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INTRODUCTION

Micropolar media

In the study of continuum mechanics, micropolar media are represented by
materials that take into account the effects of microrotations and micromoments.
In other words, in addition to the classical displacements and stresses considered
in traditional elastic or viscoelastic media, micropolar media also take into ac-
count small rotations of material particles and the moments acting on them. The
concept of micropolar media was developed by the Cosserat brothers and later
expanded by other researchers, in particular by the Turkish-born professor A.
Cemal Eringen. In his works from the 1960s, Eringen proposed the micropolar
theory to describe the behavior of materials that cannot be adequately explained
by classical continuum mechanics. Eringen showed how the micropolar theory can
be applied in various fields, such as: composite materials (carbon fiber, laminated
materials), granular materials (sand, soils, dust and metal powders), porous struc-
tures (metallic and polymer foams, rocks and geological materials), biomechanics
(bone, cartilage), liquid crystals and polymers and nanotechnology (carbon nan-
otubes, graphene). Each of these materials presents characteristics that cannot
be adequately captured by classical continuum models, thus justifying the need
for the micropolar approach.

Dipolar media

Dipolar media in the context of elasticity are materials in which the mechanical
properties are influenced by internal dipole moments. This extends the classical
theory of elasticity to take into account the effects caused by the non-uniform
distribution of electric charges and dipole moments at the microscopic level. The
first to carry out studies on these media are Mindlin, Rivlin and Green, as in [46].
The degrees of freedom of each moment corresponding to this theory are twelve
in number and include nine microstrains and three translations.

Thesis structure: In the present work, the original results are contained in
4 chapters as follows:
Chapter I - GGeneral aspects of isotropic micropolar media

The first chapter of this paper comprises results corresponding to isotropic
micropolar media and is divided into three sections.

In the first section, the variational principle and the continuous dependence
for an isotropic and homogeneous micropolar medium are obtained. For this pur-
pose, we start from an alternative presentation of the problem with initial and
boundary data, characterized by equations (1.7), (1.8), (1.11), with the condi-
tions (1.13), (1.14), relations analogous to those in [7]-[8], as well as in [10]-[11].
Next, a theorem is obtained that provides an alternative characterization of the
mixed problem and, moreover, we obtain the variational principle of the universal
poro-thermoelastic theory with a single relaxation parameter for an isotropic and
homogeneous micropolar medium. In the last part of the section, we aim to obtain
the continuous dependence of the solutions of the problem with respect to initial
and boundary data and with respect to the loads in the present context.

The purpose of Section II is the study of the plane deformation of isotropic



micropolar materials in the equilibrium theory, where in addition to displacement
and absolute temperature, the particles of the mentioned materials exhibit pores
and microrotations. The determined solution helps to study the effects of heat
sources and pores on the deformation of the body. So, using the equilibrium
equations (1.56)-(1.59) from [1], we obtain the solutions of the field equations.
Later we obtain a result that helps to study the mentioned effects, and in the last
part of this section, we consider a cylindrical hole in an elastic space, which also
contains the domain B = {r : 22 + 23 > 7? 3 € R}, (r; > 0). Obtaining the
deformation involves determining the functions 6, ¢, u, and ¢,, more precisely
the solutions of the formed system, which were denoted by V, W, Q) and U.

More considerations can be found in [22-24] and a more extensive presentation
in [30].

In section III, the physical characteristics of thermomechanical bodies are in-
vestigated in short time intervals. The emphasis is placed on the transmission
of thermal energy, the evolution from a single relaxation time to the dual phase-
shifted (DPL) model being clearly necessary. Therefore, 7, and 74 are introduced
as two lag times of the analyzed model, more precisely they represent characteris-
tics that assume the achievement of thermal equilibrium, as well as the existence
of collisions between electrons and photons. In the first part of this section, two
shear waves are obtained, undamped in time and unaffected by porosity and/or
temperature. In the next step, starting from the dispersion equation, five longitu-
dinal waves are obtained, and in the last stage, more precisely the numerical part,
the effects of thermoelastic coupling with microrotations on longitudinal waves
are highlighted.

It is necessary to take into account that, in our study, the relation (1.110) was
obtained from the constitutive relation for a micropolar, isotropic and homoge-
neous thermoelastic medium, using the Taylor series expansion with respect to
time, up to the 2nd degree. The description of the effect of porosity on elasticity
is made by Cowin-Nunziano in [13]-[14], and in [8], [16], [18] the thermal response
is described, related to the time differential formulation of the Tzou model. The
form of the solution (1.114) is in accordance with [13].

The study of wave propagation with two lag times in a porous and isotropic
micropolar thermoelastic material represents both an evolution and a synthesis of
previous studies. Some results in this regard can be found in [35]-[44] and [69].
Chapter II- Advanced solutions in isotropic micropolar media

This chapter is devoted to the study of solutions in terms of complex potentials
for Cosserat media with pores. Thus, the first step involves the determination of
the plane deformation within the equilibrium theory of micropolar, homogeneous,
isotropic bodies with pores. Using the constitutive equations (2.1)-(2.3), the ge-
ometric equations (2.4) and the mass-free equilibrium equations (2.5)-(2.7) from
[1], we focus on addressing the fundamental boundary-value problems of the plane
deformation theory, see also [45]-[47]. Subsequently, we obtain a description of
the displacement, microrotations and pores using complex analytic functions and
two real functions, based on the homogeneous Helmholtz equations, described
in [4]. Next, the structure of potential functions is studied for several domains



of interest and we apply the method of complex variables, without introducing
stress functions, to solve the Kirsch problem [6]. The last part of this section is
dedicated to the numerical study, where the graphs corresponding to the complex
potentials and the distributions of stress and displacement in an isotropic microp-
olar medium are obtained.

Chapter III - Anisotropic micropolar media

In the first section of this chapter, uniqueness and instability in two-temperature
thermoelasticity are studied. Many studies dedicated to classical thermoelastic-
ity have used a heat propagation equation that is based on the classical Fourier
law. Consequently, the heat flux vector depends on the temperature gradient and,
therefore, the thermal signals will propagate with infinite speed. This contradicts
the principle of causality, and in order to avoid this contradiction, a series of
new theories of thermoelasticity have emerged that propose different alternatives
to the classical heat conduction equation. Thus, various models have emerged,
of which the best known in the literature are Green and Lindsay[31], Lord and
Shulman[48], Green and Naghdi[49]-[51], More-Gibson-Thompson[52] or [53]. In
all these models, thermal waves propagate with finite velocities and all the results
of these generalized theories are more general and more realistic from the point
of view of physics than in the classical theory. In our study we propose a new
variation of temperature, which depends on two temperatures, by modifying the
relationship between the two temperatures, namely the thermodynamic temper-
ature and the conductive temperature. There are many studies that take into
account the two temperatures, among which we mention [54-57]. Other general-
izations of the heat conduction equation can be found in many articles, among
which we mention [58-60] and [64-68].

Our uniqueness result is obtained assuming that the initial energy is not
strictly positive (strictly positive energy contradicts the assumption that the so-
lutions coincide). Other uniqueness results are based on the assumption that the
elastic tensor is positive definite. However, there are concrete thermoelastic situ-
ations in which the positive definition of the elastic tensor cannot be guaranteed.

Our result on exponential instability is also obtained from the assumption
that the initial energy is not strictly positive. It should be emphasized that our
mixed problem is considered both in the theory in which it is assumed to depend
on the variation of both temperatures, and in the theory in which there is no
dependence on the variation of the conductive temperature, but on the variation
of the thermodynamic temperature. The calculations are, however, quite similar
in both situations, which is why the demonstrations are made in detail only in
the case of the dependence on the variation of the thermodynamic temperature.

In the second section, the purpose of the study is represented by the formu-
lation of the mixed problem with initial and boundary data, within the Cosserat
theory of thermodynamics of media and obtaining qualitative results for the so-
lutions of the formulated problem. One of the reasons why the Cosserat theory
of thermoelastic media captured the interest of many specialists was that this
theory predicts the finite speed of heat signals, as most non-classical theories of



thermoelasticity did. This theory, initiated by the Cosserat brothers, introduced
a mechanics of continuous solids based on the principle that each point of the
medium has the six degrees of freedom, just like a rigid body. Since the appear-
ance of this theory, but especially in the recent period, a lot of works have been
published that highlight its advantage over the classical theory of thermoelasticity,
but also its practical importance, as in [19-20] or in [101-113]. Specialists appre-
ciate that a natural fibrous composite, such as human bone or animal bone, has
a tension and bending behavior that is more faithfully described by the Cosserat
elasticity than by the classical elasticity. Similar results to those in this section
have been obtained for classical thermoelastic media, among which we mention
[28], [29] and [114]. In some cases they were based on the Laplace transform.
In other works, these results were possible due to the reformulation of the initial
mixed problem, namely the energy equation. Neither of the two procedures is
used in our study. The plan of this section is as follows: We synthesize the main
equations and conditions that characterize the mixed problem from the Cosserat
thermodynamics theory, namely the equations of motion, the energy equation, the
initial data and the boundary conditions. We also specify which are the regularity
conditions imposed on the functions we work with, which allow us to obtain the
proposed results. Subsequently, we formulate and prove the main results of our
study. So we present two reciprocity results, a uniqueness result, and the varia-
tional principle, which extends similar principles from classical thermoelasticity.

Many studies have been dedicated to micropolar environments, among which
we mention [78-85] and [91].

Chapter IV - Dipolar Media

In the first section of Chapter III, results of uniqueness and instability are ob-
tained, following the same course as in the case of micropolar media. In addition,
the motivation for considering the effect due to the dipolar structure should be
mentioned. In the opinion of many researchers, it is known that this effect makes
an important contribution to the deformation of media. It is sufficient to refer
to media that have a granular structure, for example polymers, human bones or
graphite.

Section II is dedicated to the effect of voids and internal state variables. The
reason why we have taken into account voids in the material is due to the signif-
icant increase in the number of studies dedicated to the theory of porous media
in recent years. The initiating work of this theory is considered to be [5]. As
we know, in this theory a new degree of freedom appears, associated with the
independent rotation of material particles around their center of mass, for a more
complex description of the behavior of materials in terms of mechanical proper-
ties (see, for example, [70]-[74]). The importance of porous media is seen in the
geophysical context (geological materials, for example, rocks or soils) and in the
case of granular materials (artificially obtained). Of course, the first studies were
developed in the linear case, without taking into account the thermal effect (see,
for example, [73]). Then the studies addressed the thermoelasticity of bodies with
voids [75]. Other works on this topic are [76-77]. Also in our work we consider a



dipolar structure, with a particular case of microrotations which was introduced
by Eringen. Later many works related to microstructured media appeared which
increased the importance of this theory.

The dipolar structure, as a particular case of microstructure, aims to elimi-
nate, at least partially, some contradictions in the classical elasticity theory (one,
very well known, heat waves propagate with infinite speed). Some remarkable
researchers have addressed this type of structure and obtained conclusive results,
among which we highlight [61-63]. Different features of the generalized theory are
addressed in [53], [59-60] and [84-90].

The reason for studying the effect of internal state variables is represented by
the fact that recently the number of studies dedicated to the theory of media with
internal state variables has significantly increased. Internal state variables can be
considered a means of evaluating the mechanical properties of a body, but also
many other effects, such as electrical, magnetic, chemical. For the first time, inter-
nal state variables were taken into account to describe the evolution of viscoelastic
bodies in the theory of thermoelasticity ( Chirita [23]). Then it was found that
these variables are useful for studying the behavior of other types of materials as
well. So, in the study of Nachlinger and Nunziato [93], internal state variables
are used for the evolution of finite deformations without heat conduction, for a
one-dimensional body. Sherburn, Horstemeyer, Bammann and Baumgardner [94]
describe the implications of the so-called geological material, such as silicate rocks
and others. In [95] it is shown that hysteresis of bodies, the phenomenon by which
a material or a physical system does not instantly return to its initial state after
being subjected to an external action (e.g. forces, magnetic or electric fields), can
be described using a set of internal state variables. In [96] we find a model for
an amorphous thermoplastic using a set of internal state variables that motivates
this thermodynamic approach. In [97], the authors develop an elastic-viscoplastic
theory for the deformation of polymeric and metallic glasses. A gradient theory
based on state variables is presented in [98], and this theory provides a consistent
framework and strong coupling to prescribe dissipation, the process by which en-
ergy is lost or degraded, and energy storage. For some results on antiplane states
in an anisotropic elastic body and for orthotropic or isotropic plates, see [99-100].

Notations
- The time derivative is introduced by a dot above a letter;
-By convention, indices are understood to have the integer values 1, 2, or 3;
- The summation rule regarding repeating indices is given by Einstein’s summa-
tion convention;
- For the partial derivative of a function f with respect to the spatial variables
xj, we will use the notation f ;;
- For a bounded domain €2 in the three-dimensional Euclidean space R3, we denote
by 09 its boundary and  its closure;
- Ozx;,i = 1,2, 3, represents the fixed orthogonal axes system to which the body’s
motion is related;
- Functions belonging to the regularity class C®? are differentiable functions of



order at most a with respect to the time variables and of order at most 8 with
respect to the spatial variable.
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Capitol 1

General aspects of isotropic
micropolar media

1.1 Variational principle and continuous dependence

1.1.1 Basic equations

We consider an isotropic and homogeneous micropolar material occupying a
regular region B in three-dimensional Fuclidean space. The closure and bound-
ary of B are denoted by B and 0B, and 0B;, (i = 1,2,3,4) are subsets of the
boundary. According to [2]-[3] and [7], the basic equations describing the evolu-
tion of a porous isotropic micropolar thermoelastic medium defined on the domain
B x [0,00) are:

- the constitutive equations:

tij = Augkdij + puig + i) + k(uij + €ijrdr)

+Epdi; — (2A 4+ 2p + k)9, 5, (1.1)
mij = adk,k0ij + VPji + €dij + Epdij, (1.2)
g = —8upk — YPrr — ap — bo, (1.3)
hi = d(p’i, (1.4)
pn = (BN +2p + k)vug i, — by + cb; (1.5)
- equations of motion:

tjij + pFi = pily, (1.6)
mji; — eijrtin + pGi = plijds; (L.7)

- the equation for the evolution of voids.
hii + 9+ pL = px¢; (1.8)

9
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- heat equations:
T’Q"Z‘ = kﬁ,, — 04, (1.9)

pr

) .
ko i+ ao(L+r=) [ — BN+ 2 + k)vig s + bp — cb + J
0

5 | =0; (1.10)

- energy equation:
pbon = 0ii + pr; (1.11)

and the geometric equations:

eij = Uij + €ijkPhs  Xij = Pij- (1.12)

In the previous equations we used the notations present in the table below.

Notations Physical Interpretation

A, L constants Lamé

v linear thermal expansion

n entropy per unit of mass

k thermal conductivity

a,v,6,&6 C a, b c,d, T constitutive moduli

i mass force

G; mass torque

L extrinsic force of body

r internal heat source

X inertia coefficient

1;; components of microinertia tensor

tij components of tension tensor

My components of tensor micromomentum
0i components of the thermal conduction vector
Uu; components of the displacement vector
i components of the microrotation vector
© volume fraction change

p mass density

€ijk Ricci tensor

dij Kronecker symbol

Tabel 1.1: Notations

To define the mixed problem, in our context, we need initial conditions in the
following form:

ui(0,2) = ud (), w(0,2) =ul(z); ¢:(0,2) = ¢Y(x),:(0,2) = ¢} (z);
30(07'7:) = @0(:5), e(oax) = ao(x)7 Qi(ovx) = on(x); (1'13)

and the boundary conditions in the general form:

u; = 1, on OBy x [0,00); tijn; =t; on OB x [0, 00); (1.14)
b; = ¢; on OBy x [0,00); mijn; = m; on B3 x [0,00);

© =@ on dB3 x [0,00); hin; = h on B x [0,00);
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0 =0 on dB, x [0,00), g;n; = ¢ on dBS x [0,0),

where 0B1, 0B2,0B3 and 0B, with their complementsdB{, 0BS, 0BS and 0By,
sunt submultimi ale lui B which satisfy the conditions:

0By UO0B{ = 0By U0BS = 0B3U0B{ = 0B4U 0B = 0B,
OB1 NOB{ = 0By, NIBS = dB3 N OBS = B4 NIBS =),
and n; are components of the external normal to0B.

We call admissible state, an ordered collection of functions S = {w;, ¢4, ¢, €i5, Xij, tij, Mij, hi, g, 0},
functions that satisfy the following conditions:

a) i, gi, € CV%5 tij,maj, hii g € CHY5 0 € CHY;
b) tij = tji, Mi; = Myi, €45 = €445 Xij = X3 i 0N E X [O, OO)
We consider the problem P, with initial and boundary data, consisting of the
system of equations (1.1)- (1.12), with the conditions(1.13), (1.14).

1.1.2 Alternative formulation. Variational theorem

In this section we present an alternative to the P problem with initial and
boundary data. We start by defining the corresponding convolution of two space
and time functions, as follows:

(uxv)(z,t) = /0 u(z,t — 7)v(x, 7)dr; (z,t) € B x [0,00), (1.15)

which takes place for any z € B and where u and v are defined on B x [0, c0) and
continue in relation to t € [0,00). Let us recall the properties of convolution:

Ul kU = Ug * U7,
up * (ug + uz) = (ug *x ug) + (ug * ug),
up * (ug * uz) = (ug * ug) * us,

ur *uo = 0=>u; =0 sau us = 0.
We will consider, next, the functions m(t) and n(t) so that
m(t) =t and p(t) =1, t € [0,00). (1.20)

Furthermore, we set the following functions: f;, ¢;, | and wdefined on B x
[0,00) as follows:

fi = pmx Fy + pltu} (z) + ) (x)],
g9i = pmx G + Lij[te; (x) + ¢ (x)],
= pm* L+ px[te' (z) + ¢°(2)],
w = pp*1+ pbyn.
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To achieve the desired results, we will use the following properties:

mxw(x,t) = w(x,t) — [tw(z,0) + w(z,0)], (1.25)
pxw(x,t) =w(z,t) —w(x,0), (1.26)
mxw(z,t) =px* (pxw(x,t)) =p*w(z,t)—w(z,0)]

= p*xw(z,t) — tw(z,0), (1.27)

where w(z,t) and w(z,t) are defined on B x [0, 00)and are continuously differen-
tiable on [0, 00), as in [11].

Taking all this into account, we can formulate the following theorem, which
provides the necessary and sufficient conditions for the existence and uniqueness
of the solution to the problem.

Teorema 1. The functions u;, ¢, @, tij, mij,n, 0; verify the relations (1.6) - (1.9),
(1.11) and the initial conditions (1.13) < satisfy the following system of equations,

m L + fi = pui,

m * (myij — eijrtin) + 9i = Lijoi,
m* (hi; +g) + 1= pxe,

p* 0ii +w = pbon.

(1.28)

Based on Theorem 1, we can reformulate the mixed problem as follows:
Let S = {w;, ¢i,,0,¢€ij,%ij,tij, mij, hi, g, } be an admissible state. We say
that S is a solution of the mixed problem if and only if it satisfies the system

(1.28), the constitutive equations, the geometric equations, and the initial and
boundary conditions.

1.1.3 The variational principle

In this section, we formulate the variational principle in the context of the
generalized poro-thermoelastic theory with a single relaxation parameter for an
isotropic and homogeneous micropolar medium. To obtain the variational formu-
lation, we will consider Theorem 1 and the new formulation of the mixed problem,
presented in the previous section.

This theorem introduces the energy functional ;(s), the minimum of which repre-
sents the condition of equilibrium and stability for the physical system considered.

Teorema 2. Let Y be the set of admissible states. If for ¥S € > and for
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Vt € [0,00), we define the functional 2,{S} on S by

0 {S} = /m * (Mg 0+ iy + p(wi g+ ug) * eij + k(uij + €ijrdr) * e
B

b
——)|dB
7 %)]

0
_/m * (BN 4 2 + k)vb)] * (0;5€55 — ?’ui)dB - /m * ti; * e;;dB
B B

i
80 oy — (8 20+ kv — cf] » exs + v+

—/m *mij * PijdB — /m * b x pn dB + /m * (Q@p k0 +V0j,i + €dij) * ¥ijdB
B B B

- /{m (A4 p)ug ki + (10 + v) Uik k] — pusi} * uidB
B

- /B{m * [(o + )0k ki + €Di k. — 2k ;] — plij¢i} * ¢jdB

- /B m * (ke;jpdr,j * u; — kejjuj g * ¢j)dB — /Bm * & i(u; + ¢j)dB
— /B m x p(@; * u; + Gy * ¢;)dB + /B(eij — Ui j — €jkPk) * tijdB
+/Bm * (i — ¢ij) * mijdB —I—/Bm * (w — pbon) *x 0dB

+/ m*r*(gi,j*hi,i+g*9i)d3+/ rx (L= pxy) * 0idB
B B

— m* t; * U;dA + m o (t; — t;) * udA — m xm; * g;dA
8By OB 9B
+ m* (m; — m;) * ¢;dA — m* h; x pdA + m*(hi—ﬁi)*godA
dBS 9Bs 9B3
— m o 0; x O0dA + mx (0 — §) * 0dA, (1.29)
0By 832
then
02.{S} =0,t €[0,00), (1.30)

if and only if S satisfies the considered mized problem.

1.1.4 Continuous dependence

To obtain a simpler form of the equations, dimensionless parameters were
used and subsequently some notations for convenience. We will further determine
the continuous dependence of the solutions with respect to the initial data and
external loads.

Let Z% = {u$; ¢¢; "0}, o = 1,2, two solutions corresponding to the follow-
ing external data, with the same boundary conditions

EQZ{E,G“L,T,’L@;:0,§£Z‘:O,QEZO,@:O,{Z‘:O,TFZZ‘:O,};Z‘:O,
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gi:O,uzl,ug,qul, i P ’90 Qz}
(1.31)

If we note u; = u? —ul,¢; = ¢7 — ¢l = p* — 1,0 = 6 — 01, then Z =
{ui, ¢i, p, 0} is a solution to the mixed problem with external data:

EZ{Fi,Gi7L,r,dZ~:0,q5i:O,g5=0,(,5=0,t~i:0,7751-:0,@:0,

§z:07U}7uga¢}a i P 190701}

where

fi=fP—fh Gi=Gr =Gl v =0 =l = ud® W)W g0 = ) ),

7

g0 — g0(2) _ go(1) 0 0(2) 0(1) Wl = 1(2) }(1 7¢Z _ ¢Z ¢}(1)'

y 0, = 0; —0; ", U; = Uy i
(1.32)

We note this problem with I' and we introduce the function 7 on [0,%1], so
that

1 o .
T = 5 / [a14uiui + a14d>i¢j + QY]dB, (1.33)
B
where
2Y = aa ik k€i0i5 + 2a1apiiei;(uij + wji) + a14011X45Xij
+a14a99” + a10a149 jp j + a12a140i;bij + 7092 + ﬁe,ﬂg (1.34)

Let Y be a quadratic form in the variables e;;, gbi,j, @ and 6, such that

yi(eijei; + ¢ijdi + 9> +60%) <Y < ya(eijei; + ¢ijdij + @ +6%), (1.35)

for any ¢ and any variables, where y; and ¥ are considered two positive constants.
We deduce

Y = a14tijéij + a14mij)'<,-j + a1409 + as0n. (136)
Therefore, from equations (1.33) and (1.36), we deduce:

7= / a14tiit; + a1adic; + a1atijéi; + a1amijXij + a1app + asfndB.  (1.37)
B

Furthermore, the present lemma is a basis for the demonstration of the following
theorem, ensuring that the energy variation corresponding to the solution of the
problem does not grow uncontrollably, being restrained by external forces.

Lema 1. Let {u;, ¢i, ¢, 0} be a solution of the problem I'. Then

7 < / (ara14Fju; + a2a14Gi¢i + aisazLy + asrd)dB. (1.38)
B
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We now define the functions P and @ on [0,¢;] as follows:

SIS

P= (/ [iith; + tichi + ichi + 9 + 0% + eijes; + Xinij]dB> ; (1.39)
B

Q= ( [ [@auf)? + (@:mG)* + (a:1)? + @r?idB)’.  (140)

The continuous dependence of the solutions on the initial data and on the external
loads is implied by the following theorem.

Teorema 3. Let there be two strictly positive constants,Hi,Hy and consider
{ui, ¢i, 0} as a solution to the problem I'. Then, there exists constants 01,02,
such that,

P(t) < o1P(0) + 02 /OtQ(s)ds, t €10,t1]). (1.41)
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1.2 Plane deformation

We consider a body, which at a given moment occupies the region B of the
three-dimensional Euclidean space and is bounded by the smooth surface B. Let
Oy, (k=1,2,3) be a system of orthogonal axes to which the motion is reported.
In addition to the equations describing the isotropic micropolar medium in the
theory of thermoelasticity, presented previously, we introduce the equilibrium
equations in local forms:

tji; + pF; =0,

mjij — €ijktik + pGi = 0,
hii+ g+ pL =0,

gii + pr = 0.

The surface force vector t;, the surface force torque m;, the heat flux ¢ and
the normal component of the hole evolution vector N at a regular point on 0B,
are defined by:

ti = tjmj, m; = mjmj, q = anj, N = hjnj. (1.46)

Knowing that the elastic potential is a positive quadratic form, we will consider
that the elastic moduli satisfy the relations imposed by it:

3A+ 24> 0,u>0,e> 0,3\ + 2u > 3k. (1.47)

Next, we consider the region B as the interior of a right cylinder, where ¥
is the open cross-section, II is the lateral area, and L is the boundary of ¥. We
choose the Cartesian system so that the generators of B are parallel to the 3
axis.

Let us introduce the variables that describe the plane deformation of B, in a
plane parallel to the Oxqx2 plane.

Ua:Ua($1a$2)7 U3:O, ¢a:¢a($1,$2), 80:90(1"17562)7

0= 0(%1,%2),\7(1}1,%‘2) €. (1.48)

From the local forms of the equilibrium laws, from (1.12) and from (1.2) it
follows that e;;, Xij, tij, mij, g, hi, pn and rq; are independent of x3.

The deformation tensors e;; and x;j, defined by the geometric equations, take
the form:

€a,f = Ua,p T eaﬂp(bp? Xap = ¢o¢,ﬁ‘ (].49)
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The non-zero constitutive variables are t,3, £33, Mg, Na, 7q . More:

taﬁ = /\up,péaﬂ + ,U/(Ua,ﬁ + Uﬂ,a) + kua,6¢p + 5905015

—(2X+2u+ k)vbiap (1.50)
Map = —0Pppdap — VP8, + €a,p + EPlag, (1.51)
9 = —Cuaa — Vda,a — ap — bb, (1.52)
ha = dp,a; (1.53)
pn = BN+ 2+ k)oua,a — by + cb, (1.54)
Ga = kba — qa- (1.55)

Therefore, we will consider that the body loads are independent of x3, and f3 = 0.
Therefore, the equilibrium equations reduce to:

taps + pfa =0,
Mmag,g + pGa = 0,
hao+ 9+ pL =0,
Ja,o +pS = 0.

The relations (1.46), at a regular point of II, become:
ta =18ang, Ma = MgaNa,t3 =0,q = gana, N;= hging, on L, (1.60)

where, n, = cos(ng, z,) and where we denote by n, the unit vector of the external
normal to L.

According to the geometric equations, constitutive equations and equilibrium
equations, it is necessary to check the boundary conditions. In the case of the
first problem, the boundary conditions are:

Uy = Ty o = o, 0 =0, o=@ onL, (1.61)

where i, é, 6 and @ are prescribed functions. In the case of the second problem,
the boundary conditions are:

tgans = tas Mpang = Ma,d = qang, haia = Nj, pe L, (1.62)

where the given functions to, e, ¢ and ]\7]- are independent of x3.
From (1.49)-(1.59), it can be deduced that ug, ¢q, 8, and ¢ satisfy the equa-
tions:

A+ w)tp,pa + (1 + K)uapp + EPa — (BA+ 20+ k)ob o = —pfa, (1.63)
(o + ’7)¢P,Poé + 5¢a,pp +Cp.a — 2kpa = —pGa, (1.64)
kAO = —pS, (1.65)

de pp — Eupp — Chpp — ap — b0 = —pL, pe 2. (1.66)
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The first boundary value problem involves finding the functions ug, ¢«, #, and
¢ that satisfy the above equations, on ¥ and the boundary conditions (1.61).
Obviously, from the constitutive equations and from (1.47), we can express the
boundary conditions in terms of uq, ¢q, 0, @.

In the case of equilibrium, we divide this problem into two, the first involving
finding the functions 8 and ¢,, and the second the functions u, and ¢. We assume,
in this section, that:

k>0, dy>0, dg >0, kdo — dids >0, dy +ds + dg > 0. (167)

It is important to note that the restrictions imposed by the Clausius-Duhem
inequality on the constitutive coefficients, ( Grof, 1969), have been taken into
account in obtaining the above conditions.

1.2.1 Solution for the field equations

We start by introducing some notations, such as:

c1=A+2u+k, (1.68)
— d
= d+ %, (1.69)
2k\ 3
my = <%>2,where h=a+~v+e, (1.70)
1
mo = <d2/02) ’ (1.71)
1
a 2
m3 = (d—6 + A) , (1.72)
k1 = —c2(BA+2u+ k)o — e1b(, (1.73)
Ky = —c2(BA+2u+ k), (1.74)
R3 = 0. (1.75)

Taking these notations into account, it follows from (1.47) and from (1.67)
that m?, m3, and m% > 0. We introduce the operators:

C1 = cthA(A —m?), (1.76)
Cy = keaA(A —m3), (1.77)
C3 = dg(A — m3), (1.78)
By = her(A + p)(A — mi), (1.79)
By = hoci (3N + 2u + k) (A — m3) (e — da), (1.80)
B3 =0. (1.81)

The following theorem gives us a solution to the system of equations corresponding
to the environment.
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Teorema 4. We consider the functions

Uq = —c1C1Lq + B11') po — Baf o — C3B3gp, pa, (1.82)
ba = CHUAY 4 + c1(K1A — F2) Al + k(1 C1AAC3G) pa, (1.83)
0 = —c1(c2A — do)C4l, (1.84)
Y = 6101029 — C1 [k(d4 — d5)AClgp7p — Cldgcll. (185)

If To,be € C5(D),1 € C¥(X), and g € CO(X), satisfy the equations:

(/J + k)Achlfa = pFy;

(1.86)
Mclclwa = pGa§ ( )
chngl = pS; (1.88)
c1C102C39 = —pL, (1.89)

then ug, o, 0 and ¢ satisfy (1.63)-(1.66).

1.2.2 The effect of heat sources and pores

In order to study the influences of heat sources and pores on deformation, we
will use the solution obtained in the theorem presented in the previous section.
We assume that

pFo =0, pGo =0,pS =(x —y),pL = 0.

where y(y4) is a fixed point, and 0 is the Dirac distribution.
In this case, the relations (1.86)-(1.89) are satisfied, if we consider

I'a=0,%,=0,l=wand g =0.
The function w is a solution to the equation:
AA(A = m)(A - mB)w = v8(z — y), (1.90)
-1

where we used the notation v for (ekcics)
Substituting I', = 0 ¢a 0, l = w and g = 0 in the relations (1.86)-(1.89) we

obtain the functions u\ ( W Y), qﬁa ( y),0W (x,y) and M) (z,y). Therefore,

ul) (z,y) = —Baw,a; (1.91)
¢ (2,y) = c1(FA — k) Awg; (1.92)
9(1 (x, y) = —ci(c2A — do)Chw; (1.93)
W (z,y) = —c1bCrw. (1.94)

Next, we will have the following hypotheses:
* my,ma, mg sunt dif ferent,

% ws, (s =1,2,3,4), functions that satisfy the following equations :
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Aw; = M, AAwy = M, (A—m?)ws = M, (A—m3)wy = M, where M is a given function.

Therefore, we can formulate the solution of the equation
AA(A —m) (A —m)w = M,
as follows:

4
w = § ZsWs,
s=1

where, the constants zg, (s = 1,2, 3,4), are given by:

2 2
mi + mj 1 1
M=, 2 55, 8= g A= — 55 (1.95)
mimy mim3 mi(mi —m3) my(mi —m3)
For M = §(x — y), the functions wy, (s = 1,2,3,4) are given by:
1 L2 Ko(mar) Ko(mar)
w1 =—Inr, wy=—rInr, wg=——Ko(mir), wg = —=—Ko(mar
1= 507 w2 = o » Wy = —oRolmur), wa = —g5—Ko(mar),
1
r=[(z1—y1)* + (22 - 43)]7, (1.96)

where we used the notation K for the modified Bessel function of order 0. Thus,
for equation (1.90), we have the following solution:

1
w = 21[21 Inr + Zzzrz In7r — 23Ko(mir) — z4Ko(mar)]. (1.97)
T

The functions u&l) and gzﬁgél) represent the displacement and microrotation. In
what follows, we will study the effect of pores. Thus, we assume that

pFa = 07 pGa = Ova = OapL = 50555(58 - y)7

where f is fixed. So, we will have I'y, = 0,79, = 0,1 = 0 and g = ,552. In this
case, from (1.86)-(1.89), it follows that €2 is a solution of the following equation:

AA(A = mi)(A = m3)(A —mi)Q = nd(x —y), (1.98)

where 71 = (kedgcicy) . Therefore, we obtain from the relations (1.86)-(1.89),
the functions:

ul ™ (z,y), o0 (@y), 00 (2,y), o (a,y),

1.2.3 Plane deformation of an elastic space with a cylindrical hole

We consider an elastic space with a cylindrical hole. We assume that the
domain B = {z : 2} + 23 > r,x3 € R},(r; > 0), is occupied by an elastic
material with microstructure. This material will undergo a plane deformation
parallel to the plane Oxjxs. Knowing these, the domain » is defined by > =
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{z : 22 + 2% > r? 23 = 0}. Furthermore, we will assume that body loads are
absent and the surface of the circular inclusion is free of surface forces.

The problem we will study involves determining the functions 0,¢, v, and ¢,
which must satisfy the following equations:

X+ ) ppa + (1 + k)tapp + Epa — (BA+2u+ K)ol o =0,  (1.99)
(@ +7)Pppa + EPapp + (0 — 2kda =0, (1.100)
kAG =0, (1.101)
de,pp — Eupp — Chpp —ap — bl =0, pe 2. (1.102)

We consider the solution to have the form
0=V(r),o=W(r),us =2,U(r) and ¢ = 2,Q(r),
where 7 = (22 + IL‘%)% Therefore, they must satisfy the equations:

N+ @) xar®U + (1 + k)zor?U + &rW

—(BA+2u+ k)orV =0, (1.103)
(47 = 28)2a72Q + e Q + CrW =0, (1.104)
kAV =0, (1.105)
dr®W — €xqrU — CxqrQ — aW — bV =0, pe ¥.  (1.106)

By solving the previous system we obtain the following forms for V, W and @Q:

V=Ci+ Bilnr, (1.107)
T3TaTQ = %W —14Cy — Ty By lnr, (1.108)
1
Bl Byl
W=m (L;” - BlAlnr> + 74(02;22” - BgAhM") (1.109)
ml ml

-
—%Nl + N3ko(m, 7).
my
The function U, is determined immediately by substituting the functions V, W
and @ into the corresponding relation.
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1.3 Wave Propagation with two delay times

1.3.1 Preliminaries

A linear, isotropic, and homogeneous micropolar thermoelastic contin-
uum with pores occupies a fairly regular region B of three-dimensional Euclidean
space, and its thermodynamic evolution is governed by the existence of two delay
times (7, and 7p).

In the following equation we used the Taylor series expansion up to
the second order for the double phase-lag thermal model.

G + Tgdr + (72)Gr = kO, + T9k0 . in B x [0, 00). (1.110)

Regarding the delay times, using (1.110) and adding the second law of thermody-
namics we obtain (as in [12]):

0< 74 < 27 (1.111)

We will assume that in the equations of motion the mass torque and the mass
force are zero. It is important to note that the constitutive moduli:

)\7 /‘L7 a’ b7 d7§7 057 6? ’7’
verify the following conditions:
p>0,1>0,(k+2n)a>&E,d>0,a>0,b>0. (1.112)

By substituting the constitutive equations and the geometric equations in (1.7)-
(1.9) we obtain the equations present in the following system, in the variables:

u(z,t), o(x, 1),
(p(x’ t)? 9(37, t)?

(o + K)ujrj + Aug g + pugj; + o — BN+ 20+ K)ob ), + gFy, = piiy,,

agj ik +Y0njj + cbjki + 0o+ pGr = pliion,

dp gk — Sug k. — Yok — ap — b0 + pL = pT¢),

(1 + Tq% gg—;) [(3)\ + 2p + K)oty k0o — bpboy + cfof — pr| = kO pi, + 799‘7kk.
(1.113)

From the analysis of equations (1.113) it is seen that the mechanical deformation
is influenced by the thermal effect and the porous structure.

1.3.2 A plane wave analysis

We mention that in order to have irreversible thermoelastic processes, the tem-
perature dissipation must also be taken into account.

First, we will assume that the loads: Fj,Gp, L and r are zero. We seek solutions
for the system (1.113) in the following form:
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ur(x,t) = Re{%AreiXSin(wsns—ut)}’
Py (z,t) = Re{%BTeiX sin(zsns—vt)}
p(x,t) = Re{C’eiXSin(:tsns—mt)}7
0(z,t) = Re{Dfyexsn(@sns—vh)

(1.114)

where |A|+ |B|+|C|+|D| # 0, and A,, B, represent the components of two con-
stant complex vectors A and B, respectively, while C'and D are complex constants,
and 2 = —1 is the imaginary unit.

The wave propagates in the direction of the normal vector n, and the wave number
is x. Assuming v € C, so:
v = Re(v) +ilm(v), (1.115)

where the real part indicates the wave propagation speed, while the imaginary
part indicates the damping in time.
Later we will use the notations:

Y(v) =1—1irvy, (1.116)

vV = 1icow,

K+ 20 \/ﬁ A
01: 762: —703: —.
V. »p p p

Given (1.115) and the notation above, we impose the following restrictions Re(w) <
0, Im(w) < 0, and we obtain:

2 2 2, .2
3
(1+w?)Ag + 91 Ajnj + C—?’Aknj - iC’ + MO’DQO ng = 0,
c c3 pcs c

(1.117)
and

2 2 3 2 2

<w2 + Z—é + %%) Apng — /)ET%C-F QO%UD =0,
(Y+a+e+ pijc%wQ)Bknk - £C =0,

S A — LB+ (d+ & + prdu?) C + 560D =0,

2 2
_%w(w)flknk - bc%ww(w)c + [k(l + ToxCow) + %WW)}D =0,

(1.118)

where
2

Tqg 22 2
b(w) =14 mgxeaw + X Gu, (1.119)
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1.3.3 Study of shear waves

To study the solutions of shear waves (transverse waves, which appear as a result
of periodic shearing of an elastic medium), it is necessary to consider that Axng =
0, Bxni = 0, with (Aj, Ag, A3) # 0 and (By, B, Bs) # 0, from which we deduce
that (1.117) and (1.118) become:

2 2
(1 + wZ)Ak + |:_p§C20 + 3636‘;0101)90] ng = 0, (1.120)
2 2

—%C + 90%0’1) =0,
—fC = 07

(d + % + ,OTC%ZU2> C+ X—I’QOOD =0, (1.121)
—*’%%(w)c + {k(l + TpxCow) + %d)(w) D =0.
We further observe that the following equality follows from this.
(1 +w?)A; = 0. (1.122)
From the relation (1.122), using Re(w) < 0, Im(w) < 0 we deduce that
w=ws=—1i, that is v =v5 = ¢ = \/z (1.123)

Therefore co, the wave propagation speed, is as in the classical theory. Moreover,
the above system admits only the trivial solution C' = 0 and D = 0, because

=& 3c2+c?
pcg - 01 oo
rang n = 2. (1.124)
d + et pTc3 %90
B2 4 (—i) k(14 moxea(—1)) + 2%0q(—i).

Next we will consider a second-order minor corresponding to the above matrix
and we will assume that it is zero. So we have:

—¢  3ci+d ) 2, .2
D, = ' p% 030 avo ‘ = 0, from which we obtain : 50903026% = 0, which
implies £ = 0 or 3c3 + ¢§ = 0.
In both cases, one of the relations of the system (1.113) will be decoupled from
the others, which contradicts the assumption made previously.
Without affecting generality, we will consider the axis x1, which coincides with
the direction of propagation, since n1 = 1,no = ng = 0. Obviously, A;n; = 0
and B;n; = 0 imply A7 = 0 and B; = 0, from which we deduce that the shear
waves are not damped in time and there is no effect on them due to pores or
temperature. This type of wave can be recognized by: U = {ugl), ¢£1), oM, «9(1)}
and U® = {u£2)7 qﬁ?@), 02, 0}, where
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1
(1)($17 ) = Oaugl)(xlut) = _; SinX(ajl - Cgt) 7U§)’1)(l’1,t) = 07

gl)(;rl, t) =0, qz52 (xl, t) = —isinx(:nl — cot) ¢3 (:L‘l, t) =0, (1.125)

oW (z1,t) = 0,00 (z1,) =0,

and

1
ulP (@1, 8) = 0,u? (a1, t) = — s (e = ) ul? (a1,) =0,

g )(:U t) =0, ¢2 (xl, t) = —isinx(wl — cot) <Z>3 (wl, t) =0, (1.126)

@(2)(151, ) - 0 9( )(xlv ) =0.

Considering the above, we conclude that transverse waves are not dispersive, are
not damped in time, and are not influenced by thermal and/or pore effects.

1.3.4 Study of longitudinal waves

Returning to the system (1.118), and using Agny # 0, Bgny # 0, we deduce that
the algebraic system admits nontrivial solutions, consequently the discriminant of
the system must be 0.

) 2 2 ¢ 3c3+c2
w* + c; + é 0 e 305 1
0 M (w) —¢ 0
D(w) = _& —B A4 s g prdu? bl |
2 22 X2 X? e x>0
— eSS yp ) 0 —2wp(w)  N(w)

where
M(w) =5+ a+ e+ plycaw?,

Bocac
N(w) =14 mpxcow + =2

wp(w).

We now propose to determine the solutions for the waves. To do this, we need
to solve the dispersion equation considering Re(w) < 0, Im(w) < 0, a situation
discussed earlier. First, we study the case where the coupling effects are equal to
0. Accordingly, we assume

C ={€,3c2+ ¢ b0} = {0,0,0,0}.

In this context, the above equation D(w) = 0, reduces to:

2 2
<w2 +9 4 C§> M (w) (d +—+ p702w2) N(w) =0, (1.127)
02 02 X
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whose roots, verify the condition Re(w) < 0,Im(w) < 0:

2 2
wgo) _ _@L S0 thatléo) = m7 (1.128)

C2

wéo) = —7%%51' so that 11”) = %, (1.129)
vV PIkjco pli;

dx? 1 dx?
Y L U B PR P
pT  C2X XA/ PT

and the rest of the roots are determined from the polynomial

L(w) = F3w3 =+ FQ’LU2 + Flw + FQ, (1131)
where
eoc%TQXC 000207' 90626
[q=——92" 1,= 22741 — Io=1. 1.132
3 ok 2 R ToXC2 + x 0 ( )

Since the physical constants involved are strictly positive, we deduce that I'g, 'y, 2, '3 >
0, which implies L(w) > 0 for any w > 0, so there are no positive real solutions.
Furthermore, the discriminant of the cubic equation is positive, which implies the
existence of one real root and two complex conjugate roots.

1 0 1
L(O):F0>0,L(— ):— (;c¢<— ><0.
THXC2 kx*1o THXC2

Neglecting the terms 7, and 7'(12, equation (1.131) becomes I'yw + 'y = 0. Thus,
the negative real root is given by:

1
= <— 0) . (1.133)

Y
ToXC2

Regarding the complex conjugate roots, we will use Cardano’s formula to be able
to determine their real part. Furthermore, the complex roots are:

’LU5 v ¢ (3C27(1X * 2 ' 2 (u ° )’ ( ‘ )
w6 = =7 —+ 10 = — (362qu + 9 —|—Z7(U4 — U ), ( . )

cu 1/5()0) = iCQZUéO), uéo) = iczwéo).

Without affecting the generality of the analysis, we choose the axis x1, corre-
sponding to the propagation direction, with n; = 1,12 = 0 and n3z = 0.
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Regarding the root v = vy, there is the following wave for the displacement:

ugl) (3717 t) — _ilm{Agl)eix(xl—czblt)}e—xczalt’
o1 (w1,1) = —LIm{ B eix(mmeahi}emxeaat, (1.136)
90(1) (xl,t) _ Re{C(l)eiX(gﬂl*@blt)}6*X02a1t’ :

9(1) (xlv t) — QORG{D(l)eix(xl —Clet)}e—XCQG/lt’

where
M(wl) —5 0
Agl) = —% d—+ % + prciw? %90 =
0 —P2p(wr)  N(wr)
a 2 9 b20200
= M(w){(d + Z7 prawi) N (w1) + N (w1},
0 —£ 0
B = —é d+ % + prcjwi %90 —
__apea (3c2+c7) __bey
= Pwig(w) rewip(w)  N(wp)
o&bby ¢
= Wﬂ@(%g + )wip(wr) + ?N(wl),
0 M(wl) 0
oM = —é —% X%@o =
opca(3ci+ci) w 0 N
3D 1y a0y (wy)
6
= M(w1) | S N@w) — 22 pes(363 + Aywr(un) |
X kx
0 M(wl) —f
DM — —é —% d+ X% + prcdw?| —
_Up02(3c§+cl)w 1/}( 0 __bea
e rwi(wr) rew1th(wr)
¢ o a
= kiwlzﬁ(wl){gp(3c§+cf)—M(w1) [<d + 2 + pTc%m%) op(3ci+¢2) + ;} }.

Regarding the root v = vs, there is the following microrotational wave:

qu) (3717 t) — _ilm{A?) eix(xl—cgbgt)}e—xczagt’
01 (w1,1) = —LIm{ B eix(mi—eatat) pemxeaaat, (1.137)
90(2) (xl7 t) — Re{c(2) eiX($1*C2b2t) }67)(62(127&’ .

9(2) (xlv t) — 90R€{D<2) eix(xl —CQth)}e—XCQCLQt’



28

For the root v = v3, there is the following porous longitudinal wave:

UES)(‘,L,M ) — 1[m{A zx(xl—Cngt)}e—XCQagt
33) (1,17 ) _ lfm{B zx x1—cabst) }6 X02a3t 1138
30(3) (l‘l,t) _ Re{c(3)ezx(x1 cobst) }8 X02a3t’ ( : )
9(3) (l'la t) — QoRe{D(g) eix(x1—cgb3t)}6—xcza3t,
For the root v = vy, there is the following longitudinal thermal wave:
u§4) = {—iM( 1) (d—i— +p702a4) 3C3+cl —l— éb 90}
+§¢(i§;+c1 }sm(xml)e XCQ(I4t
54) _ _5722 [<w4 + c1 + 03) by + §(3C3+01):| Sin(X:El)e_Xc2a4t, (1 39)
% 1
oW = éM(wzl) ( Z + fé Cz> bl + 5(363;01)} cos(xxy)e xe2a4t
2 2
o) = {M(wa) { i+ é %) (d+ + p7'02a4> x§pcg}
\ —%’ <wi z )}cos(xxl)e Xc2aat

And, regarding the root v = vs, there is the following longitudinal wave corre-
sponding to the two delay times:

(1'1, ) 1Im{A(5) ix(xlfcgb5t)}efxc2a5t
( 1 ) 1Im{B zx x1—cabst) }6 XCQast
( ) — RG{C ZX x1—Ccabst) }6 X02a5t

9(5) (l‘la ) — QQRG{D zx(x1 —cabst) }6 Xcza5t’

(1.140)

Above we used the notations
M(ws) =v+a+e+ pijcgw?,,

60200
kx
In the determinant corresponding to the dissipation equation D(w) = 0, one
can observe the dependence of the propagation velocities of the four longitudinal
waves. This dependence is achieved using 79 and 1 (w) (obviously in the phase

shift parameters).

We can therefore conclude that the propagation of longitudinal waves is affected by
the coupling of elastic deformations and microrotations with porous and thermal
effects. At the same time, the coupling with porous effects gives rise to a porous
longitudinal wave, and taking into account thermal effects with DPL times, im-
plies the appearance of a longitudinal wave corresponding to the two delay times.
It is also noted that the coupling with thermal effects has consequences on all
longitudinal waves in time (amplitude damping).

For a better understanding and highlighting of the effects of the mentioned cou-
pling on the propagation velocities, a numerical study on a chosen model is nec-
essary.

N(ws) =1+ Tpxcows + wsh(ws),cu s € {1,2,3,4,5}
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In this section we aim to gain a better understanding of the behavior of phase
velocities and the decomposition of the longitudinal wave solutions derived in the
previous section. We note that we used the Wolfram Mathematica software for
this purpose.

Symbol Material parame- | Value Unit of

ter measure-
ment

o Coefficient of linear | 2.33 x 10~% KT
thermal expansion

A First Lame modulus | 9.4 x 100 Nm 2

i Second Lame modu- | 4 x 1010 Nm 2
lus

K Thermal conductiv- | 1 x 10'° WmK™!
ity

13 Pore parameter 1.13849 x 10'° Nm 2

«Q Micropolar constant | 0.020 x 10'° Nm~2

v Micropolar constant | 0.779 x 10~? N

€ Micropolar constant | 0.002 x 1010 Nm—2

a Pore parameter 1.475

b Porothermic ~ cou- | —2 x 10° Nm—2K~!
pling coeflicient

c Pore diffusion coeffi- | 2.9 x 10* m?sec2K~!
cient

I Balanced inertia 0.2 x 10719 m?

T balanced inertia 1.753 x 10710 m~2

p Density 1.74 x 103 Kg m—3

Table 1.2: Material parameter values

Regarding the numerical simulations, the coefficients in Table 1.2 were chosen for
magnesium in [17] and [18]. Also, x = 1x(—=b)~!, 7, = 5x 10 *s and 7y = 1x103s
are considered. These values were chosen by referring to works such as [15] and
[16] and taking into account the condition (1.115). Thus, the following cases are
considered to compare the velocities.

Cy: Uncoupled case: € = = o(3c3 +¢2) = b= 0;
Cs: Poroelastic case with microrotations: o(3¢3 + ¢2) = b = 0;
C5: Thermoelastic case with microrotations: £ = ¢ = b = 0;

Cy4: Coupled case with microrotations.
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Reference Uncoupled Thermoelastic
model with microrota-
tions

V1 10196.9 —4.815.821

vy —3.61747 x 1019 2.51433 x 102

V3 —7.951 x 1012 1.39079 x 1012

vy —0.00001897774 —0.0000280988:

Us 5.65685 x 10° 4+ | 1.58605 x 10% +
9.48887 x 10754 1.57416 x 105

Table 1.3: Numerical comparison of v1,vs,v3,v4 and vs

Following the simulations, the values presented in Table 1.3 can be distinguished:
the uncoupled case and the thermoelastic case with microrotations.

Figures 1-8 show the graphics for the cases where we do not have standing waves:

Im(

“oocos 00010 00015 0.0020
.

Figure 1.1: The uncoupled case for
Im(v4). Behavior for Im(vy) varying as
a function of

T4 € [2 x 107%5,2 x 10735]

9 € [1 x 1073s,1 x 107 25].

Figure 1.2: Thermoelastic case for
Im(v4). Behavior for Im(vy) varying as
a function of

T4 € 2% 1074 5,2 x 10735

9 € [1 x 1073s,1 x 1072g].



VSR, i
R L P!

5x1070
0.000010}
o.oooo15§E

Im(v5)(m/s) 0.000020

0.0020

1573x10%}
1572x108
1571=10 ':_

Im(v4)(m/s)

04.006

0.008

0.010
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Figure 1.3: The uncoupled case for
Im(vs). Behavior for Im(vs) varying
with

74 € [2 % 107%5,2 x 10735

9 € [1 x 1073s,1 x 10725].

Figure 1.4: Thermoelastic case for
Im(vs). Behavior for I'm(vs) varying as
a function of

T4 €2 x 1074 5,2 x 10735]

9 € [1 x 1073s,1 x 107 25].

Figure 1.5: The uncoupled case for
Re(vy). Behavior for Re(vs) varying
with

T4 € [2 x 107%5,2 x 10735]

9 € [1 x 1073s,1 x 107 25].

Figure 1.6: Thermoelastic case for
Re(vy4). Behavior for Re(vy) varying as
a function of

74 € [2 % 107%5,2 x 10735

9 € [1 x 1073s,1 x 107 25].
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Figure 1.7: The uncoupled case for
Re(vs). Behavior for Re(vs) varying as
a function of

74 € [2 % 107%5,2 x 10735]

9 € [1 x 1073s,1 x 1072g].

Figure 1.8: Thermoelastic case Re(vs).
Behavior for Re(vs) varying as a func-
tion of

T4 € [2 x 107%5,2 x 10735]

9 € [1 x 1073s,1 x 107 25].

005

The 8 analyzed graphs ( Figures 1.1-1.8) provide a detailed insight into the behav-
ior of longitudinal waves in the case of a DPL model, comparing the uncoupled
and coupled scenarios. The analysis of the graphs shows that thermoelastic cou-
pling plays a crucial role in stabilizing and controlling longitudinal waves. While
the uncoupled scenario highlights the high sensitivity of the system to param-
eter variations, thermoelastic coupling minimizes these effects, favoring a more
efficient and stable propagation.



Capitol 2

Advanced Solutions in
Isotropic Micropolar Media

2.1 Solutions in Terms of Complex Potentials

In this part of the paper we will investigate the plane deformation, within the
framework of equilibrium theory, for homogeneous and isotropic micropolar porous
bodies, using the constitutive equations, geometric equations and equilibrium
equations without mass forces. Our emphasis is on treating fundamental bound-
ary value problems of the plane deformation theory. Subsequently, we obtain a
description of the displacement, microrotations and pores using complex analytic
functions and two real functions. In this sense, we use the homogeneous Helmholtz
equations [4].

2.1.1 Field equations

We consider B a bounded domain in three-dimensional Euclidean space, with 0B
its boundary and n the external normal to the surface 0B. Assuming that we
have a porous micropolar elastic medium occupying the domain B, we relate the
motion of the body to a system of orthogonal axes Ox;(i = 1,2, 3).

The basic equations describing the evolution of an isotropic Cosserat medium with
voids are the following:

- the constitutive equations:

tij = )\uk,kéz-j + ,u(um + Uj7i) + k(ui,j + 5ijk¢k) + ngéij, (2.1)
mij = adg k0ij +YPji + Vdij + (Esjip,s,
hi = dgp,ia

-the geometric equations

€ij = Uij + EijkPks  Xij = Pij» (2.4)

33
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-equilibrium equations (body charges are absent)

tﬁ’j = 0, (2.5)
Mjij + Eirslrs = 0, 6)
hii+g=0.
Consider
ti = tjmj, m; = mjmj, Ni = hjmj, (28)

where NV; is the generalized surface force at a regular point on 0B, t; is the surface
force vector and m; is the surface force couple.

We will further assume that the internal energy density is a positive quadratic
form, from which we have:

y+B>0, vy—06>0, v+B8+3a>0, d>0,
k>0, K+2u>0, K+2u+3X>0. (2.9)

The notations used are in accordance with Table 1.1.

2.1.2 Plane deformation problem

In this part of the paper, we will consider that B is the interior of a right cylinder
whose cross-section is ¥ and whose lateral boundary is II. This configuration
is represented in an orthogonal coordinate system, such that its generators are
parallel to the x3 axis. We denote by L the contour corresponding to the cross-
section. The plane deformation is considered to be parallel to the (Oxix2) plane.
As in the previous section, dedicated to plane deformation, we obtain the following
system, corresponding to the displacement, microrotation and pores. ( A is the
Laplacian)

(A + Wtppa + (1 + K)Aua + €@ .a + Kezapd,s = 0,
YAp + KE3apUB,a — 2ko =0, (210)
dAp — Euy, , — ap = 0.

The steps to obtain the system are found in section {1.1.5}

2.1.3 Complex potentials

In this section we will work in the system (2.10), whose relations will be rewritten
in complex coordinates and integrated directly. In other words, we will determine
the displacement using a pair of complex analytic functions, and the microrotation
and the change in volume fraction using real functions that verify the homogeneous
Helmholtz equations [4]. First we introduce the complex coordinates:

z=x1 +1ir2, Z =T — iT2, (2.11)

and complex displacement
U = uy + ius. (2.12)
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So, we get

52 oU  oU oUu  oU
A=4—— a, a0 = ra—) a a:'T—i- 2.1
9207 tea T g, T gz 38U, Z(@z az) (2.13)

Considering (2.13), we will rewrite the relations of the system (2.10) in the fol-
lowing form

92U o (U U\ dp 90
20 ) g + 0 Vg (5 5) €55~ ngs = O
9% (U OU
s - m(a - 5) — 2%k =0, (2.14)
920 0U U
g (G + ) —ae =0,

and using notations for convenience and a set of operations, we obtain the corre-
sponding form of the function ¢:

¢ =M~ i 5T+ TE) (2.15)

where M is a real function that satisfies

9? M,
020%Z

—m2M; =0, (2.16)

the form corresponding to the function ¢ :

1K —
=P ————[I(2) =T (2)], 2.17
6=P gt S0 - T (217)
where the real function P satisfies
9?2 9
(48282—]) )P_o (2.18)
and
_ . opP OM
U= 771F(Z) - WQF(Z)Z - E(E) + 41(11@ - 4Q287;7 (2-19)

where w is an analytic function on z

Previously, we were able to obtain in the relations (2.15), (2.17) and (2.19) a
representation of the functions ¢, ¢ and U in terms of complex analytic functions
I', w and real functions M and P.
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Using simple calculations, the following form of the stresses results:

a(2p 42X + k) — 262 E(2u+ k)

t tog = oA Y
1t 2dm?2(2pu + Kk + A) 2+ r+A D

(z)+T'(2)] +

. . = o O*M
thy + itig — tog + ity = —2(2u + k) [nzr"(f)z +T(Z) — 4~y + 4@%} :
0z 0z
to1 — t1o = ’)/p2P, (2.20)
. _ oP OM; . K ¢€ 1
mi3 — imag = 27y 5, + 2i¢ 9, Z[pz(,u—k p + 22+ A+ ﬁ)]F (2),
. oM, 5 "
— =9 — T .
fu = ihy = 2d 0z m?2u+ A+ k) (2)
We express the boundary conditions in the following form:
- . 0P oM,
T(2) — mal () — @(Z) + 4iq — — 4 -
() =l (9) = B(E) + i o — At = i),
iK —
P(2,2) — ———[I"(2) = T (2)] = ¢(1), 2.21
62~ e T ~TE] = 60) (2:21)
M (2.7) - AT @) =), s L

2dm? (N + Kk + 2p)

where @ = 11 + iti3. Furthermore, the boundary conditions can take the following
form:

d - oP M. -
(2 + ﬂ)%{m[F(Z) +2I'(Z)] +w(z) - 4iQ1£ + 4(126751 = (1),

aP oM o odr,
Im{[2y7 +2i¢ 8; S (z)];} = (), (2.22)

Im{[2d ‘%” !

dz ~
. " 2y _
. wol™(2)] dT} N(r),z€ L,

where £(7) = —ty + ity.

2.1.4 Construction of potentials

In this section, we aim to derive the structure of the potentials I', w, P, and M7 and
explore their arbitrariness in different domains of interest. We analyze the differ-
ences between the configurations of the following sets of potentials (', w, P, M)
and (I'*,w*, P*, M;), corresponding to the same functions t,g, ma3 and hq.
According to (2.20), it is necessary that
Re[l'(2)] = Re[l* (2)], My =M, P=P",
mal (2) +@ (2) = 2l (2) + @ (2),
where Re[] represents the real part for []. Therefore, we deduce that
F(Z) = F*(Z) + 'LXz + P1,
w(z) = W () + pa, (2.23)
M, = M7,
P = P*,
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where X is a real constant, and p1, p2 are complex constants
We can fix the origin of the coordinates at X so that X, p1, po satisfy the conditions

') =0, Im{I'(0)} = 0,w(0) =0, (2.24)

which ensures uniformity for I" and w.
We obtain the following form of the complex potentials,

m
I'(z —1—2 2 X + Yi) log(z — zi),
k=1
(2.25)

w(z) =wi(z) + Z Zylog(z — z),
k=1

where zj represents a point in the simply connected region ¥;, bounded by Ly.
I'y and w; are uniform analytic functions on ¥, Y3 and Zj, are complex constants,
and Ay are real constants.

From (2.25) we deduce:

n

177 Z S(k + ZS log(z —z) + Ti(2),
k=1

(2.26)
7]1 Z — ZS( )log(z — zk) + wi(2),

where we have written the resultants of the stress vector applied to the contour
as S glk)
1 92 -

Teorema 5. Let 3 be an unbounded domain with the contours Ly, Lo, ..., Ly, as
internal bounded regions. If we assume that the origin z = 0 is outside the section
X and that hq,tag, and mqg are bounded in the vicinity of the boundary point and
for |z| = x sufficiently large, then we have the following representations:

1
I'(z) = ——(R1 + iR2) log z + (a1 + ia2)z + Io(2),

2
1
w(z) = %771(31 —iRy)log z + (b1 + ib2)z + wo(2), (2.27)
P(z,z) = Z(Pneme + Pre ™K, (1x),
n=0

M(z,z) = Z(Mnemg + Mne_ne)Kn(wX)'
n=0
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2.1.5 Stresses around a circular hole

In this part of the paper, we will use the results obtained in the previous sections.
By using boundary conditions and complex potentials, the following theorem al-
lows the analysis of stresses and strains in materials with circular hole under
external loading.

Teorema 6. Let X1 = {(x1,72) € R?, 22 + 23 > x?} be an unbounded domain
with a circular hole centered at the origin and with radius x. Assuming that a
uniform axial stress acts on the body in the x1 direction, at infinity we have:

1 =Q, t15=0, t5; =0, t5,=0, m};3 =0, h, =0, (2.28)

where Q is a given constant. The boundary conditions on the boundary of the
circular hole become:

opP oM,

ID(E) + T (G)] + 8(2) — iy S + 10,0 =0,
op ., dz,
Im{[2'y£ —qw I (z)]£} =0, (2.29)

Im{[2d8£/[1

dz
— F// —_—r = = .
— w2 (Z)]ds} 0, for |z]=x

Using these and (2.29) we obtain the components of the complex potentials as
follows:

1 1
z) = ——Qz+ —Dx,
) 4772(2u+fi)Q 2
()=1B+1E L o (2.30)
z) = — —F3 — ——— Q2 .
v 2T BT T oou k) T

P(z7) =il (2 = 2)Ka(rx),

My(z,2) = H2<§ + E)Kz(wx), x = (22)'/2,

where
1 1
Di=— Q2 E—=-—— 2
LS S S BT Ty @
1
EFs=——— 1 TK 2 HK
3= o g mp e T IXTTES (1) + 2q2xm H K (mx),
H=TDy, Hy=HDy, F=mn+ 2qlTa2TK1(TX) + 2qzme3(mx),(2.31)
4
= 2X4w{8dK2(mX) + 2mx&[Kq(mx) + K3(x)]},
H = 3X4w{8’YK2(TX) —27XE[K1(Tx) + K3(Tx)]},
16d~y

= — 5 Ka(mx) Ka(my) + AmTE*[K 1 (mx) + K3(mx)][K1(rx) + K3(7x)]-
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Let

U = Uy + iug,

where, the components u, and ug are in polar coordinates. From (2.15), (2.17),
(2.19) and (2.30) it follows that

. m — 12 1 L
e — — —(E1 —mD 20 20
Uy, + Tug 4772(2M+/‘6)QX X( 1 —mD1) +u cos26 + iv sin 20,
K
= 92[H K — ————— —D4]|sin 20
¢ [ K(rx) 2972 (1 + k) x> 1]sin 26,
§Q
= — + 2[Ho Ko (m
T T admP (O + K+ 20)(r + 200) [Ha Ko (mx)
§
20
+2dm2()\+f£+2,u)xz]cos 7
where
1 Ox 1 p
u=—mDi + ——— — —=FE3+ —q H1 Ka(7X)
X 22p+rK) X3 X (
+2mae Ha[Ky (mx) + K3(mx)],
1 Qx 1
=D —-— _ — —_F 201 H1|K K
v X772 T PR T 3+ 2q1 H1[K1 (7x) + K3(7x))]
8
+— HyKs(my).
rq2

Similarly, using (2.20), (2.29) we obtain the stresses.

2.1.6 Numerical simulation

The graphs below correspond to an isotropic magnesium crystal with pores and
are obtained using the ”Wolfram Mathematica” computing system. The values
used can be found in [9]. The obtained graphs represent the real and imaginary
parts of the complex potentials I'(z) and w(z), obtained previously. They allow us
to visualize the variation of the potentials in the complex. More precisely, these
graphs help to understand the stress and displacement fields in the material, to
identify critical regions and to predict the behavior of the material under different
conditions.
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The following four graphs correspond to the imaginary and real parts of the radial
displacement component "u” and the tangential displacement component ”v”,
obtained previously. The axis corresponding to x represents the radial distance
from the center of the circular hole, and the axis corresponding to 6 represents

the angular coordinates around the hole.
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Capitol 3

Anisotropic micropolar media

In this section, the notations presented in the table below are used.

Notations Physical Interpretation

a,b,c,d,h coefficients constants specific heat

n entropy specific per unit mass

I components of the microinertia tensor
mn components of the stress tensor

Tmn components of the stress torque tensor
Qm components of the thermal conduction vector
U components of the displacement vector
©m components of the torque vector

Om components of the microrotation

fm mass force

9m mass torque

ti heat flux

Tk surface tractions

n = (ng) normal vector to boundary 9D

T conductive temperature

0 thermodynamic temperature

Yo constant reference temperature

p mass density

€ijk Ricci symbol

3.1 Uniqueness and instability in two-temperature ther-

moelasticity

3.1.1

Table 3.1: Notations

Mixed boundary-value and initial-value problem

We consider the thermoelastic micropolar body occupying the three-dimensional
domain € in the Euclidean space R3. The closure of € is denoted by  and we have
0 = QUOS, where 09 is the boundary of the domain €2 and is considered regular
enough to allow the application of the divergence theorem. The unit vector of
the exterior normal to 0€) has components denoted by n;. The vector and tensor
fields are denoted by bold letters. The notation v; is used for the components
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of a vector field v, the notation u;; is used for the components of a second-order
tensor field u, and so on. A fixed system of Cartesian axes Ox;, i = 1,2,3 will be
used to refer to the motion of the thermoelastic body.

Considering the geometric equations and the constitutive equations, which are
introduced into the basic equations, we are led to the following system of partial
differential equations:

Aijmn (Vnmj + EkmnPr,j) + Bijmn®nmj — oij (19,3' + &19,1') = pUi,
Bijmn (Vnmg + €kmn®k,5) + CijmnPn,ms — Bij <19,j + (Mé,j)
+€ijk |}4jk;mn (Un,m +€lmn¢l)+Bjkmn¢n,m_aij (79,]‘ —|—CL197]'):| :Il]¢l7 (31)
kijTij — ouj (ﬁj,z‘ + €¢jk<75k> — Bijpji = hil + do),
which are verified for any (z,t) € Q x (0, 00).
By solving the mixed initial boundary value problem, in the theory of two-
temperature thermoelasticity, of micropolar bodies in the cylinder  x [0, 00)

we refer to an ordered set (v, ¢m, T, ¥) which verifies the above system of
equations, the boundary conditions and the initial conditions.

3.1.2 Main result

We begin this section by specifying a law of conservation of energy, considering the
variation of the conducting temperature, that is, considering the two-temperature
relationship. This law has the following form:

El(t) = El(O), t e [0, OO), (32)

where

Ei(t) = % /Q [p@m(t)i)m(t)+Imn¢3m(t)d)n(t)

+Amnklemn (t)ekl(t) + 2Bnki€mn (t)akl(t + Cmnklamn(t)gkl (t)

kT () T (£) + d (ﬂ(t) + hﬁ(t)>2 +h <a - h) 32 (1| av

d d

o /Q o Tt (T )+ 0= (0) [ av s,

If we do not take into account the temperature variation of conductivity, the law
of conservation of energy takes the following form:

Eg(t) = EQ(O), t e [0, OO), (33)



EQ(t> = 1/Q [pvm(t)vm(t) + Imn¢m(t)¢n(t) + Amnklemn(t)ekl(t)

+2Bnkimn (t) ki (t) + Conki Omn () o (t)

+d (ﬁ(t) + Z@(t))Q +h (a — Z) 92(t)| dV

+ /0 t/g[ﬁmnfm(s)fn(s)—l—c((/{mnfm(s))m)2+(ad—h)192(5)] dvds.

We denote by P the problem consisting of the system of equations (3.1), the
boundary conditions, and the initial conditions.

Teorema 7. In the case of null initial data, the mized problem P admits only the
null identical solution.

To obtain the second main result, concerning exponential instability for solving
the mixed problem P, we will have to assume that an additional condition is
fulfilled. Namely, we must assume that the energy of the system, in its initial
state, is not strictly positive, i.e. E5(0) > 0.

We will start with some useful auxiliary considerations.

Let us consider a boundary value problem of the following form:

(Fmntm (), = do' + h9° — (qumnei, + 5mn09,m) , x €1,
v(z) =0, z € 01, (3.4)

where u = u(x) is the unknown function, and the constants 9°, 9!, €2 = and o,
are initial data.

Based on the usual properties of boundary value problems, defined in the context
of elliptic equations, we can deduce that the boundary value problem (3.4) admits
a solution u(x), defined on the domain €.

With the help of the function

t
(at) = [ T(w.s)ds,
0
from (3.4) we can see that the function u(x) is a solution of the equation
d¥(z) + hi(x) = [Kmn (um(2) + (m ()], =
= amnemn($) + ﬁmnamn($)

Teorema 8. We assume positive coefficients and tensors.
If in the mixed problem® the boundary values are zero, then any of its solutions,
for which ithe condition E2(0) > 0 holds, is exponentially unstable
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3.2 Uniqueness, reciprocity and the variational prin-
ciple

3.2.1 Problem formulation

We will consider an inhomogeneous, anisotropic and Cosserat body which, at
the initial time t = 0, occupies the regular domain D of the three-dimensional
Euclidean space R3. The domain D is bounded by the smooth closed surface
0D. We will use both scalar functions and vector and tensor functions, and these
depend on the points D, z = (z,,) and the time variable t€[0, co).

If we consider the constitutive equations, then from the equations of motion
and the energy equation we obtain the following system of partial differential
equations:

0m = Aktmnerin + BrimnOkin + Cmn (0 + ad ),

Ln®n = Bunkikin + CrtmnOkin + Bmn (9, + a? )
+emjt(Cirinin + Bjkincin + aji(9 + ad)), (3.5)

hd = —dd + cmnémn + Brnmn + Kmn® mns

which takes place for any (¢,z) in [0,00) x D.

We will denote by P the mixed initial and boundary value problem in the
context of Cosserat body thermodynamics, consisting of the equations (3.5), the
initial conditions, and the boundary relations.

The qualitative results that we will address in the following relate to the solu-
tions of the problem P.

3.2.2 Reciprocity results

Our first result is a reciprocity result. For this we need a convolution product
for two continuous functions. So, if ¢ and v are two scalar functions, defined on
[0,00) x D and continuous in time, then their convolution product, denoted by
7 %7 is defined by:

(px)(t,z) = /0 o(t—T7,2)(T, z)dT.

Now we introduce the functions p(t) and r(t), useful in what follows, defined
by:

p(t) =1, r(t) = (p*p)(t) =t,Vt € [0,0), (3.6)

and we will consider the following writing convention:

Bt x) = /0 o(r,2)dr = (p * ) (1, ). (3.7)
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To obtain a more accessible form of the energy equation, we consider the func-
tion w defined on [0, 00) x D, by the relation:

w=25+Y(n — a), (3.8)

where S is defined as in (3.7). Also, for a function u of the class C%! on
[0,00) x D we define the functions § and « by:

fu=u+ au, yu =p*u+ au. (3.9)

In the following Proposition, we formulate the energy equation of in a different
manner.

Propozitie 1.
If the functions ¢, € C*0 and n € C%! satisfy the energy equation and the initial
condition 1(0,z) = n°(x),x € D, then they satisfy the equation:

Gmm +w = 09(n — ), V(t,z) € [0,00) x D. (3.10)
The reciprocal statement is also true.

A reciprocal relationship refers to the connection between two external data
Systems:

DO = (1) 4 g0 §0) G0 F) ) Gw) 20) L00) 1)

Tka )

¢0 qu . 190 (V)}

and the corresponding solutions to these data systems, more precisely:

s<y>={u§g> o) YW 1) o) <>,q7<5>},

m’fL’ mn’n

in both of the above systems we have v =1, 2.
To simplify the writing of reciprocity relations, we need the notation:

Lo(o17) = [ [0 6,00lt) 1) L2 (5, )08 ) 50 5,009 1.0
0 0

0

1
+/ |:f,(7;/)(8,1')11$#)(7“,ZE)—Fg,(g)(S,l')QﬁS#)(T, ac)—ﬁbw(”)(s,a:)ﬁ(“)(r,:p)] av
D
+ [ 656,20l 0) + L) (5,200 1,2 (3.11)
D
—hdW) (s, 2)9W (r, 2) — add™ (s, 2)0") (r, m)] av

1
o / b2 (5, 2)08) (r, )V, vy = 1,2,
0

where I used the following convention:

O S

w® = ) 4 9, (n ) _ a) L ¢ = ¢ (3.12)
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The following notations are also introduced:

Tou(s,7) = £ ()0t (r) + e () 40, ()
—b[ (v )( ) — ]19(/”( ) vy =1,2, (3.13)
and
Lu(s,7) = Juu(s, ) + bW ()9W (1) 4 add™) (s)0W (), v, = 1, 2. (3.14)

In (3.13) and (3.14) we avoided writing the dependence on the variable z.
Now we formulate and prove the first reciprocity result.

Teorema 9. If the symmetry relations are satisfied, then for any s,r € [0,00) the
following equality holds:

Lou(s,r) =Tu(s,r), v,p=1,2. (3.15)

To obtain another reciprocity result, we will consider the notations:

EW) = r« [fm”)(s) —l—g%)(s)] +0 [tiz ) 4y (”)} ,
G®) = r {g,g?(s) + g§g>(s)] +o [t@%;(”) + 09,;(”)} : (3.16)
RV = —t90®) 1 =12,
Using Theorem 9 and the notations (3.16) we obtain a new reciprocity result.

Teoremi 10. If the symmetry relations are satisfied and 8) is the solution
corresponding to the external data system 8%, v = 1,2, then the following equality
holds:

/ r* [tni)(s) xvl2 47 (1) <75(2) i (1) & 019(2)] dA
oD o

—1—/ [F(l) w02 4 G ) % gb(2 p 5« 02 5 )} av
D

e p*q(l)*R@)dA—— / w® 5 RAgy
Yo Jop Yo Jp

+ / [(h —ad)RW) + 9®) 4 ap # 9V 5 R2)| dV
D 4

Il
5
*

[A?()w(lw D) — g e e | a4 (3.17)
0

p*ﬂ( ) s cw@| dv

+/ [FMMMG x By

D o ]

B N I Oy / w® 5 ROGY
oD Yo Jp

+ / [(h — ad)R® 5 9 + ap 5 iy, 93 5 Rf},}} dv.
D
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To simplify the following relation, we will use the notation:

G(o:r) == [ 5-l600) = £ (5)im(r) = ()| 4V

) 1
s,1) = —
p LY
1
_/ [19(](3)1719(7') — tin(s)om (1) — Tk(s)qﬁm(r)] dA, ¥s,r € [0,00). (3.18)
oD 0
The reciprocity relation (3.15) underlies the result of the following theorem.

Teorema 11.

If the symmetry relations are satisfied and 8%), v = 1,2, is the solution corre-
sponding to the external data system, then the following equality holds:

d

7 {/D [vavm + L Gmdn + aﬁmnﬁmﬁm] dV}

t
L4 { | [ lad =092 + ] dVds}:
dt |Jo Jp e

= /t[G(t—T,t—i-T) — G(t+T7,t—7)]dr (3.19)
0
+ /D [0 (B (240 (0)+ 1 (0)0m (20)]+ o | (20) 6 (0) + 6 (0) 61 (28) )| AV

+ / [(ad — h)¥(0)9(2t) + akmn? 5 (2t)0 1 (0)] V.
D

The theorems presented above are essential to demonstrate that the solutions of
the equations of a physical system respect certain principles of symmetry and
conservation, which facilitates both the theoretical analysis and the practical ap-
plication of these solutions. Now we can address the problem of the uniqueness
of the solution of the problem P.

Teorema 12.. We assume that:
- the symmetry relations are satisfied;
- 0 and ad — h are strictly positive;

- the tensor Ky, 1S positive semidefinite; - a > 0.
Then the mized problem P admits at most one solution.
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For the second result we introduce the functional F, defined on H, by:

&r(trA) = / p* [Aklmnekl * €mn + BrnkiOkl * €mn + CrimnOkl * €mn
D

1
+0Vm * Uy + Lyn@m * Op — %7" * Hmnﬂ,m * 19,11 — T X gm * ﬁ,m

- [va —Trx tmn,n_Fm] * Uy + (Imn¢m _p*Tmn,n_emjktjk_Gm) * ¢m

¥
—EOT * (S — Omn€mn — ﬁmnemn) * (S — QglCRl — 6kl€kl)
—7 % (tmn * €mn T Tmn * 5mn) - (p * S 41 x dm,m — R) * 19] av (320)

+/ r*tm*@mdA—i—/ r*(tm—fm)*vmd/l
o )

c
1

+/ T*Tk*qgde—i-/ r* (T — Tg) * OpdA
Yo >

c
2

+/ r*q*ﬁdA—}—/ r* (¢ —q)*vdA, t € [0,00),
33 b

3
for anything‘A = (Uma (bm) Y, €mnsOmns tmn, Tmn, dm, S) € H.

Teorema 13.. Suppose that the symmetry relations are satisfied, a # 0 in the
domain D and the thermoelastic state A is a solution of the mized problem P.
Then the variation of the functional A is zero, more precisely

§F(t,A) =0, t € [0, 00). (3.21)

Remark.

It is not difficult to show that the statement in Theorem 13 is also valid
reciprocally (see Gurtin [34]). In other words, if the identity (3.21) is true, then
the state A for which this identity is true is the unique solution of our problem.
The idea of the proof, which is also suggested by Gurtin in [34], is based on a
particular choise of the thermoelastic state A. In our case, the thermoelastic state
proposed by Lebon in [21] can be used successfully.
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Dipolar Media

In this chapter, the notations presented in the table below will be used.

Notations Physical Interpretation

a,b,c,d,h coefficients constants specific heat

n entropy specific per unit mass

I components of the microinertia tensor
tij components of the tension tensor

Tij components of the tension torque tensor
Oijk components of the stress moment

qi components of the thermal conduction vector
Vi components of the displacement vector
o components of the microrotation

Tk surface tractions

Gmn dipole force of the body f, mass force
n = (nl) normal vector to the boundary 9D

T conductive temperature

% volume fraction change

) thermodynamic temperature

Yo constant reference temperature

K microinertia

l extrinsic force of the body

P reference mass density

€ijk Ricci symbol

Table 4.1: Notations

4.1 Uniqueness and instability

4.1.1 Mixed problem with initial and boundary data

To determine the uniqueness and instability of dipolar bodies with two tempera-
tures, the same steps are used as in the case of micropolar media, the difference
being represented by the complexity of the calculations given by the transition
from vectors to tensors. Therefore, it is considered that a thermoelastic body with
a dipolar structure occupies the three-dimensional domain 2 of the Euclidean
space R3. The closure of (2 is denoted by € and we have Q = Q U 09, where 09
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is the boundary of the domain 2 and is considered regular enough to allow the
application of the divergence theorem. We relate the motion of the thermoelastic
body to a fixed system of orthogonal axes Oz;, i = 1,2, 3. In order to characterize
the evolution of our body, we consider the set of variables (v;, ¢i;, T, 7).
Considering the geometric equations and the constitutive equations, which are
introduced into the basic equations, we are led to the following system of partial
differential equations:

(Aijmn + Ezgmn) Un,mj + (Emm] + Bzgmn) (Un,mj — (bmn,j)

+ (Fijkim + Dijrim) Gtmks — (g + Bij) <'197j + aﬁ,j) = pi,
ijlmnvn,mj +Dmnjkl (Un,mj - ¢mn,j) +Ckljmnr¢nr,mj _6klj (197]' +a197j>
+Eklmnvm,n+Bklmn (Un,m_ ¢mn)+ Dklmnr(bm",m_ Bkl (19 + (M?) :Iqu.b.lry

Kij T i — Vi j — Bij (@i,j - Q%) - 5zjk</5ij,k = hi) + d, (4.1)

which are satisfied for any (x) € £ x (0, c0).
By a solution we mean an ordered set (v;, ¢;5, T, ) which satisfies the system
of equations (4.1), the boundary conditions, and the initial conditions.

4.1.2 Main Results

We introduce the law of conservation of energy
Wl(t) = Wl(O), tc [O, OO)7 (4.2)

corresponding to the case where we consider the equation with two temperatures
and where

1 o . .
Wit) = 5 [ [p(08:0) + Ly (06a(0) + Aiges (e
+2E; 11645 (t)eri(t) + 2Fjuimeij (8) Yium () + Bijricij (t)er(t)
+2G i kimEij () Yrim (t) + CijrimnVijk (L) Yimn (t)

teny T ()T () + d <19(t) + Zﬂ(t))Q +h <a - Z) 92 (1)| av

* /Ot/Q [“J’Tﬂi(s)%@ +c ((Hz‘jT,i(S)),j)Q + (ad — h)ﬁQ(s)] dVds.

If we consider the relation (??), that is, we do not take into account the temper-
ature variation of the conductivity, the law of conservation of energy takes the
form

Wg(t) = WQ(O), t e [O, OO), (4.3)
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where
1 o . .
Wa(t) = 3 /Q {Pvz‘(t)vz‘(t) + Lindij (t) i (t) + Aijrieij(t)en(t)
+2E; k€5 (t)eri(t) + 2Fjkimeij () Yiim (t) + Bijrigij(t)er (t)
+2GkimEi5 (1) Veim (t) + CijkimnYijk (£) Vimn (t)

+d <19(t) + Zﬁ(t))Z +h <a - Z) 21| av

+/Ot/ﬂ [”ijri(s)fj(s) t+c ((HijT,i(S))’j)Q + (ad — h)9?(s)| dVds.

The system of equations (4.1), the boundary conditions and the initial conditions
together form the mixed problem that we will denote by P .

Next, we will obtain two main results, a uniqueness and an instability, for solving
the mixed problem P. For uniqueness we use the usual procedure: we will show
that the problem P admits only the null solution, if it is considered that the initial
data are null.

Teorema 14. The mixed problem with initial and boundary conditions P, in the
case of null initial data, admits only the null solution.

In the second main result, we want to prove that the solution to the mixed problem
P is exponentially unstable, if certain conditions are met.

Specifically, we will assume that the initial energy of the system is not strictly
positive.

First, we introduce a useful auxiliary result.

Let us denote by v(x) the function that satisfies the following bounding problem.

(Hijy,i(x))J = do' + h° — (aije% + Bije% + 5z'jk%0jk) , x €,
v(z) =0, x € 00. (4.4)

The fact that the boundary value problem (4.4) has a solution can be deduced from
the usual properties of boundary value problems attached to elliptic equations.
From (4.4) we deduce that the function v satisfies the equation:
49(x) + hi(x) — [isj (va(z) + ()] ; =
= aijeij(z) + Bijeij () + Gijryijn(2),

where the function £(z) is defined above.
Now, consider the above problem P in the case where the initial data are inho-
mogeneous and the boundary data are homogeneous.

Teorema 15. Let us assume positive coefficients and tensors.

If the mized initial and boundary value problem P, in the case of null boundary
data, admits a solution for which Wo(0) > 0, then this solution is exponentially
unstable.
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4.2 The effect of voids and internal state variables on
the elasticity of media with dipolar structure

4.2.1 Basic equations and conditions

We will consider €2 an open domain of the Euclidean space R? which is occupied,
at the initial time ¢ = 0, by an elastic medium with internal state variables and
dipolar structure. The surface 0f2 is the boundary of the domain D and is a closed
and bounded set that allows the application of the divergence theorem. A point
in 2 is represented as (x;) or (x). For the time variable ¢ we assume that ¢ € [0, ¢y).

To characterize the evolution of an elastic dipolar medium with voids, the following
kinematic variables are used:

Um = /Um(xat)) ¢]k = Qb]k(xvt)a S = §(l‘,t), (iU,t) €0 x [07t0)7

where ¢ represents the change in volume fraction.

In the following considerations we will use ¢ as the volume distribution function,
where ¢ = ¢ — ¢y, where ¢y is the value of ¢ in the initial state.

Using the procedure of Green and Rivlin, we can consider another deformation
that differs from the given deformation only by a superposition of a rigid motion
consisting of a rotation with constant angular velocity. We must assume that for
this motion, all other properties of the media remain unaffected by this superpo-
sition. Consequently, we obtain the following kinematic relations, which provide
expressions for the deformation measures, namely e;;, €;; and 7;;x, with respect
to the motion variables:

eij = 5 (Wi +uig), €y = wji — dij,
Yigk = Pjki- (4.5)
We will denote the internal sate variables by &,, v = 1, 2, ..., n and we will

usw the notation £ for the values of the variables in the initial state of the body.
Being in the context of a linear theory it is natural to use as internal variables
the difference below, w,, that is:

Wy = flx - 5,9 (46)

We will consider only the particular case where solids have a point that is the
center of symmetry. We also consider that for the body, which in its initial state
is unstressed, the internal energy density is a quadratic form with respect to
its independent constitutive variables. So, using the principle of conservation of
energy, we obtain the following expression for the internal energy density:

1

1
v = §Aijmneijemn + Gijmneijgmn + Fijmnreij’)/mnr + §Bijmn€ij5mn

1
+D;jmnr€ij Ymnr + icz‘jkmnr%'jk’ymm +ai1€i 0k +0ijkEij O kT CijkmYijk P k

1
+§pmn¢,m<ﬁ,n + agjueijwy + Biju€ijwy + dijkuYijkWy + fin @ iwy. (4.7)



54

The above coefficients A;jmn, Bijmns--» @ijk, --., fi characterize the elastic
properties of a body with pores and an internal state variable and are called
constitutive coefficients. In general, these coefficients depend on the point z, and
in the particular case when the body is homogeneous, they have a constant value.
With the help of this internal energy density, the following constitutive relations
are obtained, which provide expressions for the stress measures, t;;, 7i;, M4k, N,
as functions depending on the deformation tensors:

tij = gjj_ = Aijmnemn + Gmnij€mn + FmnrijYmnr + G0k + Qijuwy,

Tij = aa:; = Gijmnemn + Bijmn€mn + DijmnrYmnr + bijep k + Bijuwy,
Oijk= aaik = Fjkmn€mn~+ Dmnijk€mn+ Cmnrijk Ymnr +Cijkm ©,m + 0ty

h; = ;;IIZ = aijk€jk + bijr€jk + CijomYjsm + fivw. (4.8)

The procedure used by Green and Rivlin in the case of classical elasticity can also
be used to obtain the equilibrium laws in the context of the elasticity of porous
media with dipolar structure, namely:

- the equations of motion

(tmn + Tmn)m + pfm = pim,
ijki + Tjk + pgik = DirBjrs (4.9)
- the equation of equilibrium forces:
hii + pl = pkg. (4.10)

In the context of a linear approximation we can use a suggestion from [72] so that
the entropy production inequality leads to the following equation:

wy, = fu, (4.11)
where
fv = gijveij + hijueij + lijYije + Qupws- (4.12)
The notations used are found in Table 2.1.
Since the tensor e;; is symmetric, we can deduce the following symmetry relations:
Aijmn = Amnij = Aijnmv Bijmn = anija Gijmn = Gijnma
Cijkmm" = Umnrijks Pmn = Pnm-
To construct the mixed problem in the present context, we will add, in addition
to the basic equations above, the following initial conditions:
U (2,0) = vom (), O (2,0) = v1py (),
bik (2,0) = goji (), ik (2,0) = d1jk (), (4.13)
0 (x,0) =¢o (), wy (z,0) =wo, (x), x € Q,
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and the boundary conditions given by:

Uy, = Uppy, O il X [O,to], t; = (tjk —I—Tjk) ng = th, pe 2(1: X [O,to],
¢ij = (ﬁw‘, on ig X [O,to] y Ojk = O4jkNG = 5jk7 on Eg X [O,to] s (4.14)
o=@, on X3 X [0,t0], h = hin; = h, on X5 x [0,%] .

In (4.14) the surfaces 1, X9 and 3 together with their complements X, 3§ and
Y5 are subsets of the boundary 02 and satisfy the following two conditions:

iluz‘{:igUEC:ngZC:@Q,
21025:22020:23ﬂ20:®.

The functions vom, Vim, ®ojk, P1jk, Lo Wous Vm, tm, Pjks Ojks h and @, from the
above conditions (4.13) and (4.14), are prescribed and satisfy sufficient regularity
conditions in their domain of definition.

We use the notation P for the mixed problem in the context of the theory of
elasticity of media with pores and internal state variables and a dipolar structure.
This includes equations (4.9)-(4.11), initial conditions (4.13) and boundary con-
ditions (4.14).

A deformation state (v, ¢k, ¢, wy) is called a solution to the mixed problem
P if equations (4.9)-(4.11) and conditions (4.13) and (4.14) are verified for this
deformation.

4.2.2 Basic results

In this section we will address the issue of the influence that holes and internal
state variables can have on the behavior of media with dipolar structure. To obtain
these results, we first introduce some useful estimates, contained in Theorems 16,
17 and 18.

The first auxiliary estimate is proved in Theorem 16.

Teorema 16. If (v, ¢k, @, wy) is an arbitrary solution to the problem Py, then
the following equality holds:

/ (Aijmneijemn + 2Gijmneij5mn + 2anrijeij7mnr
Q
+Bz'jmn5ij5mn + Cijsmnr'}’ijs'}’mnr + 2Dijmnr<€ij'7mn'r + 205ij1/€ijwu

+2Bij0€i5Wy + 20i5r0Yijrwy + PUMUm + Ikréjréjk) dv  (4.15)

¢
= 2/ / (qiju€ij + Biju€ij + dijruYigr) wpdV ds.
0 Jo

In the next theorem we will prove another auxiliary estimate.
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Teorema 17. Let (v, ¢k, ©, wy) be a solution to the problem Py. Then we can
find the positive constant my such that the following inequality is satisfied:

/ (ijveij + Bijueij + OijsuVijs) wpdV <

Q

my / (eijeij + €ij€ij + YijsVijs T PmPm + wWpwy) dV. (4.16)
0

The last auxiliary estimate will be proven in the next theorem.

Teorema 18. Let us assume that the above assumptions are met and consider a
solution (VUm, @jk, @, wy) for the problem Py. Then a constant mo > 0 can be
determined such that the following inequality holds:

/ <®m®m + Gridjk + eijeij + ij€is + VigkVigk + ©° + wuwu) dV <
Q
¢
mg/ / <®m1}m+¢jk¢jk+eijeij +&i€i5 + %’jk%]’k—i—gOQ-l—wywy) dVds, (4.17)
0 Jo

which takes place for any t € [0, to].

Our main result will be obtained by considering the estimates given by theorem
16, theorem 17 and theorem 18. So, we will prove the uniqueness of the mixed
problem with initial and boundary data P.

Teorema 19.. We assume that the constitutive tensors and the mass density are
positive definite. Then the above problem P defined by equations (4.9)-(4.10) with
the initial data (4.13) and the boundary data (4.14) cannot admit more than one
solution.
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Final conclusions.
Dissemination of research
results. Future research
directions

5.0.1 Final conclusions

In the present work, the behavior of isotropic and anisotropic micropolar media,
as well as dipolar media, was analyzed in depth.

In the first part, the variational principles, continuous dependence and funda-
mental equations of isotropic micropolar media were studied, thus forming a solid
basis for the subsequent analysis. We continued with the study of plane deforma-
tion and wave propagation with two delay times, results that provide a detailed
perspective on the influence of heat sources and pores on the mechanical behavior.

In the second part, solutions based on complex potentials were obtained, applica-
ble to the analysis of stresses and deformations around circular hole, which helps
in the modeling and numerical simulation of these phenomena.

Regarding the study of anisotropic micropolar media, the uniqueness and in-
stability in thermoelasticity were discussed, through variational formulations of
problems with boundary and initial conditions. The reciprocity and variational
principles were also addressed, highlighting their role in determining solutions.

Finally, in the analysis of dipolar media, the effects of gaps and internal state
variables on their elasticity were obtained, results that contribute to the under-
standing of how the dipolar structure influences the mechanical behavior.

Therefore, the present work offers a broad perspective on the theories and applica-
tions of micropolar and dipolar media, using analytical and numerical methods to
investigate complex phenomena. The results obtained have both theoretical and
practical relevance, and can be applied in various fields of materials mechanics
and structural engineering.

o7
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Presentation of research results
5.0.3 Future research directions

The present work provides a detailed analysis of the behavior of isotropic and
anisotropic micropolar media, as well as of dipolar media, highlighting both the
theoretical foundations and advanced solution methods. The complexity of these
fields allows for a wide range of future research directions, which would deepen
and extend the obtained results.

A first possible direction could be the extension of the models to inhomogeneous
and nonlinear media. In many practical applications, real materials exhibit vari-
ations of mechanical properties in space or nonlinear behaviors following extreme
stresses. Including these aspects in theoretical models could allow a more de-
tailed description of the behavior of complex structures and would contribute to
the development of more precise analysis methods.

A promising direction is also the application of theoretical results to advanced
materials. Memory materials, metamaterials and nanomaterials are just a few
examples of structures that exhibit unusual mechanical properties, such as self-
healing or negative stiffness. Investigating these materials from the perspective of
micropolar and dipolar theories could lead to new design models in fields such as
biomedicine, aeronautical engineering and robotics.

In addition, the development of numerical methods for three-dimensional cases
represents an important technical challenge. The use of advanced numerical
methods, such as the finite element method (FEM) or methods based on arti-
ficial intelligence, could allow a more detailed simulation of the phenomena and
facilitate the optimization of the design of engineering structures.

Another essential aspect for model validation is experimental investigation. Al-
though theoretical and numerical models are extremely useful, comparing them
with experimental data can confirm or adjust the hypotheses used. Experiments
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on real materials could contribute to improving predictions in the field of microp-
olar and dipolar elasticity.

Another important research direction is the study of wave propagation in complex
structures. This topic is relevant for various applications, from acoustics and
seismology to nondestructive analysis of materials. A deeper understanding of
the propagation mechanisms could lead to improved defect detection techniques
and to the development of structures capable of attenuating or controlling wave
propagation.

In conclusion, the study of micropolar and dipolar media is a dynamic field, with
numerous practical and theoretical applications. Future research directions can
significantly contribute to the improvement of existing models, the development
of new technologies, and a deeper understanding of the behavior of materials
under complex conditions. Thus, this field remains of major interest both for
researchers and engineers who aim to solve increasingly sophisticated problems in
the mechanics of materials.
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