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INTRODUCTION

Relevance of smart solutions for postural assessment in forest operations

Forest operations encompass a wide array of activities related to the management, cultivation, and
harvesting of forests and timber resources (Rummer et al., 2002). These operations are vital for the
sustainable utilization of forest ecosystems, aiming to reconcile economic needs with the fundamental
objective of reducing waste and emissions while minimizing impacts on the environment's structures
and functions (Heinimann, 2007; Marchi et al., 2018). However, forestry remains one of the most
physically demanding and hazardous occupations. Workers are frequently required to perform
repetitive tasks (Sibiya et al., 2021), engage in heavy lifting (Paini et al., 2020), and maintain prolonged
awkward postures (Yovi and Prajawati, 2015). These factors significantly increase the risk of
developing musculoskeletal disorders (MSDs) (Calvo, 2009; Punnett and Wegman, 2004), which
include a wide range of inflammatory and degenerative conditions affecting muscles, tendons,
ligaments, and joints. According to Da Costa and Vieira (2010), poor ergonomic practices and a lack of
attention to postural health are primary contributors to MSDs, which represent one of the most
common occupational health issues globally and a significant cause of work-related disability (Bevan,
2015; Enez and Nalbantoglu, 2019; Pascual and Naqvi, 2008). Consequently, the need for effective,
accurate, and efficient postural assessment in forest operations is both urgent and critical to mitigate
these risks and prescribe appropriate interventions.

For decades, the field of ergonomics has relied on traditional assessment methods to identify and
quantify postural risks. Methodologies such as the Rapid Upper Limb Assessment (RULA) (McAtamney
and Corlett, 1993), the Rapid Entire Body Assessment (REBA) (Hignett and McAtamney, 2000), and the
Ovako Working Posture Analysing System (OWAS) (Karhu et al., 1977) have been widely used. These
methods are endorsed for their ability to systematically classify postures and assign risk levels.
However, they rely heavily on observational techniques that are often subjective, time-consuming, and
impractical for large-scale or continuous implementation (Gomez-Galan et al., 2017; Takala et al,
2010). Their static, snapshot-based nature often fails to capture the dynamic, real-time postural
changes inherent in demanding environments like forestry (Bacic et al., 2024). While modern
technologies like wearable sensors and motion capture systems offer more quantitative and objective
data, they are often expensive and require controlled environments, limiting their applicability in the
rugged, mobile, and outdoor settings of forest operations (Nadeem et al., 2021).

Recent advancements in machine learning (ML), deep learning (DL), and computer vision (CV) offer
transformative opportunities to overcome these challenges (Roggio et al., 2024; Yang et al., 2024).
These "smart solutions" can analyze postures from video or image data, enabling non-invasive,
scalable, and cost-effective assessment. DL models, particularly Convolutional Neural Networks
(CNNs) like ResNet-50 (He et al., 2016), have demonstrated remarkable success in image classification
and human pose estimation, allowing for the precise tracking of body joints and angles (Cao et al,
2017). This capability is highly relevant for ergonomic risk assessment, where DL can identify posture
deviations and predict potential risks from visual data. Similarly, CV technologies, powered by
algorithms like OpenPose (Cao et al., 2019) and advanced architectures like the High-Resolution
Network (HRNet) (Sun et al., 2019), can now detect and classify human postures with high accuracy,
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even in complex and dynamic environments. The integration of these advanced technologies into
ergonomic assessment workflows promises to enhance the efficiency, accuracy, and real-time
applicability of postural analysis. This thesis sought to develop and evaluate such smart solutions
tailored for postural assessment in forest operations, addressing the critical role of ergonomics in
minimizing work-related risks by leveraging the immense potential of these advanced technologies.

Aim and objectives

The aim of this thesis was to improve the existing postural assessment methods by selecting, testing,
tailoring, and validating innovative ML, DL and CV techniques so as to help prevent injuries and improve
work ergonomics, save resources, and enable big data analysis in forest operations postural
assessment. By integrating established ergonomic methods with ML and CV technologies, this
research will bridge gaps in existing methods and provide a novel framework for effective postural
ergonomic assessment. The specific objectives of the thesis were as follows:

01. To perform a comprehensive review of existing ergonomic assessment methods to identify current
gaps and limitations;

02. To collect baseline/representative data on the types of manual, motor-manual and partly
mechanized forest operations and the variability in operational factors that affect the postural
condition in the form of media files;

03. To select and test the best candidates of ML and CV classification algorithms by integrating them
in the conceptual framework of postural assessment methods for manual, motor-manual and partly
mechanized operations implemented especially in Europe;

O4. To identify and optimize the most promising algorithms of ML and CV in terms of performance by
fine-tuning of their operating hyperparameters;

05. To disseminate the results.
Organization of the thesis
The PhD thesis is organized into manuscript-style chapters, each concentrating on a specific topic:

Chapter 1: A systematic survey of conventional and new postural assessment methods. This chapter
presents a systematic literature review that identifies gaps in existing postural ergonomic assessment
methods, laying the groundwork for future research. It examines contemporary ergonomic assessment
techniques, particularly in forestry, contrasting traditional methods with modern approaches utilizing
Machine Learning and Computer Vision.

Chapter 2: Development and evaluation of automated postural classification models in forest
operations using deep learning-based computer vision. This chapter focuses on the development and
evaluation of DL models for automating ergonomic assessments using the OWAS method. It details
the creation of a large, annotated image dataset and the comparative performance of four pre-trained
CNN models, culminating in the selection and fine-tuning of the best-performing model.
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Chapter 3: Approaching full accuracy by deep learning and computer vision in OWAS postural
classification. This chapter explores how enhancing conventional 2D images with computer-generated
body keypoints can improve the accuracy of DL-based postural classification. It compares the
performance of a ResNet-50 model on three different image analysis approaches: images only,
skeletons only, and images combined with skeletons.

Chapter 4: Postural classification by image embedding and transfer learning. This chapter investigates
the use of image embedding and transfer learning to automate the OWAS method for evaluating
postures in motor-manual cross-cutting work. It analyzes the performance of Google's Inception V3
and SqueezeNet models and discusses the challenges of domain differences and unseen data.
Chapter 5: Human and machine reliability in postural assessment of forest operations by OWAS
method. This chapter evaluates the reliability of postural assessments by comparing the ratings of
three human experts with the predictions of a deep learning model. It analyzes intra- and inter-rater
reliability, agreement with the model's "ground truth," and the time efficiency of both human and
machine assessments.

Chapter 6: Conclusions. Original contributions. Dissemination of results. This final chapter synthesizes
the findings from the preceding chapters, outlines the original contributions of the thesis to the field,
and provides a list of scientific publications and presentations that have disseminated the research.
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CHAPTER 1. A SYSTEMATIC SURVEY OF CONVENTIONAL AND NEW POSTURAL ASSESSMENT
METHODS

1.1. MATERIALS AND METHODS

The purpose of this study was to explore the existing research on ML and CV applications in postural
assessment. This review follows a systematic methodology based on the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher et al., 2015; Page et al., 2021)
to identify, select, appraise, synthesize, and report relevant studies from various databases. A protocol
was developed that outlined the objectives, scope, and methodology of the review. Appropriate
academic databases (e.g., PubMed, Scopus, ScienceDirect, Google Scholar, Elsevier, Web of Science,
IEEE Xplore, Springer Link) were chosen, and a comprehensive list of keywords and synonyms related
to the research topic were developed (e.g., musculoskeletal disorders, OWAS, RULA, REBA, ML, DL, CV,
postural assessment). The search was limited to articles published in English without any year range.

A total of 182 articles were selected for inclusion in this review, based on their relevance to the topic
and methodological quality. Inclusion criteria considered studies that were published on postural
assessment at any time, including research conducted with humans, related to ML and CV applications
in postural assessment, and were available in English. To extract and analyze relevant information, a
data collection framework was created to systematically document key information from selected
articles, such as research objectives, methodology, findings, limitations, and gaps. The PRISMA flow
diagram in Figure 1.1 illustrates the methodological phases of the literature review.

Identification of studies via databases and registers

Records removed before
SCIEEning
] Recards identified from: Duplicate records removed {n=5)
Databases [n = 215) 5| Records marked as ineligible by
o Registers in =10 automation tools (n =8
= Records removed for other
reasons (n=12)
— l
Records screened Records excluded
—
{n=200) In=8l
Reports sought for retrieval Reports not retrieved
B —
E {n= 12} h=7)
=
=}
’ !
Reports assessed for eligibility Reports excluded:
n =187} E— Reason 1: Irrelevant to postural
assessment {n=2)
Reason 2: Insufficient data or
methodology (n= 1)
Reason 3: Non-English
language publications {n = 2)
Studies included in review
[n =182}
Reports of included studies
[n =182}
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Figure 1.1. The PRISMA flow diagram of the methodological phases of the literature review for this
study.

1.2. RESULTS AND DISCUSSION

A wide variety of methodologies used in postural assessment have been identified and grouped into
three categories: direct measurements, observational approaches, and self-reports (David, 2005;
Gomez-Galan et al., 2017; Li and Buckle, 1999). Worker self-reports (e.g., diaries, interviews,
questionnaires) are valuable for gathering information on exposure to work-related hazards but can be
vague and unreliable (David, 2005; Kolgiri et al., 2017). Observational methods are essential for
assessing the external exposure of workers and can be subjective (e.g., body maps, rating scales) or
systematic (e.g., recording postures and movements) (Lorenzini et al., 2023). Simpler observational
techniques like OWAS, REBA, and RULA use pro-forma sheets to record workplace exposure and
prioritize interventions. Advanced methods use computerized data collection and analysis to provide a
more objective assessment of postural risk factors. Direct measurement of exposure variables is
achieved by attaching sensors to the subject's workspace, including hand-held instruments like
electronic goniometers, or systems that use optical, acoustic, or electromagnetic markers to track body
movements (David, 2005; Kolgiri et al., 2017). While these methods provide highly accurate data, they
can be costly, require technical expertise, and may be uncomfortable for the subject.

Algorithms form the core of ML and CV systems. Recent advances in ML and DL algorithms have
enabled the development of efficient and accurate CV methods for assessing posture from visual cues,
such as images and videos (Debnath et al., 2022; Jiang et al., 2023). Common traditional ML algorithms
used in CV for postural assessment include Scale-Invariant Feature Transform (SIFT), Histogram of
Oriented Gradients (HOG), Support Vector Machine (SVM), and Hidden Markov Model (HMM) (Ding et
al., 2020; Jiang et al., 2023). Other classification algorithms include Random Forest (RF), Decision Trees
(DT), and k-Nearest Neighbors (KNN). In recent years, researchers have proposed several Convolutional
Neural Network (CNN) algorithms and architectures, such as stacked hourglass networks, multi-stage
pose estimation networks, convolutional pose machines (CPM), and high-resolution nets (Jiang et al.,
2023). DL-based models like ResNet-50, YOLO, and OpenPose have demonstrated great success in
postural assessment and identification, achieving high accuracy by automatically extracting complex
features from images.

The use of ML and CV tools provides several benefits for data analysis, but there are also drawbacks,
including computational demands, the need for high-quality data, and the cost of software (Alpaydin,
2020; Imbeault-Nepton et al.,, 2022). Deep learning is a new trend that involves training algorithms
using big data sets and neural networks. However, CV algorithms still face challenges such as
occlusion, variations in lighting conditions, scalability, and processing time (Russakovsky et al., 2015).
Future research aims to develop new network architectures, refine and adapt ML/CV techniques for
specialized scenarios, enhance model interpretability, and address challenges related to training and
deploying large-scale models. A promising area is the application of sophisticated ML algorithms to
improve the accuracy and reliability of postural assessments in forest operations.
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1.3. CONCLUSIONS

Postural assessment is a key aspect of ergonomics. Both conventional and new methods can be used
and can be effective in improving ergonomic conditions. ML algorithms are useful as they can learn
from their environment and adapt to changes, while CV is a rapidly evolving field for analyzing and
interpreting visual data. As ML and CV continue to advance, they hold immense potential to transform
numerous industries. Future research should focus on refining these models, enhancing training
protocols, expanding annotated datasets, and optimizing data preprocessing techniques to improve
accuracy and applicability across diverse environments.
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CHAPTER 2. DEVELOPMENT AND EVALUATION OF AUTOMATED POSTURAL CLASSIFICATION
MODELS IN FOREST OPERATIONS USING DEEP LEARNING-BASED COMPUTER VISION

2.1. MATERIALS AND METHODS

To the best of the Authors' knowledge, no industry-specific annotated datasets were available at the
time of this study. A field campaign was carried out between February and April 2024 to collect video
footage of forest workers. This was complemented by videos from previous projects, resulting in 157
video files and 174,231 still images. After a manual similarity removal operation, the dataset covered
229 of the 252 possible OWAS classes. To generate images for the remaining 23 classes, a text-to-
photo app (Freepik) was used. A final subset of exactly 23,000 images was retained for model
development, including 115 artificially generated images.

The development and evaluation of the models involved several steps carried out using MATLAB
R2023b software. The workflow, shown in Figure 2.1, included data pre-processing, image annotation,
creation of an image datastore, data partition and augmentation, selection of pre-trained CNN models,
training, validation and testing.

| | | |
Start Film Forest workers prEFrDEESS & label Create |rnage datastore
| image data ‘ object

| Load pre-trained | Partition & augment |

n . Replace final learnable
Train & validate the - GoogleMet, ResMet-50,
hts, bi & output ‘ image datastore
models . weights, mases & outpu . MobileNet-v2 & . B
| layers |

ShuffleNet models ‘
Test models” | Select the best model | Select the best | |
. " . . _ Test the model on a new
performance using and fine-tuning using parameters and re-train, datasst containin
accuracy, precision, various learning rates & validate & test the unseen data s

recall & F1-score | batch sizes | model ‘

End

Figure 2.1. Workflow used to develop the smart OWAS classification model

Label definitions were formulated using OWAS posture codes, resulting in 252 image data labels. The
data was partitioned into training, validation, and test sets at a ratio of 70:15:15%. Four CNN models—
GooglLeNet, ResNet-50, MobileNet-v2, and ShuffleNet—were selected for the study (Table 2.1).
Transfer learning was used to tune the models to the 252 classes in the dataset.

After evaluating the four pre-trained models, the one with the highest classification accuracy and F1-
score (ResNet-50) was selected for fine-tuning. The model's performance was optimized by testing
three sets of training options for learning rate (0.01, 0.001, 0.00001) and batch size (32, 64, 128). The
final model was selected based on a comprehensive evaluation of performance metrics across various
fine-tuning configurations.
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A separate data set of 20 unseen images was used to check the quality of classification and

generalization ability of the final model. The classify function of MATLAB was used to produce labels

and probability scores for the images.

Table 2. 1. Features of the pre-trained networks selected for the study. Source: MathWorks, Inc.,

2024b
Pre-trained network No.of | Depth Size Parameters Total Input Size
(Reference) layers (MB) M) Learnables (M)
GooglLeNet 144 22 27.0 7.00 6.200 224x224x%3
(Szegedy et al., 2015)
ResNet-50 177 50 96.0 25.60 24.000 224x224x%3
(He etal., 2016)
MobileNet-v2 155 53 13.0 3.50 2.500 224x224%3
(Sandler et al., 2018)
ShuffleNet 50 50 5.20 1.40 0.999 224x224x%3

(Zhang et al., 2018)

2.2. RESULTS

Figure 2.2 summarizes the main results regarding the training and validation of the models. The best-

performing model was ResNet-50, with an accuracy of 90.0% and 91.0% during training and validation,

respectively. All models showed lower losses during validation compared to training, indicating

effective generalization. Figure 2.3 summarizes the performance metrics of the testing phase. In terms

of classification performance, ResNet-50 achieved the highest accuracy of 91.2% and an F1-score of

77.9%.

17




100 96.7—90.0-9%0—-op0-go3— 00 856

80.0
80
< 60
(W)
A
2 L0 O Training
I L
20 [ Validation
0 T T T 1
G R M S
DL Model
a

100 oo

0.80

0,60 0.59

ﬁ ' 0.45 0.47 044 050 951
— 0.40 O Training
O Validation
0.20
0.03
0.00 T T T ]
G R M S
DL Model
b

Figure 2.2. Classification accuracy (a) and loss (b) of the models during training and validation phases.
Legend: G — GooglLeNet, R — ResNet-50, M — MobileNet-v2, S — ShuffleNet
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Figure 2.3. Classification performance during testing for the four pre-trained models. Legend: G —
GooglLeNet, R — ResNet-50, M — MobileNet-v2, S — ShuffleNet
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Figure 2.4. Classification accuracy (a) and loss (b) of the ResNet-50 model as a function of the learning
rate during training and validation phases. Note: batch size was kept at 10.
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Figure 2.6. Classification accuracy (a) and loss (b) of the ResNet-50 model as a function of the batch
size during training and validation phases. Note: learning rate was kept at 0.0001.
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Figure 2.7. Classification performance of the ResNet-50 model during testing. Note: learning rate was
kept at 0.0001.

Figure 2.8 shows prediction scores on several examples of unseen data. The model achieved very high
probabilities for several images across all postural classes, indicating strong confidence in its

predictions. The model also performed well on Al-generated images, with overall probabilities
exceeding 50%.

Posture: OWAS ODE, 5K, 142,, Probabilty: 98 34%

Posture: OWAS _ODE (ISK,152,. Probability: 99.70%

Prediction: postural class = 4142, action category = 4 Prediction: postural class = 4152, action category = 4
Probability = 98.94% Probability = 99.70%

Posture: OWAS (ODE,ISK,111,, Probability: 99.97%

Posture: OWAS,ODE, ISK, 171, Probability: 93.03%
5 171 "

Prediction: postural class = 3111, action category = 1 Prediction: postural class = 4171, action category = 2
Probability = 99.97% Probability = 99.03%
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Posture: OWAS (ODE 15K, 171, Probabilty: 99.54% Posture: OWAS ODE (ISK, 121,, Probability: 99.81%

Prediction: postural class = 4171, action category = 2 Prediction: postural class = 2121, action category = 2
Probability = 99.94% Probability = 99.81%

ODE,ISK, 263, Probability: 96.50%
- S -

Posture: OWAS  ODEISK,373 . Probability: 71.38%

Prediction: postural class = 4263, action category = 4 Prediction: postural class = 2373, action category = 4
Probability = 96.50% Probability = 71.38%

d
Figure 2.8. Prediction accuracy on unseen data: a — predictions on classes with dominance in number
of images, b — predictions on classes with a medium number of images, c — predictions on classes with
a low number of images, d — predictions on classes with Al-generated images.

2.3. DISCUSSION

The goal of this study was to develop a smart OWAS model that uses deep learning-based CV to
classify working postures. ResNet-50, a DCNN model, emerged as the most robust model in terms of
superior performance. The fine-tuning process resulted in a model that achieved an accuracy of over
96%, demonstrating the effectiveness of the approach. The predictions on unseen data reflect the
model's confidence levels, with high probabilities indicating robust training. However, variability in
probabilities suggests the importance of data quantity and quality. The study also had limitations,
including class imbalance and the computationally intensive nature of DL techniques. Future research
could explore ensemble learning and address the subjectivity in rating postures from still images.

2.4, CONCLUSIONS

OWAS is a widely used method for classifying working postures. Automating it using deep learning-
based CV techniques offers many benefits. The results of this study demonstrate that four commonly
used deep learning models were highly accurate in postural classification based on transfer learning.
After fine-tuning, ResNet-50 achieved impressive results with over 96% in classification accuracy and
F1-score. Potential improvements in classification performance may be achieved using ensemble
learning, as well as using recurrent neural networks.
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CHAPTER 3. APPROACHING FULL ACCURACY BY DEEP LEARNING AND COMPUTER VISION IN OWAS
POSTURAL CLASSIFICATION: AN EXAMPLE ON HOW COMPUTER-GENERATED BODY KEYPOINTS CAN
IMPROVE DEEP LEARNING BASED ON CONVENTIONAL 2D DATA

3.1. MATERIALS AND METHODS

A field campaign was executed between February and April 2024 across various sites in Romania
(Figure 3.1) to document the postures and movements of forest workers. The dataset was extended
with videos from prior field campaigns, resulting in a refined set of 23,000 images for model
development and testing.
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Figure 3.1. Map of Romania showing the sites of field data collection. Note: Developed in QGIS 3.32.1
‘Lima’ using QuickMapServices, OSM Standard.

Three datasets were used in this study: PictureOnly (PO), which contained the original pictures;
PictureWithSkeleton (PS), which contained pictures with the body keypoints and their connectors
overlaid on the original image; and SkeletonOnly (SO), which contained the body keypoints and their
connectors only. A subset of 1,260 images was set aside for model development. The YOLOv4 object
detector was used to detect bounding boxes around persons, and the HRNet object keypoint detector
was used to identify keypoints.

The models were developed on a desktop computer using the PyCharm Community Edition Python IDE
and TensorFlow. The workflow is shown in Figure 3.2. For each model, the ResNet-50 architecture pre-
trained on the ImageNet dataset was used as the base model. The model was compiled using Adam
optimization, categorical cross-entropy loss, and metrics including accuracy, precision, and recall.
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End

Figure 3.2. Flowchart showing the steps of data collection, annotation, and models’ development and
evaluation.

The evaluation was done in two steps. First, performance on testing data was evaluated using metrics
like accuracy, precision, recall, and F1-score. Second, the evaluation was conducted using a new
dataset of 200 unseen images.

3.2. RESULTS

Figure 3.3 summarizes the key findings related to the training and validation of the ResNet-50 models.
The model based on the PS dataset performed consistently well, with 99.5% accuracy in training and
99.8% in validation. In contrast, the model with SO exhibited a significant drop in performance from
training (99.6%) to validation (66.7%). The model with PO maintained a high performance (100.0% in
training to 98.0% in validation). Figure 3.4 shows the performance metrics during the testing phase.
The model with PS achieved a final accuracy and F1-score of 99.8%. The model with PO performed well
with an accuracy of 97.8% and an F1-score of 97.30%. The model with SO had a significantly lower
performance, with an accuracy of 66.2% and an F1-score of 64.3%.
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Figure 3.3. Accuracy (a) and loss (b) of the pretrained ResNet-50 models during training and validation
phases. Legend: PO - PictureOnly, SO - SkeletonOnly, PS — PictureWithSkeleton.
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Figure 3.4. Classification performance during testing for the pre-trained ResNet-50 models on the
three datasets. Legend: PO - PictureOnly, SO - SkeletonOnly, PS — PictureWithSkeleton.
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Figures 3.5, 3.6, and 3.7 show the probabilities of the models on unseen data. The models displayed
very high probabilities in several images across all postural classes and forest operations, indicating

strong confidence. The probabilities generally exceeded 55%.
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True: OWAS_CODE_RISK_3253_4
Predicted: OWAS_CODE_RISK_3253_4
Probability: 99.13%

d
Figure 3.5. Prediction accuracy of the model developed with PS on unseen data: a - predictions on
operations with dominance in number of images, b - predictions on operations with a medium number
of images, c - predictions on operations with a low number of images, d - predictions on classes with

Al-generated images.
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Figure 3.6. Prediction accuracy of the model developed with SO on unseen data: a - predictions on
operations with dominance in number of images, b - predictions on operations with a medium number
of images, c - predictions on operations with a low humber of images, d - predictions on classes with

Al-generated images.
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Figure 3.7. Prediction accuracy of the model developed with PO on unseen data: a - predictions on
operations with dominance in number of images, b - predictions on operations with a medium number
of images, c - predictions on operations with a low number of images, d - predictions on classes with
Al-generated images.

3.3. DISCUSSION

The ResNet-50 architecture has demonstrated exceptional performance across various CV tasks. In
this study, the model was evaluated on three distinct datasets. The results indicate that the ResNet-
50 model trained on the PO dataset consistently outperformed those trained on the SO dataset.
Notably, the model developed using PS achieved the highest classification performance. The presence
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of comprehensive, background features in the PO aids in capturing additional contextual information.
The high probability scores from model predictions provide important insights into model confidence
and reliability. The study also had limitations, including the small size of the datasets and the
underrepresentation of some posture categories.

3.4. CONCLUSIONS

This study demonstrates that the ResNet-50 model trained on the PS dataset achieved the highest
performance of 99.8% accuracy and F1-score during the testing phase. This underscores the
importance of comprehensive skeleton and contextual information in training robust models. The
integration of OWAS with deep learning is a promising alternative for a more effective assessment and
mitigation of ergonomic risks.
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CHAPTER 4. POSTURAL CLASSIFICATION BY IMAGE EMBEDDING AND TRANSFER LEARNING: AN
EXAMPLE OF USING THE OWAS METHOD IN MOTOR-MANUAL WORK TO AUTOMATE THE PROCESS
AND SAVE RESOURCES

4.1, MATERIALS AND METHODS

The field survey included the collection of media footage documenting the motor-manual crosscutting
of teak (7ectona grandis L.f) in Kanchanaburi province, Thailand (Figure 4.1). A total of 14 videos were
collected, resulting in more than 5000 still images deemed valid for detailed analysis.

Thailand

NAKHON

. N PRACHIN BURI 4
"””"".‘Bangkok U / 4 a1

nsvinwumtAs, T SghrongPorbet
A I Cambodia

P 1 Batiu.,
W Pattaya City [ois ALl ehs)
B \0oownimn

Figure 4.1. An example of an image used for modeling (left) and the location of the study (right).

Allimages were visually assessed according to the OWAS postural classification system. Following the
visual assessment, the images were stored in folders according to the four-digit codes (Posture
dataset) and corresponding action categories (Action dataset). The final dataset for analysis comprised
5001 images. Table 4.1 shows the distribution of images across action categories.
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Table 4.1. Frequency of the action categories identified in the dataset used for machine learning.

Action Description Absolute Frequency Relative
Category (n) Frequency
Code (n/Nx100)
1 No corrective action is needed 80 1.6
2 Corrective actions are needed in the 1849 36.9
near future
3 Corrective actions are needed as soon 125 2.5
as possible
4 Corrective actions are required 2951 59.0
immediately
Total (N) - 5001 100

Note: n represents the absolute frequency of the action category, and N represents the size of the data
sample.

Orange Visual Programming software was used to develop, train, and test the machine learning
models. Two image embedders, Google's Inception V3 and SqueezeNet, were used to obtain the vector
representation of the images. An artificial neural network was used as the local classifier. The models
were trained and tested using a range of architectures (1 to 10 layers) and neuron counts (10, 100,
1000). A separate set of 406 unseen images was prepared for testing.

4.2, RESULTS

The main results of the classification accuracy metrics are shown in Figures 4.2—-4.5. The best-
performing models for the Inception V3 image embedder achieved a maximum classification accuracy
of 0.836. For SqueezeNet, the top classification accuracy was 0.820. In general, neural network
architectures containing 100 and 1000 neurons performed better.
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Figure 4.2. Classification accuracy (CA) on the Posture dataset depending on the embedder used, the
number of layers, and the number of neurons per layer. Legend: size of the data points represents the
number of neurons used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and
color represents the number of layers used (red—ten, orange—five, yellow—three, greentwo, and
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represents the number of layers used (red—ten, orange—five, yellow—three, green—two, and

blue—one).
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Figure 4.4. Precision (PREC) on the Posture dataset depending on the embedder used, the number of
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Figure 4.5. Recall (REC) on the Posture dataset depending on the embedder used, the number of layers,
and the number of neurons per layer. Legend: size of the data points represents the number of neurons
used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and color represents
the number of layers used (red—ten, orange—five, yellow—three, green—two, and blue—one).

The classification accuracies of the models on the Action dataset are presented in Figures 4.6—4.9. The
two image embedders performed similarly, achieving top classification accuracies and recalls of
0.888-0.889 and a F1 score and precision of 0.886. The improved classification accuracy on the Action
dataset may be attributed to its lower classification complexity.
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Figure 4.6. Classification accuracy (CA) on the Action dataset depending on the embedder used, the
number of layers, and the number of neurons per layer. Legend: size of the data points represents the
number of neurons used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and
color represents the number of layers used (red—ten, orange—five, yellow—three, green—two, and
blue—one).
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Figure 4.9. Recall (REC) on the Action dataset depending on the embedder used, the number of layers,
and the number of neurons per layer. Legend: size of the data points represents the number of neurons
used (small—10 neurons, medium—100 neurons, and large—1000 neurons) and color represents
the number of layers used (red—ten, orange—five, yellow—three, green—two, and blue—one).

Table 4.2 presents the results of applying the trained models to unseen data. The classification

performance decreased, with predicted classification accuracies ranging from 49% to 52% for the

posture data and from 51% to 60% for the action category data. This suggests that the training and

validation datasets may not have been fully representative of the real-world data distribution.

Table 4.2. Performance of the models on unseen data.

Model Description & main Posture or Action | Number of Correct | Classification
parameters category instances | predictions accuracy
1 Inception V3, Postural data, 1131 3 0.0
2 hidden layers, 1000 2141 7 2 28.6
neurons each, and a = 2171 76 4 5.3
0.0001 2271 11 0 0.0
3121 4 0 0.0
3141 14 0 0.0
3171 8 0 0.0
4131 20 0 0.0
4141 203 174 85.7
4151 21 0 0.0
4171 30 15 50.0
Overall 397 195 491
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Model Description & main Posture or Action | Number of Correct | Classification
parameters category instances | predictions accuracy
2 SqueezeNet, Postural data, 1131 3 0 0.0
2 hidden layers, 1000 2141 7 0 0.0
neurons each, and o = 0.001 2171 76 19 25.0
2271 11 0 0.0
3121 4 0 0.0
3141 14 0 0.0
3171 8 0 0.0
4131 20 0 0.0
4141 203 161 79.3
4151 21 6 28.6
4171 30 21 30.0
Overall 397 207 52.1
3 Inception V3, Action data, 1 1 24 0 0.0
hidden layer, 1000 neurons 2 137 L4 32.1
each, and a = 0.001 3 21 0 0.0
4 224 161 71.9
Overall 406 205 50.5
4 SqueezeNet, Action data, 3 1 24 0 0.0
hidden layers, 1000 neurons 2 137 102 74.5
each, and a = 0.001 3 21 2 1.0
4 224 139 62.1
Overall 406 243 59.9

4.3. DISCUSSION

This study evaluated the effectiveness of image embedding and transfer learning in facilitating precise
postural classification. The performance of the models on unseen data showed a classification
accuracy range of 49% to 52% for posture data and 51% to 60% for action category data. Previous
studies have highlighted the strengths of deep learning models. A comparison of these studies with
the current study reveals lower performance outcomes, highlighting areas for potential improvement.
The findings emphasize the importance of dataset size and diversity in enhancing machine learning
model efficiency.

4.4, CONCLUSIONS

This study proposes a novel method to automate the process of postural classification in motor-
manual work via the OWAS while saving resources. The findings prove that i) classifying complex
problems such as those of postural assessment can be performed with remarkable accuracy (84%—
89%), ii) it is possible to reconfigure deep learning networks with less effort, and iii) the learned image
representations may be less effective on unseen data (50%-60%). The proposed method can
potentially reduce the cost of ergonomic assessments.
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CHAPTER 5. HUMAN AND MACHINE RELIABILITY IN POSTURAL ASSESSMENT OF FOREST
OPERATIONS BY OWAS METHOD: LEVEL OF AGREEMENT AND TIME RESOURCES

5.1. MATERIALS AND METHODS

The ResNet-50 model (He et al., 2016), a deep convolutional neural network, was utilized as a
reference for this study due to its proven effectiveness in image classification tasks. Its selection was
based on prior experimental results (Forkuo and Borz, 2024) that demonstrated its superior
classification accuracy and favorable balance with computational efficiency compared to other models
like GooglLeNet, MobileNet-v2, and ShuffleNet.

A separate dataset of 100 images was compiled to accurately reflect the diverse postures and
movements of forest workers. Three expert human raters (R1, R2, and R3) were selected to evaluate
these images using the OWAS method (Table 5.1). To ensure reliability and mitigate recall bias, the
rating process was conducted in two separate replications (r1 and r2), with a one-month interval
between them.

Table 5.1. Description of the OWAS codes and categories used in the study

Feature | Abbreviation | Number of Description
inthe study | categories
according to
OWAS
Back B 4 Describes the posture of the back starting from a
neutral straight posture and ending with the back
being bent and twisted

Arms A 3 Describes the posture of the arms starting from a
neutral posture with both arms below shouder level

and ending with both arms being at or above the

shoulder level
Legs L 7 Describes the posture of the legs by seven
categories starting from a neutral sitting posture
and ending with legs being engaged in walking or
moving

Force F 3 Describes the level of force exertion starting with

exertion handling loads or exerting forces less than 10 kg

and ending with handling loads or exerting forces

over 20 kg
Action AC 4 Indicates the level of postural risk by the urgency of
category the ergonomic interventions required, starting from
no intervention required and ending with
intervention required immediately
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Reliability was assessed using several datasets as detailed in Table 5.2. Intra-rater reliability was
determined by comparing a rater's two replications (e.g., R1r1 vs. R1r2). Inter-rater reliability involved
pairwise and overall comparisons between different raters for the same replication. The deep learning
model was used to generate a reference dataset (RM), considered the ground truth, against which
human rater reliability was also assessed.

Table 5.2. Description of the datasets used in the assessment

Rater | Replication | Abbreviation of Description of the dataset
No. No. the dataset
R1 r1 R1r1 Ratings of the first rater in the first replication
R1 r2 R1r2 Ratings of the first rater in the second replication
R2 r R2r1 Ratings of the second rater in the first replication
R2 r2 R2r2 Ratings of the second rater in the second replication
R3 r1 R3r1 Ratings of the third rater in the first replication
R3 r2 R3r2 Ratings of the third rater in the second replication
RM - RM Rating of the deep learning model

Cohen's kappa (Cohen, 1960) and Fleiss' kappa (Fleiss, 1971) were the primary metrics for assessing
reliability. Time efficiency was evaluated by recording the time taken by each human rater per image
and comparing it to the programmatic assessment time of the DL model. Statistical analyses, including
multi-dimensional scaling (MDS) for visual agreement and non-parametric tests for time consumption
data, were performed using Orange Visual Programming software and Python.

5.2. RESULTS AND DISCUSSION

The MDS analysis (Figure 5.1) revealed a degree of agreement among human raters, though with
considerable dispersion. When the DL model's ratings were included (Figure 5.2), a higher level of
disagreement was observed, with the model's data points often positioned distinctly from the human
raters', indicating a different classification pattern.
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Figure 5.1. Results of multi-dimensional scaling concerning human rater agreement. Legend: R1 —
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Figure 5.2. Results of multi-dimensional scaling concerning human raters and model agreement.
Legend: R1 —rater 1, R2 — rater 2, R3 — rater 3, RM - rating of the deep learning model, r1 — data from
the first replication, r2 — data from the second replication. Note: for RM a single rating was used.

Intra-rater agreement (Table 5.3) was high, with Cohen's kappa values ranging from 0.48 to 1.00,
indicating moderate to almost perfect consistency for individual raters over time.
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Table 5.3. Results of intra-rater reliability for the three human raters

Compared datasets | # Ratings | Po | Pe k | %Agreement | Interpretation of kappa
BR1r1 BR1r2 100 0.69 | 0.29 | 0.56 69 Moderate agreement
AR AR1r2 100 093 | 0.71 | 0.76 93 Substantial agreement
LR1r LR1r2 100 0.68 | 0.26 | 0.57 68 Moderate agreement
FR1r1 FR1r2 100 0.90 | 0.62 | 0.74 90 Substantial agreement

ACR1r1 | ACR1r2 100 0.61 | 0.25 | 0.48 61 Moderate agreement
BR2r1 BR2r2 100 0.97 | 0.33 | 0.96 97 Almost perfect agreement
AR2r1 AR2r2 100 1.00 | 0.73 | 1.00 100 Almost perfect agreement
LR2r1 LR2r2 97 0.99 | 0.25 | 0.99 99 Almost perfect agreement
FR2r1 FR2r2 100 0.95 | 0.51 | 0.90 95 Almost perfect agreement

ACR2r1 | ACR2r2 97 095 | 0.26 | 0.93 95 Almost perfect agreement
BR3r1 BR3r2 100 0.96 | 0.39 | 0.93 96 Almost perfect agreement
AR3r1 AR3r2 100 0.98 | 0.84 | 0.88 98 Almost perfect agreement
LR3r1 LR3r2 100 0.99 | 0.32 | 0.99 99 Almost perfect agreement
FR3r1 FR3r2 100 0.98 | 0.48 | 0.96 98 Almost perfect agreement

ACR3r1 | ACR3r2 100 0.96 | 0.32 | 0.94 96 Almost perfect agreement

Note: Podenotes observed agreement; Pedenotes expected agreement by chance; Adenotes Cohen's
kappa statistic, B denotes the posture of the back, A denotes the posture of the arms, L denotes the
posture of the legs, F denotes the level of force exertion, AC denotes the action category. The full
abbreviations were composed by using the type of feature under assessment (B, A, L or AC, Table 5.2)

and the datasets presented in Table 5.1.

In contrast, pairwise inter-rater reliability among human experts (Table 5.4) was significantly lower and
more variable, with kappa values from 0.02 (slight) to 0.64 (substantial), highlighting the inherent

subjectivity of manual assessment.

Table 5.4. Results of inter-rater reliability among the three human raters

Compared datasets | # Ratings | Po | Pe k | %Agreement | Interpretation of kappa
BR1r1 BR2r1 100 0.46 | 0.24 | 0.29 46 Fair agreement
BR1r1 BR3r1 100 0.62 | 0.36 | 0.41 62 Moderate agreement
BR2r1 BR3r1 100 0.34 | 0.29 | 0.07 34 Slight agreement
AR AR2r1 100 0.91 | 0.70 | 0.70 91 Substantial agreement
AR AR3r1 100 0.89 | 0.75 | 0.56 89 Moderate agreement
AR2r1 AR3r1 100 0.88 | 0.78 | 0.46 88 Moderate agreement
LR1r1 LR2r1 97 0.57 | 0.21 | 0.45 57 Moderate agreement
LR1r1 LR3r1 100 0.64 | 0.26 | 0.52 64 Moderate agreement
LR2r1 LR3r1 100 0.60 | 0.25 | 0.46 60 Moderate agreement
FR1r1 FR2r1 100 0.74 | 0.52 | 0.46 74 Moderate agreement
FR1r1 FR3r1 100 0.70 | 0.53 | 0.37 70 Fair agreement
FR2r1 FR3r1 100 0.72 | 0.48 | 0.46 72 Moderate agreement

ACR1r1 | ACR2r1 100 0.54 | 0.24 | 0.40 54 Fair agreement
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Compared datasets | # Ratings | Po | Pe k | %Agreement | Interpretation of kappa
ACR1r1 | ACR3r 100 0.52 | 0.27 | 0.34 52 Fair agreement
ACR2r1 | ACR3r1 97 0.40 | 0.23 | 0.22 40 Fair agreement
BR1r2 BR2r2 100 0.58 | 0.28 | 0.41 58 Moderate agreement
BR1r2 BR3r2 100 0.41 1030 | 0.15 41 Slight agreement
BR2r2 BR3r2 100 0.32 | 0.30 | 0.02 32 Slight agreement
AR1r2 AR2r2 100 0.90 | 0.73 | 0.62 90 Substantial agreement
AR1r2 AR3r2 100 0.92 | 0.79 | 0.63 92 Substantial agreement
AR2r2 AR3r2 100 0.86 | 0.78 | 0.37 86 Fair agreement
LR1r2 LR2r2 100 0.56 | 0.24 | 0.42 56 Moderate agreement
LR1r2 LR3r2 100 0.75 | 0.31 | 0.64 75 Substantial agreement
LR2r2 LR3r2 100 0.58 | 0.25 | 0.44 58 Moderate agreement
FR1r2 FR2r2 100 0.79 | 0.55 | 0.53 79 Moderate agreement
FR1r2 FR3r2 100 0.73 | 0.55 | 0.40 73 Fair agreement
FR2r2 FR3r2 100 0.75 | 0.48 | 0.52 75 Moderate agreement
ACR1r2 | ACR2r2 100 0.56 | 0.25 | 0.42 56 Moderate agreement
ACR1r2 | ACR3r2 100 0.41]0.25 | 0.22 41 Fair agreement
ACR2r2 | ACR3r2 100 0.40 | 0.23 | 0.22 40 Fair agreement

Note: Podenotes observed agreement; Pedenotes expected agreement by chance; Adenotes Cohen's

kappa statistic, B denotes the posture of the back, A denotes the posture of the arms, L denotes the

posture of the legs, F denotes the level of force exertion, AC denotes the action category. The full

abbreviations were composed by using the type of feature under assessment (B, A, L or AC, Table 5.2)

and the datasets presented in Table 5.1.

Agreement between human raters and the DL model as the ground truth (Table 5.5) was generally poor

to fair, with kappa values ranging from -0.03 to 0.34. This suggests a systematic difference between

individual human interpretation and the data-driven patterns learned by the model.

Table 5.5. Results of pair-based agreement between the human raters and the deep learning model

Ratings Under # Ratings Po | Pe k %Agreement | Interpretation of kappa
Comparison

BR1r1 BRM 100 043|034 | 013 43 Slight agreement
BR1r2 BRM 100 034|030 | 0.06 34 Slight agreement
BR2r1 BRM 100 032|030 | 0.03 32 Slight agreement
BR2r2 BRM 100 0.30 | 0.30 | 0.00 30 Poor agreement
BR3r1 BRM 100 0.57 1037 | 032 57 Fair agreement

BR3r2 BRM 100 0.57 | 0.38 | 0.31 57 Fair agreement

AR ARM 100 0.75|10.76 | -0.03 75 Poor agreement
AR1r2 ARM 100 0.79 1 0.79 | -0.02 79 Poor agreement
AR2r1 ARM 100 0.78 | 0.78 | -0.02 78 Poor agreement
AR2r2 ARM 100 0.78 | 0.78 | -0.02 78 Poor agreement
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AR3r1 ARM 100 0.85 | 0.84 | 0.04 85 Slight agreement
AR3r2 ARM 100 0.85 | 0.84 | 0.04 85 Slight agreement
LR1r1 LRM 100 038|024 | 0.18 38 Slight agreement
LR1r2 LRM 100 0.46 | 0.28 | 0.25 46 Fair agreement
LR2r1 LRM 97 0.44 | 0.25| 0.26 L Fair agreement
LR2r2 LRM 100 0.43 | 0.24 | 0.25 43 Fair agreement
LR3r1 LRM 100 0.50 | 0.29 | 0.29 50 Fair agreement
LR3r2 LRM 100 0.49 | 030 | 0.28 49 Fair agreement
FR1r1 FRM 100 0.60 | 0.47 | 0.24 60 Fair agreement
FR1r2 FRM 100 059|049 | 0.20 59 Slight agreement
FR2R1 FRM 100 0.53 | 0.44 | 0.16 53 Slight agreement
FR2r2 FRM 100 0.56 | 0.44 | 0.21 56 Fair agreement
FR3r1 FRM 100 0.61 | 0.44 | 0.31 61 Fair agreement
FR3r2 FRM 100 0.63 | 0.44 | 0.34 63 Fair agreement
ACR1M ACRM 100 032|026 | 0.08 32 Slight agreement
ACR1r2 ACRM 100 038|025 | 0.18 38 Slight agreement
ACR2r1 ACRM 97 035|024 | 015 35 Slight agreement
ACR2r2 ACRM 100 036|024 | 0.16 36 Slight agreement
ACR3r1 ACRM 100 0.50 | 0.29| 0.29 50 Fair agreement
ACR3r2 ACRM 100 0.51 1030 | 0.30 51 Fair agreement

Note: Podenotes observed agreement; Pedenotes expected agreement by chance; Adenotes Cohen’s

kappa statistic, B denotes the posture of the back, A denotes the posture of the arms, L denotes the

posture of the legs, F denotes the level of force exertion, AC denotes the action category. The full

abbreviations were composed by using the type of feature under assessment (B, A, L or AC, Table 5.2)

and the datasets presented in Table 5.1.

The overall agreement, when considering all human raters against the DL model using Fleiss' kappa
(Table 5.6), improved to fair to moderate levels (kappa = 0.28-0.49). This indicates that while individual
raters may diverge, their collective assessment is more aligned with the model's predictions.

Table 5.6. Results of overall agreement among the three human raters and the ResNet-50 model

Ratings Under Comparison # Po | Pe k | %Agreement | Interpretation of kappa
Ratings

BR1R1 BR2R1 BR3R1 BRM 100 0.53 | 034 |0.28 53 Fair agreement
ARTR1 AR2R1 AR3R1 ARM 100 0.88 | 0.77 | 0.49 88 Moderate agreement
LRTR1 LR2R1 LR3R1 LRM 97 0.52 | 0.23 | 0.37 52 Fair agreement
FR1R1 FR2R1 FR3R1 FRM 100 0.66 | 0.47 | 0.37 66 Fair agreement
ACR1R1 | ACR2R1 | ACR2R1 | ACRM 97 0.52 | 0.26 | 0.35 52 Fair agreement
BR1R2 BR2R2 BR3R2 BRM 100 0.49 | 0.31 | 0.26 49 Fair agreement
AR1TR2 AR2R2 AR3R2 ARM 100 0.89 | 0.79 | 0.47 89 Moderate agreement
LR1R2 LR2R2 LR3R2 LRM 100 0.53 | 0.25|0.38 53 Fair agreement
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FR1R2

FR2R2 FR3R2 FRM 100 0.68 | 0.47 | 0.37 68

ACR1R2

ACR2R2 | ACR2R2 | ACRM 100 0.51]0.27 | 0.33 51

Note: Podenotes observed agreement; Pedenotes expected agreement by chance; Adenotes Fleiss's
kappa statistic, B denotes the posture of the back, A denotes the posture of the arms, L denotes the
posture of the legs, F denotes the level of force exertion, AC denotes the action category. The full
abbreviations were composed by using the type of feature under assessment (B, A, L or AC, Table 5.2)
and the datasets presented in Table 5.1.

In terms of time efficiency (Table 5.7), the DL model was vastly superior, performing assessments 19
to 53 times faster than human raters on average. Significant variability in assessment time was also
observed among the human raters, further underscoring the efficiency and consistency benefits of the

Fair agreement

Fair agreement

automated approach.

Table 5.7. Results of comparison tests for time consumption data

Variables under | Median values Results of normality test’ Results of comparison test?
comparison (s)
TR1r1-TR1r2 30.0-24.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001
TR2r1-TR2r2 52.5-440 No, p < 0.001-No, p < 0.001 Yes, p < 0.001
TR3r1-TR3r2 19.0 - 20.0 No, p < 0.001-No, p < 0.001 No, p =0.608
TR1r1-TR2r1 30.0-525 No, p < 0.001-No, p < 0.001 Yes, p < 0.001
TR1r1-TR3r1 30.0-19.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001
TR2r1-TR3r1 52.5-19.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001
TR1r2-TR2r2 24.0 - 440 No, p < 0.001-No, p < 0.001 Yes, p < 0.001
TR1r2-TR3r2 30.0-20.0 No, p < 0.001-No, p < 0.001 Yes, p =0.003
TR2r2-TR3r2 44.0 - 20.0 No, p < 0.001-No, p < 0.001 Yes, p < 0.001

Note: 1 — According to Shapiro-Wilk test; 2 — significant differences according to Mann-Whitney two-
tailed nonparametric test, T stands for the time consumption dataset

5.3. CONCLUSIONS

This study shows that DL models present significant advantages for conducting OWAS-based postural
assessments, offering remarkable speed enhancements while achieving comparable levels of
reliability to traditional human-rater methods. The findings showed that while human raters exhibited
moderate to almost perfect intra-rater reliability, their inter-rater agreement was considerably lower.
The DL model serves not only as a highly resource-efficient alternative but also as a stable reference
point for evaluating OWAS assessments.
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CHAPTER 6. CONCLUSIONS. ORIGINAL CONTRIBUTIONS. DISSEMINATION OF RESULTS

6.1. Conclusions

This PhD thesis underscores the importance of postural assessment in ergonomics, particularly within
forest operations, where identifying high-risk postures is essential for developing effective
interventions. The research demonstrates that both conventional and innovative methods, including
machine learning (ML) and computer vision (CV), significantly enhance the accuracy and efficiency of
postural classification. Automating the OWAS method using deep learning-based CV techniques yields
impressive classification performance, with the ResNet-50 model emerging as the most effective
option in real-world applications. Furthermore, the integration of comprehensive skeletal and
contextual information is shown to optimize model reliability and effectiveness. The introduction of a
novel approach leveraging image embedding and transfer learning allows for accurate postural
classification with reduced reliance on computer programming expertise. Additionally, the findings
reveal that deep learning models offer substantial advantages over traditional human assessments,
providing resource-efficient solutions that decrease assessment time and enhance consistency.
Despite challenges such as variability in human ratings and limitations with unseen data, this research
highlights the transformative potential of ML and CV in advancing postural assessment methods.
Future research should prioritize refining these models, enhancing algorithm training protocols,
expanding annotated datasets, and optimizing data preprocessing techniques to further improve
accuracy and applicability across diverse environments. Through these efforts, the ultimate goal of
enhancing worker health, safety, and operational efficiency in forestry and beyond can be achieved.

6.2. Original contributions

This PhD thesis has made significant contributions to the field of ergonomic assessment in forest
operations through the development and evaluation of novel methods and extensive datasets. Key
original contributions include:

Creation of a Comprehensive and Novel Dataset: A dataset of 23,000 annotated images for OWAS
classification in forestry was created. Its innovative integration of field-collected data with Al-
generated images ensures complete coverage of all 252 OWAS postural combinations, addressing the
persistent challenge of data scarcity.

Development of an Automated Workflow: A novel workflow for automated OWAS classification was
established, identifying optimal hyperparameters (learning rate of 0.001, batch size of 32) through
systematic fine-tuning, creating a robust framework for future applications.

Enhancement of Input Data with Skeletal Keypoints: An innovative strategy was implemented that
enhanced conventional input images with computer-generated body keypoints, which was proven to
significantly improve classification accuracy by 2-2.5% and achieve a near-perfect accuracy of 99.8%.

First Evaluation of DL for OWAS in Forestry: This thesis represents the first development and
evaluation of deep learning-based computer vision techniques for automating OWAS postural
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classification in forestry, testing four pre-trained CNN models and setting new performance standards,
with the fine-tuned ResNet-50 model achieving over 96% classification accuracy.

Advancement of Automation via Image Embedding: The automation of posture assessment was
advanced through the novel application of image embedding and transfer learning, achieving accuracy
rates between 84% and 89% without the need for specialized sensors or extensive programming
expertise.

Pioneering Analysis of Human vs. Machine Reliability: A pioneering analysis of human and machine-
based postural assessments was conducted, quantifying intra- and inter-rater reliability and
establishing a comparison with the ResNet-50 model as a ground truth, highlighting the superior speed
and consistency of the DL model.

6.3. Dissemination of results

6.3.1. Scientific publications based on this PhD thesis

A. Papers published in BDI journals

Forkuo, G.0., 2023. A systematic survey of conventional and new postural assessment methods.
Revista  Padurilor, 1383), 34p. Available online at: http://revistapadurilor.com/wp-
content/uploads/2024/01/RP_138-3-2023.-BT.pdf.

B. Papers published in journals indexed by Clarivate Analytics (former ISI Web of Science)

Forkuo, G.O., Borz, S.A., Kaakkurivaara, T., Kaakkurivaara, N., 2025. Postural classification by image
embedding and transfer learning: An example of using the OWAS method in motor-manual work to
automate the process and save resources. Forests, 76(3), 492. https://doi.org/10.3390/f16030492
Forkuo, G.0., Marcu, M.V., Kaakkurivaara, N., Kaakkurivaara, T., Borz, S.A., 2025. Human and machine

reliability in postural assessment of forest operations by OWAS method: Level of agreement and time
resources. Forests, 76(5), 759. https://doi.org/10.3390/f16050759.

6.3.1.1. Papers presented at national scientific conferences

Forkuo, G.0., 2023. A systematic survey of conventional and new postural assessment methods. In:
Book of Abstracts, Proceedings of the 6th Edition of the Integrated Management of Environmental
Resources Conference Suceava - Romania, 23-24 NMNovember 2023. Available online at:
https://silvic.usv.ro/imer2023/proceedings _imer_2023.pdf (accessed 4 March 2025)

Forkuo, G.0., Borz, S.A., 2024. Evaluation and development of smart ovako working posture analysis
system (OWAS) solutions for postural classification in forest operations using deep learning-based
computer vision. Graduates in Front of Companies (AFCO) 2024. Available online at:
https://afco.unitbv.ro/2024/images/Documente/AFCO_2024 _Lucrari_inscrise_.pdf (accessed 5
March 2025).

Forkuo, G.0., Borz, S.A., 2024. Evaluation and development of smart ovako working posture analysis
system (owas) solutions for postural classification in forest operations using deep learning-based
computer vision. Dol02024. Available online at:
https://www.unitbv.ro/documente/cercetare/Detailed _Programme.pdf (accessed 2 March 2025).
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6.3.1.2. Papers presented at international scientific conferences

Forkuo, G.0., 2023: A systematic survey of conventional and new postural assessment methods. In:
Book of Abstracts, Proceedings of the 6th Edition of the Integrated Management of Environmental
Resources Conference Suceava - Romania. Session: Forest Ecosystemns and Climate. Available online
at: https://ibn.idsi.md/sites/default/files/imag_file/Book_of abstracts IMER_23_Suceava.pdf
(accessed 1 April 2025).

Forkuo, G.0., Borz, S.A.,, 2024. Development and evaluation of automated postural classification

models in forest operations using deep learning-based computer vision. In: Book of Abstracts,
Proceedings of the 11th International Symposium on Forest and Sustainable Development, FSD 2024.
Available online at:
https://silvic.unitbv.ro/images/conferinte/fsd2024/Book _of abstracts FSD_2024c.pdf. (accessed 1
April 2025).

6.3.2. Scientific publications based on the results produced by participation in research teams
external to the PhD thesis scope

A. Papers published on preprint servers

Forkuo, G.0., Borz, S.A., Proto, A.R.,2024. Accuracy of low-cost mobile lidar technology in estimating
the severity and extent of soil disturbance in forest operations. SSRN Preprint SSRN-4685980.
http://dx.doi.org/10.2139/ssrn.4685980. Submitted to Croatian Journal of Forest Engineering. Status:
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