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INTRODUCTION 

Relevance of smart solutions for postural assessment in forest operations 

Forest operations encompass a wide array of activities related to the management, cultivation, and 
harvesting of forests and timber resources (Rummer et al., 2002). These operations are vital for the 
sustainable utilization of forest ecosystems, aiming to reconcile economic needs with the fundamental 
objective of reducing waste and emissions while minimizing impacts on the environment's structures 
and functions (Heinimann, 2007; Marchi et al., 2018). However, forestry remains one of the most 
physically demanding and hazardous occupations. Workers are frequently required to perform 
repetitive tasks (Sibiya et al., 2021), engage in heavy lifting (Paini et al., 2020), and maintain prolonged 
awkward postures (Yovi and Prajawati, 2015). These factors significantly increase the risk of 
developing musculoskeletal disorders (MSDs) (Calvo, 2009; Punnett and Wegman, 2004), which 
include a wide range of inflammatory and degenerative conditions affecting muscles, tendons, 
ligaments, and joints. According to Da Costa and Vieira (2010), poor ergonomic practices and a lack of 
attention to postural health are primary contributors to MSDs, which represent one of the most 
common occupational health issues globally and a significant cause of work-related disability (Bevan, 
2015; Enez and Nalbantoğlu, 2019; Pascual and Naqvi, 2008). Consequently, the need for effective, 
accurate, and efficient postural assessment in forest operations is both urgent and critical to mitigate 
these risks and prescribe appropriate interventions. 

For decades, the field of ergonomics has relied on traditional assessment methods to identify and 
quantify postural risks. Methodologies such as the Rapid Upper Limb Assessment (RULA) (McAtamney 
and Corlett, 1993), the Rapid Entire Body Assessment (REBA) (Hignett and McAtamney, 2000), and the 
Ovako Working Posture Analysing System (OWAS) (Karhu et al., 1977) have been widely used. These 
methods are endorsed for their ability to systematically classify postures and assign risk levels. 
However, they rely heavily on observational techniques that are often subjective, time-consuming, and 
impractical for large-scale or continuous implementation (Gomez-Galan et al., 2017; Takala et al., 
2010). Their static, snapshot-based nature often fails to capture the dynamic, real-time postural 
changes inherent in demanding environments like forestry (Bačić et al., 2024). While modern 
technologies like wearable sensors and motion capture systems offer more quantitative and objective 
data, they are often expensive and require controlled environments, limiting their applicability in the 
rugged, mobile, and outdoor settings of forest operations (Nadeem et al., 2021). 

Recent advancements in machine learning (ML), deep learning (DL), and computer vision (CV) offer 
transformative opportunities to overcome these challenges (Roggio et al., 2024; Yang et al., 2024). 
These "smart solutions" can analyze postures from video or image data, enabling non-invasive, 
scalable, and cost-effective assessment. DL models, particularly Convolutional Neural Networks 
(CNNs) like ResNet-50 (He et al., 2016), have demonstrated remarkable success in image classification 
and human pose estimation, allowing for the precise tracking of body joints and angles (Cao et al., 
2017). This capability is highly relevant for ergonomic risk assessment, where DL can identify posture 
deviations and predict potential risks from visual data. Similarly, CV technologies, powered by 
algorithms like OpenPose (Cao et al., 2019) and advanced architectures like the High-Resolution 
Network (HRNet) (Sun et al., 2019), can now detect and classify human postures with high accuracy, 
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even in complex and dynamic environments. The integration of these advanced technologies into 
ergonomic assessment workflows promises to enhance the efficiency, accuracy, and real-time 
applicability of postural analysis. This thesis sought to develop and evaluate such smart solutions 
tailored for postural assessment in forest operations, addressing the critical role of ergonomics in 
minimizing work-related risks by leveraging the immense potential of these advanced technologies. 

Aim and objectives 

The aim of this thesis was to improve the existing postural assessment methods by selecting, testing, 
tailoring, and validating innovative ML, DL and CV techniques so as to help prevent injuries and improve 
work ergonomics, save resources, and enable big data analysis in forest operations postural 
assessment. By integrating established ergonomic methods with ML and CV technologies, this 
research will bridge gaps in existing methods and provide a novel framework for effective postural 
ergonomic assessment. The specific objectives of the thesis were as follows: 

O1. To perform a comprehensive review of existing ergonomic assessment methods to identify current 
gaps and limitations; 

O2. To collect baseline/representative data on the types of manual, motor-manual and partly 
mechanized forest operations and the variability in operational factors that affect the postural 
condition in the form of media files; 

O3. To select and test the best candidates of ML and CV classification algorithms by integrating them 
in the conceptual framework of postural assessment methods for manual, motor-manual and partly 
mechanized operations implemented especially in Europe; 

O4. To identify and optimize the most promising algorithms of ML and CV in terms of performance by 
fine-tuning of their operating hyperparameters; 

O5. To disseminate the results. 

Organization of the thesis 

The PhD thesis is organized into manuscript-style chapters, each concentrating on a specific topic: 

Chapter 1: A systematic survey of conventional and new postural assessment methods. This chapter 
presents a systematic literature review that identifies gaps in existing postural ergonomic assessment 
methods, laying the groundwork for future research. It examines contemporary ergonomic assessment 
techniques, particularly in forestry, contrasting traditional methods with modern approaches utilizing 
Machine Learning and Computer Vision. 
Chapter 2: Development and evaluation of automated postural classification models in forest 
operations using deep learning-based computer vision. This chapter focuses on the development and 
evaluation of DL models for automating ergonomic assessments using the OWAS method. It details 
the creation of a large, annotated image dataset and the comparative performance of four pre-trained 
CNN models, culminating in the selection and fine-tuning of the best-performing model. 
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Chapter 3: Approaching full accuracy by deep learning and computer vision in OWAS postural 
classification. This chapter explores how enhancing conventional 2D images with computer-generated 
body keypoints can improve the accuracy of DL-based postural classification. It compares the 
performance of a ResNet-50 model on three different image analysis approaches: images only, 
skeletons only, and images combined with skeletons. 
Chapter 4: Postural classification by image embedding and transfer learning. This chapter investigates 
the use of image embedding and transfer learning to automate the OWAS method for evaluating 
postures in motor-manual cross-cutting work. It analyzes the performance of Google's Inception V3 
and SqueezeNet models and discusses the challenges of domain differences and unseen data. 
Chapter 5: Human and machine reliability in postural assessment of forest operations by OWAS 
method. This chapter evaluates the reliability of postural assessments by comparing the ratings of 
three human experts with the predictions of a deep learning model. It analyzes intra- and inter-rater 
reliability, agreement with the model's "ground truth," and the time efficiency of both human and 
machine assessments. 
Chapter 6: Conclusions. Original contributions. Dissemination of results. This final chapter synthesizes 
the findings from the preceding chapters, outlines the original contributions of the thesis to the field, 
and provides a list of scientific publications and presentations that have disseminated the research. 
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CHAPTER 1. A SYSTEMATIC SURVEY OF CONVENTIONAL AND NEW POSTURAL ASSESSMENT 
METHODS 

1.1. MATERIALS AND METHODS 

The purpose of this study was to explore the existing research on ML and CV applications in postural 
assessment. This review follows a systematic methodology based on the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher et al., 2015; Page et al., 2021) 
to identify, select, appraise, synthesize, and report relevant studies from various databases. A protocol 
was developed that outlined the objectives, scope, and methodology of the review. Appropriate 
academic databases (e.g., PubMed, Scopus, ScienceDirect, Google Scholar, Elsevier, Web of Science, 
IEEE Xplore, Springer Link) were chosen, and a comprehensive list of keywords and synonyms related 
to the research topic were developed (e.g., musculoskeletal disorders, OWAS, RULA, REBA, ML, DL, CV, 
postural assessment). The search was limited to articles published in English without any year range. 

A total of 182 articles were selected for inclusion in this review, based on their relevance to the topic 
and methodological quality. Inclusion criteria considered studies that were published on postural 
assessment at any time, including research conducted with humans, related to ML and CV applications 
in postural assessment, and were available in English. To extract and analyze relevant information, a 
data collection framework was created to systematically document key information from selected 
articles, such as research objectives, methodology, findings, limitations, and gaps. The PRISMA flow 
diagram in Figure 1.1 illustrates the methodological phases of the literature review. 
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Figure 1.1. The PRISMA flow diagram of the methodological phases of the literature review for this 
study. 

 

1.2. RESULTS AND DISCUSSION 

A wide variety of methodologies used in postural assessment have been identified and grouped into 
three categories: direct measurements, observational approaches, and self-reports (David, 2005; 
Gomez-Galan et al., 2017; Li and Buckle, 1999). Worker self-reports (e.g., diaries, interviews, 
questionnaires) are valuable for gathering information on exposure to work-related hazards but can be 
vague and unreliable (David, 2005; Kolgiri et al., 2017). Observational methods are essential for 
assessing the external exposure of workers and can be subjective (e.g., body maps, rating scales) or 
systematic (e.g., recording postures and movements) (Lorenzini et al., 2023). Simpler observational 
techniques like OWAS, REBA, and RULA use pro-forma sheets to record workplace exposure and 
prioritize interventions. Advanced methods use computerized data collection and analysis to provide a 
more objective assessment of postural risk factors. Direct measurement of exposure variables is 
achieved by attaching sensors to the subject's workspace, including hand-held instruments like 
electronic goniometers, or systems that use optical, acoustic, or electromagnetic markers to track body 
movements (David, 2005; Kolgiri et al., 2017). While these methods provide highly accurate data, they 
can be costly, require technical expertise, and may be uncomfortable for the subject. 

Algorithms form the core of ML and CV systems. Recent advances in ML and DL algorithms have 
enabled the development of efficient and accurate CV methods for assessing posture from visual cues, 
such as images and videos (Debnath et al., 2022; Jiang et al., 2023). Common traditional ML algorithms 
used in CV for postural assessment include Scale-Invariant Feature Transform (SIFT), Histogram of 
Oriented Gradients (HOG), Support Vector Machine (SVM), and Hidden Markov Model (HMM) (Ding et 
al., 2020; Jiang et al., 2023). Other classification algorithms include Random Forest (RF), Decision Trees 
(DT), and k-Nearest Neighbors (KNN). In recent years, researchers have proposed several Convolutional 
Neural Network (CNN) algorithms and architectures, such as stacked hourglass networks, multi-stage 
pose estimation networks, convolutional pose machines (CPM), and high-resolution nets (Jiang et al., 
2023). DL-based models like ResNet-50, YOLO, and OpenPose have demonstrated great success in 
postural assessment and identification, achieving high accuracy by automatically extracting complex 
features from images. 

The use of ML and CV tools provides several benefits for data analysis, but there are also drawbacks, 
including computational demands, the need for high-quality data, and the cost of software (Alpaydin, 
2020; Imbeault-Nepton et al., 2022). Deep learning is a new trend that involves training algorithms 
using big data sets and neural networks. However, CV algorithms still face challenges such as 
occlusion, variations in lighting conditions, scalability, and processing time (Russakovsky et al., 2015). 
Future research aims to develop new network architectures, refine and adapt ML/CV techniques for 
specialized scenarios, enhance model interpretability, and address challenges related to training and 
deploying large-scale models. A promising area is the application of sophisticated ML algorithms to 
improve the accuracy and reliability of postural assessments in forest operations. 
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1.3. CONCLUSIONS 

Postural assessment is a key aspect of ergonomics. Both conventional and new methods can be used 
and can be effective in improving ergonomic conditions. ML algorithms are useful as they can learn 
from their environment and adapt to changes, while CV is a rapidly evolving field for analyzing and 
interpreting visual data. As ML and CV continue to advance, they hold immense potential to transform 
numerous industries. Future research should focus on refining these models, enhancing training 
protocols, expanding annotated datasets, and optimizing data preprocessing techniques to improve 
accuracy and applicability across diverse environments. 
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CHAPTER 2. DEVELOPMENT AND EVALUATION OF AUTOMATED POSTURAL CLASSIFICATION 
MODELS IN FOREST OPERATIONS USING DEEP LEARNING-BASED COMPUTER VISION 

2.1. MATERIALS AND METHODS 

To the best of the Authors' knowledge, no industry-specific annotated datasets were available at the 
time of this study. A field campaign was carried out between February and April 2024 to collect video 
footage of forest workers. This was complemented by videos from previous projects, resulting in 157 
video files and 174,231 still images. After a manual similarity removal operation, the dataset covered 
229 of the 252 possible OWAS classes. To generate images for the remaining 23 classes, a text-to-
photo app (Freepik) was used. A final subset of exactly 23,000 images was retained for model 
development, including 115 artificially generated images. 

The development and evaluation of the models involved several steps carried out using MATLAB 
R2023b software. The workflow, shown in Figure 2.1, included data pre-processing, image annotation, 
creation of an image datastore, data partition and augmentation, selection of pre-trained CNN models, 
training, validation and testing. 

 

 

Figure 2.1. Workflow used to develop the smart OWAS classification model 

Label definitions were formulated using OWAS posture codes, resulting in 252 image data labels. The 
data was partitioned into training, validation, and test sets at a ratio of 70:15:15%. Four CNN models—
GoogLeNet, ResNet-50, MobileNet-v2, and ShuffleNet—were selected for the study (Table 2.1). 
Transfer learning was used to tune the models to the 252 classes in the dataset. 

After evaluating the four pre-trained models, the one with the highest classification accuracy and F1-
score (ResNet-50) was selected for fine-tuning. The model's performance was optimized by testing 
three sets of training options for learning rate (0.01, 0.001, 0.00001) and batch size (32, 64, 128). The 
final model was selected based on a comprehensive evaluation of performance metrics across various 
fine-tuning configurations. 
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A separate data set of 20 unseen images was used to check the quality of classification and 
generalization ability of the final model. The classify function of MATLAB was used to produce labels 
and probability scores for the images. 

 

Table 2. 1. Features of the pre-trained networks selected for the study. Source: MathWorks, Inc., 
2024b 

Pre-trained network  

(Reference) 

No. of 
layers 

Depth Size  

(MB) 

Parameters 

(M) 

Total 
Learnables (M) 

Input Size 

GoogLeNet  

(Szegedy et al., 2015) 

144 22 27.0 7.00 6.200 224×224×3 

ResNet-50  

(He et al., 2016) 

177 50 96.0 25.60 24.000 224×224×3 

MobileNet-v2  

(Sandler et al., 2018) 

155 53 13.0 3.50 2.500 224×224×3 

ShuffleNet  

(Zhang et al., 2018) 

50 50 5.20 1.40 0.999 224×224×3 

 

2.2. RESULTS 

Figure 2.2 summarizes the main results regarding the training and validation of the models. The best-
performing model was ResNet-50, with an accuracy of 90.0% and 91.0% during training and validation, 
respectively. All models showed lower losses during validation compared to training, indicating 
effective generalization. Figure 2.3 summarizes the performance metrics of the testing phase. In terms 
of classification performance, ResNet-50 achieved the highest accuracy of 91.2% and an F1-score of 
77.9%. 
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a 

 
b 

Figure 2.2. Classification accuracy (a) and loss (b) of the models during training and validation phases. 
Legend: G – GoogLeNet, R – ResNet-50, M – MobileNet-v2, S – ShuffleNet 
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Figure 2.3. Classification performance during testing for the four pre-trained models. Legend: G – 
GoogLeNet, R – ResNet-50, M – MobileNet-v2, S – ShuffleNet 

 

 
a 

 
b 

Figure 2.4. Classification accuracy (a) and loss (b) of the ResNet-50 model as a function of the learning 
rate during training and validation phases. Note: batch size was kept at 10. 
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Figure 2.5. Classification performance of the ResNet-50 model during testing. Note: batch size was 
kept at 10. 

 

 
a 

 
b 
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Figure 2.6. Classification accuracy (a) and loss (b) of the ResNet-50 model as a function of the batch 
size during training and validation phases. Note: learning rate was kept at 0.0001. 

 

Figure 2.7. Classification performance of the ResNet-50 model during testing. Note: learning rate was 
kept at 0.0001. 

Figure 2.8 shows prediction scores on several examples of unseen data. The model achieved very high 
probabilities for several images across all postural classes, indicating strong confidence in its 
predictions. The model also performed well on AI-generated images, with overall probabilities 
exceeding 50%. 

 

  
Prediction: postural class = 4142, action category = 4 

Probability = 98.94% 
Prediction: postural class = 4152, action category = 4 

Probability = 99.70% 
a 

  
Prediction: postural class = 3111, action category = 1 

Probability = 99.97% 
Prediction: postural class = 4171, action category = 2 

Probability = 99.03% 
b 
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Prediction: postural class = 4171, action category = 2 

Probability = 99.94% 
Prediction: postural class = 2121, action category = 2 

Probability = 99.81% 
c 

  
Prediction: postural class = 4263, action category = 4 

Probability = 96.50% 
Prediction: postural class = 2373, action category = 4 

Probability = 71.38% 
d 

Figure 2.8. Prediction accuracy on unseen data: a – predictions on classes with dominance in number 
of images, b – predictions on classes with a medium number of images, c – predictions on classes with 
a low number of images, d – predictions on classes with AI-generated images. 

2.3. DISCUSSION 

The goal of this study was to develop a smart OWAS model that uses deep learning-based CV to 
classify working postures. ResNet-50, a DCNN model, emerged as the most robust model in terms of 
superior performance. The fine-tuning process resulted in a model that achieved an accuracy of over 
96%, demonstrating the effectiveness of the approach. The predictions on unseen data reflect the 
model's confidence levels, with high probabilities indicating robust training. However, variability in 
probabilities suggests the importance of data quantity and quality. The study also had limitations, 
including class imbalance and the computationally intensive nature of DL techniques. Future research 
could explore ensemble learning and address the subjectivity in rating postures from still images. 

2.4. CONCLUSIONS 

OWAS is a widely used method for classifying working postures. Automating it using deep learning-
based CV techniques offers many benefits. The results of this study demonstrate that four commonly 
used deep learning models were highly accurate in postural classification based on transfer learning. 
After fine-tuning, ResNet-50 achieved impressive results with over 96% in classification accuracy and 
F1-score. Potential improvements in classification performance may be achieved using ensemble 
learning, as well as using recurrent neural networks. 
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CHAPTER 3. APPROACHING FULL ACCURACY BY DEEP LEARNING AND COMPUTER VISION IN OWAS 
POSTURAL CLASSIFICATION: AN EXAMPLE ON HOW COMPUTER-GENERATED BODY KEYPOINTS CAN 
IMPROVE DEEP LEARNING BASED ON CONVENTIONAL 2D DATA 

3.1. MATERIALS AND METHODS 

A field campaign was executed between February and April 2024 across various sites in Romania 
(Figure 3.1) to document the postures and movements of forest workers. The dataset was extended 
with videos from prior field campaigns, resulting in a refined set of 23,000 images for model 
development and testing. 

 
 

Figure 3.1. Map of Romania showing the sites of field data collection. Note: Developed in QGIS 3.32.1 
‘Lima’ using QuickMapServices, OSM Standard. 

Three datasets were used in this study: PictureOnly (PO), which contained the original pictures; 
PictureWithSkeleton (PS), which contained pictures with the body keypoints and their connectors 
overlaid on the original image; and SkeletonOnly (SO), which contained the body keypoints and their 
connectors only. A subset of 1,260 images was set aside for model development. The YOLOv4 object 
detector was used to detect bounding boxes around persons, and the HRNet object keypoint detector 
was used to identify keypoints. 

The models were developed on a desktop computer using the PyCharm Community Edition Python IDE 
and TensorFlow. The workflow is shown in Figure 3.2. For each model, the ResNet-50 architecture pre-
trained on the ImageNet dataset was used as the base model. The model was compiled using Adam 
optimization, categorical cross-entropy loss, and metrics including accuracy, precision, and recall. 
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Figure 3.2. Flowchart showing the steps of data collection, annotation, and models’ development and 
evaluation. 

The evaluation was done in two steps. First, performance on testing data was evaluated using metrics 
like accuracy, precision, recall, and F1-score. Second, the evaluation was conducted using a new 
dataset of 200 unseen images. 

3.2. RESULTS 

Figure 3.3 summarizes the key findings related to the training and validation of the ResNet-50 models. 
The model based on the PS dataset performed consistently well, with 99.5% accuracy in training and 
99.8% in validation. In contrast, the model with SO exhibited a significant drop in performance from 
training (99.6%) to validation (66.7%). The model with PO maintained a high performance (100.0% in 
training to 98.0% in validation). Figure 3.4 shows the performance metrics during the testing phase. 
The model with PS achieved a final accuracy and F1-score of 99.8%. The model with PO performed well 
with an accuracy of 97.8% and an F1-score of 97.30%. The model with SO had a significantly lower 
performance, with an accuracy of 66.2% and an F1-score of 64.3%. 
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a 

 
b 

Figure 3.3. Accuracy (a) and loss (b) of the pretrained ResNet-50 models during training and validation 
phases. Legend: PO - PictureOnly, SO - SkeletonOnly, PS – PictureWithSkeleton. 

 

 

Figure 3.4. Classification performance during testing for the pre-trained ResNet-50 models on the 
three datasets. Legend: PO - PictureOnly, SO - SkeletonOnly, PS – PictureWithSkeleton. 
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Figures 3.5, 3.6, and 3.7 show the probabilities of the models on unseen data. The models displayed 
very high probabilities in several images across all postural classes and forest operations, indicating 
strong confidence. The probabilities generally exceeded 55%. 

  
a 

  
b 

  
c 

  
d 

Figure 3.5. Prediction accuracy of the model developed with PS on unseen data: a - predictions on 
operations with dominance in number of images, b - predictions on operations with a medium number 
of images, c - predictions on operations with a low number of images, d - predictions on classes with 
AI-generated images. 
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a 

  
b 

  
c 

  
d 

Figure 3.6. Prediction accuracy of the model developed with SO on unseen data: a - predictions on 
operations with dominance in number of images, b - predictions on operations with a medium number 
of images, c - predictions on operations with a low number of images, d - predictions on classes with 
AI-generated images. 
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  a 

  
b 

  
c 

  
d 

Figure 3.7. Prediction accuracy of the model developed with PO on unseen data: a - predictions on 
operations with dominance in number of images, b - predictions on operations with a medium number 
of images, c - predictions on operations with a low number of images, d - predictions on classes with 
AI-generated images. 

3.3. DISCUSSION 

The ResNet-50 architecture has demonstrated exceptional performance across various CV tasks. In 
this study, the model was evaluated on three distinct datasets. The results indicate that the ResNet-
50 model trained on the PO dataset consistently outperformed those trained on the SO dataset. 
Notably, the model developed using PS achieved the highest classification performance. The presence 
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of comprehensive, background features in the PO aids in capturing additional contextual information. 
The high probability scores from model predictions provide important insights into model confidence 
and reliability. The study also had limitations, including the small size of the datasets and the 
underrepresentation of some posture categories. 

3.4. CONCLUSIONS 

This study demonstrates that the ResNet-50 model trained on the PS dataset achieved the highest 
performance of 99.8% accuracy and F1-score during the testing phase. This underscores the 
importance of comprehensive skeleton and contextual information in training robust models. The 
integration of OWAS with deep learning is a promising alternative for a more effective assessment and 
mitigation of ergonomic risks. 
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CHAPTER 4. POSTURAL CLASSIFICATION BY IMAGE EMBEDDING AND TRANSFER LEARNING: AN 
EXAMPLE OF USING THE OWAS METHOD IN MOTOR-MANUAL WORK TO AUTOMATE THE PROCESS 
AND SAVE RESOURCES 

4.1. MATERIALS AND METHODS 

The field survey included the collection of media footage documenting the motor-manual crosscutting 
of teak (Tectona grandis L.f.) in Kanchanaburi province, Thailand (Figure 4.1). A total of 14 videos were 
collected, resulting in more than 5000 still images deemed valid for detailed analysis. 

 

 
 

Figure 4.1. An example of an image used for modeling (left) and the location of the study (right). 

All images were visually assessed according to the OWAS postural classification system. Following the 
visual assessment, the images were stored in folders according to the four-digit codes (Posture 
dataset) and corresponding action categories (Action dataset). The final dataset for analysis comprised 
5001 images. Table 4.1 shows the distribution of images across action categories. 

 

 

 

 

 

 

 



 

 31 

Table 4.1. Frequency of the action categories identified in the dataset used for machine learning. 

Action 
Category 

Code 

Description Absolute Frequency 
(n) 

Relative 
Frequency 
(n/N×100) 

1 No corrective action is needed 80 1.6 
2 Corrective actions are needed in the 

near future 
1849 36.9 

3 Corrective actions are needed as soon 
as possible 

125 2.5 

4 Corrective actions are required 
immediately 

2951 59.0 

Total (N) - 5001 100 
Note: n represents the absolute frequency of the action category, and N represents the size of the data 
sample. 
 

Orange Visual Programming software was used to develop, train, and test the machine learning 
models. Two image embedders, Google’s Inception V3 and SqueezeNet, were used to obtain the vector 
representation of the images. An artificial neural network was used as the local classifier. The models 
were trained and tested using a range of architectures (1 to 10 layers) and neuron counts (10, 100, 
1000). A separate set of 406 unseen images was prepared for testing. 

4.2. RESULTS 

The main results of the classification accuracy metrics are shown in Figures 4.2–4.5. The best-
performing models for the Inception V3 image embedder achieved a maximum classification accuracy 
of 0.836. For SqueezeNet, the top classification accuracy was 0.820. In general, neural network 
architectures containing 100 and 1000 neurons performed better. 
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Figure 4.2. Classification accuracy (CA) on the Posture dataset depending on the embedder used, the 
number of layers, and the number of neurons per layer. Legend: size of the data points represents the 
number of neurons used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and 
color represents the number of layers used (red—ten, orange—five, yellow—three, greentwo, and 
blue—one). 

 
 
Figure 4.3. F1 score (F1) on the Posture dataset depending on the embedder used, the number of 
layers, and the number of neurons per layer. Legend: size of the data points represents the number of 
neurons used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and color 
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represents the number of layers used (red—ten, orange—five, yellow—three, green—two, and 
blue—one). 

 

 
 
Figure 4.4. Precision (PREC) on the Posture dataset depending on the embedder used, the number of 
layers, and the number of neurons per layer. Legend: size of the data points represents the number of 
neurons used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and color 
represents the number of layers used (red—ten, orange—five, yellow—three, green—two, and 
blue—one). 
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Figure 4.5. Recall (REC) on the Posture dataset depending on the embedder used, the number of layers, 
and the number of neurons per layer. Legend: size of the data points represents the number of neurons 
used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and color represents 
the number of layers used (red—ten, orange—five, yellow—three, green—two, and blue—one). 

The classification accuracies of the models on the Action dataset are presented in Figures 4.6–4.9. The 
two image embedders performed similarly, achieving top classification accuracies and recalls of 
0.888–0.889 and a F1 score and precision of 0.886. The improved classification accuracy on the Action 
dataset may be attributed to its lower classification complexity. 

 
 
Figure 4.6. Classification accuracy (CA) on the Action dataset depending on the embedder used, the 
number of layers, and the number of neurons per layer. Legend: size of the data points represents the 
number of neurons used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and 
color represents the number of layers used (red—ten, orange—five, yellow—three, green—two, and 
blue—one). 
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Figure 4.7. F1 score (F1) on the Action dataset depending on the embedder used, the number of layers, 
and the number of neurons per layer. Legend: size of the data points represents the number of neurons 
used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and color represents 
the number of layers used (red—ten, orange—five, yellow—three, green—two, and blue—one). 

  

 
Figure 4.8. Precision (PREC) on the Action dataset depending on the embedder used, the number of 
layers, and the number of neurons per layer. Legend: size of the data points represents the number of 
neurons used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and color 
represents the number of layers used (red—ten, orange—five, yellow—three, green—two, and 
blue—one). 
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Figure 4.9. Recall (REC) on the Action dataset depending on the embedder used, the number of layers, 
and the number of neurons per layer. Legend: size of the data points represents the number of neurons 
used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and color represents 
the number of layers used (red—ten, orange—five, yellow—three, green—two, and blue—one). 

Table 4.2 presents the results of applying the trained models to unseen data. The classification 
performance decreased, with predicted classification accuracies ranging from 49% to 52% for the 
posture data and from 51% to 60% for the action category data. This suggests that the training and 
validation datasets may not have been fully representative of the real-world data distribution. 

Table 4.2. Performance of the models on unseen data. 

Model Description & main 
parameters 

Posture or Action 
category 

Number of 
instances 

Correct 
predictions 

Classification 
accuracy 

1 Inception V3, Postural data, 
2 hidden layers, 1000 
neurons each, and α = 
0.0001 

1131 3 0 0.0 
2141 7 2 28.6 
2171 76 4 5.3 
2271 11 0 0.0 
3121 4 0 0.0 
3141 14 0 0.0 
3171 8 0 0.0 
4131 20 0 0.0 
4141 203 174 85.7 
4151 21 0 0.0 
4171 30 15 50.0 

Overall 397 195 49.1 
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Model Description & main 
parameters 

Posture or Action 
category 

Number of 
instances 

Correct 
predictions 

Classification 
accuracy 

2 SqueezeNet, Postural data, 
2 hidden layers, 1000 
neurons each, and α = 0.001 

1131 3 0 0.0 
2141 7 0 0.0 
2171 76 19 25.0 
2271 11 0 0.0 
3121 4 0 0.0 
3141 14 0 0.0 
3171 8 0 0.0 
4131 20 0 0.0 
4141 203 161 79.3 
4151 21 6 28.6 
4171 30 21 30.0 

Overall 397 207 52.1 
3 Inception V3, Action data, 1 

hidden layer, 1000 neurons 
each, and α = 0.001 

1 24 0 0.0 
2 137 44 32.1 
3 21 0 0.0 
4 224 161 71.9 

Overall 406 205 50.5 
4 SqueezeNet, Action data, 3 

hidden layers, 1000 neurons 
each, and α = 0.001 

1 24 0 0.0 
2 137 102 74.5 
3 21 2 1.0 
4 224 139 62.1 

Overall 406 243 59.9 
 

4.3. DISCUSSION 

This study evaluated the effectiveness of image embedding and transfer learning in facilitating precise 
postural classification. The performance of the models on unseen data showed a classification 
accuracy range of 49% to 52% for posture data and 51% to 60% for action category data. Previous 
studies have highlighted the strengths of deep learning models. A comparison of these studies with 
the current study reveals lower performance outcomes, highlighting areas for potential improvement. 
The findings emphasize the importance of dataset size and diversity in enhancing machine learning 
model efficiency. 

4.4. CONCLUSIONS 

This study proposes a novel method to automate the process of postural classification in motor-
manual work via the OWAS while saving resources. The findings prove that i) classifying complex 
problems such as those of postural assessment can be performed with remarkable accuracy (84%–
89%), ii) it is possible to reconfigure deep learning networks with less effort, and iii) the learned image 
representations may be less effective on unseen data (50%–60%). The proposed method can 
potentially reduce the cost of ergonomic assessments. 
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CHAPTER 5. HUMAN AND MACHINE RELIABILITY IN POSTURAL ASSESSMENT OF FOREST 
OPERATIONS BY OWAS METHOD: LEVEL OF AGREEMENT AND TIME RESOURCES 

5.1. MATERIALS AND METHODS 

The ResNet-50 model (He et al., 2016), a deep convolutional neural network, was utilized as a 
reference for this study due to its proven effectiveness in image classification tasks. Its selection was 
based on prior experimental results (Forkuo and Borz, 2024) that demonstrated its superior 
classification accuracy and favorable balance with computational efficiency compared to other models 
like GoogLeNet, MobileNet-v2, and ShuffleNet. 

A separate dataset of 100 images was compiled to accurately reflect the diverse postures and 
movements of forest workers. Three expert human raters (R1, R2, and R3) were selected to evaluate 
these images using the OWAS method (Table 5.1). To ensure reliability and mitigate recall bias, the 
rating process was conducted in two separate replications (r1 and r2), with a one-month interval 
between them. 

Table 5.1. Description of the OWAS codes and categories used in the study 

Feature  Abbreviation 
in the study 

Number of 
categories 

according to 
OWAS 

Description 

Back B 4 Describes the posture of the back starting from a 
neutral straight posture and ending with the back 

being bent and twisted 
Arms A 3 Describes the posture of the arms starting from a 

neutral posture with both arms below shouder level 
and ending with both arms being at or above the 

shoulder level 
Legs L 7 Describes the posture of the legs by seven 

categories starting from a neutral sitting posture 
and ending with legs being engaged in walking or 

moving 
Force 

exertion 
F 3 Describes the level of force exertion starting with 

handling loads or exerting forces less than 10 kg 
and ending with handling loads or exerting forces 

over 20 kg 
Action 

category 
AC 4 Indicates the level of postural risk by the urgency of 

the ergonomic interventions required, starting from 
no intervention required and ending with 

intervention required immediately 
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Reliability was assessed using several datasets as detailed in Table 5.2. Intra-rater reliability was 
determined by comparing a rater's two replications (e.g., R1r1 vs. R1r2). Inter-rater reliability involved 
pairwise and overall comparisons between different raters for the same replication. The deep learning 
model was used to generate a reference dataset (RM), considered the ground truth, against which 
human rater reliability was also assessed. 

Table 5.2. Description of the datasets used in the assessment  

Rater 
No. 

Replication 
No. 

Abbreviation of 
the dataset 

Description of the dataset 

R1 r1 R1r1 Ratings of the first rater in the first replication 
R1 r2 R1r2 Ratings of the first rater in the second replication 
R2 r1 R2r1 Ratings of the second rater in the first replication 
R2 r2 R2r2 Ratings of the second rater in the second replication 
R3 r1 R3r1 Ratings of the third rater in the first replication 
R3 r2 R3r2 Ratings of the third rater in the second replication 
RM - RM Rating of the deep learning model 

 

Cohen's kappa (Cohen, 1960) and Fleiss’ kappa (Fleiss, 1971) were the primary metrics for assessing 
reliability. Time efficiency was evaluated by recording the time taken by each human rater per image 
and comparing it to the programmatic assessment time of the DL model. Statistical analyses, including 
multi-dimensional scaling (MDS) for visual agreement and non-parametric tests for time consumption 
data, were performed using Orange Visual Programming software and Python. 

5.2. RESULTS AND DISCUSSION 

The MDS analysis (Figure 5.1) revealed a degree of agreement among human raters, though with 
considerable dispersion. When the DL model's ratings were included (Figure 5.2), a higher level of 
disagreement was observed, with the model's data points often positioned distinctly from the human 
raters', indicating a different classification pattern. 
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Figure 5.1. Results of multi-dimensional scaling concerning human rater agreement. Legend: R1 – 
rater 1, R2 – rater 2, R3 – rater 3, r1 – data from the first replication, r2 – data from the second 
replication. 

 
 

Figure 5.2. Results of multi-dimensional scaling concerning human raters and model agreement. 
Legend: R1 – rater 1, R2 – rater 2, R3 – rater 3, RM – rating of the deep learning model, r1 – data from 
the first replication, r2 – data from the second replication. Note: for RM a single rating was used. 

Intra-rater agreement (Table 5.3) was high, with Cohen's kappa values ranging from 0.48 to 1.00, 
indicating moderate to almost perfect consistency for individual raters over time. 
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Table 5.3. Results of intra-rater reliability for the three human raters  

Compared datasets # Ratings Po Pe k %Agreement Interpretation of kappa 
BR1r1 BR1r2 100 0.69 0.29 0.56 69 Moderate agreement 
AR1r1 AR1r2 100 0.93 0.71 0.76 93 Substantial agreement 
LR1r1 LR1r2 100 0.68 0.26 0.57 68 Moderate agreement 
FR1r1 FR1r2 100 0.90 0.62 0.74 90 Substantial agreement 

ACR1r1 ACR1r2 100 0.61 0.25 0.48 61 Moderate agreement 
BR2r1 BR2r2 100 0.97 0.33 0.96 97 Almost perfect agreement 
AR2r1 AR2r2 100 1.00 0.73 1.00 100 Almost perfect agreement 
LR2r1 LR2r2 97 0.99 0.25 0.99 99 Almost perfect agreement 
FR2r1 FR2r2 100 0.95 0.51 0.90 95 Almost perfect agreement 

ACR2r1 ACR2r2 97 0.95 0.26 0.93 95 Almost perfect agreement 
BR3r1 BR3r2 100 0.96 0.39 0.93 96 Almost perfect agreement 
AR3r1 AR3r2 100 0.98 0.84 0.88 98 Almost perfect agreement 
LR3r1 LR3r2 100 0.99 0.32 0.99 99 Almost perfect agreement 
FR3r1 FR3r2 100 0.98 0.48 0.96 98 Almost perfect agreement 

ACR3r1 ACR3r2 100 0.96 0.32 0.94 96 Almost perfect agreement 
Note: Po denotes observed agreement; Pe denotes expected agreement by chance; k denotes Cohen’s 
kappa statistic, B denotes the posture of the back, A denotes the posture of the arms, L denotes the 
posture of the legs, F denotes the level of force exertion, AC denotes the action category. The full 
abbreviations were composed by using the type of feature under assessment (B, A, L or AC, Table 5.2) 
and the datasets presented in Table 5.1. 

In contrast, pairwise inter-rater reliability among human experts (Table 5.4) was significantly lower and 
more variable, with kappa values from 0.02 (slight) to 0.64 (substantial), highlighting the inherent 
subjectivity of manual assessment. 

Table 5.4. Results of inter-rater reliability among the three human raters 

Compared datasets # Ratings Po Pe k %Agreement Interpretation of kappa 
BR1r1 BR2r1 100 0.46 0.24 0.29 46 Fair agreement 
BR1r1 BR3r1 100 0.62 0.36 0.41 62 Moderate agreement 
BR2r1 BR3r1 100 0.34 0.29 0.07 34 Slight agreement 
AR1r1 AR2r1 100 0.91 0.70 0.70 91 Substantial agreement 
AR1r1 AR3r1 100 0.89 0.75 0.56 89 Moderate agreement 
AR2r1 AR3r1 100 0.88 0.78 0.46 88 Moderate agreement 
LR1r1 LR2r1 97 0.57 0.21 0.45 57 Moderate agreement 
LR1r1 LR3r1 100 0.64 0.26 0.52 64 Moderate agreement 
LR2r1 LR3r1 100 0.60 0.25 0.46 60 Moderate agreement 
FR1r1 FR2r1 100 0.74 0.52 0.46 74 Moderate agreement 
FR1r1 FR3r1 100 0.70 0.53 0.37 70 Fair agreement 
FR2r1 FR3r1 100 0.72 0.48 0.46 72 Moderate agreement 

ACR1r1 ACR2r1 100 0.54 0.24 0.40 54 Fair agreement 
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Compared datasets # Ratings Po Pe k %Agreement Interpretation of kappa 
ACR1r1 ACR3r1 100 0.52 0.27 0.34 52 Fair agreement 
ACR2r1 ACR3r1 97 0.40 0.23 0.22 40 Fair agreement 
BR1r2 BR2r2 100 0.58 0.28 0.41 58 Moderate agreement 
BR1r2 BR3r2 100 0.41 0.30 0.15 41 Slight agreement 
BR2r2 BR3r2 100 0.32 0.30 0.02 32 Slight agreement 
AR1r2 AR2r2 100 0.90 0.73 0.62 90 Substantial agreement 
AR1r2 AR3r2 100 0.92 0.79 0.63 92 Substantial agreement 
AR2r2 AR3r2 100 0.86 0.78 0.37 86 Fair agreement 
LR1r2 LR2r2 100 0.56 0.24 0.42 56 Moderate agreement 
LR1r2 LR3r2 100 0.75 0.31 0.64 75 Substantial agreement 
LR2r2 LR3r2 100 0.58 0.25 0.44 58 Moderate agreement 
FR1r2 FR2r2 100 0.79 0.55 0.53 79 Moderate agreement 
FR1r2 FR3r2 100 0.73 0.55 0.40 73 Fair agreement 
FR2r2 FR3r2 100 0.75 0.48 0.52 75 Moderate agreement 

ACR1r2 ACR2r2 100 0.56 0.25 0.42 56 Moderate agreement 
ACR1r2 ACR3r2 100 0.41 0.25 0.22 41 Fair agreement 
ACR2r2 ACR3r2 100 0.40 0.23 0.22 40 Fair agreement 

Note: Po denotes observed agreement; Pe denotes expected agreement by chance; k denotes Cohen’s 
kappa statistic, B denotes the posture of the back, A denotes the posture of the arms, L denotes the 
posture of the legs, F denotes the level of force exertion, AC denotes the action category. The full 
abbreviations were composed by using the type of feature under assessment (B, A, L or AC, Table 5.2) 
and the datasets presented in Table 5.1. 
 

Agreement between human raters and the DL model as the ground truth (Table 5.5) was generally poor 
to fair, with kappa values ranging from -0.03 to 0.34. This suggests a systematic difference between 
individual human interpretation and the data-driven patterns learned by the model. 

Table 5.5. Results of pair-based agreement between the human raters and the deep learning model 

Ratings Under 
Comparison 

# Ratings Po Pe k %Agreement Interpretation of kappa 

BR1r1 BRM 100 0.43 0.34 0.13 43 Slight agreement 
BR1r2 BRM 100 0.34 0.30 0.06 34 Slight agreement 
BR2r1 BRM 100 0.32 0.30 0.03 32 Slight agreement 
BR2r2 BRM 100 0.30 0.30 0.00 30 Poor agreement 
BR3r1 BRM 100 0.57 0.37 0.32 57 Fair agreement 
BR3r2 BRM 100 0.57 0.38 0.31 57 Fair agreement 
AR1r1 ARM 100 0.75 0.76 -0.03 75 Poor agreement 
AR1r2 ARM 100 0.79 0.79 -0.02 79 Poor agreement 
AR2r1 ARM 100 0.78 0.78 -0.02 78 Poor agreement 
AR2r2 ARM 100 0.78 0.78 -0.02 78 Poor agreement 
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AR3r1 ARM 100 0.85 0.84 0.04 85 Slight agreement 
AR3r2 ARM 100 0.85 0.84 0.04 85 Slight agreement 
LR1r1 LRM 100 0.38 0.24 0.18 38 Slight agreement 
LR1r2 LRM 100 0.46 0.28 0.25 46 Fair agreement 
LR2r1 LRM 97 0.44 0.25 0.26 44 Fair agreement 
LR2r2 LRM 100 0.43 0.24 0.25 43 Fair agreement 
LR3r1 LRM 100 0.50 0.29 0.29 50 Fair agreement 
LR3r2 LRM 100 0.49 0.30 0.28 49 Fair agreement 
FR1r1 FRM 100 0.60 0.47 0.24 60 Fair agreement 
FR1r2 FRM 100 0.59 0.49 0.20 59 Slight agreement 
FR2R1 FRM 100 0.53 0.44 0.16 53 Slight agreement 
FR2r2 FRM 100 0.56 0.44 0.21 56 Fair agreement 
FR3r1 FRM 100 0.61 0.44 0.31 61 Fair agreement 
FR3r2 FRM 100 0.63 0.44 0.34 63 Fair agreement 

ACR1r1 ACRM 100 0.32 0.26 0.08 32 Slight agreement 
ACR1r2 ACRM 100 0.38 0.25 0.18 38 Slight agreement 
ACR2r1 ACRM 97 0.35 0.24 0.15 35 Slight agreement 
ACR2r2 ACRM 100 0.36 0.24 0.16 36 Slight agreement 
ACR3r1 ACRM 100 0.50 0.29 0.29 50 Fair agreement 
ACR3r2 ACRM 100 0.51 0.30 0.30 51 Fair agreement 
Note: Po denotes observed agreement; Pe denotes expected agreement by chance; k denotes Cohen’s 
kappa statistic, B denotes the posture of the back, A denotes the posture of the arms, L denotes the 
posture of the legs, F denotes the level of force exertion, AC denotes the action category. The full 
abbreviations were composed by using the type of feature under assessment (B, A, L or AC, Table 5.2) 
and the datasets presented in Table 5.1. 
 

The overall agreement, when considering all human raters against the DL model using Fleiss' kappa 
(Table 5.6), improved to fair to moderate levels (kappa = 0.28–0.49). This indicates that while individual 
raters may diverge, their collective assessment is more aligned with the model's predictions. 

Table 5.6. Results of overall agreement among the three human raters and the ResNet-50 model 

Ratings Under Comparison # 
Ratings 

Po Pe k %Agreement Interpretation of kappa 

BR1R1 BR2R1 BR3R1 BRM 100 0.53 0.34 0.28 53 Fair agreement 
AR1R1 AR2R1 AR3R1 ARM 100 0.88 0.77 0.49 88 Moderate agreement 
LR1R1 LR2R1 LR3R1 LRM 97 0.52 0.23 0.37 52 Fair agreement 
FR1R1 FR2R1 FR3R1 FRM 100 0.66 0.47 0.37 66 Fair agreement 

ACR1R1 ACR2R1 ACR2R1 ACRM 97 0.52 0.26 0.35 52 Fair agreement 
BR1R2 BR2R2 BR3R2 BRM 100 0.49 0.31 0.26 49 Fair agreement 
AR1R2 AR2R2 AR3R2 ARM 100 0.89 0.79 0.47 89 Moderate agreement 
LR1R2 LR2R2 LR3R2 LRM 100 0.53 0.25 0.38 53 Fair agreement 
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FR1R2 FR2R2 FR3R2 FRM 100 0.68 0.47 0.37 68 Fair agreement 
ACR1R2 ACR2R2 ACR2R2 ACRM 100 0.51 0.27 0.33 51 Fair agreement 

Note: Po denotes observed agreement; Pe denotes expected agreement by chance; k denotes Fleiss’s 
kappa statistic, B denotes the posture of the back, A denotes the posture of the arms, L denotes the 
posture of the legs, F denotes the level of force exertion, AC denotes the action category. The full 
abbreviations were composed by using the type of feature under assessment (B, A, L or AC, Table 5.2) 
and the datasets presented in Table 5.1. 

In terms of time efficiency (Table 5.7), the DL model was vastly superior, performing assessments 19 
to 53 times faster than human raters on average. Significant variability in assessment time was also 
observed among the human raters, further underscoring the efficiency and consistency benefits of the 
automated approach. 

Table 5.7. Results of comparison tests for time consumption data 

Variables under 
comparison 

Median values 
(s) 

Results of normality test1 Results of comparison test2 

TR1r1-TR1r2 30.0 – 24.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001 
TR2r1-TR2r2 52.5 – 44.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001 
TR3r1-TR3r2 19.0 – 20.0 No, p < 0.001-No, p < 0.001 No, p = 0.608 
TR1r1-TR2r1 30.0 – 52.5 No, p < 0.001-No, p < 0.001 Yes, p < 0.001 
TR1r1-TR3r1 30.0 – 19.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001 
TR2r1-TR3r1 52.5 – 19.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001 
TR1r2-TR2r2 24.0 – 44.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001 
TR1r2-TR3r2 30.0 – 20.0 No, p < 0.001-No, p < 0.001 Yes, p = 0.003 
TR2r2-TR3r2 44.0 – 20.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001 

Note: 1 – According to Shapiro-Wilk test; 2 – significant differences according to Mann-Whitney two-
tailed nonparametric test, T stands for the time consumption dataset 
 

5.3. CONCLUSIONS 

This study shows that DL models present significant advantages for conducting OWAS-based postural 
assessments, offering remarkable speed enhancements while achieving comparable levels of 
reliability to traditional human-rater methods. The findings showed that while human raters exhibited 
moderate to almost perfect intra-rater reliability, their inter-rater agreement was considerably lower. 
The DL model serves not only as a highly resource-efficient alternative but also as a stable reference 
point for evaluating OWAS assessments. 

 

 



 

 45 

CHAPTER 6. CONCLUSIONS. ORIGINAL CONTRIBUTIONS. DISSEMINATION OF RESULTS 

6.1. Conclusions 

This PhD thesis underscores the importance of postural assessment in ergonomics, particularly within 
forest operations, where identifying high-risk postures is essential for developing effective 
interventions. The research demonstrates that both conventional and innovative methods, including 
machine learning (ML) and computer vision (CV), significantly enhance the accuracy and efficiency of 
postural classification. Automating the OWAS method using deep learning-based CV techniques yields 
impressive classification performance, with the ResNet-50 model emerging as the most effective 
option in real-world applications. Furthermore, the integration of comprehensive skeletal and 
contextual information is shown to optimize model reliability and effectiveness. The introduction of a 
novel approach leveraging image embedding and transfer learning allows for accurate postural 
classification with reduced reliance on computer programming expertise. Additionally, the findings 
reveal that deep learning models offer substantial advantages over traditional human assessments, 
providing resource-efficient solutions that decrease assessment time and enhance consistency. 
Despite challenges such as variability in human ratings and limitations with unseen data, this research 
highlights the transformative potential of ML and CV in advancing postural assessment methods. 
Future research should prioritize refining these models, enhancing algorithm training protocols, 
expanding annotated datasets, and optimizing data preprocessing techniques to further improve 
accuracy and applicability across diverse environments. Through these efforts, the ultimate goal of 
enhancing worker health, safety, and operational efficiency in forestry and beyond can be achieved. 

6.2. Original contributions 

This PhD thesis has made significant contributions to the field of ergonomic assessment in forest 
operations through the development and evaluation of novel methods and extensive datasets. Key 
original contributions include: 

Creation of a Comprehensive and Novel Dataset: A dataset of 23,000 annotated images for OWAS 
classification in forestry was created. Its innovative integration of field-collected data with AI-
generated images ensures complete coverage of all 252 OWAS postural combinations, addressing the 
persistent challenge of data scarcity. 

Development of an Automated Workflow: A novel workflow for automated OWAS classification was 
established, identifying optimal hyperparameters (learning rate of 0.001, batch size of 32) through 
systematic fine-tuning, creating a robust framework for future applications. 

Enhancement of Input Data with Skeletal Keypoints: An innovative strategy was implemented that 
enhanced conventional input images with computer-generated body keypoints, which was proven to 
significantly improve classification accuracy by 2-2.5% and achieve a near-perfect accuracy of 99.8%. 

First Evaluation of DL for OWAS in Forestry: This thesis represents the first development and 
evaluation of deep learning-based computer vision techniques for automating OWAS postural 
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classification in forestry, testing four pre-trained CNN models and setting new performance standards, 
with the fine-tuned ResNet-50 model achieving over 96% classification accuracy. 

Advancement of Automation via Image Embedding: The automation of posture assessment was 
advanced through the novel application of image embedding and transfer learning, achieving accuracy 
rates between 84% and 89% without the need for specialized sensors or extensive programming 
expertise. 

Pioneering Analysis of Human vs. Machine Reliability: A pioneering analysis of human and machine-
based postural assessments was conducted, quantifying intra- and inter-rater reliability and 
establishing a comparison with the ResNet-50 model as a ground truth, highlighting the superior speed 
and consistency of the DL model. 

6.3. Dissemination of results 

6.3.1. Scientific publications based on this PhD thesis  

A. Papers published in BDI journals 
Forkuo, G.O., 2023. A systematic survey of conventional and new postural assessment methods. 
Revista Pădurilor, 138(3), 34p. Available online at: http://revistapadurilor.com/wp-
content/uploads/2024/01/RP_138-3-2023.-BT.pdf. 
 
B. Papers published in journals indexed by Clarivate Analytics (former ISI Web of Science) 
Forkuo, G.O., Borz, S.A., Kaakkurivaara, T., Kaakkurivaara, N., 2025. Postural classification by image 
embedding and transfer learning: An example of using the OWAS method in motor-manual work to 
automate the process and save resources. Forests, 16(3), 492. https://doi.org/10.3390/f16030492 
Forkuo, G.O., Marcu, M.V., Kaakkurivaara, N., Kaakkurivaara, T., Borz, S.A., 2025. Human and machine 
reliability in postural assessment of forest operations by OWAS method: Level of agreement and time 
resources. Forests, 16(5), 759. https://doi.org/10.3390/f16050759. 

6.3.1.1. Papers presented at national scientific conferences 
Forkuo, G.O., 2023. A systematic survey of conventional and new postural assessment methods. In: 
Book of Abstracts, Proceedings of the 6th Edition of the Integrated Management of Environmental 
Resources Conference Suceava – Romania, 23-24 November 2023. Available online at: 
https://silvic.usv.ro/imer2023/proceedings_imer_2023.pdf (accessed 4 March 2025) 

Forkuo, G.O., Borz, S.A., 2024. Evaluation and development of smart ovako working posture analysis 
system (OWAS) solutions for postural classification in forest operations using deep learning-based 
computer vision. Graduates in Front of Companies (AFCO) 2024. Available online at: 
https://afco.unitbv.ro/2024/images/Documente/AFCO_2024_Lucrari_inscrise_.pdf (accessed 5 
March 2025). 

Forkuo, G.O., Borz, S.A., 2024. Evaluation and development of smart ovako working posture analysis 
system (owas) solutions for postural classification in forest operations using deep learning-based 
computer vision. DoCo2024. Available online at: 
https://www.unitbv.ro/documente/cercetare/Detailed_Programme.pdf (accessed 2 March 2025). 
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6.3.1.2. Papers presented at international scientific conferences 
Forkuo, G.O., 2023: A systematic survey of conventional and new postural assessment methods. In: 
Book of Abstracts, Proceedings of the 6th Edition of the Integrated Management of Environmental 
Resources Conference Suceava - Romania. Session: Forest Ecosystems and Climate. Available online 
at: https://ibn.idsi.md/sites/default/files/imag_file/Book_of_abstracts_IMER_23_Suceava.pdf 
(accessed 1 April 2025). 
Forkuo, G.O., Borz, S.A., 2024. Development and evaluation of automated postural classification 
models in forest operations using deep learning-based computer vision. In: Book of Abstracts, 
Proceedings of the 11th International Symposium on Forest and Sustainable Development, FSD 2024. 
Available online at: 
https://silvic.unitbv.ro/images/conferinte/fsd2024/Book_of_abstracts_FSD_2024c.pdf. (accessed 1 
April 2025). 

6.3.2. Scientific publications based on the results produced by participation in research teams 
external to the PhD thesis scope 

A. Papers published on preprint servers 
Forkuo, G.O., Borz, S.A., Proto, A.R.,2024. Accuracy of low-cost mobile lidar technology in estimating 
the severity and extent of soil disturbance in forest operations. SSRN Preprint SSRN-4685980. 
http://dx.doi.org/10.2139/ssrn.4685980. Submitted to Croatian Journal of Forest Engineering. Status: 
Accepted. 
Forkuo, G.O., Borz, S.A., 2024. Intra-and inter-rater reliability in log volume estimation based on lidar 
data and shape reconstruction algorithms: A case study on poplar logs. SSRN Preprint SSRN-4948247. 
http://dx.doi.org/10.2139/ssrn.4948247. Submitted to Frontiers in Remote Sensing. Status: Under 
Review.  
 
B. Papers published in journals indexed by Clarivate Analytics (former ISI Web of Science) 
Borz, S.A., Forkuo, G.O., Oprea-Sorescu, O., Proto, A.R., 2022. Development of a robust machine 
learning model to monitor the operational performance of fixed-post multi-blade vertical sawing 
machines. Forests, 13(7), 1115. https://doi.org/10.3390/f13071115 
Forkuo, G.O., Borz, S.A., 2023. Accuracy and inter-cloud precision of low-cost mobile LiDAR technology 
in estimating soil disturbance in forest operations. Front. For. Glob. Change, 6, 1224575. 
https://doi.org/10.3389/ffgc.2023.1224575 
Forkuo, G.O., Marcu, M.V., Iordache, E., Borz, S.A., 2024. Timber extraction by farm tractors in low-
removal-intensity continuous cover forestry: a simulation of operational performance and fuel 
consumption. Forests, 15(8), 1422. https://doi.org/10.3390/f15081422 
Borz, S.A., Morocho Toaza, J.M., Forkuo, G.O., Marcu, M.V., 2022. Potential of measure app in estimating 
log biometrics: A comparison with conventional log measurement. Forests, 13(7), 1028. 
https://doi.org/10.3390/f13071028 
Presecan, M.F., Forkuo, G.O., Borz, S.A., 2024. Soil compaction induced by three timber extraction 
options: A controlled experiment on penetration resistance on silty-loamy soils. Appl. Sci., 14(12), 5117. 
https://doi.org/10.3390/app14125117 
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