapter are based on the paper
published in R. Păltănea, B. I. Vasian, Double weighted modulus, submitted.

The aim of the present work is to give general quantitative convergence
results for the pointwise approximation by positive linear operators of functions
on interval [0,∞) with a fast growth to infinity, using a new special second order
modulus of smoothness. Also, we will mention some consequences for uniform
approximation on compact sets and for weighted approximation.

The new modulus we introduce uses two weight functions. The first one is
φ(x) =

√
x, x ∈ [0,∞), which was already used in the construction of Ditzian-

Totik modulus on interval [0,∞). The second one, denoted by Ψ, has the role
of weighting the growth of functions to infinity.

The method described is a direct one and uses a ”canonical” sequence which
can be attached to a point in interval (0,∞) which we will define later. This
method was used for the first time in estimating the rate of approximation by
general positive linear operators in terms of Ditzian-Totik modulus in [47] and
developed in [80], [24].

Some examples are given for the case of the Szász-Mirakjan operators, in
the last section of this chapter.

6.1 Definitions and basic results

We denote I = [0,∞) and we use the definitions mentioned in Chapter 2,
Section 2.1 for the spaces F(I), C(I), C2(I). If f ∈ C(I) and b > 0, denote
∥f∥[0,b] = maxx∈[0,b] |f(x)|. Let ei(t) = ti, (t ∈ I), for i = 0, 1, 2, . . . and Πk, the
space of polynomials with degree at most k.

For a function f ∈ F(I) and three points 0 ≤ a < y < b, let us denote

∆(f, a, y, b) =
b− y

b− a
f(a) +

y − a

b− a
f(b)− f(y). (6.1)

We consider the function φ(t) =
√
t, (t ∈ I). Also, let Ψ ∈ F(I) be an increasing

function such that Ψ(0) > 0.

Definition 6.1.1. [87] For h > 0 and f ∈ F(I), let

ωΨ,φ
2 (f, h) = sup

{
|∆(f, a, y, b)|

Ψ(y)
, 0 ≤ a < y < b, b− a ≤ 2hφ

(
a+ b

2

)}
(6.2)

and
Bh

Ψ,φ(I) = {f ∈ F(I), ωΨ,φ
2 (f, h) < ∞}. (6.3)

It is easy to show that ωΨ,φ
2 is a second order modulus on the space Bh

Ψ,φ(I).

Note that, if 0 < h1 < h2, then Bh1

Ψ,φ(I) ⊂ Bh2

Ψ,φ(I).
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Lemma 6.1.2. [87] Let h > 0 and function Θh(u) = u+h2−h
√
4u+ h2, u ∈ I.

i) For any numbers 0 ≤ t < u and h > 0, the condition u − t ≤ 2h
√

u+t
2 is

equivalent to inequality t ≥ Θh(u).

ii) Let a > 0 and η ∈ (0, 1). If h ≤ (1 − η)
√

a
2(1+η) , then Θh(u) ≥ ηu,

(u ≥ a).

Lemma 6.1.3. [87] Let Ψ ∈ F(I) be an increasing function such that Ψ(0) > 0.
If for f ∈ C(I), there exists η ∈ (0, 1) such that

lim
x→∞

f(x)

Ψ(ηx)
= 0, (6.4)

then

i) for any h > 0 we have ωΨ,φ
2 (f, h) < ∞;

ii) we have

lim
h→0+

ωΨ,φ
2 (f, h) = 0. (6.5)

Lemma 6.1.4. [87] Let Ψ ∈ F(I) be an increasing function, with Ψ(0) > 0. If
f ∈ C2(I) satisfies the following condition: there exist the constants M > 0 and
η ∈ (0, 1) such that

∥f ′′∥[0,x]
x

Ψ(ηx)
≤ M, (x > 0), (6.6)

then
ωΨ,φ
2 (f, h) < ∞, (h > 0), and lim

h→0+
ωΨ,φ
2 (f, h) = 0. (6.7)

Example 6.1.5. [87] If f(x) = xγ , (x ∈ I), with γ ≥ 2, and Ψ(x) = xα + 1,

(x ∈ I) with α > γ − 1, then limh→0+ ωΨ,φ
2 (f, h) = 0. One can apply Lemma

6.1.4.

Example 6.1.6. [87] If f ∈ C(I) and there exist M > 0, γ > 0 such that

|f(x)| ≤ Meγx, (x ∈ I), and Ψ(x) = eαx, (x ∈ I), α > γ, then limh→0+ ωΨ,φ
2 (f, h) =

0. One can apply Lemma 6.1.3.

6.2 Canonical sequence attached to a point

In order to obtain estimates with modulus ωΨ,φ
2 we define the canonical

sequence attached to a point y ∈ (0,∞) and to a number h > 0, such that
y ≥ h2, as follows.

Definition 6.2.1. [87] Let h > 0 and y ≥ h2. Let q ≥ 1 such that y = q2h2.
The canonical sequence attached to y and h is the sequence (xj)j≥−2r:

0 ≤ x−2r ≤ x1−2r < . . . < x−1 < x0 = y < x1 < . . . , (6.8)

where r = [q] (the lest integer less than or equal to q) and

xj =

{
(q + k)2h2, for j = 2k, k ∈ Z, k ≥ −r

(q + k)(q + k + 1)h2, for j = 2k + 1, k ∈ Z, k ≥ −r.
(6.9)
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Remark 6.2.2. [87]

i) The term x−2r−1 ≥ 0 is not defined because (q − r − 1)(q − r) < 0.

ii) For q ∈ N we have 0 = x−2r = x−2r+1 < x−2r+2 < . . .. For q ̸∈ N we have
0 < x−2r < x−2r+1 < . . .

iii) We have

x2k+1 − x2k = hφ(x2k), for k ≥ −r; (6.10)

x2k − x2k−1 = hφ(x2k), for k ≥ −r + 1. (6.11)

Lemma 6.2.3. [87] We have

xj+1 − xj−1 ≤ 2hφ

(
xj+1 + xj−1

2

)
, ∀j ≥ 1− 2r, (6.12)

and consequently, for any f ∈ Bh
Ψ,φ(I)

|∆(f, xj−1, xj , xj+1)| ≤ Ψ(xj)ω
Ψ,φ
2 (f, h), j ≥ 1− 2r. (6.13)

Lemma 6.2.4. [87] Let h > 0 and y = q2h2, with q ≥ 1. Let f ∈ Bh
Ψ,φ(I) be

such that f(y − hφ(y)) = 0 and f(y + hφ(y)) = 0. Then

|f(u)− f(y)| ≤ Ψ(u)

(
1 +

(u− y)2

yh2

)
ωΨ,φ
2 (f, h), ∀u > y + hφ(y). (6.14)

Lemma 6.2.5. [87] Under conditions of Lemma 6.2.4, we have:

|f(t)− f(y)| ≤ Ψ(y)

(
1 + 4

(t− y)2

yh2

)
ωΨ,φ
2 (f, h), ∀ 0 ≤ t < y − hφ(y), (6.15)

(if there exists such t).

Let us fix y > 0, h > 0 and Ψ ∈ F(I), an increasing function, such that
Ψ(0) > 0. For f ∈ Bh

Ψ,φ(I), let us consider the function:

Λf (s) =

[(
1 +

(s− y)2

yh2

)
Ψ(s) +

(
1 + 4

(s− y)2

yh2

)
Ψ(y)

]
ωΨ,φ
2 (f, h), (s ∈ I).

(6.16)

Lemma 6.2.6. [87] Under conditions of Lemma 6.2.4 we have

|f(s)− f(y)| ≤ (Ψ(s) + Ψ(y))ωΨ,φ
2 (f, h), (s ∈ [y − hφ(y), y + hφ(y)]). (6.17)

Corollary 6.2.7. [87] In conditions of Lemma 6.2.4, we have:

|(u−y)(f(t)−f(y)+(y− t)(f(u)−f(y))| ≤ (u−y)Λf (t)+(y− t)Λf (u), (6.18)

for all points 0 ≤ t < y < u.

Lemma 6.2.8. [87] Let h > 0 and 0 < y ≤ h2. Let f ∈ Bh
Ψ,φ(I) such that

f(0) = 0 and f(2h2) = 0. Then relation (6.18) is satisfied for all points 0 ≤ t <
y < u.
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6.3 The main results

In order to obtain the main result we shall use of the following general result.

Lemma 6.3.1. [87] Let µ be a positive measure on interval J and let F be
the functional defined by µ, i. e. F (f) =

∫
J
f(t)dµ(t), f ∈ Lµ(J). Let y be

an interior point of J . Suppose that Π1 ⊂ Lµ(J), F (e0) = 1, F (e1) = y and
F (|e1 − ye0|) > 0. Let f ∈ Lµ(J) and Φ ∈ Lµ(J) be such that Φ ≥ 0 and

|(u− y)(f(t)− f(y))+ (y− t)(f(u)− f(y))| ≤ (u− y)Φ(t)+ (y− t)Φ(u), (6.19)

for all t, u ∈ J, t < y < u. Then:

|F (f)− f(y)| ≤ F (Φ). (6.20)

Remark 6.3.2. In [80]-Theorem 2.1.1 a more general result is given, with a
different proof.

Recall that I = [0,∞). Let us fix an increasing function Ψ : I → (0,∞) and
consider a sequence of positive linear operators Ln : V → F(I), of the form

Ln(f, y) =

∫
[0,∞)

f(t)dµn,y(t), (f ∈ V, y ∈ I, n ∈ N), (6.21)

where {µn,y, (n, y) ∈ N× I} is a family of positive measures and by V we mean
V =

⋂
(n,y)∈N×I Lµn,y

(I). Also suppose that

Π2 ⊂ V, and ΨΠ2 ⊂ V (6.22)

Ln(ei) = ei, i = 0, 1, and Ln(|e1 − ye0|)(y) ̸= 0, for n ∈ N, y ∈ I. (6.23)

Also, using the notations given in Section 6.1 we state our main result.

Theorem 6.3.3. [87] If (Ln)n is a sequence of positive linear operators of type
(6.21) satisfying conditions (6.22) and (6.23). Then for any f ∈ Bh

Ψ,φ(I) ∩ V ,
n ∈ N, y ∈ I and h > 0 we have:

|Ln(f, y)− f(y)| ≤

[
Ψ(y)

(
1 + 4Ln

((
e1 − ye0
hφ(y)

)2

, y

))

+Ln

(
Ψ ·

(
e0 +

(
e1 − ye0
hφ(y)

)2
)
, y

)]
ωΨ,φ
2 (f, h). (6.24)

In the particular case where Ψ(s) = 1, (s ∈ I), denote ω1,φ
2 (f, h) simply by

ωφ
2 (f, h) and Bh

Ψ,φ(I) by Bh
φ(I). In this case we obtain a simpler result.

Corollary 6.3.4. [87] If the conditions of Theorem 6.3.3 are satisfied, and
Ψ = e0, then inequality

|Ln(f, y)− f(y)| ≤

[
2 + 5Ln

((
e1 − ye0
hφ(y)

)2

, y

)]
ωφ
2 (f, h) (6.25)

holds for any f ∈ Bh
φ(I) ∩ V , n ∈ N, y ∈ I and h > 0.
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Corollary 6.3.5. [87] Let (Ln)n be a sequence of positive linear operators as
in Theorem 6.3.3. Let b > 0. Suppose that Ψ is increasing, Ψ(0) = 1 and
∥Ln(Ψ)∥[0,b] < ∞. Denote

hb
n = sup

y∈(0,b]

y−1Ln(Ψ(e1 − y)2, y), (n ∈ N), (6.26)

and suppose that hb
n < ∞. If f ∈ V satisfies the condition ωΨ,φ

2 (f, hb
n) < ∞,

n ∈ N, then

∥Ln(f)− f∥[0,b] ≤
(
5Ψ(b) + ∥Ln(Ψ)∥[0,b] + 1)ωΨ,φ

2

(
f,
√
hb
n

)
. (6.27)

Consequently, if limn→∞ hb
n = 0, for each b > 0 and limh→0 ω

Ψ,φ
2 (f, h) = 0,

then (Ln(f))n is uniform convergent on compact sets to f .

6.4 Applications to Szász-Mirakjan operators

Szász-Mirakjan operators are defined by:

Sn(f, y) = e−ny
∞∑
k=0

(ny)k

k!
f

(
k

n

)
, (y ∈ I), (6.28)

where f ∈ F(I) is a function for which the series is convergent. These operators

can be represented using a family of measures µn,y = e−ny
∑∞

k=0
(ny)k

k! δk/n,
where δz is the Dirac measure of the point z.

Remark 6.4.1. [87] If f ∈ F(I) satisfies condition |f(y)| ≤ Meγy, ∀ y ∈ I,
where M > 0 and γ > 0 are constants, then Sn(f)(y) is well-defined for all y ∈ I
and n ∈ N. Indeed, using the inequality n

(
e

γ
n − 1

)
≤ eγ − 1, n ∈ N, α > 0, we

have

e−ny
∞∑
k=0

(ny)k

k!

∣∣∣∣f (k

n

)∣∣∣∣ ≤ Me−ny
∞∑
k=0

(nye
γ
n )k

k!
= Meny(e

γ
n −1) ≤ Me(e

γ−1)y.

Then the series in (6.28) is absolutely convergent.

Denote E(I) = {f ∈ F(I), ∃M > 0, ∃γ > 0, |f(t)| ≤ Meγt, (t ∈ I)}.

Theorem 6.4.2. Let Ψ(t) = eαt, (t ∈ I), α > 0. Consider the function

Hα(y) = 5eαy + e(e
α−1)y(1 + eα + y(eα − 1)2), (y ∈ I). (6.29)

Let f ∈ E(I) and n ∈ N be such that ωΨ,φ
2

(
f, 1√

n

)
< ∞. We have

|Sn(f, y)− f(y)| ≤ Hα(y)ω
Ψ,φ
2

(
f,

1√
n

)
, (y ∈ I), (6.30)

and consequently, for each b > 0:

∥Sn(f)− f∥[0,b] ≤ Hα(b)ω
Ψ,φ
2

(
f,

1√
n

)
. (6.31)
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Corollary 6.4.3. [87] If f ∈ E(I), then sequence (Sn(f))n is uniformly con-
vergent on compact sets to f .

Moreover, if f ∈ C(I) satisfies condition |f(x)| ≤ Meγx, (x ∈ I), with
M > 0, γ > 0, then for each b > 0 relation (6.31) holds for n ∈ N, where α > γ

and Ψ(x) = eαx, (x ∈ I). Also limn→∞ ωΨ,φ
2

(
f, 1√

n

)
= 0.

Finally we consider the weighted approximation. For β > 0, let the weight
function exp(−β)(x) = e−βx, (x ∈ I). For f ∈ F(I), denote

∥f∥(−β) = sup
x∈I

|f(x)|e−βx. (6.32)

Corollary 6.4.4. [87] Let f ∈ C(I), be such that |f(x)| ≤ Meγx, (x ∈ I),
where M > 0, γ > 0. If β > max{γ, eγ − 1}, then:

lim
n→∞

∥Sn(f)− f∥(−β) = 0. (6.33)

Moreover, if there is α, β, such that β > max{α, eα − 1} and α > γ, then:

∥Sn(f)− f∥(−β) ≤ sup
y∈I

(Hα(y)e
−βy)ωΨ,φ

2

(
f,

1√
n

)
, (6.34)

where Ψ(x) = eαx, (x ∈ I), supy∈I(Hα(y)e
−βy) < ∞ and limn→∞ ωΨ,φ

2

(
f, 1√

n

)
=

0.
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7 Conclusions
The results presented in this thesis bring new contributions to approximation

theory.
We have proved the usefulness of considering operators which are not positive

by providing estimation results that are improved on the interval on which
operators considered are not positive.

We also have introduced a method of generating approximation operators
of Kantorovich type defined using an arbitrary linear differential operator with
constant or non-constant coefficients.

Moreover, we have introduced a new second order modulus which is helpful
in obtaining estimates of the degree of approximation of functions with fast
growth to infinity, by general sequences of positive linear operators.

In what regards further development, this thesis opens new directions of
research. One of these is the approximation of functions using operators that
are not mandatory positive operators and research the improvements they can
bring.

Also, in what concerns the modulus introduced, the problem remains open
to considering the second weight function convex instead of increasing.

In conclusion, this thesis brings results that significantly advances the ap-
proximation theory by linear operators by introducing novel methods and con-
cepts.
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mathématiques. Automatisme 13(5), (1968), 189–196.
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[50] H. Gonska, M. Heilmann, I. Raşa, Kantorovich operators of order k, Numer.
Funct. Anal. Optim. (32)(7), (2011), 717-738.
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[109] B. I. Vasian, On approximation properties of some non-positive
Bernstein-Durrmeyer type operators modified in the Bezier-King sense,
Dolomites Research Notes on Approximation, 16(3) (2023), 104-117.
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