INTERDISCIPLINARY DOCTORAL SCHOOL

Faculty of Medicine

Cezar-Dumitrel LUCA

The role of ischemic preconditioning in patients undergoing surgical revascularization

SUMMARY

Scientific supervisor

Prof.dr. Diana ŢÎNŢ

BRAŞOV, 2025

Table of contents

- 1. Introduction Theoretical Foundations of Remote Ischemic Preconditioning (RIPC) page 3
- 2. Materials and Methods page 4
- 3. Results and Discussion
- 3.1. Study No. 1 The Impact of RIPC on the Inflammatory Response in Patients Undergoing CABG page 5
- 3.2. Study No. 2 The Impact of RIPC on LOX-1 and SOD-1 Modulation in Counteracting Oxidative Stress page 6
- 3.3. Study No. 3 Connections Between Oxidative Stress, Inflammation, and Cardiovascular Risk Factors page 7
- 4. Discrepancies Between Study Findings and the Scientific Literature page 8
- **5. Statistical Power Analysis of the Study** page 9
- 6. Clinical Relevance and Implications for Medical Practice page 9
- **7. General Conclusions** page 9
- 8. References page 11
- 9. List of Publications page 24

1.Introduction – Theoretical Foundations of Remote Ischemic Preconditioning (RIPC)

Remote ischemic preconditioning (RIPC) has emerged as a promising cardioprotective strategy with significant clinical relevance in the context of coronary artery bypass grafting (CABG). RIPC involves the induction of short episodes of ischemia and reperfusion in a remote tissue region (e.g., upper or lower limb), with the aim of triggering systemic protective mechanisms against myocardial ischemia-reperfusion injury [1–4].

The concept evolved from classical ischemic preconditioning (IPC), first described by Murry et al. in 1986 [5], and later extended by Przyklenk in 1993 into its remote form [8,9]. The clinical applications of RIPC have expanded due to its non-invasive nature and its potential for easy integration into perioperative protocols [10–13].

The mechanisms of action of RIPC are complex and include:

- activation of neurohumoral pathways and the RISK (Reperfusion Injury Salvage Kinase)
 signaling pathway, involving proteins such as Akt and ERK1/2, which are responsible for cell survival and inhibition of apoptosis [16,17,19];
- release of humoral mediators such as adenosine, bradykinin, and nitric oxide, which activate specific receptors on cardiomyocytes [16–20];
- opening of ATP-sensitive potassium channels, helping to stabilize the cell membrane and prevent calcium overload [18–20];
- inhibition of NLRP3 inflammasome activation, reducing IL-1β production and systemic inflammatory responses [26,27];
- upregulation of antioxidant enzymes, especially superoxide dismutase-1 (SOD-1), catalase, and heme oxygenase-1 (HO-1), counteracting oxidative stress during reperfusion [27,41–43,45];
- modulation of LOX-1 receptor, which plays a role in recognizing oxidized LDL and promoting oxidative stress and vascular inflammation [38,44–46].

Furthermore, RIPC influences key biomarkers, including the reduction of high-sensitivity troponin I (hs-cTnI) [65,92–94], the CK-MB isoenzyme [98–101], and C-reactive protein (CRP), with a favorable impact on postoperative outcomes, including renal function and the incidence of atrial fibrillation [106–109].

The benefits of RIPC have also been documented in:

- renal function through reduced incidence of acute kidney injury (AKI), as demonstrated in studies such as Zarbock et al. [48] and confirmed in meta-analyses [51];
- platelet function with reduced platelet activation and prevention of thromboembolic complications [54];
- **neutrophil inflammatory response** with lower neutrophil-to-lymphocyte ratio and reduced neutrophil adhesion and migration [53,55–57].

However, the literature also reflects inconsistencies regarding the impact of RIPC on hard clinical endpoints (e.g., mortality, myocardial infarction, stroke), as shown in large trials such as ERICCA and RIPHeart [11,23,26,65]. These discrepancies may be attributed to variability in RIPC protocols (number, duration, and timing of cycles), differences in study populations, the type of anesthesia used (sevoflurane vs. propofol), and patient comorbidities [26,43,59–61]. Available meta-analyses (Yi et al. [10]; Pierce et al. [64]; Long et al. [66]) generally support the

beneficial effects of RIPC on myocardial biomarkers and renal function, but emphasize the need for standardization of protocols and identification of patient subgroups who may benefit most from this intervention.

2. Materials and Methods

This study was designed as a prospective, randomized, case-control investigation, conducted between January 2020 and November 2022 at Clinicco Hospital, Braşov. A total of 80 adult patients with severe coronary artery disease scheduled for elective coronary artery bypass grafting (CABG) were enrolled. Patients were randomly assigned into two equal groups: an intervention group receiving remote ischemic preconditioning (RIPC) and a control group undergoing the standard surgical protocol.

The RIPC protocol consisted of four cycles of ischemia and reperfusion (5 minutes of occlusion followed by 5 minutes of reperfusion), performed using a pneumatic cuff inflated to 200 mmHg on either the upper or lower limb, prior to the induction of anesthesia. The SYNTAX score was used to assess the severity of coronary lesions based on angiographic findings.

The biomarkers analyzed included the pro-inflammatory cytokines IL-1 and IL-6, the antioxidant enzyme SOD-1, and the LOX-1 receptor, along with high-sensitivity cardiac troponin I (hs-cTnI). Blood samples were collected preoperatively, at 2 hours postoperatively, and at 7 days after surgery. Laboratory analyses were conducted using ELISA and chemiluminescence techniques.

Clinical parameters such as length of stay in the intensive care unit, total hospitalization duration, and postoperative complications were also evaluated.

Statistical analysis was performed using JASP software. Differences between groups were assessed using Student's t-test or the Mann–Whitney U test, with statistical significance defined as p<0.05. The study was approved by the Ethics Committee of Transilvania University of Braṣov and conducted in accordance with the Declaration of Helsinki.

3. Results and Discussion

3.1. Study No. 1: The Impact of RIPC on the Inflammatory Response in Patients Undergoing CABG

Study No. 1 investigated the effects of remote ischemic preconditioning (RIPC) on the systemic inflammatory response in the context of coronary artery bypass grafting (CABG), a major surgical procedure associated with ischemia-reperfusion (IR) injury and enhanced inflammation. Specifically, changes in the levels of interleukin-1 (IL-1) and interleukin-6 (IL-6)—two key proinflammatory cytokines involved in the postoperative immune activation cascade—were analyzed.

The study was conducted on a cohort of 80 patients diagnosed with severe coronary artery disease, eligible for elective CABG. Patients were randomized into two equal groups: an intervention group (RIPC) and a control group. The RIPC protocol involved four cycles of ischemia and reperfusion (5 minutes of occlusion using a pneumatic cuff inflated to 200 mmHg, followed by 5 minutes of reperfusion) applied to a limb prior to anesthesia induction. The groups were confirmed to be homogeneous based on clinical, demographic, and surgical characteristics, including SYNTAX score, aortic cross-clamp time, and use of extracorporeal circulation.

The results showed a significant reduction in IL-1 and IL-6 levels in the RIPC group compared to the control group. Immediately postoperatively (V2), IL-1 levels were significantly lower in the RIPC group ($2.85 \pm 2.24 \text{ pg/mL}$) versus the control group ($5.56 \pm 4.90 \text{ pg/mL}$, P = 0.002); this difference persisted at 7 days (V3: $2.75 \pm 2.06 \text{ vs.} 6.54 \pm 5.10 \text{ pg/mL}$, P < 0.001). Similarly, IL-6 levels were significantly reduced in the RIPC group both at V2 ($16.43 \pm 9.73 \text{ vs.} 22.83 \pm 13.39 \text{ pg/mL}$, P = 0.01) and V3 ($2.75 \pm 2.06 \text{ vs.} 6.54 \pm 5.10 \text{ pg/mL}$, P < 0.001).

On the other hand, no significant differences were found between groups regarding markers of myocardial injury (high-sensitivity troponin I – hsTnI) or nonspecific inflammation (C-reactive

protein – CRP). Furthermore, hospital stay duration and intensive care unit admission were similar in both groups, with no statistically significant differences.

These findings suggest that RIPC exerts a clear systemic anti-inflammatory effect by attenuating the IR-induced inflammatory response, but does not produce a measurable reduction in myocardial injury or immediate clinical recovery improvement. This indicates that the protective mechanisms of RIPC may be predominantly immunomodulatory rather than directly cardioprotective in all cases.

The limitations of the study include the relatively small sample size and the lack of long-term follow-up. Further research, with larger cohorts and extended monitoring, is needed to clarify the real-world clinical applicability of RIPC and to identify subgroups of patients who may benefit most from this therapeutic strategy.

3.2. Study No. 2: The Impact of RIPC on LOX-1 and SOD-1 Modulation in Combating Oxidative Stress

Study No. 2 aimed to assess the effect of remote ischemic preconditioning (RIPC) on oxidative stress and inflammatory response in the context of myocardial revascularization surgery via coronary artery bypass grafting (CABG). The focus was placed on two central biomarkers involved in cellular redox balance: LOX-1 (lectin-like oxidized LDL receptor), associated with endothelial dysfunction and vascular inflammation, and superoxide dismutase-1 (SOD-1), a key intracellular antioxidant enzyme.

Eighty patients with severe coronary artery disease were enrolled and randomized into two equal groups: one that received RIPC prior to anesthesia induction (four cycles of limb ischemia-reperfusion), and a control group undergoing the standard surgical protocol. Both groups were balanced in terms of clinical characteristics and cardiovascular risk factors. The results revealed a significant postoperative decrease in LOX-1 levels in the RIPC group compared to the control group, both at 2 hours (V2: 427.52 ± 718.44 vs. 604.27 ± 403.41 pg/mL, p < 0.001) and at 7 days (V3: 569.99 ± 607.80 vs. 749.36 ± 614.75 pg/mL, p < 0.001), indicating a reduction in vascular inflammation and oxidative stress. In parallel, SOD-1 levels increased significantly in the RIPC group immediately postoperatively (V2: 2.99 ± 0.93 vs. 0.97 ± 0.79 pg/mL, p < 0.001), and remained elevated at 7 days (V3: 2.20 ± 1.22 vs. 1.41 ± 1.33 pg/mL, p < 0.01), reflecting an enhanced endogenous antioxidant capacity.

However, no significant differences were observed between groups regarding high-sensitivity troponin I (hsTnI), C-reactive protein (CRP), hemoglobin, or creatinine levels. Likewise, the

duration of hospitalization, ICU stay, and postoperative complications did not differ significantly between groups.

These findings suggest that RIPC favorably modulates the oxidative-inflammatory balance by reducing LOX-1 and enhancing SOD-1 expression, contributing to notable cellular and endothelial protection during the perioperative period. Nevertheless, these molecular benefits did not translate into a clear clinical effect on myocardial injury or immediate postoperative recovery.

Study limitations include the moderate sample size, single-center design, short follow-up period (7 days), and absence of direct functional myocardial assessment (e.g., echocardiography or cardiac MRI). Additionally, interactions between RIPC and other cardioprotective strategies (e.g., pharmacological or postconditioning approaches) were not explored. In conclusion, this study demonstrates that RIPC exerts significant beneficial effects on oxidative stress and vascular inflammation, supporting its potential as an adjunctive cardioprotective strategy in cardiovascular surgery. However, larger clinical trials with extended follow-up are needed to validate its translational relevance.

3.3. Study No. 3: Connections Between Oxidative Stress, Inflammation, and Cardiovascular Risk Factors in Patients Undergoing CABG and RIPC

Study No. 3 explored the effects of remote ischemic preconditioning (RIPC) on the balance between oxidative stress, inflammation, and cardiovascular risk factors in patients with severe coronary artery disease undergoing coronary artery bypass grafting (CABG). The primary objective was to evaluate whether RIPC application could favorably influence inflammatory markers (IL-1, IL-6) and the endogenous antioxidant SOD-1, with potential implications for myocardial protection and postoperative recovery.

The study cohort included 80 patients, randomized equally into RIPC and control groups. Both groups were comparable in terms of age, comorbidities, and operative parameters. RIPC was applied preoperatively through four cycles of limb ischemia-reperfusion.

Results showed a significant decrease in IL-1 and IL-6 levels in the RIPC group, both immediately postoperatively (V2: IL-1 = 2.85 ± 2.24 vs. 5.56 ± 4.90 pg/mL; IL-6 = 16.43 ± 9.73 vs. 22.83 ± 13.39 pg/mL) and at 7 days (V3: IL-1 = 2.75 ± 2.06 vs. 6.54 ± 5.10 pg/mL; IL-6 = 2.75 ± 2.06 vs. 6.54 ± 5.10 pg/mL, all p < 0.001). In parallel, SOD-1 levels increased significantly in the RIPC group (V2: 2.99 ± 0.93 vs. 0.97 ± 0.79 pg/mL, p < 0.001; V3: 2.20 ± 1.22 vs. 1.41 ± 1.33 pg/mL, p < 0.01), indicating a sustained antioxidant protective effect.

However, no statistically significant differences were observed in myocardial injury biomarkers (hsTnI), CRP, serum creatinine, length of hospital stay, or postoperative ejection fraction. A post-hoc power analysis showed a detection power of 59.8% (Cohen's d = 0.5), indicating a moderate ability to detect true effects, particularly subtle ones.

Interpretation of these findings suggests that RIPC exerts a relevant anti-inflammatory and antioxidant effect, although it did not translate into a measurable immediate clinical benefit regarding myocardial injury or recovery during hospitalization. These outcomes may have been influenced by factors such as comorbidities (e.g., diabetes, hypertension), individual variability in response, and study limitations (single-center design, moderate sample size, short follow-up).

In conclusion, RIPC demonstrates a favorable biological profile and emerges as a promising adjunct strategy in cardiac surgery. However, its direct clinical benefits require further validation through multicenter trials with larger cohorts and extended follow-up. This research provides important evidence on the role of RIPC in modulating oxidative stress and inflammation, strengthening the scientific rationale for its integration into perioperative protection protocols.

4. Discrepancies Between Study Findings and the Scientific Literature

While existing literature describes clear cardioprotective effects of remote ischemic preconditioning (RIPC)—including troponin reduction, preservation of left ventricular function, and shorter hospital stays [112–116]—our studies did not consistently confirm these benefits. Specifically, postoperative levels of high-sensitivity troponin I (hsTnI), C-reactive protein (CRP), serum creatinine, and hospitalization duration did not show significant differences between the RIPC and control groups.

These discrepancies may be explained by:

- variations in RIPC protocols (timing, number and duration of cycles, anatomical location),
- patient comorbidities (e.g., hypertension, diabetes, dyslipidemia),
- influence of anesthesia type (propofol vs. volatile agents),
- sample size and study design (single-center, short follow-up),
- and individual biological variability.

Such differences between experimental and clinical data reflect the complexity of translating RIPC from the laboratory setting into real-world cardiac surgery.

5. Statistical Power Analysis of the Study

Post-hoc statistical analysis revealed an overall detection power of 59.8% (for Cohen's d = 0.5), indicating a moderate ability to detect medium-sized effects. For large effects (Cohen's $d \ge 0.8$), the detection probability increased substantially (>95%).

This level of power is below the conventional threshold of 80%, suggesting that non-significant results (e.g., for hsTnI or CRP) do not rule out the existence of real effects, but may reflect a lack of statistical sensitivity due to sample size or high data variability.

Therefore, the interpretation of results should be done cautiously, considering the potential risk of Type II error (false negatives), especially for biomarkers with high biological variability.

6. Clinical Relevance and Implications for Medical Practice

Although RIPC did not demonstrate a direct clinical effect on myocardial necrosis markers or other postoperative recovery parameters, its evident biological benefits—reduction in IL-1, IL-6, and LOX-1 levels, and increase in SOD-1—support its potential as a perioperative adjunctive strategy.

Its clinical relevance lies in:

- reducing systemic inflammation, which is associated with major cardiovascular complications,
- improving redox balance, with possible implications for endothelial health and organ function,
- a favorable safety and cost profile, making RIPC suitable for broad implementation in cardiac surgery centers.

The integration of RIPC into clinical practice could help optimize perioperative management, especially in high-risk patient groups (e.g., elderly, diabetics, chronic kidney disease), but this requires further validation through additional multicenter studies with extended follow-up.

7. General Conclusions

The research conducted in this thesis supports the notion that remote ischemic preconditioning:

- significantly reduces systemic inflammation (via decreased IL-1 and IL-6 levels),
- improves cellular antioxidant status (via increased SOD-1 expression),

 reduces expression of the LOX-1 receptor, a key mediator of vascular inflammation and oxidative stress.

However, no significant direct effects were observed on myocardial necrosis (hsTnI), general inflammatory markers (CRP), renal function, or immediate clinical outcomes.

RIPC remains a promising strategy for protecting vital organs during cardiac surgery, particularly as an adjunct to reduce the impact of ischemia-reperfusion injury. Nevertheless, the translation of these biological benefits into measurable clinical outcomes requires further validation through:

- larger sample sizes,
- optimization of RIPC application protocols,
- integration with other protective measures (pharmacological, anesthetic, technical),
- and long-term patient follow-up.

8. References

- 1. Luca, C. D., Boieriu, A. M., Neculoiu, C. D., & Ţînţ, D. (2024). The impact of remote ischemic preconditioning on inflammation markers in patients undergoing coronary artery bypass grafting. Cardiology Research, 15(5), 369-376. https://doi.org/10.14740/cr1702.
- 2. Goyal, A. and Agrawal, N. (2017). Ischemic preconditioning: interruption of various disorders.

 Journal of the Saudi Heart Association, 29(2), 116-127.

 https://doi.org/10.1016/j.jsha.2016.09.002.
- 3. Kumar, A., Singh, H., & Shariff, M. (2019). Remote ischemic preconditioning and its role in the prevention of new onset atrial fibrillation post-cardiac surgery. a meta-analysis of randomized control trials. Journal of Arrhythmia, 35(6), 789-794. https://doi.org/10.1002/joa3.12252.
- 4. Shawky, A., Okasha, N., & Hegazy, T. (2018). Prevention of contrast induced nephropathy by ischemic preconditioning in patients undergoing percutaneous coronary angiography. The Egyptian Heart Journal, 70(2), 107-111. https://doi.org/10.1016/j.ehj.2017.12.004.
- 5. Murry, C., Jennings, R., & Reimer, K. (1986). preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.. circulation, 74(5), 1124-1136. https://doi.org/10.1161/01.cir.74.5.1124.
- Vahlhaus, C., Schulz, R., Post, H., Rose, J., & Heusch, G. (1998). prevention of ischemic preconditioning only by combined inhibition of protein kinase c and protein tyrosine kinase in pigs. Journal of Molecular and Cellular Cardiology, 30(2), 197-209. https://doi.org/10.1006/jmcc.1997.0609.
- 7. Kloner, R. A. and Jennings, R. B. (2001). Consequences of brief ischemia: stunning, preconditioning, and their clinical implications. Circulation, 104(25), 3158-3167. https://doi.org/10.1161/hc5001.100039.
- 8. Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A., & Whittaker, P. (1993). Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion.. Circulation, 87(3), 893-899. https://doi.org/10.1161/01.cir.87.3.893.
- Fricke, T. A. and Konstantinov, I. E. (2019). Commentary: a paradox of remote ischemic preconditioning: remote understanding, remote relevance, and remote future?. The Journal of Thoracic and Cardiovascular Surgery, 157(4), 1477-1478. https://doi.org/10.1016/j.jtcvs.2018.10.056.
- 10. Yi, B., Wang, J., Yi, D., Zhu, Y., Jiang, Y., Y, L., ... & Rong, J. (2017). Remote ischemic preconditioning and clinical outcomes in on-pump coronary artery bypass grafting: a

- meta-analysis of 14 randomized controlled trials. Artificial Organs, 41(12), 1173-1182. https://doi.org/10.1111/aor.12900.
- 11. Hausenloy, D. J., Candilio, L., Evans, R. D., Ariti, C., Jenkins, D. P., Kolvekar, S., ... & Yellon, D. M. (2015). Remote ischemic preconditioning and outcomes of cardiac surgery. New England Journal of Medicine, 373(15), 1408-1417. https://doi.org/10.1056/nejmoa1413534.
- 12. Schubert, S. and Kron, I. L. (2018). Remote ischemic preconditioning: a complex question with an even more complex answer. Seminars in Thoracic and Cardiovascular Surgery, 30(1), 34-35. https://doi.org/10.1053/j.semtcvs.2018.02.020.
- 13. Fricke, T. A. and Konstantinov, I. E. (2019). Commentary: a paradox of remote ischemic preconditioning: remote understanding, remote relevance, and remote future?. The Journal of Thoracic and Cardiovascular Surgery, 157(4), 1477-1478. https://doi.org/10.1016/j.jtcvs.2018.10.056.
- 14. Røsand, Ø. and Høydal, M. A. (2021). Cardiac exosomes in ischemic heart disease—a narrative review. Diagnostics, 11(2), 269. https://doi.org/10.3390/diagnostics11020269.
- 15. Singh, L., Kulshrestha, R., Singh, N., & Jaggi, A. S. (2018). Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection. The Korean Journal of Physiology & Amp; Pharmacology, 22(3), 225. https://doi.org/10.4196/kjpp.2018.22.3.225.
- Rosenberg, J. H., Werner, J. H., Moulton, M. J., & Agrawal, D. K. (2018). Current modalities and mechanisms underlying cardioprotection by ischemic conditioning. Journal of Cardiovascular Translational Research, 11(4), 292-307. https://doi.org/10.1007/s12265-018-9813-1.
- 17. Wang, S., Xiao-dong, Y., Wei, J., & Xia, Z. (2020). Remote ischemic preconditioning for cardioprotection in patients undergoing cardiac surgery: a systemic review. Translational Perioperative and Pain Medicine, 7(3). https://doi.org/10.31480/2330-4871/119.
- 18. Kumar, A., Goshain, O., Sharma, B., Sharma, B. M., Sharma, S., Gupta, A., ... & Kumar, R. (2022). Involvement of estrogen receptor and mitochondrial katp channels in cardioprotective effect of remote aortic preconditioning in isolated rat heart. Indian Journal of Pharmaceutical Sciences, 84(4). https://doi.org/10.36468/pharmaceutical-sciences.991.
- Páez, D. T., Garcés, M., Calabró, V., Bin, E. P., D'Annunzio, V., Mauro, J. D., ... & Donato, M. (2019). Adenosine a1receptors and mitochondria: targets of remote ischemic preconditioning. American Journal of Physiology-Heart and Circulatory Physiology, 316(3), H743-H750. https://doi.org/10.1152/ajpheart.00071.2018.
- 20. Aggarwal, S., Randhawa, P. K., Singh, N., & Jaggi, A. S. (2017). Role of atp-sensitive potassium channels in remote ischemic preconditioning induced tissue protection. Journal of

- Cardiovascular Pharmacology and Therapeutics, 22(5), 467-475. https://doi.org/10.1177/1074248416687873.
- 21. Donato, M., Bin, E. P., Annunzio, V. D., & Gelpi, R. J. (2021). Myocardial remote ischemic preconditioning: from cell biology to clinical application. Molecular and Cellular Biochemistry, 476(10), 3857-3867. https://doi.org/10.1007/s11010-021-04192-4.
- 22. Hur, M., Park, S., Shin, J., Choi, J., Yoo, S., Kim, W. H., ... & Kim, J. (2018). The effect of remote ischemic preconditioning on serum creatinine in patients undergoing partial nephrectomy: a study protocol for a randomized controlled trial. Trials, 19(1). https://doi.org/10.1186/s13063-018-2820-3.
- Lotfi, A., Eftekhari, H., Atreya, A. R., Kashikar, A., Sivalingam, S., Giannoni, M., ... & Engelman, D. T. (2016). Randomized controlled trial of remote ischemic preconditioning and atrial fibrillation in patients undergoing cardiac surgery. World Journal of Cardiology, 8(10), 615. https://doi.org/10.4330/wjc.v8.i10.615.
- 24. García, S., Rector, T. S., Zakharova, M., Herrmann, R. R., Adabağ, S., Bertog, S., ... & McFalls, E. O. (2016). c ardiac r emote i schemic p reconditioning prior to e lective vascular s urgery (cripes): a prospective, randomized, sham-controlled phase ii clinical trial. Journal of the American Heart Association, 5(10). https://doi.org/10.1161/jaha.116.003916.
- 25. Wang C., Li H., Wang S., Mao X., Yan D., Wong S. et al.. Repeated non-invasive limb ischemic preconditioning confers cardioprotection through pkc-ε/stat3 signaling in diabetic rats. Cellular Physiology and Biochemistry 2018;45(5):2107-2121. https://doi.org/10.1159/000488047.
- 26. Stokfisz K., Ledakowicz-Polak A., Zagórski M., Jander S., Przybylak K., & Zielińska M.. The clinical utility of remote ischemic preconditioning in protecting against cardiac surgery-associated acute kidney injury: a pilot randomized clinical trial. Advances in Clinical and Experimental Medicine 2020;29(2):189-196. https://doi.org/10.17219/acem/112610.
- 27. Wang H., Wang Y., Liao Q., Jin L., Xu L., Hu Y. et al.. Effects of remote ischemic preconditioning in patients undergoing off-pump coronary artery bypass graft surgery. Frontiers in Physiology 2019;10. https://doi.org/10.3389/fphys.2019.00495.
- 28. Yuan Y., Xiong H., Zhang Y., Yu H., & Zhou R.. Intralipid postconditioning in patients of cardiac surgery undergoing cardiopulmonary bypass (icpb): study protocol for a randomized controlled trial. 2020. https://doi.org/10.21203/rs.3.rs-18732/v2.
- 29. Cheng P., Wang G., & An Y.. The protective effect of remote ischemic preconditioning on acute kidney injury following pediatric cardiac surgery: a systematic review and meta-analysis. 2024. https://doi.org/10.21203/rs.3.rs-4541403/v1.

- 30. Zhang H. , Li S. , & Jin Y.. Remote ischemic preconditioning-induced late cardioprotection: possible role of melatonin-mitokatp-h2s signaling pathway. Acta Cirúrgica Brasileira 2023;38. https://doi.org/10.1590/acb380423.
- 31. Eerik K., Kasepalu T., Kuusik K., Eha J., Vähi M., Kilk K. et al.. Effects of ripc on the metabolome in patients undergoing vascular surgery: a randomized controlled trial. Biomolecules 2022;12(9):1312. https://doi.org/10.3390/biom12091312.
- 32. Drury N., Doorn C., Woolley R., Amos-Hirst R., Bi R., Spencer C. et al.. The bilateral remote ischaemic conditioning in children (bricc) trial: a two-centre, double-blind, randomised controlled trial in young children undergoing cardiac surgery. 2023. https://doi.org/10.1101/2023.04.21.23288646.
- 33. Miličić M., Soldatović I., Nežić D., Jović M., Maravić-Stojkovic V., Vuković P. et al.. Remote ischemic preconditioning in patients undergoing coronary bypass grafting following acute coronary syndrome without st elevation. Vojnosanitetski Pregled 2020;77(10):1017-1023. https://doi.org/10.2298/vsp180414179m.
- 34. Krag A., Kiil B., Hvas C., & Hvas A.. Effect of remote ischemic preconditioning on hemostasis and fibrinolysis in head and neck cancer surgery: a randomized controlled trial. Plos One 2019;14(7):e0219496. https://doi.org/10.1371/journal.pone.0219496.
- 35. Aidonidis I., Christina B., Konstantina D., Apostolia H., Panagiotis L., Eleftherios P. et al.. Remote ischemic preconditioning on new onset post-cardiac surgery atrial fibrillation: a single-centre prospective clinical study. Journal of Integrative Cardiology Open Access 2019:1-6. https://doi.org/10.31487/j.jicoa.2019.04.09.
- 36. Stepan M., Oleh L., Oleksandr D., & Swol J.. Effects of multimodal low-opioid anesthesia protocol during on-pump coronary artery bypass grafting: a prospective cohort study. Journal of Cardiothoracic Surgery 2023;18(1). https://doi.org/10.1186/s13019-023-02395-y.
- 37. Zeggeren L. , Visser R. , Vernooij L. , Dijkstra I. , Bosma M. , Molenaar Q. et al.. The effect of remote ischaemic preconditioning on postoperative cardiac and inflammatory biomarkers in pancreatic surgery: a randomized controlled trial. BJS Open 2021;5(2). https://doi.org/10.1093/bjsopen/zrab015.
- 38. Zhang S. , Tao X. , Ding S. , Feng X. , Wu F. , & Wu Y.. Associations between postoperative cognitive dysfunction, serum interleukin-6 and postoperative delirium among patients after coronary artery bypass grafting: a mediation analysis. Nursing in Critical Care 2024;29(6):1245-1252. https://doi.org/10.1111/nicc.13081.

- 39. Gorjipour F., Saeedzadeh T., Toloueitabar Y., Kachoueian N., Ghashghaei S., Mortazian M. et al.. Remote ischemic preconditioning effects on inflammatory markers and myocardial protection in coronary artery bypass graft surgery. Perfusion 2020;37(1):56-61. https://doi.org/10.1177/0267659120979293.
- 40. Feige K., Torregroza C., Gude M., Maddison P., Stroethoff M., Roth S. et al.. Cardioprotective properties of humoral factors released after remote ischemic preconditioning in cabg patients with propofol-free anesthesia—a translational approach from bedside to bench. Journal of Clinical Medicine 2022;11(5):1450. https://doi.org/10.3390/jcm11051450.
- 41. Pinaud F., Corbeau J., Baufreton C., Binuani J., Brux J., Fouquet O. et al.. Remote ischemic preconditioning in aortic valve surgery: results of a randomized controlled study. Journal of Cardiology 2016;67(1):36-41. https://doi.org/10.1016/j.jjcc.2015.06.007.
- 42. Huh J. and Chae M.. Paired remote ischemic preconditioning in recipients and living donors can mitigate cardiovascular stress in recipients after living-donor kidney transplantation: a propensity-score-matching analysis. Medicina 2024;60(11):1826. https://doi.org/10.3390/medicina60111826.
- 43. Luca C. , Boieriu A. , Neculoiu C. , & Ţînţ D.. Cardioprotection in coronary artery bypass graft surgery: the impact of remote ischemic preconditioning on modulating lox-1 and sod-1 to counteract oxidative stress. Frontiers in Cardiovascular Medicine 2024;11. https://doi.org/10.3389/fcvm.2024.1502326.
- 44. Boieriu A. , Luca C. , Neculoiu C. , & Ţînţ D.. The impact of inflammatory and oxidative stress biomarkers on the sympathetic nervous system in severe coronary atherosclerosis. Frontiers in Cardiovascular Medicine 2024;11. https://doi.org/10.3389/fcvm.2024.1480925.
- 45. Jomová K., Alomar S., Alwasel S., Nepovimová E., Kuča K., & Valko M.. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology 2024;98(5):1323-1367. https://doi.org/10.1007/s00204-024-03696-4.
- 46. Kattoor A. , Goel A. , & Mehta J.. Lox-1: regulation, signaling and its role in atherosclerosis. Antioxidants 2019;8(7):218. https://doi.org/10.3390/antiox8070218.
- 47. Abdallah M. and Elnaggar A.. Effect of remote ischemic preconditioning on patient survival and end organ injury during elective open abdominal aortic surgery repair: a randomized controlled trial. International Journal of Medical Arts 2023;5(7):3443-3449. https://doi.org/10.21608/ijma.2023.218242.1712.

- 48. Zarbock A., Schmidt C., Aken H., Wempe C., Martens S., Zahn P. et al.. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery. Jama 2015;313(21):2133. https://doi.org/10.1001/jama.2015.4189.
- 49. Lavi S., Abu-Romeh N., Wall S., Alemayehu M., & Lavi R.. Long-term outcome following remote ischemic postconditioning during percutaneous coronary interventions—the rip-pci trial long-term follow-up. Clinical Cardiology 2017;40(5):268-274. https://doi.org/10.1002/clc.22668.
- 50. Valappil S. , Kunjukrishnapillai S. , Viswanathan S. , Koshy A. , Gupta P. , Velayudhan R. et al.. Remote ischemic preconditioning for prevention of contrast induced nephropathy—insights from an indian study. Indian Heart Journal 2018;70(6):857-863. https://doi.org/10.1016/j.ihj.2017.11.012.
- 51. Pranata R. , Tondas A. , Vania R. , Toruan M. , Lukito A. , & Siswanto B.. Remote ischemic preconditioning reduces the incidence of contrast-induced nephropathy in patients undergoing coronary angiography/intervention: systematic review and meta-analysis of randomized controlled trials. Catheterization and Cardiovascular Interventions 2020;96(6):1200-1212. https://doi.org/10.1002/ccd.28709.
- 52. Rossaint J., Meersch M., Thomas K., Mersmann S., Lehmann M., Skupski J. et al.. Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a nf-κb–dependent sema5b pathway. JCI Insight 2022;7(14). https://doi.org/10.1172/jci.insight.158523.
- 53. Yaniv G., Eisenkraft A., Gavish L., Wagnert-Avraham L., Nachman D., Megreli J. et al.. Remote ischemic preconditioning improves tissue oxygenation in a porcine model of controlled hemorrhage without fluid resuscitation. 2021. https://doi.org/10.21203/rs.3.rs-286422/v1.
- 54. Kosiuk J., Milani R., Ueberham L., Uhe T., Stegmann C., Hindricks G. et al.. Effect of remote ischemic preconditioning on electrophysiological and biomolecular parameters in nonvalvular paroxysmal atrial fibrillation (rippaf study): rationale and study design of a randomized, controlled clinical trial. Clinical Cardiology 2016;39(11):631-635. https://doi.org/10.1002/clc.22584.
- 55. Zeggeren, L. v., Visser, R. A., Vernooij, L. M., Dijkstra, I. M., Bosma, M., Molenaar, I. Q., ... & Noordzij, P. G. (2020). The effect of remote ischemic preconditioning on postoperative cardiac and inflammatory biomarkers in pancreatic surgery: a randomized controlled trial.. https://doi.org/10.1101/2020.12.18.20248465.
- 56. Dong W., Yu P., Zhang T., Zhu C., Qi J., & Liang J.. Adrenomedullin serves a role in the humoral pathway of delayed remote ischemic preconditioning via a hypoxia-inducible factor- 1α -

- associated mechanism. Molecular Medicine Reports 2018. https://doi.org/10.3892/mmr.2018.8450.
- 57. Siburian R., Fadillah R., Altobaishat O., Umar T., Dilawar I., & Nugroho D.. Remote ischemic preconditioning and cognitive dysfunction following coronary artery bypass grafting: a systematic review and meta-analysis of randomized controlled trials. Saudi Journal of Anaesthesia 2024;18(2):187-193. https://doi.org/10.4103/sja.sja.751_23.
- 58. Papadopoulou A., Dickinson M., Samuels T., Heiß C., Forni L., & Creagh-Brown B.. Efficacy of remote ischaemic preconditioning on outcomes following non-cardiac non-vascular surgery: a systematic review and meta-analysis. Perioperative Medicine 2023;12(1). https://doi.org/10.1186/s13741-023-00297-0.
- 59. Makkad B., Heinke T., & Kertai M.. Inhalational or total intravenous anesthetic for cardiac surgery: does the debate even exist?. Current Opinion in Anaesthesiology 2021;35(1):18-35. https://doi.org/10.1097/aco.0000000000001087.
- 60. Heusch G.. Remote ischemic conditioning in cardiovascular surgery. Journal of Cardiovascular Pharmacology and Therapeutics 2017;22(4):297-301. https://doi.org/10.1177/1074248416687874.
- 61. Bunte S., Lill T., Falk M., Stroethoff M., Raupach A., Mathes A. et al.. Impact of anesthetics on cardioprotection induced by pharmacological preconditioning. Journal of Clinical Medicine 2019;8(3):396. https://doi.org/10.3390/jcm8030396.
- 62. Nakano D.. Remote ischemic preconditioning of the femoral artery and vein does not protect against renal ischemia/reperfusion-induced injury in anesthetized mice. Journal of Urology and Nephrology Open Access 2016;2(2):01-05. https://doi.org/10.15226/2473-6430/2/2/00110.
- 63. Yang S., Abbott G., Gao W., Liu J., Luo C., & Hu Z.. Involvement of glycogen synthase kinase-3β in liver ischemic conditioning induced cardioprotection against myocardial ischemia and reperfusion injury in rats. Journal of Applied Physiology 2017;122(5):1095-1105. https://doi.org/10.1152/japplphysiol.00862.2016.
- 64. Pierce B., Bole I., Patel V., & Brown D.. Clinical outcomes of remote ischemic preconditioning prior to cardiac surgery: a meta-analysis of randomized controlled trials. Journal of the American Heart Association 2017;6(2). https://doi.org/10.1161/jaha.116.004666.
- 65. Hausenloy D., Candilio L., Evans R., Ariti C., Jenkins D., Kolvekar S.et al.. Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing coronary artery bypass graft surgery (ericca study): a multicentre double-blind randomised controlled clinical trial. Efficacy and Mechanism Evaluation 2016;3(4):1-58. https://doi.org/10.3310/eme03040.

- 66. Long Y., Feng X., Shan X., Chen Q., Xia Z., Ji F.et al.. Remote ischemic preconditioning reduces acute kidney injury after cardiac surgery: a systematic review and meta-analysis of randomized controlled trials. Anesthesia & Analgesia 2021. https://doi.org/10.1213/ane.0000000000005804.
- 67. Gallagher S., Jones D., Kapur A., Wragg A., Harwood S., Mathur R.et al.. Remote ischemic preconditioning has a neutral effect on the incidence of kidney injury after coronary artery bypass graft surgery. Kidney International 2015;87(2):473-481. https://doi.org/10.1038/ki.2014.259.
- 68. Wu Q., Wang T., Chen S., Zhou Q., Li H., Hu N.et al.. Cardiac protective effects of remote ischaemic preconditioning in children undergoing tetralogy of fallot repair surgery: a randomized controlled trial. European Heart Journal 2017;39(12):1028-1037. https://doi.org/10.1093/eurheartj/ehx030.
- 69. Kleinbongard P., Peters J., Jakob H., Heusch G., & Thielmann M.. Persistent survival benefit from remote ischemic pre-conditioning in patients undergoing coronary artery bypass surgery. Journal of the American College of Cardiology 2018;71(2):252-254. https://doi.org/10.1016/j.jacc.2017.10.083.
- 70. Lang J. and Kim J.. Remote ischaemic preconditioning translating cardiovascular benefits to humans. The Journal of Physiology 2022;600(13):3053-3067. https://doi.org/10.1113/jp282568.
- 71. Meybohm P., Bein B., Brosteanu O., Cremer J., Gruenewald M., Stoppe C. et al.. A multicenter trial of remote ischemic preconditioning for heart surgery. New England Journal of Medicine 2015;373(15):1397-1407. https://doi.org/10.1056/nejmoa1413579.
- 72. Heusch G.. Molecular basis of cardioprotection. Circulation Research 2015;116(4):674-699. https://doi.org/10.1161/circresaha.116.305348.
- 73. Akhmedov A., Sawamura T., Chen C., Kraler S., Vdovenko D., & Lüscher T.. Lectin-like oxidized low-density lipoprotein receptor-1 (lox-1): a crucial driver of atherosclerotic cardiovascular disease. European Heart Journal 2020;42(18):1797-1807. https://doi.org/10.1093/eurheartj/ehaa770.
- 74. Poznyak A., Grechko A., Orekhova V., Chegodaev Y., Wu W., & Orekhov A.. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology 2020;9(3):60. https://doi.org/10.3390/biology9030060.
- 75. Wahlstrøm K., Hansen H., Kvist M., Burcharth J., Lykkesfeldt J., Gögenür I. et al.. Effect of remote ischaemic preconditioning on perioperative endothelial dysfunction in non-cardiac

- surgery: a randomised clinical trial. Cells 2023;12(6):911. https://doi.org/10.3390/cells12060911.
- 76. Shimizu M., Tropak M., Diaz R., Suto F., Surendra H., Kuzmin E. et al.. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clinical Science 2009;117(5):191-200. https://doi.org/10.1042/cs20080523.
- 77. Bauer I. and Raupach A.. The role of heme oxygenase-1 in remote ischemic and anesthetic organ conditioning. Antioxidants 2019;8(9):403. https://doi.org/10.3390/antiox8090403.
- 78. Fiorentino F., Angelini G., Suleiman M., Rahman A., Anderson J., Bryan A. et al.. Investigating the effect of remote ischaemic preconditioning on biomarkers of stress and injury-related signalling in patients having isolated coronary artery bypass grafting or aortic valve replacement using cardiopulmonary bypass: study protocol for a randomized controlled trial. Trials 2015;16(1). https://doi.org/10.1186/s13063-015-0696-z.
- 79. Vilahur G., Gutiérrez M., Casaní L., Cubedo J., Capdevila A., Pons-Lladó G. et al.. Hypercholesterolemia abolishes high-density lipoprotein—related cardioprotective effects in the setting of myocardial infarction. Journal of the American College of Cardiology 2015;66(21):2469-2470. https://doi.org/10.1016/j.jacc.2015.08.901.
- 80. Hausenloy D. and Yellon D.. The therapeutic potential of ischemic conditioning: an update.

 Nature Reviews Cardiology 2011;8(11):619-629. https://doi.org/10.1038/nrcardio.2011.85.
- 81. Ridker P. , Thurén T. , Zalewski A. , & Libby P.. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the canakinumab anti-inflammatory thrombosis outcomes study (cantos). American Heart Journal 2011;162(4):597-605. https://doi.org/10.1016/j.ahj.2011.06.012.
- 82. Bifari A., Sulaimani R., Khojah Y., Almaghrabi O., Alshaikh H., & Al-Ebrahim K.. Cardiovascular risk factors in coronary artery bypass graft patients: comparison between two periods. Cureus 2020. https://doi.org/10.7759/cureus.10561.
- 83. Damaskos C., Garmpis N., Kollia P., Mitsiopoulos G., Barlampa D., Drosos A. et al.. Assessing cardiovascular risk in patients with diabetes: an update. Current Cardiology Reviews 2021;16(4):266-274. https://doi.org/10.2174/1573403x15666191111123622.
- 84. Sianos G, Morel MA, Kappetein AP, Morice MC, Colombo A, Dawkins K et al. Syntax score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention. 2005;1:219-227.

- 85. Serruys P. , Morice M. , Kappetein A. , Colombo A. , Holmes D. , Mack M. et al.. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease.

 New England Journal of Medicine 2009;360(10):961-972.

 https://doi.org/10.1056/nejmoa0804626.
- 86. Quinn, A., Williams, A., Sivilli, T. I., Raison, C. L., & Pace, T. W. W. (2018). The plasma interleukin-6 response to acute psychosocial stress in humans is detected by a magnetic multiplex assay: comparison to high-sensitivity elisa. Stress, 21(4), 376-381. https://doi.org/10.1080/10253890.2018.1446518.
- 87. Fisson S., Ouakrim H., Touitou V., Baudet S., Abdelwahed R., Donnou S.et al.. Cytokine profile in human eyes: contribution of a new cytokine combination for differential diagnosis between intraocular lymphoma or uveitis. Plos One 2013;8(2):e52385. https://doi.org/10.1371/journal.pone.0052385.
- 88. Abe K., Hashimoto Y., Yatsushiro S., Yamamura S., Bando M., Hiroshima Y.et al.. Simultaneous immunoassay analysis of plasma il-6 and $tnf-\alpha$ on a microchip. Plos One 2013;8(1):e53620. https://doi.org/10.1371/journal.pone.0053620.
- 89. Chapman A., Fujisawa T., Lee K., Andrews J., Anand A., Sandeman D.et al.. Novel high-sensitivity cardiac troponin i assay in patients with suspected acute coronary syndrome. Heart 2018:heartjnl-2018-314093. https://doi.org/10.1136/heartjnl-2018-314093.
- 90. Lee K., Noaman A., Vaswani A., Gibbins M., Griffiths M., Chapman A.et al.. Prevalence, determinants, and clinical associations of high-sensitivity cardiac troponin in patients attending emergency departments. The American Journal of Medicine 2019;132(1):110.e8-110.e21. https://doi.org/10.1016/j.amjmed.2018.10.002.
- 91. Narayanan T., Naneishvili T., Moody W., Townend J., & Ludman P.. Chest pain with significantly elevated troponins: be wary of false positives. Cureus 2025. https://doi.org/10.7759/cureus.77018.
- 92. Hong D. , Min J. , Kim J. , Sohn I. , Lim T. , Lim Y. et al.. The effect of remote ischaemic preconditioning on myocardial injury in patients undergoing off-pump coronary artery bypass graft surgery. Anaesthesia and Intensive Care 2010;38(5):924-929. https://doi.org/10.1177/0310057x1003800518.
- 93. Kepler T. , Kuusik K. , Lepner U. , Starkopf J. , Zilmer M. , Eha J. et al.. Remote ischaemic preconditioning attenuates cardiac biomarkers during vascular surgery: a randomised clinical trial. European Journal of Vascular and Endovascular Surgery 2020;59(2):301-308. https://doi.org/10.1016/j.ejvs.2019.09.502.

- 94. Alsaleh M., Alazzoni A., Shalash S., Ye C., Mbuagbaw L., Thabane L. et al.. Performance of the high-sensitivity troponin assay in diagnosing acute myocardial infarction: systematic review and meta-analysis. CMAJ Open 2014;2(3):E199-E207. https://doi.org/10.9778/cmajo.20130074.
- 95. Xu X., Zhou Y., Luo S., Zhang W., Zhao Y., Yu M.et al.. Effect of remote ischemic preconditioning in the elderly patients with coronary artery disease with diabetes mellitus undergoing elective drug-eluting stent implantation. Angiology 2013;65(8):660-666. https://doi.org/10.1177/0003319713507332.
- 96. Abe N., Tomita K., Teshima M., Kuwabara M., Sugawa S., Hinata N. et al.. Distribution of cardiac troponin i in the japanese general population and factors influencing its concentrations. Journal of Clinical Laboratory Analysis 2017;32(3). https://doi.org/10.1002/jcla.22294.
- 97. Moskowitz M. and Waeber C.. Remote ischemic preconditioning. Circulation 2011;123(7):709-711. https://doi.org/10.1161/circulationaha.110.009688.
- 98. Wei X., Li D., Shi Y., Ning Y., Yan Y., Zhang Y. et al.. Serum fgf21 levels predict the mace in patients with myocardial infarction after coronary artery bypass graft surgery. Frontiers in Cardiovascular Medicine 2022;9. https://doi.org/10.3389/fcvm.2022.850517.
- 99. Eriş C., Erdolu B., Engin M., AS A., & Üstündağ Y.. The effects of aortic clamping strategy on myocardial protection and early postoperative outcomes during coronary artery bypass grafting operations. The Heart Surgery Forum 2021;24(2):E217-E222. https://doi.org/10.1532/hsf.3475.
- 100. Jaiswal A.. H-fabp as a diagnostic marker for early detection of young myocardial infarction among indians. Bioinformation 2022;18(6):506-512. https://doi.org/10.6026/97320630018506.
- 101. Sezai A., Hata M., Yoshitake I., Kimura H., Takahashi K., Hata H. et al.. Results of emergency coronary artery bypass grafting for acute myocardial infarction: importance of intraoperative and postoperative cardiac medical therapy. Annals of Thoracic and Cardiovascular Surgery 2012;18(4):338-346. https://doi.org/10.5761/atcs.oa.11.01821.
- 102. Ota T., Hasegawa Y., Murata E., Tanaka N., & Fukuoka M.. False-positive elevation of ck-mb levels with chest pain in lung adenocarcinoma. Case Reports in Oncology 2020;13(1):100-104. https://doi.org/10.1159/000505724.
- 103. Nardi P., Pisano C., Ferrante S., Bertoldo F., Scafuri A., Bassano C. et al.. Warm blood versus st. thomas cardioplegia for myocardial protection in patients undergoing coronary artery bypass grafting. Polish Journal of Cardio-Thoracic Surgery 2019;16(4):147-154. https://doi.org/10.5114/kitp.2019.91383.

- 104. Kittipeerapat N., Fabian R., Bernsen S., Weydt P., & Castro-Gomez S.. Creatine kinase mb isoenzyme is a complementary biomarker in amyotrophic lateral sclerosis. International Journal of Molecular Sciences 2023;24(14):11682. https://doi.org/10.3390/ijms241411682.
- 105. Jang W., Yang J., Choi S., Song Y., Hahn J., Kim W. et al.. Association of periprocedural myocardial infarction with long-term survival in patients treated with coronary revascularization therapy of chronic total occlusion. Catheterization and Cardiovascular Interventions 2015;87(6):1042-1049. https://doi.org/10.1002/ccd.26286.
- 106. Şaşkın H., Düzyol Ç., Aksoy R., Özcan K., Güngö B., & İdiz M.. Do preoperative creactive protein and mean platelet volume levels predict development of postoperative atrial fibrillation in patients undergoing isolated coronary artery bypass grafting?. Advances in Interventional Cardiology 2016;2:156-163. https://doi.org/10.5114/aic.2016.59366.
- 107. Lechowicz K., Szylińska A., Listewnik M., Drożdżal S., Tomska N., Rotter I. et al.. Cardiac delirium index for predicting the occurrence of postoperative delirium in adult patients after coronary artery bypass grafting. Clinical Interventions in Aging 2021;Volume 16:487-495. https://doi.org/10.2147/cia.s302526.
- 108. Lorenzo A., Pittella F., & Rocha A.. Increased preoperative c-reactive protein levels are associated with inhospital death after coronary artery bypass surgery. Inflammation 2012;35(3):1179-1183. https://doi.org/10.1007/s10753-011-9426-1.
- 109. Aksoy F., Uysal D., & İbrişim E.. Relationship between c-reactive protein/albumin ratio and new-onset atrial fibrillation after coronary artery bypass grafting. Revista Da Associação Médica Brasileira 2020;66(8):1070-1076. https://doi.org/10.1590/1806-9282.66.8.1070.
- 110. Pilcher J., Young P., Weatherall M., Rahman I., Bonser R., & Beasley R.. A systematic review and meta-analysis of the cardioprotective effects of remote ischaemic preconditioning in open cardiac surgery. Journal of the Royal Society of Medicine 2012;105(10):436-445. https://doi.org/10.1258/jrsm.2012.120049.
- 111. Cho Y., Nam K., Kim T., Choi S., Kim S., Hausenloy D. et al.. Sevoflurane, propofol and carvedilol block myocardial protection by limb remote ischemic preconditioning. International Journal of Molecular Sciences 2019;20(2):269. https://doi.org/10.3390/ijms20020269.
- 112. Xie J., Liao X., Chen W., Huang D., Chang F., Chen W. et al.. Remote ischaemic preconditioning reduces myocardial injury in patients undergoing heart valve surgery: randomised controlled trial. Heart 2011;98(5):384-388. https://doi.org/10.1136/heartjnl-2011-300860.

- 113. Thielmann M., Kottenberg E., Boengler K., Raffelsieper C., Neuhäeuser M., Peters J. et al.. Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with crystalloid cardioplegic arrest. Basic Research in Cardiology 2010;105(5):657-664. https://doi.org/10.1007/s00395-010-0104-5.
- 114. Cho Y., Shimura S., Aki A., Furuya H., Okada K., & Ueda T.. The syntax score is correlated with long-term outcomes of coronary artery bypass grafting for complex coronary artery lesions. Interactive CardioVascular and Thoracic Surgery 2016;23(1):125-132. https://doi.org/10.1093/icvts/ivw057.
- 115. Kageyama S., Serruys P., Ninomiya K., O'Leary N., Masuda S., Kotoku N. et al.. Impact of on-pump and off-pump coronary artery bypass grafting on 10-year mortality versus percutaneous coronary intervention. European Journal of Cardio-Thoracic Surgery 2023;64(2). https://doi.org/10.1093/ejcts/ezad240.
- 116. Nouraei S., Baradari A., & Jazayeri A.. Does remote ischaemic preconditioning protect kidney and cardiomyocytes after coronary revascularization? a double blind controlled clinical trial. Medical Archives 2016;70(5):373. https://doi.org/10.5455/medarh.2016.70.373-378.
- 117. Huh J. and Chae M.. Paired remote ischemic preconditioning in recipients and living donors can mitigate cardiovascular stress in recipients after living-donor kidney transplantation:
 a propensity-score-matching analysis. Medicina 2024;60(11):1826. https://doi.org/10.3390/medicina60111826.
- 118. Afridi M., Roomi F., Khan H., Kazim A., Afridi R., Usmani S. et al.. Diabetes mellitus and coronary revascularization: comparing outcomes between coronary artery bypass grafting and percutaneous coronary intervention. Cureus 2024. https://doi.org/10.7759/cureus.66166.
- 119. Kasepalu T. , Kuusik K. , Lepner U. , Starkopf J. , Zilmer M. , Eha J. et al.. Remote ischaemic preconditioning influences the levels of acylcarnitines in vascular surgery: a randomised clinical trial. Nutrition &Amp; Metabolism 2020;17(1). https://doi.org/10.1186/s12986-020-00495-3.
- 120. Herrod P., Blackwell J., Moss B., Gates A., Atherton P., Lund J. et al.. The efficacy of 'static' training interventions for improving indices of cardiorespiratory fitness in premenopausal females. European Journal of Applied Physiology 2018;119(3):645-652. https://doi.org/10.1007/s00421-018-4054-1.

9. List of publications

- ✓ **Romanian Journal of Cardiology** Atrial standstill in a young patient treated with left bundle branch area pacing
 - Ecaterina C., **Dumitrel L.**, & Catalin P.. Atrial standstill in a young patient treated with left bundle branch area pacing. Romanian Journal of Cardiology 2024;34(2):97-101. https://doi.org/10.2478/rjc-2024-0008
- ✓ **Cardiology Research Journal** The Impact of Remote Ischemic Preconditioning on Inflammation Markers in Patients Undergoing Coronary Artery Bypass Grafting
 - **Luca C.**, Boieriu A., Neculoiu C., & Ţînţ D.. The impact of remote ischemic preconditioning on inflammation markers in patients undergoing coronary artery bypass grafting. Cardiology Research 2024;15(5):369-376. https://doi.org/10.14740/cr1702
- ✓ **Frontiers in Cardiovascular Medicine** Cardioprotection in coronary artery bypass graft surgery: the impact of remote ischemic preconditioning on modulating LOX-1 and SOD-1 to counteract oxidative stress
 - **Luca C.**, Boieriu A., Neculoiu C., & Ţînţ D.. Cardioprotection in coronary artery bypass graft surgery: the impact of remote ischemic preconditioning on modulating lox-1 and sod-1 to counteract oxidative stress. Frontiers in Cardiovascular Medicine 2024;11. https://doi.org/10.3389/fcvm.2024.1502326
- ✓ **Frontiers in Cardiovascular Medicine** The impact of inflammatory and oxidative stress biomarkers on the sympathetic nervous system in severe coronary atherosclerosis
 - Boieriu A., Luca C., Neculoiu C., & Ţînţ D.. The impact of inflammatory and oxidative stress biomarkers on the sympathetic nervous system in severe coronary atherosclerosis. Frontiers in Cardiovascular Medicine 2024;11. https://doi.org/10.3389/fcvm.2024.1480925
- ✓ **Medicina Journal** Endothelial Dysfunction and Oxidative Stress in Patients with Severe Coronary Artery Disease: Does Diabetes Play a Contributing Role?
 - Boieriu A., **Luca C.**, Neculoiu C., Bisoc A., & Ţînţ D.. Endothelial dysfunction and oxidative stress in patients with severe coronary artery disease: does diabetes play a

- ✓ Research Reports in Clinical Cardiology Flow Mediated Dilation and Its Correlation with Coronary and Systemic Atherosclerosis in Patients Scheduled for Surgical Myocardial Revascularization
 - Boieriu A., **Luca C.**, & Tint D.. Flow mediated dilation and its correlation with coronary and systemic atherosclerosis in patients scheduled for surgical myocardial revascularization. Research Reports in Clinical Cardiology 2025;Volume 16:1-7. https://doi.org/10.2147/rrcc.s489002
- ✓ Romanian Journal of Cardiology Connections Between Oxidative Stress, Inflammation, and Cardiovascular Risk Factors in CABG Patients Undergoing Remote Ischemic Preconditioning
 - **Luca C.**, Boieriu A., Neculoiu D., & Ţînţ D.. Connections between oxidative stress, inflammation, and cardiovascular risk factors in cabg patients undergoing remote ischemic preconditioning. Romanian Journal of Cardiology 2025. https://doi.org/10.2478/rjc-2025-0006