

ADMISSION TO DOCTORAL STUDIES

Session September 2025

Field of doctoral studies: Materials engineering

Doctoral supervisor: Prof. dr. eng. Mircea Horia Țierean

TOPICS FOR THE ADMISSION TO DOCTORAL STUDIES

TOPIC 1: *Research on the influence of laser texturing of the metal substrate surface on the quality of the joint with 3D printed polymers*

Contents / Main aspects to be considered

- Current state of the art of laser texturing.
- Obtaining joints between 3D printed polymers and metals with laser textured surfaces.
- Characterization of polymer-metal joints (optical microscopy and SEM, roughness, wetting and mechanical properties).

Recommended bibliography:

- 1. Belei, C., Meier, B., Amancio-Filho, S.T. Manufacturing of Metal–Polymer Hybrid Parts Using a Desktop 3-Axis Fused Filament Fabrication 3D-Printer. *Metals*, 2023, 13, 1262.
- Belei, C., Effertz, P.S., Meier, B., Amancio-Filho, S.T. Additive manufacturing of metal-polymer hybrid parts: the influence of as-printed LPBF surface roughness on the joint strength, *Frontiers in Materials*, 10:1202281, 2023.
- 3. Kasaei, M.M., Carbas, R.J.C., Marques, E.A.S., da Silva, L.F.M., A novel joining technology for metal and polymer sheets, *Journal of Advanced Joining Processes*, Volume 9, 2024, 100184.
- Moldovan, E.R.; Concheso Doria, C.; Ocaña, J.L.; Istrate, B.; Cimpoesu, N.; Baltes, L.S.; Stanciu, E.M.; Croitoru, C.; Pascu, A.; Munteanu, C.; Tierean, M.H. Morphological Analysis of Laser Surface Texturing Effect on AISI 430 Stainless Steel. *Materials*, 2022, 15, 4580.
- Moldovan, E.R.; Concheso Doria, C.; Ocaña, J.L.; Baltes, L.S.; Stanciu, E.M.; Croitoru, C.; Pascu, A.; Roata, I.C.; Tierean, M.H. Wettability and Surface Roughness Analysis of Laser Surface Texturing of AISI 430 Stainless Steel. *Materials*, 2022, 15, 2955.
- Moldovan, E.R., Concheso Doria, C., Ocaña Moreno, J.L., Baltes, L.S., Stanciu, E.M.; Croitoru, C., Pascu, A., Tierean; M.H., Geometry Characterization of AISI 430 Stainless Steel Microstructuring Using Laser. *Archives* of Metallurgy and Materials, 2022, volume: 67, issue: 2, 645-652.
- 7. Obilor, A.F., Pacella, M., Wilson, A. et al. Micro-texturing of polymer surfaces using lasers: a review. *Int J Adv Manuf Technol*, 120, 103–135, 2022.

Prerequisites / Remarks: Graduate of a master's degree program in the field of Materials Engineering, Industrial Engineering, Mechanical Engineering, Environmental Engineering.

Scientific Doctorate (full-time only)

Professional Doctorate (full-time or part-time)

☑ without tuition fee (state budget funded)

🗵 with tuition fee or with funding from other sources than the state budget

TOPIC 2: Research on the application of laser texturing of metal surfaces to medical devices

Contents / Main aspects to be considered

- Current state of the art of laser texturing.
- Obtaining hydrophilic and hydrophobic surfaces by laser texturing for medical devices.
- Characterization of textured medical device surfaces (optical microscopy and SEM, roughness, wetting and mechanical properties).

Recommended bibliography:

- 1. Chen, H.; Zhang, Y.; Zhang, L.; Ding, X.; Zhang, D. Applications of bioinspired approaches and challenges in medical devices. *Bio-Des. Manuf.* 2021, *4*, 146–148.
- 2. Huang, Y., Yang, R., Li, M.G., Recent Advances in Laser Manufacturing: Multifunctional Integrative Sensing Systems for Human Health and Gas Monitoring, *Adv. Funct. Mater.*, 2024, 34, 2407503.
- 3. Li, C.; Yang, L.; Liu, N.; Yang, Y.; Zhao, J.; Yang, P.; Cheng, G. Bioinspired surface hierarchical microstructures of Ti6Al4V alloy with a positive effect on osteoconduction. *Surf. Coat. Technol.* 2020, *388*, 125594.
- 4. Lu, L.; Wang, H.; Guan, Y.; Zhou, W. Laser microfabrication of biomedical devices. *Chin. J. Lasers*, 2017, 44, 59–73.
- 5. Wang, H., Deng, D., Zhai, Z., Yao, Y., Laser-processed functional surface structures for multi-functional applications-a review, *Journal of Manufacturing Processes*, Volume 116, 2024, 247-283.
- 6. Du, X., Liu Z., Zhang, Z., Du, C., Sui, J., Wang, C., Functional surfaces of medical devices based on laser processing: a review[J]. *Diamond & Abrasives Engineering*, 2024, 44(2): 206-220.
- 7. Xu, Z.; Wang, Y.A.; Ng, V.; Yin, H.; Xu, S. Advancements in Laser-Processed Functional Surfaces for Medical Devices: A Current Review. *Nanomaterials* 2025, *15*, 999.

Prerequisites / Remarks: *Graduate of a master's degree program in the field of Materials Engineering, Industrial Engineering, Mechanical Engineering, Environmental Engineering.*

Scientific Doctorate (full-time only)

☑ Professional Doctorate (full-time or part-time)

☑ without tuition fee (state budget funded)

🗵 with tuition fee or with funding from other sources than the state budget

Doctoral supervisor,

Coordinator of the field of doctoral studies,

Prof. dr. eng. Mircea Horia Țierean

Prof. dr. eng. Mircea Horia Țierean

Signature

Signature